1
|
Zhang W, Scott AF, Mohr DW, Ingersoll R, Shoucair PE, Bream JH, Nilles TL, Zhang H, Chen Y, Mailliard RB, Margolick JB. Complete CD16A Deficiency and Defective NK Cell Function in a Man Living with HIV. J Clin Immunol 2025; 45:98. [PMID: 40411624 PMCID: PMC12103316 DOI: 10.1007/s10875-025-01886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 05/01/2025] [Indexed: 05/26/2025]
Abstract
A man living with HIV was found to lack expression of CD16A on his natural killer (NK) cells and monocytes. Genetic analysis revealed compound heterozygous deletion of FCGR3A, the gene encoding CD16A. The case's NK cells showed: (a) no antibody-dependent cell-mediated cytotoxicity and very low spontaneous cytotoxicity; (b) an immature phenotype marked by high expression of CD94, CD2, NKG2A, and NKG2D, and low expression of KIR2DL2 and CD57; (c) no expression of KIR3DL1 and very low expression of FcRγ; and (d) normal cytokine production. The case's monocytes and DCs were similar phenotypically and functionally to those from the donors matched for HIV status, age, and percentage of NK cells in the peripheral blood. In contrast to previously reported people with CD16A deficiency, this man did not have a history of severe infections with herpes viruses, suggesting that other immune cells and/or immunoregulatory function of NK cells may compensate for deficiency of cytolytic NK cells.
Collapse
Affiliation(s)
- Weiying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Alan F Scott
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David W Mohr
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Roxann Ingersoll
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Peter E Shoucair
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tricia L Nilles
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Yue Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robbie B Mailliard
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Abdalgani M, Hernandez ER, Pedroza LA, Chinn IK, Forbes Satter LR, Rider NL, Banerjee PP, Poli MC, Mahapatra S, Canter D, Cao T, Shawver LM, Nandiwada SL, Lupski JR, Posey JE, Ramakrishnan R, Mace EM, Orange JS. Clinical, immunologic, and genetic characteristics of 148 patients with natural killer cell deficiency. J Allergy Clin Immunol 2025; 155:1623-1634. [PMID: 39914554 PMCID: PMC12058391 DOI: 10.1016/j.jaci.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/01/2025] [Accepted: 01/23/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Natural killer (NK) cell deficiency (NKD) is an immunodeficiency phenotype in which abnormality of NK cells is the major clinically relevant immune defect. OBJECTIVE We sought to define the clinical, immunologic, and genetic characteristics of patients with NKD to aid in the understanding of these individuals and this cell type and guide future research and clinical practice. METHODS During 2006-2022, 168 individuals with a suspected diagnosis of NKD were enrolled, with comprehensive clinical, immunologic, and genetic data collected and analyzed. Research exome sequencing was performed to identify both known and novel genetic associations. RESULTS NK cell abnormalities consistent with NKD were confirmed in 148 participants. Most presented during childhood (median age 13 years, range 0-76 years), though 34% were adults. All tested individuals exhibited reduced NK cell cytotoxic function; 44% also had decreased NK cell numbers and/or mature NK cells. Herpesvirus and/or papillomavirus infections were observed in 71%, malignancies were observed in 7%, and a 5% case-fatality rate was noted. Among the 99 participants who underwent research exome sequencing, 29% were considered solved for a likely contributing variant allele, with 52% of these cases involving known genes and 48% involving novel genes. CONCLUSIONS NKD is a phenotypic immunodeficiency associated with increased susceptibility to certain viral infections and cancer with multiple genetic etiologies, revealing key biological pathways for NK cell development and function. This research underscores the role of NK cells in human immune defenses and helps advance the identification of at-risk populations, precise genetic diagnoses, and informed clinical management for patients with NKD.
Collapse
Affiliation(s)
- Manar Abdalgani
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Evelyn R Hernandez
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Luis A Pedroza
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex
| | - Nicholas L Rider
- Department of Health Systems & Implementation Science, Virginia Tech Carilion School of Medicine, Blacksburg, Va; Section of Allergy-Immunology, The Carilion Clinic, Roanoke, Va
| | | | - M Cecilia Poli
- Faculty of Medicine, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Debra Canter
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex
| | - Tram Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex
| | | | - Sarada L Nandiwada
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex
| | - James R Lupski
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex
| | - Jennifer E Posey
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Emily M Mace
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY.
| |
Collapse
|
3
|
Pedroza LA, van den Haak F, Frumovitz A, Hernandez E, Hegewisch-Solloa E, Orange TK, Sheehan KB, Prockop S, Bodansky A, Chinn IK, Lupski JR, Posey JE, Mace EM, Li Y, Orange JS. The Golgi complex governs natural killer cell lytic granule positioning to promote directionality in cytotoxicity. Cell Rep 2025; 44:115156. [PMID: 39813120 PMCID: PMC11844255 DOI: 10.1016/j.celrep.2024.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cytotoxic immune cells mediate precise attacks against diseased cells to maintain organismal health. Their operational unit of killing and host defense is lytic granules (LGs), which are specialized lysosomal-related organelles. Precision in cytotoxicity is achieved by converging the many LGs to the microtubule-organizing center (MTOC) and polarizing these to the diseased cell for secretion. We identify unappreciated intimate relationships between the Golgi, MTOC, and LGs after cytotoxic cell activation, as well as the trans-Golgin protein GCC2 on the LG surface. GCC2 serves to tether LGs to the Golgi following convergence, and both GCC2 and the Golgi are required for the persistence of convergence. GCC2 allows LGs to utilize the Golgi as a docking station preventing LG dispersion and innocent bystander killing in complex three-dimensional environments. We also identify GCC2 variants causing human natural killer cell deficiency, further emphasizing the importance of LG convergence and Golgi linkage in precision targeting for human immunity.
Collapse
Affiliation(s)
- Luis A Pedroza
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Alexander Frumovitz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Evelyn Hernandez
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Tabitha K Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | - Aaron Bodansky
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yu Li
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Yao S, Yue Z, Ye S, Liang X, Li Y, Gan H, Zhou J. Identification of MCM2-Interacting Proteins Associated with Replication Initiation Using APEX2-Based Proximity Labeling Technology. Int J Mol Sci 2025; 26:1020. [PMID: 39940790 PMCID: PMC11816892 DOI: 10.3390/ijms26031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
DNA replication is a crucial biological process that ensures the accurate transmission of genetic information, underpinning the growth, development, and reproduction of organisms. Abnormalities in DNA replication are a primary source of genomic instability and tumorigenesis. During DNA replication, the assembly of the pre-RC at the G1-G1/S transition is a crucial licensing step that ensures the successful initiation of replication. Although many pre-replication complex (pre-RC) proteins have been identified, technical limitations hinder the detection of transiently interacting proteins. The APEX system employs peroxidase-mediated rapid labeling with high catalytic efficiency, enabling protein labeling within one minute and detection of transient protein interactions. MCM2 is a key component of the eukaryotic replication initiation complex, which is essential for DNA replication. In this study, we fused MCM2 with enhanced APEX2 to perform in situ biotinylation. By combining this approach with mass spectrometry, we identified proteins proximal to the replication initiation complex in synchronized mouse ESCs and NIH/3T3. Through a comparison of the results from both cell types, we identified some candidate proteins. Interactions between MCM2 and the candidate proteins CD2BP2, VRK1, and GTSE1 were confirmed by bimolecular fluorescence complementation. This research establishes a basis for further study of the component proteins of the conserved DNA replication initiation complex and the transient regulatory network involving its proximal proteins.
Collapse
Affiliation(s)
- Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| |
Collapse
|
5
|
Ahmed SMQ, Sasikumar J, Laha S, Das SP. Multifaceted role of the DNA replication protein MCM10 in maintaining genome stability and its implication in human diseases. Cancer Metastasis Rev 2024; 43:1353-1371. [PMID: 39240414 DOI: 10.1007/s10555-024-10209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Sumayyah M Q Ahmed
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics (CBMG), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
6
|
Piersma SJ. Tissue-specific features of innate lymphoid cells in antiviral defense. Cell Mol Immunol 2024; 21:1036-1050. [PMID: 38684766 PMCID: PMC11364677 DOI: 10.1038/s41423-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Innate lymphocytes (ILCs) rapidly respond to and protect against invading pathogens and cancer. ILCs include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells and include type I, type II, and type III immune cells. While NK cells have been well recognized for their role in antiviral immunity, other ILC subtypes are emerging as players in antiviral defense. Each ILC subset has specialized functions that uniquely impact the antiviral immunity and health of the host depending on the tissue microenvironment. This review focuses on the specialized functions of each ILC subtype and their roles in antiviral immune responses across tissues. Several viruses within infection-prone tissues will be highlighted to provide an overview of the extent of the ILC immunity within tissues and emphasize common versus virus-specific responses.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Guilz NC, Ahn YO, Fatima H, Pedroza LA, Seo S, Soni RK, Wang N, Egli D, Mace EM. Replication Stress in Activated Human NK Cells Induces Sensitivity to Apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:40-51. [PMID: 38809096 PMCID: PMC11824913 DOI: 10.4049/jimmunol.2300843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.
Collapse
Affiliation(s)
- Nicole C Guilz
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Yong-Oon Ahn
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Hijab Fatima
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Luis Alberto Pedroza
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Seungmae Seo
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Ning Wang
- Pediatrics and Obstetrics and Gynecology, Columbia Stem Cell Initiative, Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Dieter Egli
- Pediatrics and Obstetrics and Gynecology, Columbia Stem Cell Initiative, Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Emily M Mace
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
8
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|
9
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Schmit MM, Baxley RM, Wang L, Hinderlie P, Kaufman M, Simon E, Raju A, Miller JS, Bielinsky AK. A critical threshold of MCM10 is required to maintain genome stability during differentiation of induced pluripotent stem cells into natural killer cells. Open Biol 2024; 14:230407. [PMID: 38262603 PMCID: PMC10805602 DOI: 10.1098/rsob.230407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.
Collapse
Affiliation(s)
- Megan M. Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Emily Simon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anjali Raju
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
13
|
Boutboul D, Picard C, Latour S. Inborn errors of immunity underlying defective T-cell memory. Curr Opin Allergy Clin Immunol 2023; 23:491-499. [PMID: 37797193 DOI: 10.1097/aci.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW T-cell memory is a complex process not well understood involving specific steps, pathways and different T-cell subpopulations. Inborn errors of immunity (IEIs) represent unique models to decipher some of these requirements in humans. More than 500 different IEIs have been reported to date, and recently a subgroup of monogenic disorders characterized by memory T-cell defects has emerged, providing novel insights into the pathways of T-cell memory generation and maintenance, although this new knowledge is mostly restricted to peripheral blood T-cell memory populations. RECENT FINDINGS This review draws up an inventory of the main and recent IEIs associated with T-cell memory defects and their mice models, with a particular focus on the nuclear factor kappa B (NF-κB) signalling pathway, including the scaffold protein capping protein regulator and myosin 1 linker 2 (CARMIL2) and the T-cell co-stimulatory molecules CD28 and OX-40. Besides NF-κB, IKZF1 (IKAROS), a key transcription factor of haematopoiesis and STAT3-dependent interleukin-6 signals involving the transcription factor ZNF341 also appear to be important for the generation of T cell memory. Somatic reversion mosaicism in memory T cells is documented for several gene defects supporting the critical role of these factors in the development of memory T cells with a potential clinical benefit. SUMMARY Systematic examination of T-cell memory subsets could be helpful in the diagnosis of IEIs.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Haematology department, Hospital Cochin, Assistance Publique-Hôpitaux de Paris (APHP)
- Université de Paris Cité
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital
- Université de Paris Cité
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute
- Université de Paris Cité
| |
Collapse
|
14
|
Piersma SJ, Bangru S, Yoon J, Liu TW, Yang L, Hsieh CS, Plougastel-Douglas B, Kalsotra A, Yokoyama WM. NK cell expansion requires HuR and mediates control of solid tumors and long-term virus infection. J Exp Med 2023; 220:e20231154. [PMID: 37698554 PMCID: PMC10497399 DOI: 10.1084/jem.20231154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes capable of controlling tumors and virus infections through direct lysis and cytokine production. While both T and NK cells expand and accumulate in affected tissues, the role of NK cell expansion in tumor and viral control is not well understood. Here, we show that posttranscriptional regulation by the RNA-binding protein HuR is essential for NK cell expansion without negatively affecting effector functions. HuR-deficient NK cells displayed defects in the metaphase of the cell cycle, including decreased expression and alternative splicing of Ska2, a component of the spindle and kinetochore complex. HuR-dependent NK cell expansion contributed to long-term cytomegalovirus control and facilitated control of subcutaneous tumors but not tumor metastases in two independent tumor models. These results show that posttranscriptional regulation by HuR specifically affects NK cell expansion, which is required for the control of long-term virus infection and solid tumors, but not acute infection or tumor metastases, highlighting fundamental differences with antigen-specific T cell control.
Collapse
Affiliation(s)
- Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeesang Yoon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tom W. Liu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Beatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Seo S, Patil SL, Ahn YO, Armetta J, Hegewisch-Solloa E, Castillo M, Guilz NC, Patel A, Corneo B, Borowiak M, Gunaratne P, Mace EM. iPSC-based modeling of helicase deficiency reveals impaired cell proliferation and increased apoptosis after NK cell lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559149. [PMID: 37808662 PMCID: PMC10557596 DOI: 10.1101/2023.09.25.559149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Cell proliferation is a ubiquitous process required for organismal development and homeostasis. However, individuals with partial loss-of-function variants in DNA replicative helicase components often present with immunodeficiency due to specific loss of natural killer (NK) cells. Such lineage-specific disease phenotypes raise questions on how the proliferation is regulated in cell type-specific manner. We aimed to understand NK cell-specific proliferative dynamics and vulnerability to impaired helicase function using iPSCs from individuals with NK cell deficiency (NKD) due to hereditary compound heterozygous GINS4 variants. We observed and characterized heterogeneous cell populations that arise during the iPSC differentiation along with NK cells. While overall cell proliferation decreased with differentiation, early NK cell precursors showed a short burst of cell proliferation. GINS4 deficiency induced replication stress in these early NK cell precursors, which are poised for apoptosis, and ultimately recapitulate the NKD phenotype.
Collapse
Affiliation(s)
- Seungmae Seo
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Sagar L Patil
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Yong-Oon Ahn
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Jacqueline Armetta
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA, 77204
| | - Nicole C Guilz
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Achchhe Patel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Barbara Corneo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA, 77204
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
16
|
Cacialli P, Dogan S, Linnerz T, Pasche C, Bertrand JY. Minichromosome maintenance protein 10 (mcm10) regulates hematopoietic stem cell emergence in the zebrafish embryo. Stem Cell Reports 2023; 18:1534-1546. [PMID: 37437546 PMCID: PMC10362509 DOI: 10.1016/j.stemcr.2023.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/14/2023] Open
Abstract
Hematopoietic stem cells (HSCs) guarantee the continuous supply of all blood lineages during life. In response to stress, HSCs are capable of extensive proliferative expansion, whereas in steady state, HSCs largely remain in a quiescent state to prevent their exhaustion. DNA replication is a very complex process, where many factors need to exert their functions in a perfectly concerted manner. Mini-chromosome-maintenance protein 10 (Mcm10) is an important replication factor, required for proper assembly of the eukaryotic replication fork. In this report, we use zebrafish to study the role of mcm10 during embryonic development, and we show that mcm10 specifically regulates HSC emergence from the hemogenic endothelium. We demonstrate that mcm10-deficient embryos present an accumulation of DNA damages in nascent HSCs, inducing their apoptosis. This phenotype can be rescued by knocking down p53. Taken all together, our results show that mcm10 plays an important role in the emergence of definitive hematopoiesis.
Collapse
Affiliation(s)
- Pietro Cacialli
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Serkan Dogan
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; McMaster University, Faculty of Sciences, Department of Biology, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tanja Linnerz
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; University of Auckland, Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, 85 Park Road, 1023 Auckland, New Zealand
| | - Corentin Pasche
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Julien Y Bertrand
- University of Geneva, Faculty of Medicine, Department of Pathology and Immunology, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Willemsen M, Barber JS, Nieuwenhove EV, Staels F, Gerbaux M, Neumann J, Prezzemolo T, Pasciuto E, Lagou V, Boeckx N, Filtjens J, De Visscher A, Matthys P, Schrijvers R, Tousseyn T, O'Driscoll M, Bucciol G, Schlenner S, Meyts I, Humblet-Baron S, Liston A. Homozygous DBF4 mutation as a cause of severe congenital neutropenia. J Allergy Clin Immunol 2023; 152:266-277. [PMID: 36841265 DOI: 10.1016/j.jaci.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Severe congenital neutropenia presents with recurrent infections early in life as a result of arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation; however, a genetic cause remains unknown in approximately 40% of cases. OBJECTIVE We aimed to characterize a patient with severe congenital neutropenia and syndromic features without a genetic diagnosis. METHODS Whole exome sequencing results were validated using flow cytometry, Western blotting, coimmunoprecipitation, quantitative PCR, cell cycle and proliferation analysis of lymphocytes and fibroblasts and granulocytic differentiation of primary CD34+ and HL-60 cells. RESULTS We identified a homozygous missense mutation in DBF4 in a patient with mild extra-uterine growth retardation, facial dysmorphism and severe congenital neutropenia. DBF4 is the regulatory subunit of the CDC7 kinase, together known as DBF4-dependent kinase (DDK), the complex essential for DNA replication initiation. The DBF4 variant demonstrated impaired ability to bind CDC7, resulting in decreased DDK-mediated phosphorylation, defective S-phase entry and progression and impaired differentiation of granulocytes associated with activation of the p53-p21 pathway. The introduction of wild-type DBF4 into patient CD34+ cells rescued the promyelocyte differentiation arrest. CONCLUSION Hypomorphic DBF4 mutation causes autosomal-recessive severe congenital neutropenia with syndromic features.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - John S Barber
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Erika Van Nieuwenhove
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Frederik Staels
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Emanuela Pasciuto
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Vasiliki Lagou
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuve, Belgium
| | - Amber De Visscher
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuve, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuve, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Giorgia Bucciol
- Department of Microbiology, Immunology, and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven
| | - Susan Schlenner
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology, and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven.
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| |
Collapse
|
18
|
Guilz NC, Ahn YO, Seo S, Mace EM. Unwinding the Role of the CMG Helicase in Inborn Errors of Immunity. J Clin Immunol 2023; 43:847-861. [PMID: 36809597 PMCID: PMC10789183 DOI: 10.1007/s10875-023-01437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Inborn errors of immunity (IEI) are a collection of diseases resulting from genetic causes that impact the immune system through multiple mechanisms. Natural killer cell deficiency (NKD) is one such IEI where natural killer (NK) cells are the main immune lineage affected. Though rare, the deficiency of several genes has been described as underlying causes of NKD, including MCM4, GINS1, MCM10 , and GINS4 , all of which are involved in the eukaryotic CMG helicase. The CMG helicase is made up of C DC45 – M CM – G INS and accessory proteins including MCM10. The CMG helicase plays a critical role in DNA replication by unwinding the double helix and enabling access of polymerases to single-stranded DNA, and thus helicase proteins are active in any proliferating cell. Replication stress, DNA damage, and cell cycle arrest are among the cellular phenotypes attributed to loss of function variants in CMG helicase proteins. Despite the ubiquitous function of the CMG helicase, NK cells have an apparent susceptibility to the deficiency of helicase proteins. This review will examine the role of the CMG helicase in inborn errors of immunity through the lens of NKD and further discuss why natural killer cells can be so strongly affected by helicase deficiency.
Collapse
Affiliation(s)
- Nicole C Guilz
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA
| | - Yong-Oon Ahn
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA
| | - Seungmae Seo
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Department of Pediatrics, Columbia University Irving Medical Center, 630 W 168th St., New York, NY, 10032, USA.
| |
Collapse
|
19
|
Smits DJ, Schot R, Popescu CA, Dias KR, Ades L, Briere LC, Sweetser DA, Kushima I, Aleksic B, Khan S, Karageorgou V, Ordonez N, Sleutels FJGT, van der Kaay DCM, Van Mol C, Van Esch H, Bertoli-Avella AM, Roscioli T, Mancini GMS. De novo MCM6 variants in neurodevelopmental disorders: a recognizable phenotype related to zinc binding residues. Hum Genet 2023:10.1007/s00439-023-02569-7. [PMID: 37198333 DOI: 10.1007/s00439-023-02569-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristiana A Popescu
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
| | - Lesley Ades
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Itaru Kushima
- Medical Genomics Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | - Frank J G T Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Daniëlle C M van der Kaay
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), University of New South Wales, Sydney, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Semmes EC, Permar SR. Human Cytomegalovirus Infection Primes Fetal Natural Killer Cells for Fc-Mediated Antiviral Defense. J Infect Dis 2023; 227:739-741. [PMID: 35876548 DOI: 10.1093/infdis/jiac308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
21
|
Yilmaz Demirdag Y, Gupta S. Infections in DNA Repair Defects. Pathogens 2023; 12:pathogens12030440. [PMID: 36986362 PMCID: PMC10054915 DOI: 10.3390/pathogens12030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
DNA repair defects are heterogenous conditions characterized by a wide spectrum of clinical phenotypes. The common presentations of DNA repair defects include increased risk of cancer, accelerated aging, and defects in the development of various organs and systems. The immune system can be affected in a subset of these disorders leading to susceptibility to infections and autoimmunity. Infections in DNA repair defects may occur due to primary defects in T, B, or NK cells and other factors such as anatomic defects, neurologic disorders, or during chemotherapy. Consequently, the characteristics of the infections may vary from mild upper respiratory tract infections to severe, opportunistic, and even fatal infections with bacteria, viruses, or fungi. Here, infections in 15 rare and sporadic DNA repair defects that are associated with immunodeficiencies are discussed. Because of the rarity of some of these conditions, limited information is available regarding infectious complications.
Collapse
|
22
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
23
|
Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A. DNA replication-associated inborn errors of immunity. J Allergy Clin Immunol 2023; 151:345-360. [PMID: 36395985 DOI: 10.1016/j.jaci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center Member, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge.
| |
Collapse
|
24
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
25
|
Salinas SA, Mace EM, Conte MI, Park CS, Li Y, Rosario-Sepulveda JI, Mahapatra S, Moore EK, Hernandez ER, Chinn IK, Reed AE, Lee BJ, Frumovitz A, Gibbs RA, Posey JE, Forbes Satter LR, Thatayatikom A, Allenspach EJ, Wensel TG, Lupski JR, Lacorazza HD, Orange JS. An ELF4 hypomorphic variant results in NK cell deficiency. JCI Insight 2022; 7:e155481. [PMID: 36477361 PMCID: PMC9746917 DOI: 10.1172/jci.insight.155481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2022] [Indexed: 12/12/2022] Open
Abstract
NK cell deficiencies (NKD) are a type of primary immune deficiency in which the major immunologic abnormality affects NK cell number, maturity, or function. Since NK cells contribute to immune defense against virally infected cells, patients with NKD experience higher susceptibility to chronic, recurrent, and fatal viral infections. An individual with recurrent viral infections and mild hypogammaglobulinemia was identified to have an X-linked damaging variant in the transcription factor gene ELF4. The variant does not decrease expression but disrupts ELF4 protein interactions and DNA binding, reducing transcriptional activation of target genes and selectively impairing ELF4 function. Corroborating previous murine models of ELF4 deficiency (Elf4-/-) and using a knockdown human NK cell line, we determined that ELF4 is necessary for normal NK cell development, terminal maturation, and function. Through characterization of the NK cells of the proband, expression of the proband's variant in Elf4-/- mouse hematopoietic precursor cells, and a human in vitro NK cell maturation model, we established this ELF4 variant as a potentially novel cause of NKD.
Collapse
Affiliation(s)
- Sandra Andrea Salinas
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matilde I. Conte
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Yu Li
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Sanjana Mahapatra
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Emily K. Moore
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Evelyn R. Hernandez
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Ivan K. Chinn
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Abigail E. Reed
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Barclay J. Lee
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexander Frumovitz
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lisa R. Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Akaluck Thatayatikom
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of Florida, Shands Children’s Hospital, Gainesville, Florida, USA
| | - Eric J. Allenspach
- Division of Immunology, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, and
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jordan S. Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine the complexities of cancer development and pathophysiology. Each genetic defect may impose a different pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer. RECENT FINDINGS Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity, senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects perturb tumor immune surveillance in patients. SUMMARY This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.
Collapse
|
27
|
Conte MI, Poli MC, Taglialatela A, Leuzzi G, Chinn IK, Salinas SA, Rey-Jurado E, Olivares N, Veramendi-Espinoza L, Ciccia A, Lupski JR, Aldave Becerra JC, Mace EM, Orange JS. Partial loss-of-function mutations in GINS4 lead to NK cell deficiency with neutropenia. JCI Insight 2022; 7:e154948. [PMID: 36345943 PMCID: PMC9675456 DOI: 10.1172/jci.insight.154948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Human NK cell deficiency (NKD) is a primary immunodeficiency in which the main clinically relevant immunological defect involves missing or dysfunctional NK cells. Here, we describe a familial NKD case in which 2 siblings had a substantive NKD and neutropenia in the absence of other immune system abnormalities. Exome sequencing identified compound heterozygous variants in Go-Ichi-Ni-San (GINS) complex subunit 4 (GINS4, also known as SLD5), an essential component of the human replicative helicase, which we demonstrate to have a damaging impact upon the expression and assembly of the GINS complex. Cells derived from affected individuals and a GINS4-knockdown cell line demonstrate delayed cell cycle progression, without signs of improper DNA synthesis or increased replication stress. By modeling partial GINS4 depletion in differentiating NK cells in vitro, we demonstrate the causal relationship between the genotype and the NK cell phenotype, as well as a cell-intrinsic defect in NK cell development. Thus, biallelic partial loss-of-function mutations in GINS4 define a potentially novel disease-causing gene underlying NKD with neutropenia. Together with the previously described mutations in other helicase genes causing NKD, and with the mild defects observed in other human cells, these variants underscore the importance of this pathway in NK cell biology.
Collapse
Affiliation(s)
- Matilde I. Conte
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - M. Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Immunology and Rheumatology Unit, Hospital Roberto del Rio, Santiago, Chile
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ivan K. Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Division of Immunology, Allergy, and Retrovirology, Texas Children’s Hospital, Houston, Texas, USA
| | - Sandra A. Salinas
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Emma Rey-Jurado
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nixa Olivares
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Liz Veramendi-Espinoza
- Allergy and Clinical Immunology, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jordan S. Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
28
|
Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp Hematol Oncol 2022; 11:64. [PMID: 36167633 PMCID: PMC9513989 DOI: 10.1186/s40164-022-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Fanconi anemia (FA) is a rare disease of bone marrow failure. FA patients are prone to develop myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, the molecular clonal evolution of the progression from FA to MDS/AML remains elusive. Methods Herein, we performed a comprehensive genomic analysis using an FA patient (P1001) sample that transformed to MDS and subsequently AML, together with other three FA patient samples at the MDS stage. Results Our finding showed the existence of polyclonal pattern in these cases at MDS stage. The clonal evolution analysis of FA case (P1001) showed the mutations of UBASH3A, SF3B1, RUNX1 and ASXL1 gradually appeared at the later stage of MDS, while the IDH2 alteration become the dominant clone at the leukemia stage. Moreover, single-cell sequencing analyses further demonstrated a polyclonal pattern was present at either MDS or AML stages, whereas IDH2 mutated cell clones appeared only at the leukemia stage. Conclusions We thus propose a clonal evolution model from FA to MDS and AML for this patient. The results of our study on the clonal evolution and mutated genes of the progression of FA to AML are conducive to understanding the progression of the disease that still perplexes us. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00319-5.
Collapse
|
29
|
Starokadomskyy P. Editorial: Pattern-recognition receptors: Genetics, immunity, pathology. Front Cell Infect Microbiol 2022; 12:991898. [PMID: 36204646 PMCID: PMC9531015 DOI: 10.3389/fcimb.2022.991898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
|
30
|
Vaaben AV, Levan J, Nguyen CBT, Callaway PC, Prahl M, Warrier L, Nankya F, Musinguzi K, Kakuru A, Muhindo MK, Dorsey G, Kamya MR, Feeney ME. In Utero Activation of Natural Killer Cells in Congenital Cytomegalovirus Infection. J Infect Dis 2022; 226:566-575. [PMID: 35876164 PMCID: PMC9441208 DOI: 10.1093/infdis/jiac307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Congenital cytomegalovirus (CMV) infection is the most common infectious cause of birth defects and neurological damage in newborns. Despite a well-established role for natural killer (NK) cells in control of CMV infection in older children and adults, it remains unknown whether fetal NK cells can sense and respond to CMV infection acquired in utero. METHODS Here, we investigate the impact of congenital CMV infection on the neonatal NK-cell repertoire by assessing the frequency, phenotype, and functional profile of NK cells in cord blood samples from newborns with congenital CMV and from uninfected controls enrolled in a birth cohort of Ugandan mothers and infants. RESULTS We find that neonatal NK cells from congenitally CMV infected newborns show increased expression of cytotoxic mediators, signs of maturation and activation, and an expansion of mature CD56- NK cells, an NK-cell subset associated with chronic viral infections in adults. Activation was particularly prominent in NK cell subsets expressing the Fcγ receptor CD16, indicating a role for antibody-mediated immunity against CMV in utero. CONCLUSIONS These findings demonstrate that NK cells can be activated in utero and suggest that NK cells may be an important component of the fetal and infant immune response against CMV. CLINICAL TRIALS REGISTRATION NCT02793622.
Collapse
Affiliation(s)
- Anna V Vaaben
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Justine Levan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Catherine B T Nguyen
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Perri C Callaway
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Infectious Diseases and Immunity Graduate Group, University of California Berkeley, California, Berkeley, USA
| | - Mary Prahl
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Lakshmi Warrier
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | | - Abel Kakuru
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Mary K Muhindo
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
31
|
Caballero M, Ge T, Rebelo AR, Seo S, Kim S, Brooks K, Zuccaro M, Kanagaraj R, Vershkov D, Kim D, Smogorzewska A, Smolka M, Benvenisty N, West SC, Egli D, Mace EM, Koren A. Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for MCM10 in replication timing regulation. Hum Mol Genet 2022; 31:2899-2917. [PMID: 35394024 PMCID: PMC9433724 DOI: 10.1093/hmg/ddac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular proliferation depends on the accurate and timely replication of the genome. Several genetic diseases are caused by mutations in key DNA replication genes; however, it remains unclear whether these genes influence the normal program of DNA replication timing. Similarly, the factors that regulate DNA replication dynamics are poorly understood. To systematically identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a rigorous approach that considers the background variability of replication timing, we concluded that most samples displayed normal replication timing. However, mutations in two genes showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of replication timing. The second was MCM10, a highly conserved member of the pre-replication complex. Cells from a single patient carrying MCM10 mutations demonstrated replication timing variability comprising 46% of the genome and at different locations than RIF1 knockouts. Replication timing alterations in the mutated MCM10 cells were predominantly comprised of replication delays and initiation site gains and losses. Taken together, this study demonstrates the remarkable robustness of the human replication timing program and reveals MCM10 as a novel candidate modulator of DNA replication timing.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany Ge
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ana Rita Rebelo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seungmae Seo
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sean Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Kayla Brooks
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | | | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Marcus Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Aviles-Padilla K, Angelo LS, Fan D, Paust S. CXCR6 + and NKG2C + Natural Killer Cells Are Distinct With Unique Phenotypic and Functional Attributes Following Bone Marrow Transplantation. Front Immunol 2022; 13:886835. [PMID: 35844621 PMCID: PMC9277058 DOI: 10.3389/fimmu.2022.886835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) is a life-threatening complication in transplant patients. Natural Killer (NK) cells are the first lymphocyte lineage to reconstitute following an allogeneic hematopoietic stem cell transplant (HSCT). Amongst them, NK cell Group 2 isoform C/Killer cell lectin-like receptor subfamily C, member 2 (NKG2C)-expressing NK cells contribute significantly to patient protection upon HCMV reactivation. NKG2C+ NK cells are capable of immunological memory, albeit NK cell memory is not restricted to them. Hepatic C-X-C Motif Chemokine Receptor 6 (CXCR6)-expressing NK cells also mediate memory responses in mice and humans. Small numbers of them circulate and can thus be studied in peripheral blood samples. We hypothesize that NKG2C+ and CXCR6+ NK cell subsets are distinct. To test our hypothesis, we used multi-parametric flow cytometry to determine the phenotypes and effector functions of CD56bright vs. CD56dim and NKG2C+ vs. CXCR6+ human NK cell subsets in the peripheral blood (PB) of pediatric transplant recipients monthly while monitoring patients for HCMV reactivation. Interestingly, we did not find any NKG2C+CXCR6+ NK cells in the transplant recipients' peripheral blood, suggesting that NKG2C+ and CXCR6+ NK cells are distinct. Also, NKG2C-CXCR6- NK cells, rather than NKG2C+ NK cells, made up most NK cells post-transplant, even in transplant recipients with HCMV viremia. In contrast to NKG2C+ NK cells, CXCR6+ NK cells appeared phenotypically less differentiated but were highly proliferative and produced IFN-γ and TNF α . Our findings contribute to our understanding of post-transplant NK cell development and its implications for human health.
Collapse
Affiliation(s)
- Kevin Aviles-Padilla
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Dwight Fan
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Silke Paust,
| |
Collapse
|
33
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42:1473-1507. [PMID: 35748970 PMCID: PMC9244088 DOI: 10.1007/s10875-022-01289-3] [Citation(s) in RCA: 627] [Impact Index Per Article: 209.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France
- Université Paris Cité, Imagine Institute, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
34
|
Xiao KW, Yang ZQ, Yan X, Liu ZB, Yang M, Guo LY, Cai L. Molecular Characteristics of m6A Regulators and Tumor Microenvironment Infiltration in Soft Tissue Sarcoma: A Gene-Based Study. Front Bioeng Biotechnol 2022; 10:846812. [PMID: 35519620 PMCID: PMC9062003 DOI: 10.3389/fbioe.2022.846812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: N6-methyladenosine (m6A) methylation played a key role in tumor growth. However, the relationship between m6A and soft tissue sarcoma (STS) was still unclear. Methods: The characterization and patterns of m6A modification in STS (TCGA-SARC and GSE17674) were analyzed comprehensively through bioinformatics and real-time polymerase chain reaction (RT-PCR). The effects of different m6A modification patterns on prognosis and immune infiltration of STS were further explored. Differentially expressed gene (DEG) analysis was performed. Moreover, an m6Ascore was constructed by principal component analysis (PCA). In addition, two immunotherapy datasets (IMvigor210 and GSE78220) and a sarcoma dataset (GSE17618) were used to evaluate the m6Ascore. Results: Huge differences were found in somatic mutation, CNV, and expression of 25 m6A regulators in STS. Two modification patterns (A and B) in STS were further identified and the m6A cluster A showed a better clinical outcome with a lower immune/stromal score compared with the m6A cluster B (p < 0.050).In addition to , most STS samples from m6A cluster A showed a high m6Ascore, which was related to mismatch repair and a better prognosis of STS (p < 0.001). In contrast, the m6A cluster B, characterized by a low m6Ascore, was related to the MYC signaling pathway, which led to a poor prognosis of STS. A high m6Ascore also contributed to a better outcome of PD-1/PD-L1 blockade immunotherapy. Conclusion: The modification patterns of 25 m6A regulators in the STS microenvironment were explored comprehensively. The novel m6Ascore effectively predicted the characteristics of the tumor microenvironment (TME) and outcome in STS and provided novel insights for future immunotherapy.
Collapse
Affiliation(s)
- Kang-Wen Xiao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Qiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Bo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang-Yu Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Lin Cai,
| |
Collapse
|
35
|
Moesin: A novel receptor on NK lymphocytes binds to TOMM40 on K562 leukemia cells initiating cytolysis. Hum Immunol 2022; 83:418-427. [DOI: 10.1016/j.humimm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
36
|
Parsons S, Stevens A, Whatmore A, Clayton PE, Murray PG. Role of ZBTB38 Genotype and Expression in Growth and Response to Recombinant Human Growth Hormone Treatment. J Endocr Soc 2022; 6:bvac006. [PMID: 35178492 PMCID: PMC8845121 DOI: 10.1210/jendso/bvac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Single-nucleotide polymorphisms (SNPs) in ZBTB38 have been associated with idiopathic short stature (ISS) and adult height. OBJECTIVE This study sought to (a) characterize the phenotype of ISS patients and their response to recombinant human growth hormone (rhGH) by ZBTB38 SNP genotype; (b) describe the relationship of ZBTB38 expression with normal growth; and (c) describe the in vitro effects of ZBTB38 knockdown on cell proliferation and MCM10 expression. METHODS The genotype-phenotype relationship of rs6764769 and rs724016 were explored in 261 ISS patients and effects of genotype on response to rhGH were assessed in 93 patients treated with rhGH. The relationship between age and ZBTB38 expression was assessed in 87 normal children and young adults. Knockdown of ZBTB38 in SiHA cells was achieved with siRNAs and cell proliferation assessed with a WST-8 assay. RESULTS We found that rs6764769 and rs724016 are in linkage disequilibrium. The rs724016 GG genotype was associated with lower birth length (P = 0.01) and a lower change in height SDS over the first year of treatment (P = 0.02). ZBTB38 expression was positively correlated with age (P < 0.001). siRNA-mediated knockdown of ZBTB38 resulted in increased cell proliferation at 72 and 96 hours posttransfection but did not alter expression of MCM10. CONCLUSIONS SNPs within ZBTB38 associated with ISS are linked to higher birth size within a cohort of ISS patients and a better response to rhGH therapy while ZBTB38 expression is positively related to age.
Collapse
Affiliation(s)
- Samuel Parsons
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Andrew Whatmore
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Peter E Clayton
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Philip G Murray
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9WL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
37
|
Abstract
Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we review recent insights into the role of NK cells in viral infections, with particular emphasis on human studies. We first discuss NK cells in the context of acute viral infections, with flavivirus and influenza virus infections as examples. Questions related to activation of NK cells, homing to infected tissues and the role of tissue-resident NK cells in acute viral infections are also addressed. Next, we discuss NK cells in the context of chronic viral infections with hepatitis C virus and HIV-1. Also covered is the role of adaptive-like NK cell expansions as well as the appearance of CD56- NK cells in the course of chronic infection. Specific emphasis is then placed in viral infections in patients with primary immunodeficiencies affecting NK cells. Not least, studies in this area have revealed an important role for NK cells in controlling several herpesvirus infections. Finally, we address new data with respect to the activation of NK cells and NK cell function in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Hsu AP, Holland SM. Host genetics of innate immune system in infection. Curr Opin Immunol 2022; 74:140-149. [DOI: 10.1016/j.coi.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
|
39
|
Redmond MT, Scherzer R, Prince BT. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63:55-74. [PMID: 35020168 PMCID: PMC8753955 DOI: 10.1007/s12016-021-08881-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/12/2023]
Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Collapse
Affiliation(s)
- Margaret T. Redmond
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Rebecca Scherzer
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Benjamin T. Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders classically characterized by an increased susceptibility to infection and/or disruption in the regulation of an immunologic pathway. This review summarizes and highlights the new IEI disorders in the IUIS 2019 report and 2020 interim report and discusses the directions for the future management of PIDs. RECENT FINDINGS Since 2017, the International Union of Immunologic Societies (IUIS) IEI committee has updated the IUIS classification of IEIs with 88 new gene defects and 75 new immune disorders. The increased utilization of genetic testing and advances in the strategic evaluation of genetic variants have identified, not only novel IEI disorders, but additional genetic causes for known IEI disorders. Investigation of potential immune susceptibilities during the ongoing COVID-19 pandemic suggests that defects in Type I interferon signalling may underlie more severe disease. SUMMARY The rapid discovery of new IEIs reflects the growing trend of applying genetic testing modalities as part of medical diagnosis and management.In turn, elucidating the pathophysiology of these novel IEIs have enhanced our understanding of how genetic mutations can modulate the immune system and their consequential effect on human health and disease.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| | - Jordan S Orange
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
- Division of Immunogenetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| |
Collapse
|
41
|
Perturbed NK Cell Homeostasis Associated with Disease Severity in Chronic Neutropenia. Blood 2021; 139:704-716. [PMID: 34699594 DOI: 10.1182/blood.2021013233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils have been suggested to play a critical role in terminal differentiation of NK cells. Whether this is a direct effect or a consequence of global immune changes with effects on NK cell homeostasis remains unknown. Here, we used high-resolution flow- and mass cytometry to examine NK cell repertoires in 64 patients with neutropenia and 27 healthy age- and gender-matched donors. A subgroup of patients with chronic neutropenia showed severely disrupted NK cell homeostasis manifested as increased frequencies of CD56bright NK cells and a lack of mature CD56dim NK cells. These immature NK cell repertoires were characterized by expression of proliferation/exhaustion markers Ki-67, Tim-3 and TIGIT and displayed blunted tumor target cell responses. Systems-level immune mapping revealed that the changes in immunophenotypes were confined to NK cells, leaving T cell differentiation intact. RNA sequencing of NK cells from these patients showed upregulation of a network of genes, including TNFSF9, CENPF, MKI67 and TOP2A, associated with apoptosis and the cell cycle, different from conventional CD56bright signatures. Profiling of 249 plasma proteins showed a coordinated enrichment of pathways related to apoptosis and cell turnover, which correlated with immature NK cell repertoires. Notably, most of these patients exhibited severe-grade neutropenia, suggesting that the profoundly altered NK cell homeostasis was connected to the severity of their underlying etiology. Hence, although our data suggests that neutrophils are dispensable for NK cell development and differentiation, some patients displayed a specific gap in the NK repertoire, associated with poor cytotoxic function and more severe disease manifestations.
Collapse
|
42
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
43
|
Knapp KM, Jenkins DE, Sullivan R, Harms FL, von Elsner L, Ockeloen CW, de Munnik S, Bongers EMHF, Murray J, Pachter N, Denecke J, Kutsche K, Bicknell LS. MCM complex members MCM3 and MCM7 are associated with a phenotypic spectrum from Meier-Gorlin syndrome to lipodystrophy and adrenal insufficiency. Eur J Hum Genet 2021; 29:1110-1120. [PMID: 33654309 PMCID: PMC8298597 DOI: 10.1038/s41431-021-00839-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
The MCM2-7 helicase is a heterohexameric complex with essential roles as part of both the pre-replication and pre-initiation complexes in the early stages of DNA replication. Meier-Gorlin syndrome, a rare primordial dwarfism, is strongly associated with disruption to the pre-replication complex, including a single case described with variants in MCM5. Conversely, a biallelic pathogenic variant in MCM4 underlies immune deficiency with growth retardation, features also seen in individuals with pathogenic variants in other pre-initiation complex encoding genes such as GINS1, MCM10, and POLE. Through exome and chromium genome sequencing, supported by functional studies, we identify biallelic pathogenic variants in MCM7 and a strong candidate biallelic pathogenic variant in MCM3. We confirm variants in MCM7 are deleterious and through interfering with MCM complex formation, impact efficiency of S phase progression. The associated phenotypes are striking; one patient has typical Meier-Gorlin syndrome, whereas the second case has a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. We provide further insight into the developmental complexity of disrupted MCM function, highlighted by two patients with a similar variant profile in MCM7 but disparate clinical features. Our results build on other genetic findings linked to disruption of the pre-replication and pre-initiation complexes, and the replisome, and expand the complex clinical genetics landscape emerging due to disruption of DNA replication.
Collapse
Affiliation(s)
- Karen M Knapp
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Danielle E Jenkins
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rosie Sullivan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jennie Murray
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- South East Scotland Clinical Genetics Service, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
44
|
Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends Genet 2021; 37:317-336. [DOI: 10.1016/j.tig.2020.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022]
|
45
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
46
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. The Ever-Increasing Array of Novel Inborn Errors of Immunity: an Interim Update by the IUIS Committee. J Clin Immunol 2021; 41:666-679. [PMID: 33598806 PMCID: PMC7889474 DOI: 10.1007/s10875-021-00980-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
The most recent updated classification of inborn errors of immunity/primary immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee, was published in January 2020. Within days of completing this report, it was already out of date, evidenced by the frequent publication of genetic variants proposed to cause novel inborn errors of immunity. As the next formal report from the IUIS Expert Committee will not be published until 2022, we felt it important to provide the community with a brief update of recent contributions to the field of inborn errors of immunity. Herein, we highlight studies that have identified 26 additional monogenic gene defects that reach the threshold to represent novel causes of immune defects.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, 2010, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Childrens Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France.,Imagine Institute, University of Paris, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Childrens Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
47
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
48
|
Starokadomskyy P, Escala Perez-Reyes A, Burstein E. Immune Dysfunction in Mendelian Disorders of POLA1 Deficiency. J Clin Immunol 2021; 41:285-293. [PMID: 33392852 DOI: 10.1007/s10875-020-00953-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
POLA1 encodes the catalytic unit of DNA polymerase α, which together with the Primase complex launches the DNA replication process. While complete deficiency of this essential gene is presumed to be lethal, at least two conditions due to partial POLA1 deficiency have been described. The first genetic syndrome to be mapped to POLA1 was X-linked reticulate pigmentary disorder (XLPDR, MIM #301220), a rare syndrome characterized by skin hyperpigmentation, sterile multiorgan inflammation, recurrent infections, and distinct facial features. XLPDR has been shown to be accompanied by profound activation of type I interferon signaling, but unlike other interferonopathies, it is not associated with autoantibodies or classical autoimmunity. Rather, it is accompanied by marked Natural Killer (NK) cell dysfunction, which may explain the recurrent infections seen in this syndrome. To date, all XLPDR cases are caused by the same recurrent intronic mutation, which results in gene missplicing. Several hypomorphic mutations in POLA1, distinct from the XLPDR intronic mutation, have been recently reported and these mutations associate with a separate condition, van Esch-O'Driscoll syndrome (VEODS, MIM #301030). This condition results in growth retardation, microcephaly, hypogonadism, and in some cases, overlapping immunological features to those seen in XLPDR. This review summarizes our current understanding of the clinical manifestations of POLA1 gene mutations with an emphasis on its immunological consequences, as well as recent advances in understanding of its pathophysiologic basis and potential therapeutic options.
Collapse
Affiliation(s)
- Petro Starokadomskyy
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Andrea Escala Perez-Reyes
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA. .,Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines blvd, Dallas, TX, 75390-9151, USA.
| |
Collapse
|