1
|
Cao LM, Qiu YZ, Li ZZ, Wang GR, Xiao Y, Luo HY, Liu B, Wu Q, Bu LL. Extracellular Vesicles: Hermes between cancers and lymph nodes. Cancer Lett 2025; 623:217735. [PMID: 40268131 DOI: 10.1016/j.canlet.2025.217735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer is one of the main causes of death and a major obstacle to increasing life expectancy in all countries of the world. Lymph node metastasis (LNM) of in cancer patients indicates poor prognosis and it is an important indication to determine the therapeutic regime. Therefore, more attention should be given to the molecular mechanics of tumor lymphangiogenesis and LNM. Extracellular vesicles (EVs) are nanoscale cargo-bearing membrane vesicles that can serve as key mediators for the intercellular communication. Like Hermes, the messenger of the Greek gods, EVs can be secreted by tumor cells to regulate the LNM process. Many evidence has proved the clinical correlation between EVs and LNM in various cancer types. EVs plays an active role in the process of metastasis by expressing its connotative molecules, including proteins, nucleic acids, and metabolites. However, the clear role of EVs in the process of cancer LNM has not been thoroughly studied yet. In this review, we will summarize the clinical and mechanical findings of EVs regulating role on cancer LNM, and discuss the advanced modification of the research proposal. We propose the "PUMP" principle of EVs in LNM, including Preparation, Unleash, Migration, and Planting.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Zhong Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Han-Yue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Yu M, Wang S, Zeng Y, Liu P, Li H. SPHK1 Promotes Pancreatic Cancer Lymphangiogenesis Through the Activation of ERK in LECs. Mol Biotechnol 2025; 67:2246-2253. [PMID: 38861202 DOI: 10.1007/s12033-024-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Lymphatic metastasis is related to an unsatisfactory prognosis in pancreatic cancer. Sphingosine kinase 1 (SPHK1) is an oncogene in cancer. However, the potential effect of SPHK1 on the lymphangiogenesis of pancreatic cancer is little known. In this study, the expression level and role of SPHK1 in pancreatic cancer were evaluated to explore the underlying mechanism involved. The expression of SPHK1 and the lymphatic vessel density (LVD) in pancreatic cancer patient tissue were investigated by immunohistochemistry. The role of SPHK1 in lymphangiogenesis was verified in vitro. Elevated expression of SPHK1 was strongly related to high LVD in pancreatic cancer patient tissue. Silencing of SPHK1 in pancreatic cancer cells observably inhibited lymphangiogenesis. Furthermore, the downregulation of SPHK1 markedly attenuated the phosphorylation of extracellular signal-regulated kinase in lymphatic endothelial cells. This study revealed that SPHK1 might play a crucial role in pancreatic cancer lymphangiogenesis.
Collapse
Affiliation(s)
- Mengsi Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Song Wang
- Department of Ophthalmology, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Yujie Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Pingli Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China.
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
3
|
Ma T, Guo WW, Zhang M, He W, Dongzhi C, Gongye X, Xia P, Chai Y, Chen Z, Zhu Y, Qu C, Liu J, Yang Z, Ma W, Tian M, Yuan Y. Tumor-derived exosomal CCT6A serves as a matchmaker introducing chemokines to tumor-associated macrophages in pancreatic ductal adenocarcinoma. Cell Death Dis 2025; 16:382. [PMID: 40374617 DOI: 10.1038/s41419-025-07720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
M2-polarized tumor-associated macrophages (TAMs) are a key factor contributing to the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). While various factors within the tumor microenvironment (TME) drive their formation, the role of PDAC-derived exosomes in this process remains unclear. We aim to clarify the regulatory impacts of tumor-derived exosomes to TAMs. After the intratumoral injection to subcutaneous tumor of C57BL/6 mice, we demonstrated PDAC-derived exosomes exacerbate PDAC progression, accompanied with upregulated M2 phenotype of TAMs and unaffected proliferation signatures. Through intratumoral injection model and multi-Omics analyses, we identified CCT6A as a novel tumor-derived exosomal protein, bridging TAMs M2 polarization and PDAC prognosis. Co-culture with exosomes derived from CCT6Ahigh PDAC leads to greater M2 phenotype of TAMs via PI3K-AKT signaling. According to proteomics data, chemokines' abundance reduces over tenfold once exosomal CCT6A absence, including CXCL1, CXCL3, CCL20 and CCL5, whose interaction with CCT6A in PDAC cells was confirmed by interactomics data. Moreover, we found silencing CCT6A abrogated the antagonism effects of CD47 antibody immunotherapy. Our findings implied that the subunit of the T-complex protein Ring Complex (TRiC) CCT6A serves as a matchmaker during exosome-mediated chemokines transfer from PDAC to TAMs. Silencing CCT6A effectively sensitized PDAC to CD47 antibody immunotherapy in vivo.
Collapse
Affiliation(s)
- Tianyin Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Wing-Wa Guo
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Wenzhi He
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Cairang Dongzhi
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
- Department of Chemistry and Molecular Biology, Sahlgrenska Akademin, Göteborg Universitet, Gothenburg, Vastra Gotalands, Sweden
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yibo Chai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Yimin Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China
| | - Zhiyong Yang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
- Taikang Center for Life and Medical Sciences of Wuhan University, Hubei, PR China.
| |
Collapse
|
4
|
Zhang L, Wang X, Hu D, Li S, Sun M, Liu Q, Feng H, Zhou M, Chen C, Zhou H, Ma S. SUMOylation facilitates the stability of BCR-ABL to promote chronic myeloid leukemia progression. Oncogene 2025:10.1038/s41388-025-03350-y. [PMID: 40148689 DOI: 10.1038/s41388-025-03350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/19/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) targeting the oncoprotein BCR-ABL have improved the prognosis for patients with chronic myeloid leukemia (CML). However, TKI resistance and persistent expression of BCR-ABL are responsible for the relapse and progression of CML. Here, we describe a novel approach to induce BCR-ABL protein degradation by small ubiquitin-like modifier (SUMO) modification. The E3 SUMO ligase TRIM28, upregulated during the progression of CML, promoted SUMOylation of BCR-ABL, thereby inhibiting its binding to the autophagy receptor P62 and repressing its autophagic degradation. Accordingly, genetic and pharmacological inhibition of TRIM28 or SUMOylation suppressed progression in both the CML mouse model and patient-derived xenograft model. Furthermore, targeting SUMOylation of BCR-ABL restrained the proliferation of TKI-resistant CML cells. These results identify the mechanism by which TRIM28 maintains BCR-ABL stability to promote CML progression and suggest SUMOylation as a target for CML treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuefeng Wang
- National Drug Clinical Trial Institution, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Innovative Drug Pharmaceutical Research and Clinical Evaluation Jointly Established Disciplines in Anhui Province, Hefei, China
| | - Dongmei Hu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shijie Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingshan Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Liu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Huan Zhou
- National Drug Clinical Trial Institution, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
- Key Laboratory of Innovative Drug Pharmaceutical Research and Clinical Evaluation Jointly Established Disciplines in Anhui Province, Hefei, China.
| | - Sai Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Pan Y, Liu S, Shu G, Chen M, Fu L, Chen C, Chen Y, Zhuang Q, Xue D, He X. STX17-DT facilitates axitinib resistance in renal cell carcinoma by inhibiting mitochondrial ROS accumulation and ferroptosis. Cell Death Dis 2025; 16:125. [PMID: 39988631 PMCID: PMC11847927 DOI: 10.1038/s41419-025-07456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Axitinib resistance remains a serious challenge in the treatment of advanced renal cell carcinoma (RCC), and the underlying mechanisms are not fully understood. Here, we constructed an in vivo axitinib-resistant RCC model and identified the long non-coding RNA STX17-DT as a driver of therapy resistance in RCC. The expression of STX17-DT was significantly elevated in axitinib-resistant RCC cells and correlated with poorer prognosis in RCC patients. Elevated levels of STX17-DT contributed to the development of resistance to axitinib both in vitro and in vivo. Mechanistically, STX17-DT modulated the stability of IFI6 mRNA by recruiting and binding to hnRNPA1, leading to decreased accumulation of mitochondrial reactive oxygen species (ROS) and attenuated ferroptosis. Meanwhile, STX17-DT was packaged into extracellular vesicles through hnRNPA1, thus transmitting axitinib resistance to other cells. Compared with axitinib monotherapy, combined treatment of axitinib and STX17-DT-targeted in vivo siRNA demonstrated enhanced therapeutic efficacy. These findings indicate a novel molecular mechanism of axitinib resistance in RCC and suggest that STX17-DT may serve as a prognostic indicator and potential therapeutic target to overcome resistance to targeted therapy.
Collapse
Affiliation(s)
- Yihui Pan
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Shuang Liu
- Department of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guannan Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minyu Chen
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangmin Fu
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yimeng Chen
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Zhuang
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Xiaozhou He
- Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
6
|
Luo X, McAndrews KM, Kalluri R. Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer. ACS NANO 2025; 19:5871-5896. [PMID: 39869032 PMCID: PMC12002402 DOI: 10.1021/acsnano.4c11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics. EVs have the potential to provide a targeted, biocompatible, and efficient delivery platform for the treatment of cancer and other diseases. Natural as well as engineered EVs as nanomedicine have immense potential for disease intervention. Here, we provide an overview of current knowledge of EVs' function in cancer progression, diagnostic and therapeutic applications for EVs in the cancer setting, as well as current EV engineering strategies.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Lodha P, Acari A, Rieck J, Hofmann S, Dieterich LC. The Lymphatic Vascular System in Extracellular Vesicle-Mediated Tumor Progression. Cancers (Basel) 2024; 16:4039. [PMID: 39682225 DOI: 10.3390/cancers16234039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Tumor growth and progression require molecular interactions between malignant and host cells. In recent years, extracellular vesicles (EVs) emerged as an important pillar of such interactions, carrying molecular information from their donor cells to distant recipient cells. Thereby, the phenotype and function of the recipient cells are altered, which may facilitate tumor immune escape and tumor metastasis to other organs through the formation of pre-metastatic niches. A prerequisite for these effects of tumor cell-derived EVs is an efficient transport system from the site of origin to the body periphery. Here, we highlight the role of the lymphatic vascular system in the distribution and progression-promoting functions of tumor cell-derived EVs. Importantly, the lymphatic vascular system is the primary drainage system for interstitial fluid and its soluble, particulate, and cellular contents, and therefore represents the principal route for regional (i.e., to tumor-draining lymph nodes) and systemic distribution of EVs derived from solid tumors. Furthermore, recent studies highlighted the tumor-draining lymph node as a crucial site where tumor-derived EVs exert their effects. A deeper mechanistic understanding of how EVs gain access to the lymphatic vasculature, how they interact with their recipient cells in tumor-draining lymph nodes and beyond, and how they induce phenotypic and functional maladaptation will be instrumental to identify new molecular targets and conceive innovative approaches for cancer therapy.
Collapse
Affiliation(s)
- Pragati Lodha
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Alperen Acari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Jochen Rieck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sarah Hofmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Zhang D, Luo Y, Lin Y, Fang Z, Zheng H, An M, Xie Q, Wu Z, Yu C, Yang J, Yu M, Chen C, Chen R. Endosomal Trafficking Bypassed by the RAB5B-CD109 Interplay Promotes Axonogenesis in KRAS-Mutant Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405092. [PMID: 39488792 DOI: 10.1002/advs.202405092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/13/2024] [Indexed: 11/04/2024]
Abstract
Perineural invasion (PNI) represents a unique biological feature associated with poor prognosis in pancreatic ductal adenocarcinoma (PDAC), especially in the presence of KRAS mutations. Extracellular vesicle (EV)-packaged circular RNAs (circRNAs) function as essential mediators of tumor microenvironment communication, triggering PDAC cell invasion and distant metastasis. However, the regulatory mechanisms of EV-packaged circRNAs in the PNI of KRAS-mutant PDAC have not yet been elucidated. Herein, a KRASG12D mutation-responsive EV-packaged circRNA, circPNIT, which positively correlated with PNI in PDAC patients is identified. Functionally, KRASG12D PDAC-derived EV-packaged circPNIT promoted axonogenesis and PNI both in vitro and in vivo. Mechanistically, the circPNIT-mediated Rab5B-CD109 interplay bypassed traditional endosomal trafficking to anchor Rab5B to the lipid rafts of multivesicular bodies and packaged circPNIT into CD109+ EVs. Subsequently, CD109+ EVs delivered circPNIT to neurons by binding to TRPV1 and facilitating DSCAML1 transcription-induced axonogenesis, which in turn enhanced the PNI by activating the GFRα1/RET pathway. Importantly, circPNIT-loaded CD109+ EVs are established to dramatically promote PNI in a KRASG12D/+ Trp53R172H/+ Pdx-1-Cre mouse model. Collectively, the findings highlight the mechanism underlying how EV-packaged circRNAs mediate the PNI of KRAS-mutant PDAC cells through the Rab5B endosomal bypass, identifying circPNIT as an effective target for the treatment of neuro-metastatic PDAC.
Collapse
Affiliation(s)
- Dingwen Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Yuming Luo
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhou Fang
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Qingyu Xie
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Zhuo Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Chao Yu
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510080, P. R. China
| | - Min Yu
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, P. R. China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|
9
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Yang Y, Ren S, Xue J, Dong W, He W, Luo J, Li X, Xu H, Zheng Z, Wang X, Wang L, Guan M, Jia Y, Xue Y. DeSUMOylation of RBMX regulates exosomal sorting of cargo to promote renal tubulointerstitial fibrosis in diabetic kidney disease. J Adv Res 2024:S2090-1232(24)00423-5. [PMID: 39341454 DOI: 10.1016/j.jare.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) has become the primary cause of chronic renal failure in China, and renal tubulointerstitial fibrosis plays a central role in DKD progression. Urinary exosomes, which reflect kidney changes, are largely influenced by RNA-binding proteins (RBPs) in their miRNA content. OBJECTIVES Our research aimed to determine the effect of the RNA-binding protein RBMX on exosomal miRNA in DKD. METHODS We introduced a higher level of Rbmx into diabetic mice using an adenoassociated virus and isolated exosomes from their kidney tissue through advanced centrifugation techniques and specialized kits. We then conducted a series of tests, including qRT-PCR, Western blot, MitoSOX, ATP luminescence, coimmunoprecipitation, SUMOylation assays, RNA immunoprecipitation, and confocal microscopy. RESULTS RBMX is found in higher levels in DKD and contributes to worsening kidney fibrosis, mitochondrial damage, and miRNA mismanagement in exosomes. It specifically binds with miR-26a, miR-23c, and miR-874 within the exosomes. This dysfunction may be linked to changes in RBMX SUMOylation. These miRNAs seem to protect against mitochondrial damage in kidney cells by targeting CERS6. CONCLUSION DeSUMOylation of RBMX plays a crucial role in determining the makeup of miRNAs in kidney cell exosomes, impacting the protective miRNAs which regulate mitochondrial damage through their interaction with CERS6 mRNA, ultimately affecting mitochondrial health in DKD.
Collapse
Affiliation(s)
- Yanlin Yang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology & Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shijing Ren
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, China
| | - Wenhui Dong
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei He
- Department of Neurosurgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayi Luo
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haibin Xu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyu Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yaoming Xue
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Li B, Zhang Q, Castaneda C, Cook S. Targeted Therapies in Pancreatic Cancer: A New Era of Precision Medicine. Biomedicines 2024; 12:2175. [PMID: 39457488 PMCID: PMC11505516 DOI: 10.3390/biomedicines12102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a leading cause of cancer mortality in the United States, presents significant treatment challenges due to its late diagnosis and poor prognosis. Despite advances, the five-year survival rates remain dismally low, with only a fraction of patients eligible for potentially curative surgical interventions. This review aims to comprehensively examine the current landscape of targeted therapies in PDAC, focusing on recent developments in precision medicine approaches. We explore various molecular targets, including KRAS mutations, DNA damage repair deficiencies, mismatch repair pathway alterations, and rare genetic fusions. The review discusses emerging therapies, such as PARP inhibitors, immune checkpoint inhibitors, and novel targeted agents, like RET and NTRK inhibitors. We analyze the results of key clinical trials and highlight the potential of these targeted approaches in specific patient subgroups. Recent developments in PDAC research have emphasized precision oncology, facilitated by next-generation sequencing and the identification of genetic and epigenetic alterations. This approach tailors treatments to individual genetic profiles, improving outcomes and reducing side effects. Significant strides have been made in classifying PDAC into various subtypes, enhancing therapeutic precision. The identification of specific mutations in genes like KRAS, along with advancements in targeted therapies, including small molecule inhibitors, offers new hope. Furthermore, emerging therapies targeting DNA repair pathways and immunotherapeutic strategies also show promising results. As research evolves, integrating these targeted therapies with conventional treatments might improve survival rates and quality of life for PDAC patients, underscoring the shift towards a more personalized treatment paradigm.
Collapse
Affiliation(s)
- Bingyu Li
- University of Wisconsin Hospitals and Clinics, Madison, WI 53792-2460, USA; (B.L.); (Q.Z.); (C.C.)
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiong Zhang
- University of Wisconsin Hospitals and Clinics, Madison, WI 53792-2460, USA; (B.L.); (Q.Z.); (C.C.)
| | - Claire Castaneda
- University of Wisconsin Hospitals and Clinics, Madison, WI 53792-2460, USA; (B.L.); (Q.Z.); (C.C.)
| | - Shelly Cook
- University of Wisconsin Hospitals and Clinics, Madison, WI 53792-2460, USA; (B.L.); (Q.Z.); (C.C.)
| |
Collapse
|
12
|
Jiang C, Xu D, Feng H, Ren Z, Li X, Chen Y, Yu J, Cang S. hnRNPA1 promotes the metastasis and proliferation of gastric cancer cells through WISP2-guided Wnt/β-catenin signaling pathway. Discov Oncol 2024; 15:465. [PMID: 39298013 DOI: 10.1007/s12672-024-01354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024] Open
Abstract
The main cause of gastric cancer (GC)-related death is due to malignant cell unregulated distant metastasis and proliferation. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has been shown to play an important role in carcinogenesis and the development of metastasis in several tumors. However, its downstream regulatory mechanism in GC is not well defined. Our study aims to investigate the function and regulatory mechanism of hnRNPA1 in GC. We analyzed the differential expression of hnRNPA1 in gastric cancer and paired adjacent normal tissues in the TCGA database. Kaplan-Meier analysis was employed for survival assessment. The expressions of hnRNPA1 in GC cells were measured by qRT-PCR and Western blot. Transwell assay, CCK8 and colony formation assay were used to detect the effect of hnRNPA1 on the metastasis and proliferation ability of GC cells. Additionally, Western blotting was performed to examine the expression of proteins related to the Wnt/β-catenin signaling pathway as well as epithelial-mesenchymal transition (EMT), while further investigations were carried out to explore potential regulatory mechanisms. The results showed that hnRNPA1 was highly expressed differentially in GC over normal gastric tissue. Knocking down hnRNPA1 inhibited the metastasis and proliferation of human gastric cancer cells. Overexpression of hnRNPA1 significantly enhanced the metastatic potential and proliferative capacity of human GC cells. Further mechanism exploration revealed that knocking down hnRNPA1 inhibited the Wnt/β-catenin signaling pathway and WNT1 inducible signaling pathway protein-2 (WISP2), an activator of the Wnt/β-catenin signaling pathway. Whereas overexpression of hnRNPA1 had the opposite effects. Our results demonstrated that hnRNPA1 promoted metastasis and proliferation of GC cells by activating Wnt/β-catenin signaling pathway via WISP2. hnRNPA1 may serve as a potential biomarker and novel therapeutic targets for GC.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Dengfei Xu
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Hao Feng
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Zirui Ren
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Xiang Li
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Yuming Chen
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd, Zhengzhou, 450003, Henan, China.
| | - Shundong Cang
- Department of Oncology Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, No 7, Weiwu Rd, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
13
|
Hong Y, Yang J, Liu X, Huang S, Liang T, Bai X. Deciphering extracellular vesicles protein cargo in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189142. [PMID: 38914240 DOI: 10.1016/j.bbcan.2024.189142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a significant therapeutic challenge as it is frequently diagnosed at advanced inoperable stages. Therefore, the development of a reliable screening tool for PDAC is crucial for effective prevention and treatment. Extracellular vesicles (EVs), characterized by their cup-shaped lipid bilayer structure and ubiquitous release from various cell types, offer notable advantages as an emerging liquid biopsy technique that is rapid, minimally invasive, easily sampled, and cost-effective. While EVs play a substantial role in cancer progression, EV proteins serve as direct mediators of diverse cellular behaviors and have immense potential as biomarkers for PDAC diagnosis and prognostication. This review provides an overview of EV proteins regarding PDAC diagnosis and prognostic implications as well as disease progression.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Zhu L, Chen G, Huang C, Gao H, Wang Y, Shen Y. SUMO3 inhibition by butyric acid suppresses cell viability and glycolysis and promotes gemcitabine antitumor activity in pancreatic cancer. Biol Direct 2024; 19:74. [PMID: 39183358 PMCID: PMC11345958 DOI: 10.1186/s13062-024-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Excavation of key molecules can help identify therapeutic targets and improve the prognosis of pancreatic cancer. This study evaluated the roles of SUMO3 in cell viability, glycolysis, gemcitabine (GEM) sensitivity, and the antitumor activity of butyric acid (BA) in pancreatic cancer. METHODS The mRNA and protein levels of SUMO3 were detected by qRT-PCR, Western blot, and immunohistochemical assay. SUMO3 was silenced or overexpressed in pancreatic cancer cells with or without Wnt/β-catenin pathway inhibitor, glycolysis inhibitor, GEM, or BA treatment. Cell viability was measured using the Cell Counting Kit-8 assay. Glycolysis was measured by determining the extracellular acidification rate, ATP level, and lactate content. Apoptosis was measured by flow cytometry, and TUNEL staining was used to examine in vitro and in vivo sensitivity to GEM chemotherapy. Luciferase reporter and chromatin immunoprecipitation assays were conducted to detect the binding of the SUMO3 promoter and NF-κB p65. RESULTS SUMO3 was increased and associated with poor survival in pancreatic cancer. SUMO3 knockdown decreased cell viability and glycolysis in vitro and inhibited tumor growth in vivo. SUMO3 overexpression increased cell viability and glycolysis in vitro through the β-catenin pathway. SUMO3 knockdown increased GEM sensitivity, whereas SUMO3 overexpression decreased GEM sensitivity and inhibited the antitumor activity of BA. BA promoted histone acetylation and p-IκBα expression to inhibit NF-κB p65-mediated SUMO3 transcription. CONCLUSION SUMO3 acted as an active molecule in cell survival and growth by enhancing glycolysis in response to either GEM or BA. The mechanism was related to the constitutive IκBα/NF-κB/SUMO3/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liming Zhu
- Minimally Invasive Therapy Center, Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Gang Chen
- Department of Pediatric Cardiothoracic Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Changjing Huang
- Minimally Invasive Therapy Center, Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huifeng Gao
- Minimally Invasive Therapy Center, Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yilin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China.
| | - Yehua Shen
- Minimally Invasive Therapy Center, Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Zheng S, Hu C, Lin Q, Li T, Li G, Tian Q, Zhang X, Huang T, Ye Y, He R, Chen C, Zhou Y, Chen R. Extracellular vesicle-packaged PIAT from cancer-associated fibroblasts drives neural remodeling by mediating m5C modification in pancreatic cancer mouse models. Sci Transl Med 2024; 16:eadi0178. [PMID: 39018369 DOI: 10.1126/scitranslmed.adi0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/06/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Perineural invasion (PNI) is a biological characteristic commonly observed in pancreatic cancer. Although PNI plays a key role in pancreatic cancer metastasis, recurrence, and poor postoperative survival, its mechanism is largely unclarified. Clinical sample analysis and endoscopic ultrasonographic elasticity scoring indicated that cancer-associated fibroblasts (CAFs) were closely related to the occurrence of PNI. Furthermore, CAF-derived extracellular vesicles (EVs) were involved in PNI in dorsal root ganglion coculture and mouse sciatic nerve models. Next, we demonstrated that CAFs promoted PNI through extracellular vesicle transmission of PNI-associated transcript (PIAT). Mechanistically, PIAT specifically bound to YBX1 and blocked the YBX1-Nedd4l interaction to inhibit YBX1 ubiquitination and degradation. Furthermore, PIAT enhanced the binding of YBX1 and PNI-associated mRNAs in a 5-methylcytosine (m5C)-dependent manner. Mutation of m5C recognition motifs in YBX1 or m5C sites in downstream target genes reversed PIAT-mediated PNI. Consistent with these findings, analyses using a KPC mouse model demonstrated that the PIAT/YBX1 axis enhanced PNI through m5C modification. Clinical data suggested that the PIAT expression in the serum EVs of patients with pancreatic cancer was associated with the degree of neural invasion and prognosis. Our study revealed the important role of the PIAT/YBX1 signaling axis in the tumor microenvironment (TME) in promoting tumor cell PNI and provided a new target for precise interference with CAFs and RNA methylation in the TME to suppress PNI in pancreatic cancer.
Collapse
Affiliation(s)
- Shangyou Zheng
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Chonghui Hu
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Qing Lin
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Tingting Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Guolin Li
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
| | - Qing Tian
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Tianhao Huang
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yuancheng Ye
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Rihua He
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yu Zhou
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Rufu Chen
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, People's Republic of China
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, People's Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
16
|
Pan D, Long L, Li C, Zhou Y, Liu Q, Zhao Z, Zhao H, Lin W, Zheng Z, Peng L, Li E, Xu L. Splicing factor hnRNPA1 regulates alternative splicing of LOXL2 to enhance the production of LOXL2Δ13. J Biol Chem 2024; 300:107414. [PMID: 38810697 PMCID: PMC11259713 DOI: 10.1016/j.jbc.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.
Collapse
Affiliation(s)
- Deyuan Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lin Long
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Chengyu Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yingxin Zhou
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Ziting Zhao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hui Zhao
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wan Lin
- Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhenyuan Zheng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liu Peng
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong Province, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
17
|
Zhang Y, Tan Y, Yuan J, Tang H, Zhang H, Tang Y, Xie Y, Wu L, Xie J, Xiao X, Li Y, Kong Y. circLIFR-007 reduces liver metastasis via promoting hnRNPA1 nuclear export and YAP phosphorylation in breast cancer. Cancer Lett 2024; 592:216907. [PMID: 38685451 DOI: 10.1016/j.canlet.2024.216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Cancer metastasis is the major cause of death in patients with breast cancer (BC). The liver is a common site of breast cancer metastasis, and the 5-year survival rate of patients with breast cancer liver metastases (BCLMs) is only about 8.5 %. CircRNAs are involved in a variety of cancer-related pathological behaviors, and their unique structure and resistance to RNA degradation enable them to serve as ideal diagnostic biomarkers and therapeutic targets. Therefore, it is important to investigate the role and molecular mechanism of circRNAs in cancer metastasis. CircLIFR-007 was identified as a critical circular RNA in BC metastasis by circRNAs microarray and qRT-PCR experiment. Cell function assays were performed to explore the effect of circLIFR-007 in breast cancer cells. Experiments in vivo validated the function of circLIFR-007. Several molecular assays were performed to investigate the underlying mechanisms. We found that circLIFR-007 acted as a negative controller in breast cancer liver metastasis. CircLIFR-007 upregulates the phosphorylation level of YAP by exporting hnRNPA1 to promote the combination between hnRNPA1 and YAP in the cytoplasm. Overexpression of circLIFR-007 suppressed the expression of liver metastasis-related proteins, SREBF1 and SNAI1, which were regulated by transcription factor YAP. Functionally, circLIFR-007 inhibits the proliferation and metastasis of breast cancer cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yeru Tan
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Linyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Yuehua Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yanan Kong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Kovácsházi C, Hambalkó S, Sayour NV, Gergely TG, Brenner GB, Pelyhe C, Kapui D, Weber BY, Hültenschmidt AL, Pállinger É, Buzás EI, Zolcsák Á, Kiss B, Bozó T, Csányi C, Kósa N, Kellermayer M, Farkas R, Karvaly GB, Wynne K, Matallanas D, Ferdinandy P, Giricz Z. Effect of hypercholesterolemia on circulating and cardiomyocyte-derived extracellular vesicles. Sci Rep 2024; 14:12016. [PMID: 38797778 PMCID: PMC11128454 DOI: 10.1038/s41598-024-62689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Hypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC. Circulating EVs were isolated with Vezics technology from male Wistar rats fed with high-cholesterol or control chow. AC16 human CMs were treated with Remembrane HC supplement and EVs were isolated from cell culture supernatant. The biophysical properties and the protein composition of CM EVs were analyzed. THP1-ASC-GFP cells were treated with CM EVs, and monocyte activation was measured. HC diet reduced the amount of certain phosphatidylcholines in circulating EVs, independently of their plasma level. HC treatment significantly increased EV secretion of CMs and greatly modified CM EV proteome, enriching several proteins involved in tissue remodeling. Regardless of the treatment, CM EVs did not induce the activation of THP1 monocytes. In conclusion, HC strongly affects the metabolome of circulating EVs and dysregulates CM EVs, which might contribute to HC-induced cardiac derangements.
Collapse
Affiliation(s)
- Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor B Brenner
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Dóra Kapui
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bennet Y Weber
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | - Éva Pállinger
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ádám Zolcsák
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- HUNREN-SE Biophysical Virology Research Group, Budapest, Hungary
| | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Csilla Csányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Nikolett Kósa
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- HUNREN-SE Biophysical Virology Research Group, Budapest, Hungary
| | - Róbert Farkas
- Department of Laboratory Medicine, Laboratory of Mass Spectrometry and Separation Technology, Semmelweis University, Budapest, Hungary
| | - Gellért B Karvaly
- Department of Laboratory Medicine, Laboratory of Mass Spectrometry and Separation Technology, Semmelweis University, Budapest, Hungary
| | - Kieran Wynne
- Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Pharmahungary Group, Szeged, Hungary.
| |
Collapse
|
19
|
Zhou H, Deng N, Li Y, Hu X, Yu X, Jia S, Zheng C, Gao S, Wu H, Li K. Distinctive tumorigenic significance and innovative oncology targets of SUMOylation. Theranostics 2024; 14:3127-3149. [PMID: 38855173 PMCID: PMC11155398 DOI: 10.7150/thno.97162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Protein SUMOylation, a post-translational modification, intricately regulates diverse biological processes including gene expression, cell cycle progression, signaling pathway transduction, DNA damage response, and RNA metabolism. This modification contributes to the acquisition of tumorigenicity and the maintenance of cancer hallmarks. In malignancies, protein SUMOylation is triggered by various cellular stresses, promoting tumor initiation and progression. This augmentation is orchestrated through its specific regulatory mechanisms and characteristic biological functions. This review focuses on elucidating the fundamental regulatory mechanisms and pathological functions of the SUMO pathway in tumor pathogenesis and malignant evolution, with particular emphasis on the tumorigenic potential of SUMOylation. Furthermore, we underscore the potential therapeutic benefits of targeting the SUMO pathway, paving the way for innovative anti-tumor strategies by perturbing this dynamic and reversible modifying process.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Deng
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Chen Zheng
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| |
Collapse
|
20
|
Huang Z, Liang F, Wu J, Huang Z, Li Y, Huang X, Liu Z. Implications of GCLC in prognosis and immunity of lung adenocarcinoma and multi-omics regulation mechanisms. BMC Pulm Med 2024; 24:239. [PMID: 38750474 PMCID: PMC11095029 DOI: 10.1186/s12890-024-03052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Ferroptosis is an iron-dependent type of regulated cell death, and has been implicated in lung adenocarcinoma (LUAD). Evidence has proved the key role of glutamate-cysteine ligase catalytic subunit (GCLC) in ferroptosis, but its role in LUAD remains unclear. Herein, we explored the implications of GCLC and relevant genes in LUAD prognosis and immunity as well as underlying molecular mechanisms. METHODS This work gathered mRNA, miRNA, DNA methylation, somatic mutation and copy-number variation data from TCGA-LUAD. WGCNA was utilized for selecting GCLC-relevant genes, and a GCLC-relevant prognostic signature was built by uni- and multivariate-cox regression analyses. Immune compositions were estimated via CIBERSORT, and two immunotherapy cohorts of solid tumors were analyzed. Multi-omics regulatory mechanisms were finally assessed. RESULTS Our results showed that GCLC was overexpressed in LUAD, and potentially resulted in undesirable survival. A prognostic model was generated, which owned accurate and independent performance in prognostication. GCLC, and relevant genes were notably connected with immune compositions and immune checkpoints. High GCLC expression was linked with better responses to anti-PD-L1 and anti-CTLA-4 treatment. Their possible DNA methylation sites were inferred, e.g., hypomethylation in cg19740353 might contribute to GCLC up-regulation. Frequent genetic mutations also affected their expression. Upstream transcription factors (E2F1/3/4, etc.), post-transcriptional regulation of miRNAs (hsa-mir-30c-1, etc.), lncRNAs (C8orf34-AS1, etc.), and IGF2BP1-mediated m6A modification were identified. It was also found NOP58-mediated SUMOylation post-translational modification. CONCLUSIONS Together, we show that GCLC and relevant genes exert crucial roles in LUAD prognosis and immunity, and their expression can be controlled by complex multi-omics mechanisms.
Collapse
Affiliation(s)
- Zhong Huang
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Feifei Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiangtao Wu
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Zichong Huang
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Yinglian Li
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Xiaoyuan Huang
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Zhenyu Liu
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China.
| |
Collapse
|
21
|
Zhang H, Chen J, Bai J, Zhang J, Huang S, Zeng L, Zhou P, Shen Q, Yin T. Single dual-specific anti-PD-L1/TGF-β antibody synergizes with chemotherapy as neoadjuvant treatment for pancreatic ductal adenocarcinoma: a preclinical experimental study. Int J Surg 2024; 110:2679-2691. [PMID: 38489548 PMCID: PMC11093442 DOI: 10.1097/js9.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024]
Abstract
AIMS Chemotherapy resistance is an important cause of neoadjuvant therapy failure in pancreatic ductal adenocarcinoma (PDAC). BiTP (anti-PD-L1/TGF-β bispecific antibody) is a single antibody that can simultaneously and dually target transforming growth factor-beta (TGF-β) and programmed cell death ligand 1 (PD-L1). We attempted in this study to investigate the efficacy of BiTP in combination with first-line chemotherapy in PDAC. METHODS Preclinical assessments of BiTP plus gemcitabine and nab-paclitaxel were completed through a resectable KPC mouse model (C57BL/6J). Spectral flow cytometry, tissue section staining, enzyme-linked immunosorbent assays, Counting Kit-8, transwell, and Western blot assays were used to investigate the synergistic effects. RESULTS BiTP combinatorial chemotherapy in neoadjuvant settings significantly downstaged PDAC tumors, enhanced survival, and had a higher resectability for mice with PDAC. BiTP was high affinity binding to targets and reverse chemotherapy resistance of PDAC cells. The combination overcame immune evasion through reprogramming tumor microenvironment via increasing penetration and function of T cells, natural killer cells, and dendritic cells and decreasing the function of immunosuppression-related cells as regulatory T cells, M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. CONCLUSION Our results suggest that the BiTP combinatorial chemotherapy is a promising neoadjuvant therapy for PDAC.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Hepatopancreatobiliary Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jianwei Bai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Shaoyi Huang
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Liang Zeng
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Qiang Shen
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
22
|
Ajmal A, Alkhatabi HA, Alreemi RM, Alamri MA, Khalid A, Abdalla AN, Alotaibi BS, Wadood A. Prospective virtual screening combined with bio-molecular simulation enabled identification of new inhibitors for the KRAS drug target. BMC Chem 2024; 18:57. [PMID: 38528576 DOI: 10.1186/s13065-024-01152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Lung cancer is a disease with a high mortality rate and it is the number one cause of cancer death globally. Approximately 12-14% of non-small cell lung cancers are caused by mutations in KRASG12C. The KRASG12C is one of the most prevalent mutants in lung cancer patients. KRAS was first considered undruggable. The sotorasib and adagrasib are the recently approved drugs that selectively target KRASG12C, and offer new treatment approaches to enhance patient outcomes however drug resistance frequently arises. Drug development is a challenging, expensive, and time-consuming process. Recently, machine-learning-based virtual screening are used for the development of new drugs. In this study, we performed machine-learning-based virtual screening followed by molecular docking, all atoms molecular dynamics simulation, and binding energy calculations for the identifications of new inhibitors against the KRASG12C mutant. In this study, four machine learning models including, random forest, k-nearest neighbors, Gaussian naïve Bayes, and support vector machine were used. By using an external dataset and 5-fold cross-validation, the developed models were validated. Among all the models the performance of the random forest (RF) model was best on the train/test dataset and external dataset. The random forest model was further used for the virtual screening of the ZINC15 database, in-house database, Pakistani phytochemicals, and South African Natural Products database. A total of 100 ns MD simulation was performed for the four best docking score complexes as well as the standard compound in complex with KRASG12C. Furthermore, the top four hits revealed greater stability and greater binding affinities for KRASG12C compared to the standard drug. These new hits have the potential to inhibit KRASG12C and may help to prevent KRAS-associated lung cancer. All the datasets used in this study can be freely available at ( https://github.com/Amar-Ajmal/Datasets-for-KRAS ).
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Roaa M Alreemi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra Univesity, Al- Quwayiyah, Riyadh, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
23
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
24
|
Zhao Y, Chen J, Zheng H, Luo Y, An M, Lin Y, Pang M, Li Y, Kong Y, He W, Lin T, Chen C. SUMOylation-Driven mRNA Circularization Enhances Translation and Promotes Lymphatic Metastasis of Bladder Cancer. Cancer Res 2024; 84:434-448. [PMID: 37991737 PMCID: PMC10831341 DOI: 10.1158/0008-5472.can-23-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Aberrant gene expression is a prominent feature of metastatic cancer. Translational initiation is a vital step in fine-tuning gene expression. Thus, exploring translation initiation regulators may identify therapeutic targets for preventing and treating metastasis. Herein, we identified that DHCR24 was overexpressed in lymph node (LN) metastatic bladder cancer and correlated with poor prognosis of patients. DHCR24 promoted lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Mechanistically, DHCR24 mediated and recognized the SUMO2 modification at lysine 108 of hnRNPA2B1 to foster TBK1 mRNA circularization and eIF4F initiation complex assembly by enhancing hnRNPA2B1-eIF4G1 interaction. Moreover, DHCR24 directly anchored to TBK1 mRNA 3'-untranslated region to increase its stability, thus forming a feed forward loop to elevate TBK1 expression. TBK1 activated PI3K/Akt signaling to promote VEGFC secretion, resulting in lymphangiogenesis and LN metastasis. DHCR24 silencing significantly impeded bladder cancer lymphangiogenesis and lymphatic metastasis in a patient-derived xenograft model. Collectively, these findings elucidate DHCR24-mediated translation machinery that promotes lymphatic metastasis of bladder cancer and supports the potential application of DHCR24-targeted therapy for LN-metastatic bladder cancer. SIGNIFICANCE DHCR24 is a SUMOylation regulator that controls translation initiation complex assembly and orchestrates TBK1 mRNA circularization to activate Akt/VEGFC signaling, which stimulates lymphangiogenesis and promotes lymph node metastasis in bladder cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
25
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
26
|
Zheng S, Tian Q, Yuan Y, Sun S, Li T, Xia R, He R, Luo Y, Lin Q, Fu Z, Zhou Y, Chen R, Hu C. Extracellular vesicle-packaged circBIRC6 from cancer-associated fibroblasts induce platinum resistance via SUMOylation modulation in pancreatic cancer. J Exp Clin Cancer Res 2023; 42:324. [PMID: 38012734 PMCID: PMC10683239 DOI: 10.1186/s13046-023-02854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play pivotal roles in chemoresistance of pancreatic ductal adenocarcinoma (PDAC). However, the underlying mechanisms are poorly understood. Revealing the cross-talk network between tumor stroma and pancreatic cancer and developing effective strategies against oxaliplatin resistance are highly desired in the clinic. METHODS High-throughput sequence was used to screened the key circRNAs transmitted by extracellular vesicles (EVs) from CAFs to pancreatic cancer cells. The associations between EV-packaged circBIRC6 and chemotherapy responsiveness were validated in a cohort of 82 cases of advanced PDAC patients. Then, the effects of EV-packaged circBIRC6 on CAF-induced oxaliplatin resistance were investigated by flow cytometry, colony formation, viability of pancreatic cancer organoids in vitro and by xenograft models in vivo. RNA pulldown, RNA immunoprecipitation, and sites mutation assays were used to reveal the underlying mechanism. RESULTS We identified a circRNA, circBIRC6, is significantly upregulated in CAF-derived EVs and is positively associated with oxaliplatin-based chemoresistance. In vitro and in vivo functional assays showed that CAF-derived EV-packaged circBIRC6 enhance oxaliplatin resistance of pancreatic cancer cells and organoids via regulating the non-homologous end joining (NHEJ) dependent DNA repair. Mechanistically, circBIRC6 directly binds with XRCC4 and enhanced the interaction of XRCC4 with SUMO1 at the lysine 115 residue, which facilitated XRCC4 chromatin localization. XRCC4K115R mutation dramatically abrogated the EV-packaged circBIRC6 induced effect. Moreover, combination of antisense oligonucleotide inhibitors against circBIRC6 with Olaparib dramatically suppressed chemoresistance in patient-derived xenograft models. CONCLUSIONS Our study revealed that EV-packaged circBIRC6 confer oxaliplatin resistance in PDAC by mediating SUMOylation of XRCC4, introducing a promising predictive and therapeutic target for PDAC on oxaliplatin resistance.
Collapse
Affiliation(s)
- Shangyou Zheng
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Qing Tian
- School of medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Yuan Yuan
- Guangdong cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Shuxin Sun
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Tingting Li
- School of medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Renpeng Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Rihua He
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong province, China
| | - Yuming Luo
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Qing Lin
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Zhiqiang Fu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Yu Zhou
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Rufu Chen
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China.
- School of medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China.
- Guangdong cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| | - Chonghui Hu
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
27
|
Diao X, Guo C, Zheng H, Zhao K, Luo Y, An M, Lin Y, Chen J, Li Y, Li Y, Gao X, Zhang J, Zhou M, Bai W, Liu L, Wang G, Zhang L, He X, Zhang R, Li Z, Chen C, Li S. SUMOylation-triggered ALIX activation modulates extracellular vesicles circTLCD4-RWDD3 to promote lymphatic metastasis of non-small cell lung cancer. Signal Transduct Target Ther 2023; 8:426. [PMID: 37925421 PMCID: PMC10625632 DOI: 10.1038/s41392-023-01685-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023] Open
Abstract
Lymph node (LN) metastasis is one of the predominant metastatic routes of non-small cell lung cancer (NSCLC) and is considered as a leading cause for the unsatisfactory prognosis of patients. Although lymphangiogenesis is well-recognized as a crucial process in mediating LN metastasis, the regulatory mechanism involving lymphangiogenesis and LN metastasis in NSCLC remains unclear. In this study, we employed high-throughput sequencing to identify a novel circular RNA (circRNA), circTLCD4-RWDD3, which was significantly upregulated in extracellular vesicles (EVs) from LN metastatic NSCLC and was positively associated with deteriorated OS and DFS of patients with NSCLC from multicenter clinical cohort. Downregulating the expression of EV-packaged circTLCD4-RWDD3 inhibited lymphangiogenesis and LN metastasis of NSCLC both in vitro and in vivo. Mechanically, circTLCD4-RWDD3 physically interacted with hnRNPA2B1 and mediated the SUMO2 modification at K108 residue of hnRNPA2B1 by upregulating UBC9. Subsequently, circTLCD4-RWDD3-induced SUMOylated hnRNPA2B1 was recognized by the SUMO interaction motif (SIM) of ALIX and activated ALIX to recruit ESCRT-III, thereby facilitating the sorting of circTLCD4-RWDD3 into NSCLC cell-derived EVs. Moreover, EV-packaged circTLCD4-RWDD3 was internalized by lymphatic endothelial cells to activate the transcription of PROX1, resulting in the lymphangiogenesis and LN metastasis of NSCLC. Importantly, blocking EV-mediated transmission of circTLCD4-RWDD3 via mutating SIM in ALIX or K108 residue of hnRNPA2B1 inhibited the lymphangiogenesis and LN metastasis of NSCLC in vivo. Our findings reveal a precise mechanism underlying SUMOylated hnRNPA2B1-induced EV packaging of circTLCD4-RWDD3 in facilitating LN metastasis of NSCLC, suggesting that EV-packaged circTLCD4-RWDD3 could be a potential therapeutic target against LN metastatic NSCLC.
Collapse
Affiliation(s)
- Xiayao Diao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Ke Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuting Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xuehan Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jiaqi Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Mengxin Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Wenliang Bai
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guige Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lanjun Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaotian He
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Rusi Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
28
|
Wu Z, Qu B, Yuan M, Liu J, Zhou C, Sun M, Guo Z, Zhang Y, Song Y, Wang Z. CRIP1 Reshapes the Gastric Cancer Microenvironment to Facilitate Development of Lymphatic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303246. [PMID: 37409440 PMCID: PMC10502640 DOI: 10.1002/advs.202303246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/07/2023]
Abstract
Lymphangiogenesis in tumors provides an auxiliary route for cancer cell invasion to drainage lymph nodes, facilitating the development of lymphatic metastasis (LM). However, the mechanisms governing tumor lymphangiogenesis and lymphatic permeability in gastric cancer (GC) remain largely unknown. Here, the unprecedented role and mechanism of cysteine-rich intestinal protein-1 (CRIP1) in mediating the development of GC LM is uncovered. A series of assays are performed to identify downstream targets of CRIP1, and rescue experiments are performed to confirm the effects of this regulatory axis on LM. CRIP1 overexpression facilitates LM in GC by promoting lymphangiogenesis and lymphatic vessel permeability. CRIP1 promotes phosphorylation of cAMP responsive element binding protein 1(CREB1), which then mediates vascular endothelial growth factor C (VEGFC) expression necessary for CRIP1-induced lymphangiogenesis and transcriptionally promotes C-C motif chemokine ligand 5 (CCL5) expression. CCL5 recruits macrophages to promote tumor necrosis factor alpha (TNF-α) secretion, eventually enhancing lymphatic permeability. The study highlights CRIP1 regulates the tumor microenvironment to promote lymphangiogenesis and LM in GC. Considering the current limited understanding of LM development in GC, these pathways provide potential targets for future therapeutics.
Collapse
Affiliation(s)
- Zhonghua Wu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Bicheng Qu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Minxian Yuan
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Jingjing Liu
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Cen Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Mingwei Sun
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Zhexu Guo
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yaqing Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| |
Collapse
|
29
|
Cheng X, Yang W, Lin W, Mei F. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Pharmacol Rev 2023; 75:979-1006. [PMID: 37137717 PMCID: PMC10441629 DOI: 10.1124/pharmrev.122.000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Protein SUMOylation is a major post-translational modification essential for maintaining cellular homeostasis. SUMOylation has long been associated with stress responses as a diverse array of cellular stress signals are known to trigger rapid alternations in global protein SUMOylation. In addition, while there are large families of ubiquitination enzymes, all small ubiquitin-like modifiers (SUMOs) are conjugated by a set of enzymatic machinery comprising one heterodimeric SUMO-activating enzyme, a single SUMO-conjugating enzyme, and a small number of SUMO protein ligases and SUMO-specific proteases. How a few SUMOylation enzymes specifically modify thousands of functional targets in response to diverse cellular stresses remains an enigma. Here we review recent progress toward understanding the mechanisms of SUMO regulation, particularly the potential roles of liquid-liquid phase separation/biomolecular condensates in regulating cellular SUMOylation during cellular stresses. In addition, we discuss the role of protein SUMOylation in pathogenesis and the development of novel therapeutics targeting SUMOylation. SIGNIFICANCE STATEMENT: Protein SUMOylation is one of the most prevalent post-translational modifications and plays a vital role in maintaining cellular homeostasis in response to stresses. Protein SUMOylation has been implicated in human pathogenesis, such as cancer, cardiovascular diseases, neurodegeneration, and infection. After more than a quarter century of extensive research, intriguing enigmas remain regarding the mechanism of cellular SUMOylation regulation and the therapeutic potential of targeting SUMOylation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wenli Yang
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Wei Lin
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Fang Mei
- Department of Integrative Biology & Pharmacology and Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
30
|
He T, Zhang Q, Xu P, Tao W, Lin F, Liu R, Li M, Duan X, Cai C, Gu D, Zeng G, Liu Y. Extracellular vesicle-circEHD2 promotes the progression of renal cell carcinoma by activating cancer-associated fibroblasts. Mol Cancer 2023; 22:117. [PMID: 37481520 PMCID: PMC10362694 DOI: 10.1186/s12943-023-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The encapsulation of circular RNAs (circRNAs) into extracellular vesicles (EVs) enables their involvement in intercellular communication and exerts an influence on the malignant advancement of various tumors. However, the regulatory role of EVs-circRNA in renal cell carcinoma (RCC) remains elusive. METHODS The in vitro and in vivo functional experiments were implemented to measure the effects of circEHD2 on the phenotype of RCC. The functional role of EVs-circEHD2 on the activation of fibroblasts was assessed by collagen contraction assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). The mechanism was investigated by RNA pull-down assay, RNA immunoprecipitation, chromatin isolation by RNA purification, luciferase assay, and co-immunoprecipitation assay. RESULTS We demonstrated that circEHD2 was upregulated in RCC tissues and serum EVs of RCC patients with metastasis. Silencing circEHD2 inhibited tumor growth in vitro and in vivo. Mechanistic studies indicated that FUS RNA -binding protein (FUS) accelerated the cyclization of circEHD2, then circEHD2 interacts with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH), which acts as a bridge to recruit circEHD2 and Yes1-associated transcriptional regulator (YAP) to the promoter of SRY-box transcription factor 9 (SOX9); this results in the sustained activation of SOX9. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) regulates the package of circEHD2 into EVs, then EVs-circEHD2 transmits to fibroblasts, converting fibroblasts to cancer-associated fibroblasts (CAFs). Activated CAFs promote the metastasis of RCC by secreting pro-inflammatory cytokines such as IL-6. Furthermore, antisense oligonucleotides (ASOs) targeting circEHD2 exhibited a strong inhibition of tumor growth in vivo. CONCLUSIONS The circEHD2/YWHAH/YAP/SOX9 signaling pathway accelerates the growth of RCC. EVs-circEHD2 facilitates the metastasis of RCC by converting fibroblasts to CAFs. Our results suggest that EVs-circEHD2 may be a useful biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Tao He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Qiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Peng Xu
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen Tao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Fuyang Lin
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Renfei Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Mingzhao Li
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Chao Cai
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China.
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China.
| |
Collapse
|
31
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Yuan Y, Sun X, Liu M, Li S, Dong Y, Hu K, Zhang J, Xu B, Ma S, Jiang H, Hou P, Lin Y, Gan L, Liu T. Negative correlation between acetyl-CoA acyltransferase 2 and cetuximab resistance in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1467-1478. [PMID: 37310146 PMCID: PMC10520478 DOI: 10.3724/abbs.2023111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 06/14/2023] Open
Abstract
The emergence of anti-EGFR therapy has revolutionized the treatment of colorectal cancer (CRC). However, not all patients respond consistently well. Therefore, it is imperative to conduct further research to identify the molecular mechanisms underlying the development of cetuximab resistance in CRC. In this study, we find that the expressions of many metabolism-related genes are downregulated in cetuximab-resistant CRC cells compared to their sensitive counterparts. Specifically, acetyl-CoA acyltransferase 2 (ACAA2), a key enzyme in fatty acid metabolism, is downregulated during the development of cetuximab resistance. Silencing of ACAA2 promotes proliferation and increases cetuximab tolerance in CRC cells, while overexpression of ACAA2 exerts the opposite effect. RTK-Kras signaling might contribute to the downregulation of ACAA2 expression in CRC, and ACAA2 predicts CRC prognosis in patients with Kras mutations. Collectively, our data suggest that modulating ACAA2 expression contributes to secondary cetuximab resistance in Kras wild-type CRC patients. ACAA2 expression is related to Kras mutation and demonstrates a prognostic role in CRC patients with Kras mutation. Thus, ACAA2 is a potential target in CRC with Kras mutation.
Collapse
Affiliation(s)
- Yitao Yuan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Xun Sun
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Mengling Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Suyao Li
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yu Dong
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Keshu Hu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiayu Zhang
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Bei Xu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Sining Ma
- Department of Obstetrics and GynecologyZhongshan HospitalShanghai200032China
| | - Hesheng Jiang
- Department of SurgerySouthwest HealthcareSouthern California Medical Education ConsortiumTemecula Valley HospitalTemeculaUSA
| | - Pengcong Hou
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Shanghai Institute of Precision MedicineShanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Yufu Lin
- Department of OncologyZhongshan Hospital (Xiamen)Fudan UniversityXiamen361004China
| | - Lu Gan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Fudan Zhangjiang InstituteShanghai200032China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Center of Evidence Based MedicineFudan UniversityShanghai200032China
| |
Collapse
|
33
|
Wu X, Li JH, Xu L, Li YX, Zhu XX, Wang XY, Wu X, Zhao W, Ni X, Yin XY. SUMO specific peptidase 3 halts pancreatic ductal adenocarcinoma metastasis via deSUMOylating DKC1. Cell Death Differ 2023:10.1038/s41418-023-01175-4. [PMID: 37188742 DOI: 10.1038/s41418-023-01175-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
In the past few decades, advances in the outcomes of patients suffering from pancreatic ductal adenocarcinoma (PDAC) have lagged behind these gained in the treatment of many other malignancies. Although the pivotal role of the SUMO pathway in PDAC has been illustrated, the underlying molecule drivers have yet to be fully elucidated. In the present study, we identified SENP3 as a potential suppressor of PDAC progression through an in vivo metastatic model. Further studies revealed that SENP3 inhibited PDAC invasion in a SUMO system dependent fashion. Mechanistically, SENP3 interacted with DKC1 and, as such, catalyzed the deSUMOylation of DKC1, which accepted SUMO3 modifiers at three lysine residues. SENP3-mediated deSUMOylation caused DKC1 instability and disruption of the interaction between snoRNP proteins, which contributed to the impaired migration ability of PDAC. Indeed, overexpression of DKC1 abated the anti-metastasis effect of SENP3, and DKC1 was elevated in PDAC specimens and associated with a poor prognosis in PDAC patients. Collectively, our findings shed light on the essential role of SENP3/DKC1 axis in the progression of PDAC.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Long Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingmei Wu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Zhang Z, Zhang H, Liao X, Tsai HI. KRAS mutation: The booster of pancreatic ductal adenocarcinoma transformation and progression. Front Cell Dev Biol 2023; 11:1147676. [PMID: 37152291 PMCID: PMC10157181 DOI: 10.3389/fcell.2023.1147676] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It has a poor response to conventional therapy and has an extremely poor 5-year survival rate. PDAC is driven by multiple oncogene mutations, with the highest mutation frequency being observed in KRAS. The KRAS protein, which binds to GTP, has phosphokinase activity, which further activates downstream effectors. KRAS mutation contributes to cancer cell proliferation, metabolic reprogramming, immune escape, and therapy resistance in PDAC, acting as a critical driver of the disease. Thus, KRAS mutation is positively associated with poorer prognosis in pancreatic cancer patients. This review focus on the KRAS mutation patterns in PDAC, and further emphases its role in signal transduction, metabolic reprogramming, therapy resistance and prognosis, hoping to provide KRAS target therapy strategies for PDAC.
Collapse
Affiliation(s)
- Zining Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Heng Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hsiang-i Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
35
|
Zhao Y, Tang J, Jiang K, Liu SY, Aicher A, Heeschen C. Liquid biopsy in pancreatic cancer - Current perspective and future outlook. Biochim Biophys Acta Rev Cancer 2023; 1878:188868. [PMID: 36842769 DOI: 10.1016/j.bbcan.2023.188868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer is a lethal condition with a rising incidence and often presents at an advanced stage, contributing to abysmal five-year survival rates. Unspecific symptoms and the current lack of biomarkers and screening tools hamper early diagnosis. New technologies for liquid biopsies and their respective evaluation in pancreatic cancer patients have emerged over recent years. The term liquid biopsy summarizes the sampling and analysis of circulating tumor cells (CTCs), small extracellular vesicles (sEVs), and tumor DNA (ctDNA) from body fluids. The major advantages of liquid biopsies rely on their minimal invasiveness and repeatability, allowing serial sampling for dynamic insights to aid diagnosis, particularly early detection, risk stratification, and precision medicine in pancreatic cancer. However, liquid biopsies have not yet developed into a new pillar for clinicians' routine armamentarium. Here, we summarize recent findings on the use of liquid biopsy in pancreatic cancer patients. We discuss current challenges and future perspectives of this potentially powerful alternative to conventional tissue biopsies.
Collapse
Affiliation(s)
- Yaru Zhao
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Jiang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shin-Yi Liu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Research and Development Center for Immunology, China Medical University, Taichung, Taiwan
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
36
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
37
|
Pirlog R, Calin GA. KRAS mutations as essential promoters of lymphangiogenesis via extracellular vesicles in pancreatic cancer. J Clin Invest 2022; 132:e161454. [PMID: 35838046 PMCID: PMC9282924 DOI: 10.1172/jci161454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kirsten rat sarcoma virus (KRAS) gene mutations are present in more than 90% of pancreatic ductal adenocarcinomas (PDACs). KRASG12D is the most frequent alteration, promoting preneoplastic lesions and associating with a more aggressive phenotype. These tumors possess increased intratumoral lymphatic networks and frequent lymph node (LN) metastases. In this issue of the JCI, Luo, Li, et al. explored the relationship between the presence of the KRASG12D mutation and lymphangiogenesis in PDAC. The authors used in vitro and in vivo models and an elegant mechanistic approach to describe an alternative pathway for lymphangiogenesis promotion. KRASG12D induced SUMOylation of heterogenous nuclear ribonucleoprotein A1 (hnRNPA1) via SAE1 and SUMO2 activation. SUMOylated hnRNPA1 was loaded into extracellular vesicles (EVs) and internalized by human endothelial lymphatic cells (HLEC). Further, SUMOylated hnRNPA1 promoted lymphangiogenesis and LN metastasis by stabilizing prospero homeodomain protein 1 (PROX1) mRNA. These data provide mechanistic insight into cancer lymphangiogenesis with the potential for developing biomarkers and RAS pathway therapeutics.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Translational Molecular Pathology, Division of Pathology, and
| | - George A. Calin
- Department of Translational Molecular Pathology, Division of Pathology, and
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|