1
|
Wang JH, Mao HB, Hu JB, Cheng S, Su H. Engineering of phosphatidylserine-targeting ROS-responsive polymeric prodrug for the repair of ischemia-reperfusion-induced acute kidney injury. J Control Release 2024; 376:1100-1114. [PMID: 39486459 DOI: 10.1016/j.jconrel.2024.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Ischemia-reperfusion-induced acute kidney injury (IR-AKI) commonly occurs in situations such as hemorrhagic shock, kidney transplantation, and cardiovascular surgery. As one of the significant causes of AKI, IR-AKI is characterized by its high incidence and mortality rates. Currently, effective inflammation control is the key for the treatment of IR-AKI. In this study, we developed an ROS-responsive polymeric prodrugs (Zn-D/DTH) which could target the externalized PS of apoptotic cells, and then responsively released HDM (anti-inflammatory peptides) in the presence of intracellular ROS. Zn-D/DTH effectively ameliorated renal function and mitigated pathological alterations such as the loss of the brush border, tubular dilation, and accumulation of cellular debris within the tubular lumens. Furthermore, Zn-D/DTH greatly reduced the generation of pro-inflammatory factors like IL-6, COX-2, and iNOS in renal tissues, suggesting its protective role largely stems from suppression of the inflammatory response. Additional mechanism exploration revealed that Zn-D/DTH markedly decreased the expression levels of TLR4 and MyD88, as well as the phosphorylation of NF-κB in the damaged kidneys. This, in turn, reduced the number of apoptotic tubular cells and the activity of Caspase 9 and Caspase 3 caused by ischemia-reperfusion. Additionally, Zn-D/DTH treatment showed improvement in the long-term renal damage and fibrosis induced by ischemia-reperfusion. The experimental outcomes indicated that Zn-D/DTH attenuated renal ischemia-reperfusion injury and delayed the transition from acute kidney injury to chronic kidney disease by downregulating the TLR4/MyD88/NF-κB signaling pathway and reducing the expression of apoptotic caspases, thereby inhibiting inflammation and reducing cell apoptosis.
Collapse
Affiliation(s)
- Jin-Hui Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hai-Bo Mao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shunhua Cheng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Hao Su
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Hommel K, Kauth AMA, Kirupakaran A, Theisen S, Hayduk M, Niemeyer FC, Beuck C, Zadmard R, Bayer P, Jan Ravoo B, Voskuhl J, Schrader T, Knauer SK. Functional Linkers Support Targeting of Multivalent Tweezers to Taspase1. Chemistry 2024; 30:e202401542. [PMID: 38958349 DOI: 10.1002/chem.202401542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.
Collapse
Affiliation(s)
- Katrin Hommel
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Alisa-Maite A Kauth
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Sebastian Theisen
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Reza Zadmard
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box 14335-186, Tehran, Iran
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
3
|
Duan L, Wang Z, Fan S, Wang C, Zhang Y. Research progress of biomaterials and innovative technologies in urinary tissue engineering. Front Bioeng Biotechnol 2023; 11:1258666. [PMID: 37645598 PMCID: PMC10461011 DOI: 10.3389/fbioe.2023.1258666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Substantial interests have been attracted to multiple bioactive and biomimetic biomaterials in recent decades because of their ability in presenting a structural and functional reconstruction of urinary tissues. Some innovative technologies have also been surging in urinary tissue engineering and urological regeneration by providing insights into the physiological behavior of the urinary system. As such, the hierarchical structure and tissue function of the bladder, urethra, and ureter can be reproduced similarly to the native urinary tissues. This review aims to summarize recent advances in functional biomaterials and biomimetic technologies toward urological reconstruction. Various nanofirous biomaterials derived from decellularized natural tissues, synthetic biopolymers, and hybrid scaffolds were developed with desired microstructure, surface chemistry, and mechanical properties. Some growth factors, drugs, as well as inorganic nanomaterials were also utilized to enhance the biological activity and functionality of scaffolds. Notably, it is emphasized that advanced approaches, such as 3D (bio) printing and organoids, have also been developed to facilitate structural and functional regeneration of the urological system. So in this review, we discussed the fabrication strategies, physiochemical properties, and biofunctional modification of regenerative biomaterials and their potential clinical application of fast-evolving technologies. In addition, future prospective and commercial products are further proposed and discussed.
Collapse
Affiliation(s)
- Liwei Duan
- The Second Hospital, Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuang Fan
- The Second Hospital, Jilin University, Changchun, China
| | - Chen Wang
- The Second Hospital, Jilin University, Changchun, China
| | - Yi Zhang
- The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Liu L, Wei J, Wang Y, Feng Q, Guo S, Liu G, Dong J, Jiang L, Li Q, Nie J, Yang J. Effect of Club cell secretory proteins on the association of tobacco smoke and PAH co-exposure with lung function decline: A longitudinal observation of Chinese coke oven workers. Int J Hyg Environ Health 2023; 247:114058. [PMID: 36334377 DOI: 10.1016/j.ijheh.2022.114058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAH) and tobacco smoke is associated with epithelial damage and reduced lung function. Club cell secretory protein (CC16) is a known biomarker for lung epithelial cells. However, the potential relationships between PAH and tobacco smoke exposure, CC16 levels, and reduced lung function remain unclear. OBJECTIVES This longitudinal study aimed to explore the potential role of CC16 in the association of tobacco smoke and PAH co-exposure with lung function. METHODS We enrolled 313 workers from a coking plant in China in 2014 and followed them up in 2019. The concentrations of PAH and nicotine metabolites in urine were determined using high-performance liquid chromatography (HPLC) with a fluorescence detector and HPLC-tandem mass spectrometry, respectively. The plasma CC16 concentration was determined using an enzyme-linked immunosorbent assay. RESULTS An analysis of the generalized estimating equation showed that each 1-unit increase in log-transformation of the last tertile of trans-3'-hydroxycotinine (3HC) was associated with a 3.30 ng/ml decrease in CC16. Restricted cubic spline analysis revealed a significant nonlinear dose-effect association between cotinine (COT) and CC16 (Pnonlinear = 0.018). In the low- CC16 subgroup, we found a significant association between total nicotine metabolites and forced vital capacity (FVC%) (β: 1.45, 95% CI: 2.87, -0.03), and the associations of nicotine (NIC), COT, and 3HC with FVC% were all of marginal significance. High levels of total hydroxyl polycyclic aromatic hydrocarbons (ΣOH-PAH) and NIC in the urine had an interactive effect on the decline of CC16 (P < 0.05). Cross-lagged panel analysis indicated that the decrease in CC16 preceded the decrease in FVC%. CC16 mediated the association between elevated nicotine metabolites and decreased FVC% in the low- CC16 subgroup. CONCLUSIONS CC16 plays an essential role in the association of PAH and tobacco smoke exposure with reduced lung function. Coke oven workers with low plasma CC16 levels are more likely to experience decreased lung function after tobacco smoke exposure.
Collapse
Affiliation(s)
- Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Jiajun Wei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Yong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Quan Feng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Jun Dong
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; NHC Key Laboratory of Pneumoconiosis, China.
| |
Collapse
|
5
|
The TGM2 inhibitor cysteamine hydrochloride does not impact corneal epithelial and stromal wound healing in vitro and in vivo. Exp Eye Res 2023; 226:109338. [PMID: 36470430 PMCID: PMC10120528 DOI: 10.1016/j.exer.2022.109338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Corneal wound healing is integral for resolution of corneal disease or for post-operative healing. However, corneal scarring that may occur secondary to this process can significantly impair vision. Tissue transglutaminase 2 (TGM2) inhibition has shown promising antifibrotic effects and thus holds promise to prevent or treat corneal scarring. The commercially available ocular solution for treatment of ocular manifestations of Cystinosis, Cystaran®, contains the TGM2 inhibitor cysteamine hydrochloride (CH). The purpose of this study is to assess the safety of CH on corneal epithelial and stromal wounds, its effects on corneal wound healing, and its efficacy against corneal scarring following wounding. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were first used to quantify and localize TGM2 expression in the cornea. Subsequently, (i) the in vitro effects of CH at 0.163, 1.63, and 16.3 mM on corneal epithelial cell migration was assessed with an epithelial cell migration assay, and (ii) the in vivo effects of application of 1.63 mM CH on epithelial and stromal wounds was assessed in a rabbit model with ophthalmic examinations, inflammation scoring, color and fluorescein imaging, optical coherence tomography (OCT), and confocal biomicroscopy. Post-mortem assessment of corneal tissue post-stromal wounding included biomechanical characterization (atomic force microscopy (AFM)), histology (H&E staining), and determining incidence of myofibroblasts (immunostaining against α-SMA) in wounded corneal tissue. TGM2 expression was highest in corneal epithelial cells. Application of the TGM2 inhibitor CH did not affect in vitro epithelial cell migration at the two lower concentrations tested. At 16.3 mM, decreased cell migration was observed. In vivo application of CH at 57 mM was well tolerated and did not adversely affect wound healing. No difference in corneal scarring was found between CH treated and vehicle control eyes. This study shows that the TGM2 inhibitor CH, at the FDA-approved dose, is well tolerated in a rabbit model of corneal wound healing and does not adversely affect epithelial or stromal wound healing. This supports the safe use of this medication in Cystinosis patients with open corneal wounds. CH did not have an effect on corneal scarring in this study, suggesting that Cystaran® administration to patients with corneal wounds is unlikely to decrease corneal fibrosis.
Collapse
|
6
|
Höing A, Struth R, Beuck C, Rafieiolhosseini N, Hoffmann D, Stauber RH, Bayer P, Niemeyer J, Knauer SK. Dual activity inhibition of threonine aspartase 1 by a single bisphosphate ligand. RSC Adv 2022; 12:34176-34184. [PMID: 36545626 PMCID: PMC9709806 DOI: 10.1039/d2ra06019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Therapy resistance remains a challenge for the clinics. Here, dual-active chemicals that simultaneously inhibit independent functions in disease-relevant proteins are desired though highly challenging. As a model, we here addressed the unique protease threonine aspartase 1, involved in various cancers. We hypothesized that targeting basic residues in its bipartite nuclear localization signal (NLS) by precise bisphosphate ligands inhibits additional steps required for protease activity. We report the bisphosphate anionic bivalent inhibitor 11d, selectively binding to the basic NLS cluster (220KKRR223) with high affinity (K D = 300 nM), thereby disrupting its interaction and function with Importin α (IC50 = 6 μM). Cell-free assays revealed that 11d additionally affected the protease's catalytic substrate trans-cleavage activity. Importantly, functional assays comprehensively demonstrated that 11d inhibited threonine aspartase 1 also in living tumor cells. We demonstrate for the first time that intracellular interference with independent key functions in a disease-relevant protein by an inhibitor binding to a single site is possible.
Collapse
Affiliation(s)
- Alexander Höing
- Molecular Biology II, Center of Medical Biotechnology (ZMB)/Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Robin Struth
- Organic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Neda Rafieiolhosseini
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Medical Center Mainz (UMM) Langenbeckstrasse 1 55101 Mainz Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| | - Jochen Niemeyer
- Organic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB)/Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5 45141 Essen Germany
| |
Collapse
|
7
|
Höing A, Kirupakaran A, Beuck C, Pörschke M, Niemeyer FC, Seiler T, Hartmann L, Bayer P, Schrader T, Knauer SK. Recognition of a Flexible Protein Loop in Taspase 1 by Multivalent Supramolecular Tweezers. Biomacromolecules 2022; 23:4504-4518. [PMID: 36200481 DOI: 10.1021/acs.biomac.2c00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.
Collapse
Affiliation(s)
- Alexander Höing
- Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Marius Pörschke
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Theresa Seiler
- Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
8
|
Sima LE, Matei D, Condello S. The Outside-In Journey of Tissue Transglutaminase in Cancer. Cells 2022; 11:cells11111779. [PMID: 35681474 PMCID: PMC9179582 DOI: 10.3390/cells11111779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue transglutaminase (TG2) is a member of the transglutaminase family that catalyzes Ca2+-dependent protein crosslinks and hydrolyzes guanosine 5′-triphosphate (GTP). The conformation and functions of TG2 are regulated by Ca2+ and GTP levels; the TG2 enzymatically active open conformation is modulated by high Ca2+ concentrations, while high intracellular GTP promotes the closed conformation, with inhibition of the TG-ase activity. TG2’s unique characteristics and its ubiquitous distribution in the intracellular compartment, coupled with its secretion in the extracellular matrix, contribute to modulate the functions of the protein. Its aberrant expression has been observed in several cancer types where it was linked to metastatic progression, resistance to chemotherapy, stemness, and worse clinical outcomes. The N-terminal domain of TG2 binds to the 42 kDa gelatin-binding domain of fibronectin with high affinity, facilitating the formation of a complex with β-integrins, essential for cellular adhesion to the matrix. This mechanism allows TG2 to interact with key matrix proteins and to regulate epithelial to mesenchymal transition and stemness. Here, we highlight the current knowledge on TG2 involvement in cancer, focusing on its roles translating extracellular cues into activation of oncogenic programs. Improved understanding of these mechanisms could lead to new therapeutic strategies targeting this multi-functional protein.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
9
|
Singh RB, Liu L, Yung A, Anchouche S, Mittal SK, Blanco T, Dohlman TH, Yin J, Dana R. Ocular redness - II: Progress in development of therapeutics for the management of conjunctival hyperemia. Ocul Surf 2021; 21:66-77. [PMID: 34000363 DOI: 10.1016/j.jtos.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Conjunctival hyperemia is one of the most common causes for visits to primary care physicians, optometrists, ophthalmologists, and emergency rooms. Despite its high incidence, the treatment options for patients with conjunctival hyperemia are restricted to over-the-counter drugs that provide symptomatic relief due to short duration of action, tachyphylaxis and rebound redness. As our understanding of the immunopathological pathways causing conjunctival hyperemia expands, newer therapeutic targets are being discovered. These insights have also contributed to the development of animal models for mimicking the pathogenic changes in microvasculature causing hyperemia. Furthermore, this progress has catalyzed the development of novel therapeutics that provide efficacious, long-term relief from conjunctival hyperemia with minimal adverse effects.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lingjia Liu
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ann Yung
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sonia Anchouche
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sharad K Mittal
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Lee HS, Park DE, Bae B, Oh K, Jung JW, Lee DS, Kim IG, Cho SH, Kang HR. Tranglutaminase 2 contributes to the asthmatic inflammation by modulating activation of alveolar macrophages. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:871-882. [PMID: 33945658 PMCID: PMC8342203 DOI: 10.1002/iid3.442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transglutaminase 2 (TG2), a multifunctional calcium-dependent acyltransferase, is upregulated in asthmatic airways and reported to play a role in the pathogenesis of allergic asthma. However, the underlying mechanism is not fully understood. OBJECTIVE To investigate the role of TG2 in alternative activation of alveolar macrophages by using murine asthma model. METHODS TG2 expression was assessed in induced sputum of 21 asthma patients and 19 healthy controls, and lung tissue of ovalbumin (OVA)-induced murine asthma model. To evaluate the role of TG2 in asthma, we developed an OVA asthma model in both TG2 null and wild-type mice. The expression of M2 macrophage markers was measured by fluorescence-activated cell sorting (FACS) after OVA sensitization and challenge. To evaluate the effect of TG2 inhibition in vitro, interleukin 4 (IL-4) or IL-13-stimulated expression of M2 macrophage markers was measured in CRL-2456 cells in the presence and absence of a TG2 inhibitor. RESULTS The expression of both TG2 and M2 markers was increased in the sputum of asthmatics compared with that of healthy controls. The expression of TG2 was increased in macrophages of OVA mice. Airway hyperresponsiveness, and the number of inflammatory cells, including eosinophils, was significantly reduced in TG2 null mice compared with wild-type mice. Enhanced expression of M2 markers in OVA mice was normalized by TG2 knockout. IL-4 or IL-13-stimulated expression of M2 markers in alveolar macrophages was also attenuated by TG2 inhibitor treatment in vitro. CONCLUSION Our results suggest that TG2-mediated modulation of alveolar macrophage polarization plays important roles in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Da-Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Keunhee Oh
- Department of Biomedical Sciences, Laboratory of Immunology and Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Laboratory of Immunology and Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Bury MI, Fuller NJ, Clemons TD, Sturm RM, Morrison CD, Lisy‐Snow DC, Nolan BG, Tarczynski C, Ayello EMT, Boyce A, Muckian B, Ahmad N, Hunter CJ, Karver MR, Stupp SI, Sharma AK. Self‐Assembling Nanofibers Inhibit Inflammation in a Murine Model of Crohn's‐Disease‐Like Ileitis. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew I. Bury
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Natalie J. Fuller
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Tristan D. Clemons
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Renea M. Sturm
- Department of Urology University of California Los Angeles 200 Medical Plaza Driveway #140 Los Angeles CA 90095 USA
| | - Christopher D. Morrison
- Department of Urology Northwestern University Feinberg School of Medicine 676 North St. Clair Suite 2300 Chicago IL 60611 USA
| | - Devon C. Lisy‐Snow
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Bonnie G. Nolan
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Christopher Tarczynski
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
| | - Emily M. T. Ayello
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
| | - Amber Boyce
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Bridget Muckian
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Nida Ahmad
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Catherine J. Hunter
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Lurie Children's Hospital of Chicago 255 East Superior Street Chicago IL 60611 USA
| | - Mark R. Karver
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
| | - Samuel I. Stupp
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- McCormick School of Engineering Department of Biomedical Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Feinberg School of Medicine Department of Medicine Northwestern University 420 E Superior Street Chicago IL 60611 USA
| | - Arun K. Sharma
- Simpson Querrey Institute (SQI) Northwestern University 303 East Superior Street Chicago IL 60611 USA
- Department of Urology Northwestern University Feinberg School of Medicine 676 North St. Clair Suite 2300 Chicago IL 60611 USA
- McCormick School of Engineering Department of Biomedical Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Stanley Manne Children's Research Institute (SMCRI) 303 East Superior Street Chicago IL 60611 USA
- Center for Advanced Regenerative Engineering (CARE) 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
12
|
Paris R, Pagliarani G, Savazzini F, Aloisi I, Iorio RA, Tartarini S, Ricci G, Del Duca S. Comparative analysis of allergen genes and pro-inflammatory factors in pollen and fruit of apple varieties. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:57-68. [PMID: 28969803 DOI: 10.1016/j.plantsci.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Allergy to freshly consumed apple fruits is often associated to pollinosis and manifested as oral allergy syndrome (OAS). The allergenic properties of apple varieties differ greatly, spanning from low allergenic to high allergenic varieties. The knowledge of the genetic determinants for allergenicity has been of great interest in scientific community for several years, but the molecular mechanisms involved are still little understood. Here, factors putatively involved in allergenicity were investigated at biochemical and molecular level in pollen and in fruits of apple varieties differing in their allergenic potential. Among putative sensitizing factors, transglutaminase (TGase) and phospholipase A2 (PLA2) were considered together with reactive oxygen species (ROS) and known apple allergen genes, with particular attention devoted to the Mal d 1 gene family, the most important one in sensitization. We found that the expression of some allergen genes and the activities of TGase, PLA2 and ROS producing enzyme are lower in the hypo-allergenic variety 'Durello di Forlì' in comparison with the high-allergenic genotypes 'Gala' and 'Florina'. These results highlight correlations among allergen expressions, enzymatic activities and apple cultivars; these data underline the possibility that some of them could be used in the future as markers for allergenicity.
Collapse
Affiliation(s)
- Roberta Paris
- CREA - Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Federica Savazzini
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Rosa Anna Iorio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 11, 40138 Bologna, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Márkus B, Pató Z, Sarang Z, Albert R, Tőzsér J, Petrovski G, Csősz É. The proteomic profile of a mouse model of proliferative vitreoretinopathy. FEBS Open Bio 2017; 7:1166-1177. [PMID: 28781956 PMCID: PMC5537063 DOI: 10.1002/2211-5463.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/02/2017] [Accepted: 05/27/2017] [Indexed: 11/24/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) develops as a complication of retinal detachment surgery and represents a devastating condition leading to serious vision loss. A good animal model that permits extensive functional studies and drug testing is crucial in finding better therapeutic modalities for PVR. A previously established mouse model, using dispase injection, was analyzed from the proteomic point of view, examining global protein profile changes by 2D electrophoresis, image analysis and HPLC–tandem mass spectrometry‐based protein identification. The easy applicability of the mouse model was used to study the role of transglutaminase 2 (TG2) in PVR formation by proteomic examination of dispase‐induced TG2 knockout vitreous samples. Our data demonstrate that, despite the altered appearance of crystallin proteins, the lack of TG2 did not prevent the development of PVR.
Collapse
Affiliation(s)
- Bernadett Márkus
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsuzsanna Pató
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Réka Albert
- Department of Ophthalmology Faculty of Medicine University of Szeged Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| | - Goran Petrovski
- Department of Ophthalmology Faculty of Medicine University of Szeged Hungary.,Department of Ophthalmology Oslo University Hospital and University of Oslo Norway
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of Debrecen Hungary
| |
Collapse
|
14
|
Individualize treatment for vernal keratoconjunctivitis based on clinical features and personal preferences. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Esposito S, Fior G, Mori A, Osnaghi S, Ghiglioni D. An Update on the Therapeutic Approach to Vernal Keratoconjunctivitis. Paediatr Drugs 2016; 18:347-55. [PMID: 27461427 DOI: 10.1007/s40272-016-0185-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vernal keratoconjunctivitis (VKC) is an inflammatory disease of the ocular surface. It commonly occurs in the first decade of life, has a wide geographical distribution, and usually occurs in warm, dry areas. The pathogenesis of VKC seems to have an immune, nervous, and endocrine basis. The most common eye symptoms are itching, discharge, tearing, eye irritation, redness of the eyes, and photophobia. Although VKC generally has a good prognosis, the lack of clarity regarding the origin of the disease makes treatment a challenge for pediatricians and ophthalmologists. The purpose of this review is to discuss the pathogenesis, clinical features, and diagnostic criteria in VKC, with a focus on its therapeutic management. The selection of a therapeutic scheme from the many available options is based on clinical features and the personal preferences of both physicians and patients. Due to the lack of uniform grading of disease severity, there is no worldwide consensus on first-line and second-line therapeutic approaches. The choice of treatment for long-term moderate to severe VKC includes topical cyclosporine or tacrolimus. Further data are needed to define the minimal effective concentration and the safety of these drugs in eye drops and to clarify the diagnosis of VKC in patients who require these drugs. Finally, while promising newly discovered drugs are expected to enter into clinical practice, further studies on their efficacy and safety are required.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy.
| | - Giulia Fior
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Alessandro Mori
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Silvia Osnaghi
- Oculistic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Ghiglioni
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| |
Collapse
|
16
|
Vávrová K. Emerging small-molecule compounds for treatment of atopic dermatitis: a review. Expert Opin Ther Pat 2015; 26:21-34. [DOI: 10.1517/13543776.2016.1101451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Kim S, Kim JH, Lee JS, Park CB. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3623-40. [PMID: 25929870 DOI: 10.1002/smll.201500169] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/28/2015] [Indexed: 05/19/2023]
Abstract
Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jae Hong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Joon Seok Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
18
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
19
|
Gimenes AD, Andrade TRM, Mello CB, Ramos L, Gil CD, Oliani SM. Beneficial effect of annexin A1 in a model of experimental allergic conjunctivitis. Exp Eye Res 2015; 134:24-32. [PMID: 25795053 DOI: 10.1016/j.exer.2015.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023]
Abstract
Annexin A1 (ANXA1), a 37 kDa glucocorticoid-regulated protein, is a potent anti-inflammatory mediator effective in terminating acute inflammatory response, and its role in allergic settings has been poorly studied. The aim of this investigation was to evaluate the mechanism of action of ANXA1 in intraocular inflammation using a classical model of ovalbumin (OVA)-induced allergic conjunctivitis (AC). OVA-immunised Balb/c mice, wild-type (WT) and ANXA1-deficient (AnxA1(-/-)), were challenged with eye drops containing OVA on days 14-16 with a subset of WT animals pretreated intraperitoneally with the peptide Ac2-26 (N-terminal region of ANXA1) or dexamethasone (DEX). After 24 h of the last ocular challenge, WT mice treated with Ac2-26 and DEX had significantly reduced clinical signs of conjunctivitis (chemosis, conjunctival hyperaemia, lid oedema and tearing), plasma IgE levels, leukocyte (eosinophil and neutrophil) influx and mast cell degranulation in the conjunctiva compared to WT controls. These anti-inflammatory effects of DEX were associated with high endogenous levels of ANXA1 in the ocular tissues as detected by immunohistochemistry. Additionally, Ac2-26 administration was effective to reduce IL-2, IL-4, IL-10, IL-13, eotaxin and RANTES in the eye and lymph nodes compared to untreated WT animals. The lack of ANXA1 produced an exacerbated allergic response as detected by the density of the inflammatory cell influx to the conjunctiva and the cytokine/chemokine release. These different effects observed for Ac2-26 were correlated with diminished level of activated ERK at 24 h in the ocular tissues compared to untreated OVA group. Our findings demonstrate the protective effect of ANXA1 during the inflammatory allergic response suggesting this protein as a potential target for new ocular inflammation therapies.
Collapse
Affiliation(s)
- Alexandre D Gimenes
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Teresa Raquel M Andrade
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Cláudia B Mello
- UNESP - Universidade Estadual Paulista, Laboratório de Imunomorfologia, Departamento de Biologia, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Lisandra Ramos
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil
| | - Sonia M Oliani
- UNIFESP - Universidade Federal de São Paulo, Laboratório de Histologia, Departamento de Morfologia e Genética, 04023-900 São Paulo, São Paulo, Brazil; UNESP - Universidade Estadual Paulista, Laboratório de Imunomorfologia, Departamento de Biologia, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Eom S, Kim Y, Kim M, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. Transglutaminase II/microRNA-218/-181a loop regulates positive feedback relationship between allergic inflammation and tumor metastasis. J Biol Chem 2014; 289:29483-505. [PMID: 25202021 DOI: 10.1074/jbc.m114.603480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of transglutaminase II (TGaseII)-mediated allergic inflammation remains largely unknown. TGaseII, induced by antigen stimulation, showed an interaction and co-localization with FcϵRI. TGaseII was necessary for in vivo allergic inflammation, such as triphasic cutaneous reaction, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. TGaseII was necessary for the enhanced metastatic potential of B16F1 melanoma cells by passive systemic anaphylaxis. TGaseII was shown to be a secreted protein. Recombinant TGaseII protein increased the histamine release and β-hexosaminidase activity, and enhanced the metastatic potential of B16F1 mouse melanoma cells. Recombinant TGaseII protein induced the activation of EGF receptor and an interaction between EGF receptor and FcϵRI. Recombinant TGaseII protein displayed angiogenic potential accompanied by allergic inflammation. R2 peptide, an inhibitor of TGaseII, exerted negative effects on in vitro and in vivo allergic inflammation by regulating the expression of TGaseII and FcϵRI signaling. MicroRNA (miR)-218 and miR-181a, decreased during allergic inflammation, were predicted as negative regulators of TGaseII by microRNA array and TargetScan analysis. miR-218 and miR-181a formed a negative feedback loop with TGaseII and regulated the in vitro and in vivo allergic inflammation. TGaseII was necessary for the interaction between mast cells and macrophages during allergic inflammation. Mast cells and macrophages, activated during allergic inflammation, were responsible for the enhanced metastatic potential of tumor cells that are accompanied by allergic inflammation. In conclusion, the TGaseII/miR-218/-181a feedback loop can be employed for the development of anti-allergy therapeutics.
Collapse
Affiliation(s)
| | | | - Misun Kim
- From the Departments of Biochemistry and
| | | | - Hansoo Lee
- Biological Sciences, College of Natural Sciences, and
| | - Yun Sil Lee
- the College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 200-701, Korea, and
| | | |
Collapse
|
21
|
Bury MI, Fuller NJ, Meisner JW, Hofer MD, Webber MJ, Chow LW, Prasad S, Thaker H, Yue X, Menon VS, Diaz EC, Stupp SI, Cheng EY, Sharma AK. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials 2014; 35:9311-21. [PMID: 25145852 DOI: 10.1016/j.biomaterials.2014.07.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/25/2014] [Indexed: 01/06/2023]
Abstract
Current attempts at tissue regeneration utilizing synthetic and decellularized biologic-based materials have typically been met in part by innate immune responses in the form of a robust inflammatory reaction at the site of implantation or grafting. This can ultimately lead to tissue fibrosis with direct negative impact on tissue growth, development, and function. In order to temper the innate inflammatory response, anti-inflammatory signals were incorporated through display on self-assembling peptide nanofibers to promote tissue healing and subsequent graft compliance throughout the regenerative process. Utilizing an established urinary bladder augmentation model, the highly pro-inflammatory biologic scaffold (decellularized small intestinal submucosa) was treated with anti-inflammatory peptide amphiphiles (AIF-PAs) or control peptide amphiphiles and used for augmentation. Significant regenerative advantages of the AIF-PAs were observed including potent angiogenic responses, limited tissue collagen accumulation, and the modulation of macrophage and neutrophil responses in regenerated bladder tissue. Upon further characterization, a reduction in the levels of M2 macrophages was observed, but not in M1 macrophages in control groups, while treatment groups exhibited decreased levels of M1 macrophages and stabilized levels of M2 macrophages. Pro-inflammatory cytokine production was decreased while anti-inflammatory cytokines were up-regulated in treatment groups. This resulted in far fewer incidences of tissue granuloma and bladder stone formation. Finally, functional urinary bladder testing revealed greater bladder compliance and similar capacities in groups treated with AIF-PAs. Data demonstrate that AIF-PAs can alleviate galvanic innate immune responses and provide a highly conducive regenerative milieu that may be applicable in a variety of clinical settings.
Collapse
Affiliation(s)
- Matthew I Bury
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Natalie J Fuller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | | | - Matthias D Hofer
- Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL 60611, USA
| | - Matthew J Webber
- Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA; Department of Biomedical Engineering, Evanston, IL 60208, USA
| | - Lesley W Chow
- Imperial College London, Royal School of Mines, Department of Materials and Institute for Biomedical Engineering, London, UK
| | - Sheba Prasad
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Hatim Thaker
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Xuan Yue
- Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA
| | - Vani S Menon
- Department of Urology, Loyola University Health System, Maywood, IL 60153, USA
| | - Edward C Diaz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA
| | - Samuel I Stupp
- Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA; Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208, USA; Northwestern University, Department of Chemical and Biological Engineering, Evanston, IL 60208, USA; Northwestern University Feinberg School of Medicine, Department of Medicine, Chicago, IL 60611, USA
| | - Earl Y Cheng
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA; Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL 60611, USA; Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA
| | - Arun K Sharma
- Ann & Robert H. Lurie Children's Hospital of Chicago, Division of Pediatric Urology, Chicago, IL 60614, USA; Northwestern University Feinberg School of Medicine, Department of Urology, Chicago, IL 60611, USA; Northwestern University, Institute for BioNanotechnology in Medicine (IBNAM), Chicago, IL 60611, USA; Department of Biomedical Engineering, Evanston, IL 60208, USA.
| |
Collapse
|
22
|
Serum specific IgG response to toluene diisocyanate-tissue transglutaminase conjugate in toluene diisocyanate-induced occupational asthmatics. Ann Allergy Asthma Immunol 2014; 113:48-54. [PMID: 24950844 DOI: 10.1016/j.anai.2014.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tissue transglutaminase (tTG) is a post-translational modifying enzyme located in airway epithelial cells. A potential contribution of serum specific IgG (sIgG) to tTG in airway inflammation of toluene diisocyanate (TDI)-induced occupational asthma (OA) has been suggested. OBJECTIVE To prepare a TDI-tTG conjugate and detect serum specific antibodies in sera of patients with TDI-OA to understand this mechanism. METHODS Ninety-nine patients with TDI-OA, 76 asymptomatic exposed controls, 208 patients with non-OA, and 74 unexposed controls were enrolled for this study. The TDI-tTG conjugate was prepared and confirmed by a native gel. Serum sIgG and/or sIgE antibodies to tTG, TDI-tTG, TDI conjugated to human serum albumin, cytokeratin 19, and serum cytokine levels, such as interleukin-8, transforming growth factor-β1, and tissue inhibitor of metalloproteinase-1, were measured by enzyme-linked immunosorbent assay. The level of interleukin-8 produced from airway epithelial cells (A549) treated with tTG was evaluated to investigate the inflammatory effect of tTG and TDI-tTG. RESULTS In the TDI-OA group, the prevalence of serum sIgG to TDI-tTG (17.2%) was higher than that of sIgG to tTG (11.1%), which were significantly higher than those of the 3 control groups (P < .05 for all groups). TDI-exposed subjects with high levels of serum sIgG to TDI-tTG had a high prevalence of sIgG to cytokeratin 19 and higher serum levels of transforming growth factor-β1 and tissue inhibitor of metalloproteinase-1. The tTG and TDI-tTG dose-dependently increased interleukin-8 production from A549 cells. CONCLUSION These findings suggest that TDI exposure in the workplace binds to tTG to form a conjugate that can induce serum sIgG antibody production, airway inflammation, and airway remodeling in patients with TDI-OA.
Collapse
|
23
|
Odii BO, Coussons P. Biological functionalities of transglutaminase 2 and the possibility of its compensation by other members of the transglutaminase family. ScientificWorldJournal 2014; 2014:714561. [PMID: 24778599 PMCID: PMC3981525 DOI: 10.1155/2014/714561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/30/2013] [Indexed: 02/01/2023] Open
Abstract
Transglutaminase 2 (TG2) is the most widely distributed and most abundantly expressed member of the transglutaminase family of enzymes, a group of intracellular and extracellular proteins that catalyze the Ca²⁺-dependent posttranslational modification of proteins. It is a unique member of the transglutaminase family owing to its specialized biochemical, structural and functional elements, ubiquitous tissue distribution and subcellular localization, and substrate specificity. The broad substrate specificity of TG2 and its flexible interaction with numerous other gene products may account for its multiple biological functions. In addition to the classic Ca²⁺-dependent transamidation of proteins, which is a hallmark of transglutaminase enzymes, additional Ca²⁺-independent enzymatic and nonenzymatic activities of TG2 have been identified. Many such activities have been directly or indirectly implicated in diverse cellular physiological events, including cell growth and differentiation, cell adhesion and morphology, extracellular matrix stabilization, wound healing, cellular development, receptor-mediated endocytosis, apoptosis, and disease pathology. Given the wide range of activities of the transglutaminase gene family it has been suggested that, in the absence of active versions of TG2, its function could be compensated for by other members of the transglutaminase family. It is in the light of this assertion that we review, herein, TG2 activities and the possibilities and premises for compensation for its absence.
Collapse
Affiliation(s)
- Benedict Onyekachi Odii
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Peter Coussons
- Biomedical Research Group, Department of Life Sciences, Faculty of Science & Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
24
|
Min SK, Min SI, Jeong EM, Cho SY, Ha J, Kim SJ, Kim IG. Intimal hyperplasia in loop-injured carotid arteries is attenuated in transglutaminase 2-null mice. J Korean Med Sci 2014; 29:363-9. [PMID: 24616585 PMCID: PMC3945131 DOI: 10.3346/jkms.2014.29.3.363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/10/2013] [Indexed: 01/25/2023] Open
Abstract
Arterial restenosis frequently develops after open or endovascular surgery due to intimal hyperplasia. Since tissue transglutaminase (TG2) is known to involve in fibrosis, wound healing, and extracellular matrix remodeling, we examined the role of TG2 in the process of intimal hyperplasia using TG2-null mice. The neointimal formation was compared between TG2-null and wild-type (C57BL/6) mice by two different injury models; carotid ligation and carotid loop injury. In ligation model, there was no difference in intimal thickness between two groups. In loop injury model, intimal hyperplasia developed in both groups and the intimal/medial area ratio was significantly reduced in TG2-null mice (P = 0.007). TG2 was intensely stained in neointimal cells in 2 weeks. In situ activity of TG2 in the injured arteries steadily increased until 4 weeks compared to uninjured arteries. Taken together, intimal hyperplasia was significantly reduced in TG2-null mice, indicating that TG2 has an important role in the development of intimal hyperplasia. This suggests that TG2 may be a novel target to prevent the arterial restenosis after vascular surgery.
Collapse
Affiliation(s)
- Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Il Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Joon Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Lee SH, Kim N, Kim SJ, Song J, Gong YD, Kim SY. Anti-cancer effect of a quinoxaline derivative GK13 as a transglutaminase 2 inhibitor. J Cancer Res Clin Oncol 2013; 139:1279-94. [PMID: 23604466 DOI: 10.1007/s00432-013-1433-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022]
Abstract
PURPOSE Transglutaminase 2 (TGase 2), a cross-linking enzyme, plays an important role in both pro-survival and anti-apoptosis during oncogenesis. For instance, TGase 2 induces NF-κB activation through I-κBα polymerization, which leads to the increase of pro-survival factors such as BCl-2. TGase 2 also suppresses apoptosis via depletion of caspase 3 and cathepsin D. Therefore, a specific TGase 2 inhibitor may become a very useful treatment for cancer showing high levels of TGase 2 expression. METHODS By small-molecule library screening, we managed to locate a competitive TGase 2 inhibiting quinoxaline compound (GK13) from 50 other quinoxaline derivatives. The 50 compounds that were screened represent a thousand structurally diverse, potentially pharmaceutical heterocyclic compound libraries, including benzopyrans, oxadiazoles, thiadiazoles, and quinoxalines. By measuring GI50, TGI, and LC50 using SRB assay, GK13 was selected. RESULTS In vitro enzyme kinetics using guinea pig liver TGase 2 showed that IC50 value was about 16.4 E-6 M. GK13 inhibits TGase 2-mediated I-κBα polymerization in a dose-dependent manner. LC50 of GK13 showed greater efficacy as 4.3E-4 M than LC50 of doxorubicin that showed efficacy as 3.87E-3 M in NCC72 composing 11 tissue origins and 72 cancer cell lines. CONCLUSION GK13 showed a possibility that quinoxaline derivatives may be effective for anti-cancer activity via TGase 2 inhibition.
Collapse
Affiliation(s)
- Seon-Hyeong Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Hallstrand TS, Lai Y, Henderson WR, Altemeier WA, Gelb MH. Epithelial regulation of eicosanoid production in asthma. Pulm Pharmacol Ther 2013; 25:432-7. [PMID: 23323271 DOI: 10.1016/j.pupt.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alterations in the airway epithelium have been associated with the development of asthma in elite athletes and in subjects that are susceptible to exercise-induced bronchoconstriction (EIB). The syndrome of EIB refers to acute airflow obstruction that is triggered by a period of physical exertion. Asthmatics who are susceptible to EIB have increased levels of cysteinyl leukotrienes (CysLTs, i.e., LTs C₄, D₄, and E₄) in induced sputum and exhaled breath condensate, and greater shedding of epithelial cells into the airway lumen. Exercise challenge in individuals susceptible to this disorder initiates a sustained increase in CysLTs in the airways, and secreted mucin release and smooth muscle constriction, which may be mediated in part through activation of sensory nerves. We have identified a secreted phospholipase A₂ (sPLA₂) with increased levels in the airways of patients with EIB called sPLA₂ group X(sPLA₂-X).We have found that sPLA₂-X is strongly expressed in the airway epithelium in asthma. Further,we discovered that transglutaminase 2 (TGM2) is expressed at increased levels in asthma and serves asa regulator of sPLA₂-X. Finally, we demonstrated that sPLA₂-X acts on target cells such as eosinophils to initiate cellular eicosanoid synthesis. Collectively, these studies identify a novel mechanism linking the airway epithelium to the production of inflammatory eicosanoids by leukocytes.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Division of Pulmonary and Critical Care, University of Washington, Box 356522, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
27
|
Oh K, Seo MW, Lee GY, Byoun OJ, Kang HR, Cho SH, Lee DS. Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response. Respir Res 2013; 14:35. [PMID: 23496815 PMCID: PMC3602182 DOI: 10.1186/1465-9921-14-35] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/19/2013] [Indexed: 11/29/2022] Open
Abstract
Background Transglutaminase 2 (TG2) is a post-translational protein-modifying enzyme that catalyzes the transamidation reaction, producing crosslinked or polyaminated proteins. Increased TG2 expression and activity have been reported in various inflammatory conditions, such as rheumatoid arthritis, inflammation-associated pulmonary fibrosis, and autoimmune encephalitis. In particular, TG2 from epithelial cells is important during the initial inflammatory response in the lung. In this study, we evaluated the role of TG2 in the pathogenesis of allergic asthma, particularly whether TG2 affects initial activation signaling leading to Th2 differentiation against antigens. Methods We induced allergic asthma by ovalbumin sensitization and intranasal challenge in wild-type (WT) BALB/c and TG2-deficient mice. Broncheoalveolar lavage fluid cells and intracellular cytokine production were analyzed by flow cytometry. Interleukin (IL)-33 and TG2 expression in lung epithelial cells was detected by confocal microscopy. Results Airway responsiveness was attenuated in TG2-deficient mice compared to that in the WT control. In addition, recruitment of eosinophils and Th2 and Th17 differentiation decreased in TG2-deficient mice. Treatment with cysteamine, a transglutaminase inhibitor, also reduced airway hypersensitivity, inflammatory cell recruitment, and T helper cell differentiation. TG2-deficient mice showed reduced IL-33 expression following induction of allergic asthma compared to those in the WT control. Conclusions We found that pulmonary epithelial cells damaged by allergens triggered TG2-mediated IL-33 expression leading to type 2 responses by recruiting both innate and adaptive arms of the immune system.
Collapse
Affiliation(s)
- Keunhee Oh
- Department of Biomedical Sciences, Laboratory of Immunology and Cancer Biology, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Tong L, Png E, Aihua H, Yong SS, Yeo HL, Riau A, Mendoz E, Chaurasia SS, Lim CT, Yiu TW, Iismaa SE. Molecular mechanism of transglutaminase-2 in corneal epithelial migration and adhesion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1304-15. [PMID: 23466867 DOI: 10.1016/j.bbamcr.2013.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 01/15/2013] [Accepted: 02/25/2013] [Indexed: 11/26/2022]
Abstract
Migration of cells in the ocular surface underpins physiological wound healing as well as many human diseases. Transglutaminase (TG)-2 is a multifunctional cross-linking enzyme involved in the migration of skin fibroblasts and wound healing, however, its functional role in epithelial migration has not been evaluated. This study investigated the importance of TG-2 in a murine corneal wound healing model as well as the mechanistic role of TG-2 in the regulation of related biological processes such as cell adhesion and migration of cultured human corneal epithelial (HCE-T) cells. Corneal wound closure was delayed in homozygous TG-2 deleted mice compared to wild type mice. HCE-T cells that were knocked-down for TG-2 expression through stable expression of a short-hairpin (sh) RNA targeting TG-2, were delayed in closure of scratch wounds (48 compared to 12h in control cells expressing scrambled shRNA). TG-2 knockdown did not influence epithelial cell cycle progression or proliferation, rather, it led to reduced epithelial cell adhesion, spreading and velocity of migration. At the molecular level, TG-2 knockdown reduced phosphorylation of β-3 integrin at Tyr747, paxillin at Ser178, vinculin at Tyr822 and focal adhesion kinase at Tyr925 simultaneous with reduced activation of Rac and CDC42. Phosphorylation of paxillin at Ser178A has been shown to be indispensable for the migration of corneal epithelial cells (Kimura et al., 2008) [18]. TG-2 dependent β-3 integrin activation, serine-phosphorylation of paxillin, and Rac and CDC42 activation may thus play a key functional role in enhancing corneal epithelial cell adhesion and migration during wound healing.
Collapse
Affiliation(s)
- Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cho SY, Jeong EM, Lee JH, Kim HJ, Lim J, Kim CW, Shin DM, Jeon JH, Choi K, Kim IG. Doxorubicin induces the persistent activation of intracellular transglutaminase 2 that protects from cell death. Mol Cells 2012; 33:235-41. [PMID: 22382681 PMCID: PMC3887707 DOI: 10.1007/s10059-012-2201-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/01/2012] [Accepted: 01/13/2012] [Indexed: 12/18/2022] Open
Abstract
The activation of transglutaminase 2 (TG2), an enzyme that catalyzes post-translational modifications of proteins, has been implicated in apoptosis, cell adhesion and inflammatory responses. We previously reported that intracellular TG2 is activated under oxidative stress conditions, such as ultraviolet irradiation, ischemia-reperfusion, and hypoxia. In this study, we examined the effect of genotoxic stress on the intracellular activity of TG2 using doxorubicin which generates reactive oxygen species that lead to double-strand breakage of DNA. We demonstrated that doxorubicin elicits the persistent activation of TG2. Doxorubicin-induced TG2 activity was suppressed by treatment with caffeine at the early phase, N-acetylcysteine at the mid-phase, and EGTA at the late phase. However, treatment with a blocking antibody against TGFβ or toll-like receptor 2 showed no effect on TG2 activity, indicating that at least three different signaling pathways may be involved in the process of TG2 activation. In addition, using MEF cells defective for TG2 and cells overexpressing an activesite mutant of TG2, we revealed that doxorubicin-induced cell death is inversely correlated with TG2 activity. Our findings indicate that the persistent activation of TG2 by doxorubicin contributes to cell survival, suggesting that the mechanism-based inhibition of TG2 may be a novel strategy to prevent drug-resistance in doxorubicin treatment.
Collapse
Affiliation(s)
- Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jisun Lim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Chai-Wan Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | | | | | | | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
30
|
Transglutaminase 2: biology, relevance to neurodegenerative diseases and therapeutic implications. Pharmacol Ther 2011; 133:392-410. [PMID: 22212614 DOI: 10.1016/j.pharmthera.2011.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders are characterized by progressive neuronal loss and the aggregation of disease-specific pathogenic proteins in hallmark neuropathologic lesions. Many of these proteins, including amyloid Αβ, tau, α-synuclein and huntingtin, are cross-linked by the enzymatic activity of transglutaminase 2 (TG2). Additionally, the expression and activity of TG2 is increased in affected brain regions in these disorders. These observations along with experimental evidence in cellular and mouse models suggest that TG2 can contribute to the abnormal aggregation of disease causing proteins and consequently to neuronal damage. This accumulating evidence has provided the impetus to develop inhibitors of TG2 as possible neuroprotective agents. However, TG2 has other enzymatic activities in addition to its cross-linking function and can modulate multiple cellular processes including apoptosis, autophagy, energy production, synaptic function, signal transduction and transcription regulation. These diverse properties must be taken into consideration in designing TG2 inhibitors. In this review, we discuss the biochemistry of TG2, its various physiologic functions and our current understanding about its role in degenerative diseases of the brain. We also describe the different approaches to designing TG2 inhibitors that could be developed as potential disease-modifying therapies.
Collapse
|
31
|
Yoo JW, Hong SW, Bose S, Kim HJ, Kim SY, Kim SY, Lee DK. The Role of Transglutaminase in Double-stranded DNA-Triggered Antiviral Innate Immune Response. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Ventura E, Balza E, Borsi L, Tutolo G, Carnemolla B, Castellani P, Zardi L. Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report. BMC Biotechnol 2011; 11:104. [PMID: 22074550 PMCID: PMC3226451 DOI: 10.1186/1472-6750-11-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022] Open
Abstract
Background Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects. Results Using uteroglobin (UG), a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII) and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN), which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA) mouse model. Conclusions The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Therapeutic Recombinant Proteins, Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 1016132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim SY. Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:161-95. [PMID: 22220474 DOI: 10.1002/9781118105771.ch4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Kyonggi-do, Republic of Korea
| |
Collapse
|
34
|
Bergamini CM, Collighan RJ, Wang Z, Griffin M. Structure and regulation of type 2 transglutaminase in relation to its physiological functions and pathological roles. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:1-46. [PMID: 22220471 DOI: 10.1002/9781118105771.ch1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carlo M Bergamini
- Deparment of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | | | | | | |
Collapse
|
35
|
Szondy Z, Korponay-Szabó I, Király R, Fésüs L. Transglutaminase 2 Dysfunctions in the Development of Autoimmune Disorders: Celiac Disease and TG2 −/−Mouse. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:295-345. [DOI: 10.1002/9781118105771.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Simulated environmental criticalities affect transglutaminase of Malus and Corylus pollens having different allergenic potential. Amino Acids 2011; 42:1007-24. [PMID: 21847612 DOI: 10.1007/s00726-011-1043-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/26/2011] [Indexed: 10/17/2022]
Abstract
Increases in temperature and air pollution influence pollen allergenicity, which is responsible for the dramatic raise in respiratory allergies. To clarify possible underlying mechanisms, an anemophilous pollen (hazel, Corylus avellana), known to be allergenic, and an entomophilous one (apple, Malus domestica), the allergenicity of which was not known, were analysed. The presence also in apple pollen of known fruit allergens and their immunorecognition by serum of an allergic patient were preliminary ascertained, resulting also apple pollen potentially allergenic. Pollens were subjected to simulated stressful conditions, provided by changes in temperature, humidity, and copper and acid rain pollution. In the two pollens exposed to environmental criticalities, viability and germination were negatively affected and different transglutaminase (TGase) gel bands were differently immunodetected with the polyclonal antibody AtPng1p. The enzyme activity increased under stressful treatments and, along with its products, was found to be released outside the pollen with externalisation of TGase being predominant in C. avellana, whose grain presents a different cell wall composition with respect to that of M. domestica. A recombinant plant TGase (AtPng1p) stimulated the secreted phospholipase A(2) (sPLA(2)) activity, that in vivo is present in human mucosa and is involved in inflammation. Similarly, stressed pollen, hazel pollen being the most efficient, stimulated to very different extent sPLA(2) activity and putrescine conjugation to sPLA(2). We propose that externalised pollen TGase could be one of the mediators of pollen allergenicity, especially under environmental stress induced by climate changes.
Collapse
|
37
|
Cervellati C, Montin K, Squerzanti M, Mischiati C, Ferrari C, Spinozzi F, Mariani P, Amenitsch H, Bergamini CM, Lanzara V. Effects of the regulatory ligands calcium and GTP on the thermal stability of tissue transglutaminase. Amino Acids 2011; 42:2233-42. [PMID: 21706296 DOI: 10.1007/s00726-011-0963-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
Tissue transglutaminase undergoes thermal inactivation with first-order kinetics at moderate temperatures, in a process which is affected in opposite way by the regulatory ligands calcium and GTP, which stabilize different conformations. We have explored the processes of inactivation and of unfolding of transglutaminase and the effects of ligands thereon, combining approaches of differential scanning calorimetry (DSC) and of thermal analysis coupled to fluorescence spectroscopy and small angle scattering. At low temperature (38-45°C), calcium promotes and GTP protects from inactivation, which occurs without detectable disruption of the protein structure but only local perturbations at the active site. Only at higher temperatures (52-56°C), the protein structure undergoes major rearrangements with alterations in the interactions between the N- and C-terminal domain pairs. Experiments by DSC and fluorescence spectroscopy clearly indicate reinforced and weakened interactions of the domains in the presence of GTP and of calcium, and different patterns of unfolding. Small angle scattering experiments confirm different pathways of unfolding, with attainment of limiting values of gyration radius of 52, 60 and 90 Å in the absence of ligands and in the presence of GTP and calcium. Data by X-rays scattering indicate that ligands influence retention of a relatively compact structure in the protein even after denaturation at 70°C. These results suggest that the complex regulation of the enzyme by ligands involves both short- and long-range effects which might be relevant for understanding the turnover of the protein in vivo.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barathi VA, Weon SR, Tan QSW, Lin KJ, Tong L, Beuerman RW. Transglutaminases (TGs) in ocular and periocular tissues: effect of muscarinic agents on TGs in scleral fibroblasts. PLoS One 2011; 6:e18326. [PMID: 21494676 PMCID: PMC3071819 DOI: 10.1371/journal.pone.0018326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 03/01/2011] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the expression of transglutaminases (TGs) in the ocular surface, the eyelid margin and associated glands and to determine effect of muscarinic agents on TGs in scleral fibroblasts (SF). Materials and Methods Primary SFs cultured from mouse and human sclera were treated with atropine and carbachol for 5 days. Lysed cell RNA was used for real-time PCR, protein was used for Western blot analysis and TG-2 transamidase activity was measured by ELISA. Immunohistochemistry was done to determine the expression of TGases. Results Immunohistochemistry and western blot confirmed the expression of TGs-1, 2, 3 and 5 proteins in cultured SFs and eye tissues. Real time PCR showed TG-1, 2, 5 transcript levels to be down regulated 3 fold (p<0.05) in cultured human and mouse SFs after incubation with atropine and this was reversed by carbachol. However, TG-3 expression was increased with atropine and decreased with carbachol at all concentrations. Atropine abrogated the carbachol-induced activation of SF in a dose-dependent manner. TGs-1, 3, 5 were localized in the entire mouse corneal epithelium, stroma and endothelium but TG-2 was present only in the corneal subepithelium and stroma. All TGs were localized in mouse Meibomian glands however TG-2 had a weak expression. Conclusions Our results confirm that TGs-1, 2, 3 and 5 are expressed in human SF and murine ocular tissues, eyelid and associated Meibomian glands. Real-time PCR and Western blot results showed that muscarinic antagonist down-regulates TGs-1, 2 and 5 in both cultured human and mouse SFs and upregulates TG-3. Atropine abrogated the carbachol-induced activation of SF in a dose-dependent manner. These results suggest that manipulation of TGs by way of muscarinic receptor acting drugs may be a plausible method of intervention in wound healing and scleral remodeling.
Collapse
Affiliation(s)
- V A Barathi
- Ocular Disease Model Research Group, Singapore Eye Research Institute, Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
39
|
Kim DY, Park BS, Hong GU, Lee BJ, Park JW, Kim SY, Ro JY. Anti-inflammatory effects of the R2 peptide, an inhibitor of transglutaminase 2, in a mouse model of allergic asthma, induced by ovalbumin. Br J Pharmacol 2011; 162:210-25. [PMID: 20840469 DOI: 10.1111/j.1476-5381.2010.01033.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Transglutaminase 2 (TGase 2) expression is increased in inflammatory diseases, and TGase 2 inhibitors block these increases. We examined whether the R2 peptide inhibited the expression of TGase 2 in a mouse model of inflammatory allergic asthma. EXPERIMENTAL APPROACH C57BL/6 mice were sensitized and challenged by ovalbumin (OVA) to induce asthma. OVA-specific serum IgE and leukotrienes (LTs) levels were measured by enzyme-linked immunosorbent assay. Recruitment of inflammatory cells into bronchoalveolar lavage (BAL) fluid or lung tissues and goblet cell hyperplasia were assessed histologically. Airway hyperresponsiveness was determined in a barometric plethysmographic chamber. Expression of TGase 2, eosinophil major basic protein (EMBP), the adhesion molecule vascular cell adhesion molecule-1, Muc5ac and phospholipase A(2) (PLA(2) ) protein were determined by Western blot. Expression of mRNAs of Muc5ac, cytokines, matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) were measured by reverse transcriptase-polymerase chain reaction and nuclear factor-κB (NF-κB) by electrophoretic mobility shift assay. KEY RESULTS R2 peptide reduced OVA-specific IgE levels; the number of total inflammatory cells, macrophages, neutrophils, lymphocytes and eosinophils in BAL fluid and the number of goblet cells. Airway hyperresponsiveness, TGase 2 and EMBP levels, mRNA levels of interleukin (IL)-4, IL-5, IL-6, IL-8, IL-13, RANTES, tumour necrosis factor-α, and MMP2/9, Muc5ac, NF-κB activity, PLA(2) activity and expressions, and LT levels in BAL cells and lung tissues were all reduced by R2 peptide. R2 peptide also restored expression of TIMP1/2. CONCLUSION AND IMPLICATIONS R2 peptide reduced allergic responses by regulating NF-κB/TGase 2 activity in a mouse model of allergic asthma. This peptide may be useful in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Dae Yong Kim
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Beneficial effects of treatment with transglutaminase inhibitor cystamine on the severity of inflammation in a rat model of inflammatory bowel disease. J Transl Med 2011; 91:452-61. [PMID: 21042292 DOI: 10.1038/labinvest.2010.186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a socially and clinically relevant disorder, characterized by intestinal chronic inflammation. Cystamine (CysN) is a multipotent molecule with healthy effects and, moreover, it is an inhibitor of transglutaminases (TGs), including the TG type 2 (TG2), an enzyme with pleiotropic functions, involved in different pathways of inflammation and central in the pathogenesis of some human disorders as the IBD. Our aim was to evaluate the effect of CysN in an IBD rat model. A total of 30 rats were divided into 4 groups: controls without treatment (CTR; n=7); receiving the 2,4,6-trinitrobenzene sulfonic acid enema (TNBS group; n=8); treated with TNBS enema plus oral CysN (TNBS-CysN group; n=8); treated with CysN (CysN group; n=7). After killing, bowel inflammation was evaluated applying specific scores. TG activity, TG2 and isopeptide bond immunohistochemical expression, and tumor necrosis factor-α (TNF-α) were evaluated in the colonic tissue, such as interleukin-6 (IL-6) serological levels (ELISA). TG2 was also evaluated on the luminal side of the colon by immunoautoradiography. Colonic samples from IBD patients were compared with animal results. TNBS-CysN group developed a less severe colitis compared with the TNBS group (macroscopic score 0.43±0.78 vs 3.28±0.95, microscopic score 6.62±12.01 vs 19.25±6.04, P<0.05, respectively) associated with a decrease of TG activity, TG2 and isopeptide bond immunohistochemical expression, TNF-α and IL-6 levels. No statistically significant differences were found between CysN and CTR groups. The colonic immunolocalization of TG2 was comparable in humans affected by IBD and TNBS-administered animals. This is the first demonstration that treatment with a CysN has an anti-inflammatory effect, reducing severity of colitis in a rat model. CysN could be tested as a possible treatment or co-treatment in IBD therapeutic trials.
Collapse
|
41
|
Chabot N, Moreau S, Mulani A, Moreau P, Keillor JW. Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening. ACTA ACUST UNITED AC 2011; 17:1143-50. [PMID: 21035737 DOI: 10.1016/j.chembiol.2010.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 10/18/2022]
Abstract
Tissue transglutaminase (TG2) catalyzes the crosslinking of proteins. TG2 has been implicated in fibrosis and vascular calcification, both of which lead to a common feature of aging known as arterial stiffness. In order to probe the role of TG2 in arterial rigidification, we have prepared a fluorescent irreversible inhibitor as a probe for TG2 activity (RhodB-PGG-K(Acr)-LPF-OH). This probe was synthesized on solid support, characterized kinetically (k(inact) = 0.68 min⁻¹, K(I) = 79 μM), and then used to stain the aorta from rats used as a model of isolated systolic hypertension (ISH). Interestingly, TG2 activity was thus shown to increase over 4 weeks of the hypertension model, corresponding with the previously observed increase in arterial stiffness. These results clearly suggest an association between TG2 and the phenomenon of arterial rigidification.
Collapse
Affiliation(s)
- Nicolas Chabot
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C3J7, Canada
| | | | | | | | | |
Collapse
|
42
|
Caccamo D, Currò M, Ientile R. Potential of transglutaminase 2 as a therapeutic target. Expert Opin Ther Targets 2010; 14:989-1003. [PMID: 20670177 DOI: 10.1517/14728222.2010.510134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE OF THE FIELD Increased expression and activity of transglutaminase 2 - a calcium-dependent enzyme which catalyzes protein cross-linking, polyamination or deamidation at selective glutamine residues - are involved in the etiopathogenesis of several pathological conditions, such as neurodegenerative disorders, autoimmune diseases and inflammatory diseases. Inhibition of enzyme activity has potential for therapeutic management of these diseases. AREAS COVERED IN THIS REVIEW The major results achieved in the last twelve years of research in the field of inhibition of tranglutaminase activity using cell cultures as well as in vivo models of high-social-impact or widespread diseases, such as CNS neurodegenerative disorders, celiac sprue, cancer and fibrotic diseases. WHAT THE READER WILL GAIN Beneficial effects of enzyme activity inhibition have been observed in neurodegeneration and fibrosis in vivo models by delivery of the competitive inhibitor cystamine and more recently designed inhibitors, such as thiomidaziolium or norleucine derivatives, which irreversibly bind the active site cysteine residue. Transglutaminase 2 targeting with specific antibodies has also been shown to be a promising tool for celiac disease treatment. TAKE HOME MESSAGE New insights from transglutaminase inhibition studies dealing with side effects of in vivo administration of pan-transglutaminase inhibitors will help in design of novel therapeutic approaches to various diseases.
Collapse
Affiliation(s)
- Daniela Caccamo
- University of Messina, Policlinico Universitario, Department of Biochemical, Physiological and Nutritional Sciences, Italy
| | | | | |
Collapse
|
43
|
Activation of transglutaminase type 2 for aortic wall protection in a rat abdominal aortic aneurysm formation. J Vasc Surg 2010; 52:967-74. [DOI: 10.1016/j.jvs.2010.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/21/2022]
|
44
|
Sohn J, Chae JB, Lee SY, Kim SY, Kim JG. A novel therapeutic target in inflammatory uveitis: transglutaminase 2 inhibitor. KOREAN JOURNAL OF OPHTHALMOLOGY 2010; 24:29-34. [PMID: 20157411 PMCID: PMC2817820 DOI: 10.3341/kjo.2010.24.1.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/06/2010] [Indexed: 11/25/2022] Open
Abstract
Purpose Our goal was to investigate the effects of inhibition of transglutaminase 2 (TGase 2) on endotoxin-induced uveitis (EIU) Methods EIU was induced in female Lewis rats by single footpad injections of 200 µg of lipopolysaccharide (LPS). TGase 2 inhibitors were administered intraperitoneally 30 minutes before and at the time of LPS administration. Rats were sacrificed 24 hours after injection, and the effects of the TGase 2 inhibitors were evaluated by the number of intraocular inflammatory cells present on histologic sections and by measuring the TGase 2 activity and TGase products in the aqueous humor (AqH). TGase 2 substrates were also assayed in AqH from uveitis patients. Results Clinical indications of EIU, the number of cells present on histologic sections, and TGase 2 activity in AqH increased in a time-dependent manner, peaking 24 hours after LPS injection. Inflammation in EIU was significantly reversed by treatment with TGase inhibitors. A 23-kDa cross-linked TGase substrate was identified in the AqH from EIU rats and uveitis patients. MALDI-TOF analysis showed that this substrate in uveitis patients was human Ig kappa chain C region. Conclusions TGase 2 activity and its catalytic product were increased in the AqH of EIU rats. TGase 2 inhibition attenuated the degree of inflammation in EIU. Safe and stable TGase inhibitors may have great potential for the treatment of inflammatory uveitis.
Collapse
Affiliation(s)
- Joonhong Sohn
- Department of Ophthalmology, Hangil Eye Hospital, Incheon, Korea
| | | | | | | | | |
Collapse
|
45
|
Hallstrand TS, Wurfel MM, Lai Y, Ni Z, Gelb MH, Altemeier WA, Beyer RP, Aitken ML, Henderson WR. Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes. PLoS One 2010; 5:e8583. [PMID: 20052409 PMCID: PMC2797392 DOI: 10.1371/journal.pone.0008583] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/08/2009] [Indexed: 11/21/2022] Open
Abstract
Background A frequent manifestation of asthma, exercise-induced bronchoconstriction (EIB), occurs in 30–50% of asthmatics and is characterized by increased release of inflammatory eicosanoids. The objective of this study was to identify genes differentially expressed in EIB and to understand the function of these genes in the biology of asthma. Methodology/Principal Findings Genome-wide expression profiling of airway leukocytes and epithelial cells obtained by induced sputum was conducted in two groups of subjects with asthma with and without EIB (n = 7 per group), at baseline and following exercise challenge. Based on the results of the gene expression study, additional comparisons were made with a normal control group (n = 10). Localization studies were conducted on epithelial brushings and biopsies from an additional group of asthmatics with EIB (n = 3). Genes related to epithelial repair and mast cell infiltration including β-tryptase and carboxypeptidase A3 were upregulated by exercise challenge in the asthma group with EIB. A gene novel to asthma pathogenesis, transglutaminase 2 (TGM2), was the most differentially expressed at baseline between the groups. In vivo studies confirmed the increased expression of TGM2 in airway cells and airway lining fluid, and demonstrate that TGM2 is avidly expressed in the asthmatic airway epithelium. In vitro studies using recombinant human enzymes reveal that TGM2 augments the enzymatic activity of secreted phospholipase A2 (PLA2) group X (sPLA2-X), an enzyme recently implicated in asthma pathogenesis. Conclusions/Significance This study found that TGM2, a mediator that is novel to asthma pathogenesis, is overexpressed in asthmatic airways and functions to increase sPLA2-X enzymatic activity. Since PLA2 serves as the first rate-limiting step leading to eicosanoid formation, these results suggest that TGM2 may be a key initiator of the airway inflammatory cascade in asthma.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Division of Pulmonary and Critical Care, Department of Medicine, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bergamini CM, Dondi A, Lanzara V, Squerzanti M, Cervellati C, Montin K, Mischiati C, Tasco G, Collighan R, Griffin M, Casadio R. Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 2009; 39:297-304. [PMID: 20033238 DOI: 10.1007/s00726-009-0442-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/01/2009] [Indexed: 01/10/2023]
Abstract
The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K (D) approximately 1 microM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein. On line with this possibility no significant binding was observed during titration with GDP and computational studies support this view. Titration with calcium at a high cation molar excess yielded a complex binding isotherm with a number of "apparent binding sites" in large excess over those detectable by equilibrium dialysis (6 sites). This binding pattern is ascribed to occurrence of additional thermal contributions, beyond those of binding, due to the occurrence of conformational changes and to catalysis itself (with protein self-crosslinking). In contrast only one site for binding calcium with high affinity (K (D) approximately 0.15 microM) is observed with samples of enzyme inactivated by alkylation at the active site (to prevent enzyme crosslinkage and thermal effects of catalysis). These results indicate an intrinsic ability of tissue transglutaminase to bind calcium with high affinity and the necessity of careful reassessment of the enzyme regulatory pattern in relation to the concentrations of ligands in living cells, taking also in account effects of ligands on protein subcellular compartimentation.
Collapse
Affiliation(s)
- Carlo M Bergamini
- Department of Biochemistry and Molecular Biology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim Y, Eom S, Kim K, Lee YS, Choe J, Hahn JH, Lee H, Kim YM, Ha KS, Ro JY, Jeoung D. Transglutaminase II interacts with rac1, regulates production of reactive oxygen species, expression of snail, secretion of Th2 cytokines and mediates in vitro and in vivo allergic inflammation. Mol Immunol 2009; 47:1010-22. [PMID: 20004474 DOI: 10.1016/j.molimm.2009.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/13/2009] [Indexed: 12/22/2022]
Abstract
Transglutaminase II (TGase II) is a protein cross-linking enzyme with diverse biological functions. Here we report the role of TGase II in allergic inflammation. Antigen stimulation induced expression and activity of TGase II by activation of NF-kappaB in rat basophilic leukemia (RBL2H3) cells. This induction of TGase II was dependent on FcepsilonRI and EGFR. Interaction between TGase II and rac1 was induced following antigen stimulation. TGase II was responsible for the increased production of reactive oxygen species, expression of prostaglandin E2 synthase (PGE2 synthase) and was responsible for increased secretion of prostaglandin E2. ChIP assay showed that TGase II, through interaction with NF-kappaB, was responsible for the induction of histone deacetylase-3 (HDAC3) and snail by direct binding to promoter sequences. HDAC3 and snail induced by TGase II, exerted transcriptional repression on E-cadherin. Snail exerted negative effect on expression of MMP-2, and secretion of Th2 cytokines. Inhibition of matrix metalloproteinase-2 (MMP-2) inhibited secretion of Th2 cytokines. In vivo induction of TGase II was observed in Balb/c mouse model of IgE antibody-induced passive cutaneous anaphylaxis. Chemical inhibition of TGase II exerted negative effect on IgE-dependent passive cutaneous anaphylaxis. Chemical inhibition of TGase II by cystamine exerted negative effect on Balb/c mouse model of phorbol myristate acetate (PMA)-induced atopic dermatitis. These results suggest novel role of TGase II in allergic inflammation and TGase II can be developed as target for the development of allergy therapeutics.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-kappaB activity in hypoxic tumor cells. Oncogene 2009; 29:356-67. [PMID: 19838207 DOI: 10.1038/onc.2009.342] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The expression of hypoxia-inducible factor-1 (HIF-1) correlates with poor clinical outcomes and confers resistance to the apoptosis of the tumor cells that are exposed to hypoxia. Presently, the mechanism underlying this phenomenon is poorly understood. In this study we provide evidence that transglutaminase 2 (TG2), an enzyme that catalyses protein crosslinking reactions, is a transcriptional target of HIF-1 to enhance the survival of hypoxic cells. We found that hypoxia induces TG2 expression through an HIF-1 dependent pathway and concurrently activates intracellular TG2. The hypoxic cells overexpressing TG2 showed resistance to apoptosis. Conversely, the hypoxic cells treated with either TG2 inhibitor or small interfering RNA (siRNA) became sensitive to apoptosis. Activation of TG2 in response to hypoxic stress inhibited caspase-3 activity by forming crosslinked multimer, resulting in insoluble aggregates. TG2 also activates nuclear factor (NF)-kappaB pathway after hypoxic stress, and thereby induces the expression of cellular inhibitor of apoptosis 2. The anti-apoptotic role of TG2 was further confirmed in vivo using xenografts in athymic mice. Our results indicate that TG2 is an anti-apoptotic mediator of HIF-1 through modulating both apoptosis and survival pathways and may confer a selective growth advantage to tumor cells. These findings suggest that the inhibition of TG2 may offer a novel strategy for anticancer therapy.
Collapse
|
49
|
|
50
|
Elli L, Bergamini CM, Bardella MT, Schuppan D. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig Liver Dis 2009; 41:541-50. [PMID: 19195940 DOI: 10.1016/j.dld.2008.12.095] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022]
Abstract
Transglutaminases are a family of eight currently known calcium-dependent enzymes that catalyze the cross-linking or deamidation of proteins. They are involved in important biological processes such as wound healing, tissue repair, fibrogenesis, apoptosis, inflammation and cell-cycle control. Therefore, they play important roles in the pathomechanisms of autoimmune, inflammatory and degenerative diseases, many of which affect the gastrointestinal system. Transglutaminase 2 is prominent, since it is central to the pathogenesis of celiac disease, and modulates inflammation and fibrosis in inflammatory bowel and chronic liver diseases. This review highlights our present understanding of transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities.
Collapse
Affiliation(s)
- L Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via F. Sforza, Milan, Italy.
| | | | | | | |
Collapse
|