1
|
Wu Z, Zhang P, Huang W, Zhou Y, Cao Z, Wu C. Qufeng epimedium decoction alleviates rheumatoid arthritis through CYLD-antagonized NF-kB activation by deubiquitinating Sirt1. Immunobiology 2025; 230:152875. [PMID: 39908772 DOI: 10.1016/j.imbio.2025.152875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that markedly limits the patients´ day-to-day functional abilities and life quality. Currently, there is no known cure for RA. Qufeng epimedium decoction, a traditional Chinese medicine, is widely used in China to treat RA. However, its underlying mechanism remains elusive. METHODS The RA animal model was established to investigate the anti-RA effect and regulatory effect on fibroblast-like synoviocytes (FLS) pyroptosis, qRT-PCR, Western blot, flow cytometry, histology staining, and ELISA were utilized to confirm the gene and protein expressions. The interactions between Sirt1 and CYLD were validated through Co-immunoprecipitation (Co-IP) and RNA-FISH assay. RESULTS Administration with Qufeng epimedium decoction attenuated inflammatory damage, excessive proliferation, and FLSs pyroptosis in an RA rat model. Moreover, treatment of Qufeng epimedium decoction reduced the ubiquitination modification level of Sirt1 in FLSs isolated from an RA rat model. Mechanistically, CYLD, an intermediation for linking Qufeng epimedium decoction and RA, was responsible for Sirt1 deubiquitination to its protein stabilization, thereby deactivating the NF-kB /GSDMD signaling pathway. CONCLUSION Our findings indicate that Qufeng epimedium decoction suppresses FLSs pyroptosis and RA progression via CYLD-mediated Sirt1 deubiquitination and deactivation of the NF-kB /GSDMD signaling pathway. This study sheds light on the underlying mechanism of Qufeng epimedium decoction's effectiveness in RA treatment.
Collapse
Affiliation(s)
- Zhiming Wu
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China.
| | - Peng Zhang
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Wenyan Huang
- Day Surgery Center, Jiangxi Maternal and Child Health Care Hospital, Nanchang 330000, Jiangxi Province, PR China
| | - Yifen Zhou
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Zhengliu Cao
- Chinese Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Chunhong Wu
- Outpatient Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| |
Collapse
|
2
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Xu D, Luo XM, Reilly CM. HDAC6 Deletion Decreases Pristane-induced Inflammation. Immunohorizons 2024; 8:668-678. [PMID: 39259207 PMCID: PMC11447689 DOI: 10.4049/immunohorizons.2400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by excessive inflammation and production of pathogenic Abs. Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase. It has been reported that selective HDAC6 inhibition decreases inflammation in lupus mouse models. In this study, sex- and age-matched wild-type (WT) and HDAC6-/- mice on the C57BL/6 background were administered 0.5 ml of pristane or PBS i.p. at 8-12 wk of age and were euthanized 10 d later. At sacrifice, body weight and spleen weight were measured, sera were collected, and splenocytes and peritoneal cells were harvested for flow cytometry. We found pristane administration increased the spleen weight with no difference between WT and HDAC6-/- mice. Pristane administration promoted the population of CD11b+Ly6C++ inflammatory monocytes and CD11b+Ly6G+ neutrophils. Peritoneal recruitment of these inflammatory monocytes and neutrophils was significantly decreased in HDAC6-/- mice compared with the WT mice. Flow cytometry results showed that the number of CD69+ T and B cells was increased in HDAC6-/- mice. Pristane administration also induced the IFN signature genes as determined by RT-qPCR. Furthermore, IFN signature genes were not affected in HDAC6-/- mice compared with the WT mice. In vitro studies in J774A.1 cells revealed that the selective HDAC6 inhibitor (ACY-738) increased acetylation of NF-κB while increasing Stat1 phosphorylation, which resulted in inducible NO synthase production in LPS/IFN-γ-stimulated cells. Taken together, these results demonstrate that although HDAC6 inhibition may inhibit some inflammatory pathways, others remain unaffected.
Collapse
Affiliation(s)
- Dao Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Edward Via College of Osteopathic Medicine, Blacksburg, VA
| |
Collapse
|
4
|
Morales-Núñez JJ, Muñoz-Valle JF, García-Chagollán M, Cerpa-Cruz S, Martínez-Bonilla GE, Medina-Rosales VM, Díaz-Pérez SA, Nicoletti F, Hernández-Bello J. Aberrant B-cell activation and B-cell subpopulations in rheumatoid arthritis: analysis by clinical activity, autoantibody seropositivity, and treatment. Clin Exp Immunol 2023; 214:314-327. [PMID: 37464892 PMCID: PMC10719220 DOI: 10.1093/cei/uxad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Few studies analyze the role of B-cell subpopulations in rheumatoid arthritis (RA) pathophysiology. Therefore, this study aimed to analyze the differences in B-cell subpopulations and B-cell activation according to disease activity, RA subtype, and absence of disease-modifying antirheumatic drugs (DMARDs) therapy. These subgroups were compared with control subjects (CS). One hundred and thirty-nine subjects were included, of which 114 were RA patients, and 25 were controls. Patients were divided into 99 with seropositive RA, 6 with seronegative RA, and 9 without DMARDs. The patients with seropositive RA were subclassified based on the DAS28 index. A seven-color multicolor flow cytometry panel was used to identify B-cell immunophenotypes and cell activation markers. There were no changes in total B-cell frequencies between RA patients and controls. However, a lower frequency of memory B cells and pre-plasmablasts was observed in seropositive RA compared to controls (P < 0.0001; P = 0.0043, respectively). In contrast, a higher frequency of mature B cells was observed in RA than in controls (P = 0.0002). Among patients with RA, those with moderate activity had a higher percentage of B cells (P = 0.0021). The CD69+ marker was increased (P < 0.0001) in RA compared to controls, while the CD40+ frequency was decreased in patients (P < 0.0001). Transitional, naïve, and double-negative B-cell subpopulations were higher in seronegative RA than in seropositive (P < 0.01). In conclusion, in seropositive and seronegative RA patients, there are alterations in B-cell activation and B-cell subpopulations, independently of clinical activity and DMARDs therapy.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Mariel García-Chagollán
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Sergio Cerpa-Cruz
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Reumatología, Jalisco, Mexico
| | | | - Vianey Monserrat Medina-Rosales
- Centro Universitario de Ciencias de la Salud, Licenciatura en Médico, Cirujano y Partero, Universidad de Guadalajara, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jorge Hernández-Bello
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
5
|
Belal A, Zaky MY, Mohamed DS, Mohamed EE, Mahmoud R, Essam D, Atta RR, Abo El-Ela FI, Mohamed Halfaya F, Lee KT, Hassan AHE, Ghoneim MM, Farghali A. A study on the therapeutic potential of graphene titanate nanocomposite for treating chemically induced arthritis in rats. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:590-603. [PMID: 37902268 DOI: 10.1080/21691401.2023.2268653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Nanotechnology holds substantial promise in the innovative therapies for rheumatoid arthritis (RA). The current study was designed to synthesize and characterize a new graphene titanate nanocomposite (GTNc) and explore its anti-arthritic, anti-inflammatory, and antioxidant potencies against Complete Freund's adjuvant (CFA)-induced arthritis in rats, as well as investigate the underlying molecular mechanisms. Our characterization methods included XRD, FT-IR, SEM, EDX, zeta potential, practical size, and XRF to characterize the novel GTNc. Our findings revealed that arthritic rats treated with GTNc exhibited lower levels of RF, CRP, IL-1β, TNF-α, IL-17, and ADAMTS-5, and higher levels of IL-4 and TIMP-3. In arthritic rats, GTNc reduced LPO levels while increasing GSH content and GST antioxidant activity. Additionally, GTNc decreased the expression of the TGF-β mRNA gene in arthritic rats. Histopathological investigation showed that GTNc reduced inflammatory cell infiltration, cartilage degradation, and bone destruction in joint injuries caused by CFA in the arthritic rats. Collectively, the anti-arthritic, anti-inflammatory, and antioxidant properties of GTNc appear promising for future arthritis treatments and bone disability research.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Doaa S Mohamed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman E Mohamed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa Essam
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - R R Atta
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-SuefUniversity, Beni-Suef, Egypt
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| |
Collapse
|
6
|
Lin Y, Sakuraba S, Massilamany C, Reddy J, Tanaka Y, Miyake S, Yamamura T. Harnessing autoimmunity with dominant self-peptide: Modulating the sustainability of tissue-preferential antigen-specific Tregs by governing the binding stability via peptide flanking residues. J Autoimmun 2023; 140:103094. [PMID: 37716077 DOI: 10.1016/j.jaut.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/18/2023]
Abstract
Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.
| | - Shun Sakuraba
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Chiba, 263-0024, Japan.
| | | | - Jayagopala Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
7
|
Roy-Vallejo E, Fernández De Córdoba-Oñate S, Delgado-Wicke P, Triguero-Martínez A, Montes N, Carracedo-Rodríguez R, Zurita-Cruz N, Marcos-Jiménez A, Lamana A, Galván-Román JM, Villapalos García G, Zubiaur P, Ciudad M, Rabes L, Sanz M, Rodríguez C, Villa A, Rodríguez JÁ, Marcos C, Hernando J, Díaz-Fernández P, Abad F, de los Santos I, Rodríguez Serrano DA, García-Vicuña R, Suárez Fernández C, P. Gomariz R, Muñoz-Calleja C, Fernández-Ruiz E, González-Álvaro I, Cardeñoso L, the PREDINMUN-COVID Group. Occurrence of SARS-CoV-2 viremia is associated with genetic variants of genes related to COVID-19 pathogenesis. Front Med (Lausanne) 2023; 10:1215246. [PMID: 37809329 PMCID: PMC10557488 DOI: 10.3389/fmed.2023.1215246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction SARS-CoV-2 viral load has been related to COVID-19 severity. The main aim of this study was to evaluate the relationship between SARS-CoV-2 viremia and SNPs in genes previously studied by our group as predictors of COVID-19 severity. Materials and methods Retrospective observational study including 340 patients hospitalized for COVID-19 in the University Hospital La Princesa between March 2020 and December 2021, with at least one viremia determination. Positive viremia was considered when viral load was above the quantifiable threshold (20 copies/ml). A total of 38 SNPs were genotyped. To study their association with viremia a multivariate logistic regression was performed. Results The mean age of the studied population was 64.5 years (SD 16.6), 60.9% patients were male and 79.4% white non-Hispanic. Only 126 patients (37.1%) had at least one positive viremia. After adjustment by confounders, the presence of the minor alleles of rs2071746 (HMOX1; T/T genotype OR 9.9 p < 0.0001), rs78958998 (probably associated with SERPING1 expression; A/T genotype OR 2.3, p = 0.04 and T/T genotype OR 12.9, p < 0.0001), and rs713400 (eQTL for TMPRSS2; C/T + T/T genotype OR 1.86, p = 0.10) were associated with higher risk of viremia, whereas the minor alleles of rs11052877 (CD69; A/G genotype OR 0.5, p = 0.04 and G/G genotype OR 0.3, p = 0.01), rs2660 (OAS1; A/G genotype OR 0.6, p = 0.08), rs896 (VIPR1; T/T genotype OR 0.4, p = 0.02) and rs33980500 (TRAF3IP2; C/T + T/T genotype OR 0.3, p = 0.01) were associated with lower risk of viremia. Conclusion Genetic variants in HMOX1 (rs2071746), SERPING1 (rs78958998), TMPRSS2 (rs713400), CD69 (rs11052877), TRAF3IP2 (rs33980500), OAS1 (rs2660) and VIPR1 (rs896) could explain heterogeneity in SARS-CoV-2 viremia in our population.
Collapse
Affiliation(s)
- Emilia Roy-Vallejo
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
| | | | | | - Ana Triguero-Martínez
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Rheumathology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Nuria Montes
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Rheumathology Department, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Nelly Zurita-Cruz
- Microbiology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Ana Marcos-Jiménez
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Immunology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - José María Galván-Román
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
| | - Gonzalo Villapalos García
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Clinical Pharmacology Department, Hospital Universitario La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pablo Zubiaur
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Clinical Pharmacology Department, Hospital Universitario La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marianela Ciudad
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Laura Rabes
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Marta Sanz
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Carlos Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Almudena Villa
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Celeste Marcos
- Pneumology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Julia Hernando
- Anesthesiology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Paula Díaz-Fernández
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Immunology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Abad
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Clinical Pharmacology Department, Hospital Universitario La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio de los Santos
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Rosario García-Vicuña
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Rheumathology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Carmen Suárez Fernández
- Internal Medicine Department, Hospital Universitario La Princesa, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Rosa P. Gomariz
- Cell Biology Department, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Immunology Department, Hospital Universitario La Princesa, Madrid, Spain
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Elena Fernández-Ruiz
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Molecular Biology Unit, Hospital Universitario La Princesa, Madrid, Spain
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Isidoro González-Álvaro
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Rheumathology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - Laura Cardeñoso
- Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Microbiology Department, Hospital Universitario La Princesa, Madrid, Spain
| | | |
Collapse
|
8
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
9
|
Chandiran K, Cauley LS. The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response. Front Immunol 2023; 14:1199671. [PMID: 37426662 PMCID: PMC10327426 DOI: 10.3389/fimmu.2023.1199671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFβ) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFβ and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.
Collapse
Affiliation(s)
- Karthik Chandiran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Linda S. Cauley
- Department of Immunology, UCONN Health, Farmington, CT, United States
| |
Collapse
|
10
|
Belal A, Mahmoud R, Mohamed EE, Farghali A, Abo El-Ela FI, Gamal A, Halfaya FM, Khaled E, Farahat AA, Hassan AHE, Ghoneim MM, Taha M, Zaky MY. A Novel Hydroxyapatite/Vitamin B 12 Nanoformula for Treatment of Bone Damage: Preparation, Characterization, and Anti-Arthritic, Anti-Inflammatory, and Antioxidant Activities in Chemically Induced Arthritic Rats. Pharmaceuticals (Basel) 2023; 16:ph16040551. [PMID: 37111308 PMCID: PMC10143295 DOI: 10.3390/ph16040551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B12 nanoformula in Complete Freund's adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential. We synthesized pure HAP NPs with 71.01% loading weight percentages of Vit B12 and 49 mg/g loading capacity. Loading of vitamin B12 on hydroxyapatite was modeled by Monte Carlo simulation. Anti-arthritic, anti-inflammatory, and antioxidant effects of the prepared nanoformula were assessed. Treated arthritic rats showed lower levels of RF and CRP, IL-1β, TNF-α, IL-17, and ADAMTS-5, but higher IL-4 and TIMP-3 levels. In addition, the prepared nanoformula increased GSH content and GST antioxidant activity while decreasing LPO levels. Furthermore, it reduced the expression of TGF-β mRNA. Histopathological examinations revealed an improvement in joint injuries through the reduction of inflammatory cell infiltration, cartilage deterioration, and bone damage caused by Complete Freund's adjuvant. These findings indicate that the anti-arthritic, antioxidant, and anti-inflammatory properties of the prepared nanoformula could be useful for the development of new anti-arthritic treatments.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman E Mohamed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Khaled
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelbasset A Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Oncology and Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
11
|
Laskewitz A, Kieffer TEC, van Benthem KL, Erwich JJHM, Faas MM, Prins JR. Differences in Immune phenotype in decidual tissue from multigravid women compared to primigravid women. Am J Reprod Immunol 2023; 89:e13658. [PMID: 36414574 DOI: 10.1111/aji.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
PROBLEM Women with a previous uncomplicated pregnancy have lower risks of immune-associated pregnancy disorders in a subsequent pregnancy. This could indicate a different maternal immune response in multigravid women compared to primigravid women. In a previous study, we showed persistent higher memory T cell proportions with higher CD69 expression after uncomplicated pregnancies. To our knowledge no studies have reported on immune cells in general, and immune memory cells and macrophages specifically in multigravid and primigravid women. METHOD OF STUDY T cells and macrophages were isolated from term decidua parietalis and decidua basalis tissue from healthy primigravid women (n = 12) and multigravid women (n = 12). Using flow cytometry, different T cell populations including memory T cells and macrophages were analyzed. To analyze whether a different immune phenotype is already present in early pregnancy, decidual tissue from uncomplicated ongoing pregnancies between 9 and 12 weeks of gestation from multigravida and primigravid women was investigated using qRT-PCR. RESULTS Nearly all T cell subsets analyzed in the decidua parietalis had significantly higher CD69+ proportions in multigravid women compared to primigravid women. A higher proportion of decidual (CD50- ) M2-like macrophages was found in the decidua parietalis in multigravid women compared to primigravid women. In first trimester decidual tissue higher FOXP3 mRNA expression was found in multigravid women compared to primigravid women. CONCLUSIONS This study shows that decidual tissue from multigravid women has a more activated and immunoregulatory phenotype compared to decidual tissue from primigravid women in early pregnancy and at term which could suggest a more balanced immune adaptation towards pregnancy after earlier uncomplicated pregnancies.
Collapse
Affiliation(s)
- Anne Laskewitz
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom E C Kieffer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Currently: Department of Obstetrics and Gynecology, OLVG, Amsterdam, The Netherlands
| | - Karlijn L van Benthem
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jaap H M Erwich
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Emmanuel Kumatia K, Ocloo A, Nguyen Tung H. Triterpenoid esters from Capparis erythrocarpos (Isert), Capparaceae, root bark ameliorates CFA-induced arthritis. Saudi Pharm J 2023; 31:698-705. [PMID: 37181135 PMCID: PMC10172625 DOI: 10.1016/j.jsps.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
The root bark of Capparis erythrocarpos (CERB) is employed to treat rheumatoid arthritis (RA) in Africa, particularly in Ghana. However, there was no isolation and characterization of the bioactive constituents responsible for the pharmacological actions of this plant. The aim of this study is to isolate, characterize and evaluate the anti-arthritic activity of the constituents of CERB. CERB was soxhleted and partitioned into various fractions. The constituents were isolated using column chromatography and characterized by 1D and 2D NMR spectroscopy. The precise carboxylic acid residues of the esters were determined using saponification, derivatization and GC-MS analysis. Anti-arthritic activity was evaluated in the CFA-induced arthritic model. Two triterpenoid esters namely, sitosterol 3-hexadecanoate or sitosterol 3-palmatate (1) and sitosterol 3-tetradecanoate or sitosterol 3-myristate (2) in addition to beta sitosterol (3) were isolated and characterized. Compounds 1 and 2 administered at 3 µmol/kg (p.o.) produced anti-inflammatory activity (P < 0.0001) of 31.02 and 39.14% respectively, in addition to arthritic score index (P < 0.0001) of 1.600 ± 0.2449 and 1.400 ± 0.2449 against CFA-induced arthritis which are equivalent to those of the standard drug, diclofenac sodium (DS), 3 µmol/kg (p.o.), (30.79% anti-inflammatory activity and 1.800 ± 0.3742 arthritic score index). The compounds produced similar anti-inflammatory effects as DS. Also, radiographical and histopathological studies showed that, the compounds and DS protected against bone destruction, inflammatory cells invasion into interstitial spaces and synovial liner hyperplasia of the joints. This is the first study to report the characterization of the constituents of C. erythrocarpos in addition to anti-arthritic activity of sitosterol 3-palmatate and sitosterol 3-myristate. These results provide the missing link between the chemistry and the pharmacological activities of C. erythrocarpos. The isolates also offer a different class of molecule which could provide alternative treatment for RA.
Collapse
|
13
|
Belal A, Mahmoud R, Taha M, Halfaya FM, Hassaballa A, Elbanna ES, Khaled E, Farghali A, Abo El-Ela FI, Mahgoub SM, Ghoneim MM, Zaky MY. Therapeutic Potential of Zeolites/Vitamin B12 Nanocomposite on Complete Freund's Adjuvant-Induced Arthritis as a Bone Disorder: In Vivo Study and Bio-Molecular Investigations. Pharmaceuticals (Basel) 2023; 16:285. [PMID: 37259429 PMCID: PMC9964923 DOI: 10.3390/ph16020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 04/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune disease. As nanotechnology has advanced, a growing number of nanodrugs have been used in the treatment of RA due to their unique physical and chemical properties. The purpose of this study was to assess the therapeutic potential of a novel zeolite/vitamin B12 nanocomposite (Nano ZT/Vit B12) formulation in complete Freund's adjuvant (CFA)-induced arthritis. The newly synthesized Nano ZT/Vit B12 was fully characterized using various techniques such as XRD, FT-IR, BET analysis, HERTEM, SEM, practical size, zeta potential, XRF, and EDX. The anti-arthritic, anti-inflammatory, and antioxidant activities as well as the immunomodulation effect of Nano ZT/Vit B12 on the CFA rat model of arthritis were examined. Histopathologic ankle joint injuries caused by CFA intrapedal injection included synovium hyperplasia, inflammatory cell infiltration, and extensive cartilage deterioration. The arthritic rats' Nano ZT/Vit B12 supplementation significantly improved these effects. Furthermore, in arthritic rats, Nano ZT/Vit B12 significantly reduced serum levels of RF and CRP, as well as the levels of IL-1β, TNF-α, IL-17, and ADAMTS-5, while increasing IL-4 and TIMP-3 levels. Nano-ZT/Vit B12 significantly declined the LPO level and increased antioxidant activities, such as GSH content and GST activity, in the arthritic rats. In arthritic rats, Nano ZT/Vit B12 also reduced TGF-β mRNA gene expression and MMP-13 protein levels. Collectively, Nano ZT/Vit B12 seems to have anti-arthritic, anti-inflammatory, and antioxidant properties, making it a promising option for RA in the future.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Hassaballa
- Nutrition and Food Science, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA
- ZeroHarm L.C., Farmington Hills, Farmington, MI 48333, USA
| | - Esraa Salah Elbanna
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Khaled
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Samar M. Mahgoub
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Oncology and Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
14
|
Shaban NS, Radi AM, Abdelgawad MA, Ghoneim MM, Al-Serwi RH, Hassan RM, Mohammed ET, Radi RA, Halfaya FM. Targeting Some Key Metalloproteinases by Nano-Naringenin and Amphora coffeaeformis as a Novel Strategy for Treatment of Osteoarthritis in Rats. Pharmaceuticals (Basel) 2023; 16:260. [PMID: 37259405 PMCID: PMC9959020 DOI: 10.3390/ph16020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2024] Open
Abstract
Osteoarthritis (OA) represents the highest degenerative disorder. Because cartilage erosion is a common pathological alteration in OA, targeting some key metalloproteinases such as MMP-3, ADAMTS-5 besides their inhibitor TIMP-3 by natural products, could be an effective strategy to protect against osteoarthritis. Forty female Wister rats were categorized into five equal groups. Control, osteoarthritic (OA) (monosodium iodoacetate (MIA) 2 mg/50 µL saline, single intra-articular injection), OA+ indomethacin (2 mg/kg/daily/orally), OA+ nano-naringenin (25 mg/kg/daily/orally), and OA+ Amphora coffeaeformis (772 mg/kg/daily/orally). Treatments were initiated on the 8th day after osteoarthritis induction and continued for 28 days thereafter. Finally, blood and knee joint samples were collected from all rats for biochemical and histopathological evaluations. The current study showed that MIA induced oxidative stress, which resulted in changes in the inflammatory joint markers associated with increased right knee diameter and higher clinical scores for lameness. Amphora coffeaeformis followed by nano-naringenin exhibited a potential anti-arthritic activity by reducing the concentrations of serum MMP-3, ADAMTS-5, and joint MDA and increasing the levels of serum TIMP-3 and joint GSH, similar to indomethacin. The histopathological results confirmed these outcomes. In conclusion, Amphora coffeaeformis and nano-naringenin can be considered as natural therapeutic agents for osteoarthritis owing to their antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nema S Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman T Mohammed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rania A Radi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma M Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
15
|
Arab HH, Abd El-Aal SA, Ashour AM, El-Sheikh AAK, Al Khabbaz HJ, Arafa ESA, Mahmoud AM, Kabel AM. Targeting inflammation and redox perturbations by lisinopril mitigates Freund's adjuvant-induced arthritis in rats: role of JAK-2/STAT-3/RANKL axis, MMPs, and VEGF. Inflammopharmacology 2022; 30:1909-1926. [PMID: 35764864 DOI: 10.1007/s10787-022-00998-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cardiovascular disorders are major complications of rheumatoid arthritis (RA). Hence, finding effective agents that can target RA progression and its cardiovascular consequences is demanding. The present work aimed to explore the potential of lisinopril, an angiotensin-converting enzyme inhibitor, to mitigate adjuvant's-induced arthritis with emphasis on the pro-inflammatory signals, articular degradation cues, and angiogenesis alongside JAK-2/STAT-3 and Nrf2/HO-1 pathways. METHODS Lisinopril (10 mg/kg/day) was administered by oral gavage for 3 weeks and the target signals were examined by biochemical assays, ELISA, histopathology, immunoblotting, and immunohistochemistry. RESULTS Lisinopril attenuated the progression of arthritis as proven by lowering paw edema, arthritic index, and gait scores alongside diminishing the immune-cell infiltration/aberrant histopathology in the dorsal pouch lining. These favorable actions were associated with curtailing the production of inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-17) and the pro-inflammatory angiotensin II alongside upregulating the anti-inflammatory angiotensin-(1-7) in the hind paw of arthritic rats. At the molecular level, lisinopril inhibited the upstream JAK-2/STAT-3 pathway by downregulating the protein expression of p-JAK-2/total JAK-2 and p-STAT-3/total STAT-3 ratio and the nuclear levels of NF-κBp65. Meanwhile, lisinopril curbed the downstream cartilage degradation signals matrix metalloproteinases (MMP-3 and MMP-9) and the bone erosion cue RANKL. Equally important, the protein expression of the angiogenesis signal VEGF was downregulated in the hind paw/dorsal lining. With respect to oxidative stress, lisinopril suppressed the paw lipid peroxides and boosted GSH and Nrf-2/HO-1 pathway. CONCLUSION Lisinopril attenuated adjuvant-induced arthritis via inhibition of inflammation, articular degradation cues, and angiogenesis.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Mecca, 21955, Saudi Arabia
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hana J Al Khabbaz
- Biochemistry Division, College of Pharmacy, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, 346, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, 346, Ajman, United Arab Emirates
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
16
|
Jiménez-Fernández M, Rodríguez-Sinovas C, Cañes L, Ballester-Servera C, Vara A, Requena S, de la Fuente H, Martínez-González J, Sánchez-Madrid F. CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes. Cell Mol Life Sci 2022; 79:468. [PMID: 35930205 PMCID: PMC9355928 DOI: 10.1007/s00018-022-04481-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The mechanisms that control the inflammatory–immune response play a key role in tissue remodelling in cardiovascular diseases. T cell activation receptor CD69 binds to oxidized low-density lipoprotein (oxLDL), inducing the expression of anti-inflammatory NR4A nuclear receptors and modulating inflammation in atherosclerosis. To understand the downstream T cell responses triggered by the CD69-oxLDL binding, we incubated CD69-expressing Jurkat T cells with oxLDL. RNA sequencing revealed a differential gene expression profile dependent on the presence of CD69 and the degree of LDL oxidation. CD69-oxLDL binding induced the expression of NR4A receptors (NR4A1 and NR4A3), but also of PD-1. These results were confirmed using oxLDL and a monoclonal antibody against CD69 in CD69-expressing Jurkat and primary CD4 + lymphocytes. CD69-mediated induction of PD-1 and NR4A3 was dependent on NFAT activation. Silencing NR4A3 slightly increased PD-1 levels, suggesting a potential regulation of PD-1 by this receptor. Moreover, expression of PD-1, CD69 and NR4A3 was increased in human arteries with chronic inflammation compared to healthy controls, with a strong correlation between PD-1 and CD69 mRNA expression (r = 0.655 P < 0.0001). Moreover, PD-1 was expressed in areas enriched in CD3 infiltrating T cells. Our results underscore a novel mechanism of PD-1 induction independent of TCR signalling that might contribute to the role of CD69 in the modulation of inflammation and vascular remodelling in cardiovascular diseases.
Collapse
Affiliation(s)
- María Jiménez-Fernández
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Rodríguez-Sinovas
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laia Cañes
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain
| | - Carme Ballester-Servera
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain
| | - Alicia Vara
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain
| | - Silvia Requena
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain
| | - Hortensia de la Fuente
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Martínez-González
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain. .,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain.
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. .,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
17
|
Effect of different cytokines in combination with IL-15 on the expression of activating receptors in NK cells of patients with Behçet's disease. Immunol Res 2022; 70:654-666. [PMID: 35661971 DOI: 10.1007/s12026-022-09298-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/23/2022] [Indexed: 12/16/2022]
Abstract
Behçet's disease (BD) is a systemic, autoinflammatory, chronic disorder which affects various parts of the body in genetically susceptible individuals. BD has a multi-factorial etiopathogenesis which encompasses both innate and adaptive arms of immunity. NK cells, which kill virus-infected or malign cells and provide interaction between adaptive and innate immune system, are also known to involve in the pathogenesis of autoimmune/autoinflammatory diseases including BD. NK cells function in immune responses via the signals obtained from surface-expressed activating and inhibitory receptors. In this study, we aimed to explore NK cell activation status by measuring the levels of activation marker CD69 and activating receptors NKG2D, NKp30, and NKp46 as well as proliferative and cytotoxic capacities in response to stimulation with interleukin (IL)-15-combined cytokines in BD patients. CD4+ and CD8+ T cell responses were also evaluated to compare with those of NK cells. As a result, the expression of activating receptors on NK cells was demonstrated to be varied among patients with active and inactive BD and healthy controls. The proliferation levels of NK cells were elevated in BD patients, especially in inactive phase of disease compared to healthy controls. Additionally, CD107a levels of inactive BD patients were detected to be lower in comparison with healthy controls and active BD patients. These findings suggest that BD patients in active and inactive phases display different activation status of NK cells which indicate NK cells might be associated with immune attacks and remissions during the course of BD.
Collapse
|
18
|
CD30-targeted therapy induces apoptosis of inflammatory cytokine-stimulated synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice. Inflamm Res 2022; 71:215-226. [DOI: 10.1007/s00011-021-01537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/20/2021] [Indexed: 11/05/2022] Open
|
19
|
Jiang Y, Li F, Li Y, Duan J, Di C, Zhu Y, Zhao J, Jia X, Qu J. CD69 mediates the protective role of adipose tissue-derived mesenchymal stem cells against Pseudomonas aeruginosa pulmonary infection. Clin Transl Med 2021; 11:e563. [PMID: 34841721 PMCID: PMC8567058 DOI: 10.1002/ctm2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Our previous study shows that Adipose tissue-derived mesenchymal stem cells (ASCs) are a promising strategy for cell-based therapy against pulmonary infection with Pseudomonas aeruginosa (P. aeruginosa), but the underlying mechanisms remain unclear. METHODS cDNA microarray assay was performed to explore the transcriptome of ASCs primed by P. aeruginosa. Small interfering RNA (siRNA) was constructed to select the receptor candidates for P. aeruginosa recognition and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in ASCs. The soluble protein chimeras containing the extracellular domain of human CD69 fused to the Fc region of human immunoglobulin IgG1 were used as a probe to validate the recognition of P. aeruginosa. The association between CD69 and extracellular regulated protein kinases 1/2 (ERK1/2) was explored via co-immunoprecipitation, siRNA, and inhibitor. The murine models of P. aeruginosa pneumonia treated with WT-ASCs, GM-CSF-/- -ASCs Cd69-/- -ASCs or Erk1-/- -ASCs were used to determine the role of GM-CSF, CD69, and ERK1 in ASCs against P. aeruginosa infection. RESULTS We showed that C-type lectin receptor CD69 mediated the protective effects of ASCs partly through GM-CSF. CD69 could specifically recognize P. aeruginosa and regulate GM-CSF secretion of ASCs. CD69 regulated the production of GM-CSF via ERK1 in ASCs after P. aeruginosa infection. Moreover, the Administration of ASCs with deficiency of CD69 or ERK1 completely blocked its protective effects in a murine model of P. aeruginosa pneumonia. CONCLUSIONS CD69 recognizes P. aeruginosa and further facilitates ERK1 activation, which plays a crucial role in ASCs-based therapy against P. aeruginosa pneumonia. CD69 may be a novel target molecule to improve ASCs-based therapy against P. aeruginosa infection.
Collapse
Affiliation(s)
- Yanshan Jiang
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yanan Li
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jielin Duan
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Caixia Di
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Yinggang Zhu
- Department of Pulmonary and Critical Care MedicineHuadong HospitalFudan UniversityShanghaiChina
| | - Jingya Zhao
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Xinming Jia
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jieming Qu
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| |
Collapse
|
20
|
London J, Dumoitier N, Lofek S, Dion J, Chaigne B, Mocek J, Thieblemont N, Cohen P, Le Jeunne C, Guillevin L, Witko-Sarsat V, Varin-Blank N, Terrier B, Mouthon L. Skewed peripheral B- and T-cell compartments in patients with ANCA-associated vasculitis. Rheumatology (Oxford) 2021; 60:2157-2168. [PMID: 33026090 DOI: 10.1093/rheumatology/keaa432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/04/2020] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES To characterize lymphocytes dysregulation in patients with granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). METHODS Using flow cytometry, we analysed B- and T-cell subsets in peripheral blood from 37 untreated patients with active disease (29 GPA and 8 MPA) and 22 healthy controls (HCs). RESULTS GPA patients had increased Th2 (1.8 vs 1.0%, P = 0.02), Th9 (1.1 vs 0.2%, P = 0.0007) and Th17 (1.4 vs 0.9%, P = 0.03) cells compared with HC. Patients with MPO-ANCAs had significantly more CD21- B cells than HC or PR3-ANCA patients (6.9 vs 3.3% and 4.4%, P = 0.01). CD69 expressing B cells were significantly higher in GPA and MPA (3.0 and 5.9 vs 1.4%, P = 0.02 and P = 0.03, respectively) compared with HC, whereas B-cell activating factor-receptor expression was decreased in GPA and MPA (median fluorescence intensity ratio 11.8 and 13.7 vs 45.1 in HC, P < 0.0001 and P = 0.003, respectively). Finally, IL-6-producing B cells were increased in GPA vs HC (25.8 vs 14.9%, P < 0.0001) and decreased in MPA vs HC (4.6 vs 14.9%, P = 0.005), whereas TNF-α-producing B cells were lower in both GPA and MPA patients compared with controls (15 and 8.4 vs 30%, P = 0.01 and P = 0.006, respectively). CONCLUSION Skewed T-cell polarization towards Th2, Th9 and Th17 responses characterizes GPA, whereas B-cell populations are dysregulated in both GPA and MPA with an activated phenotype and a decreased B-cell activating factor-receptor expression. Finally, inflammatory B cells producing IL-6 are dramatically increased in GPA, providing an additional mechanism by which rituximab could be effective.
Collapse
Affiliation(s)
- Jonathan London
- INSERM U1016/CNRS UMR 8104, Institut Cochin.,Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | - Nicolas Dumoitier
- INSERM U1016/CNRS UMR 8104, Institut Cochin.,Université Paris Descartes.,LABEX Inflamex.,Université Paris Diderot, Paris
| | | | - Jérémie Dion
- INSERM U1016/CNRS UMR 8104, Institut Cochin.,Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | - Benjamin Chaigne
- INSERM U1016/CNRS UMR 8104, Institut Cochin.,Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | | | | | - Pascal Cohen
- Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | - Claire Le Jeunne
- Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | - Loïc Guillevin
- Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | | | - Nadine Varin-Blank
- Université Paris XIII, UFR Santé Médecine Biologie Humaine, Bobigny.,INSERM U978, Bobigny, France
| | - Benjamin Terrier
- INSERM U1016/CNRS UMR 8104, Institut Cochin.,Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris
| | - Luc Mouthon
- INSERM U1016/CNRS UMR 8104, Institut Cochin.,Université Paris Descartes.,Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris.,LABEX Inflamex
| | | |
Collapse
|
21
|
Brun P, Conti J, Zatta V, Russo V, Scarpa M, Kotsafti A, Porzionato A, De Caro R, Scarpa M, Fassan M, Calistri A, Castagliuolo I. Persistent Herpes Simplex Virus Type 1 Infection of Enteric Neurons Triggers CD8 + T Cell Response and Gastrointestinal Neuromuscular Dysfunction. Front Cell Infect Microbiol 2021; 11:615350. [PMID: 34094993 PMCID: PMC8169984 DOI: 10.3389/fcimb.2021.615350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Behind the central nervous system, neurotropic viruses can reach and persist even in the enteric nervous system (ENS), the neuronal network embedded in the gut wall. We recently reported that immediately following orogastric (OG) administration, Herpes simplex virus (HSV)-1 infects murine enteric neurons and recruits mononuclear cells in the myenteric plexus. In the current work, we took those findings a step forward by investigating the persistence of HSV-1 in the ENS and the local adaptive immune responses against HSV-1 that might contribute to neuronal damage in an animal model. Our study demonstrated specific viral RNA transcripts and proteins in the longitudinal muscle layer containing the myenteric plexus (LMMP) up to 10 weeks post HSV-1 infection. CD3+CD8+INFγ+ lymphocytes skewed towards HSV-1 antigens infiltrated the myenteric ganglia starting from the 6th week of infection and persist up to 10 weeks post-OG HSV-1 inoculation. CD3+CD8+ cells isolated from the LMMP of the infected mice recognized HSV-1 antigens expressed by infected enteric neurons. In vivo, infiltrating activated lymphocytes were involved in controlling viral replication and intestinal neuromuscular dysfunction. Indeed, by depleting the CD8+ cells by administering specific monoclonal antibody we observed a partial amelioration of intestinal dysmotility in HSV-1 infected mice but increased expression of viral genes. Our findings demonstrate that HSV-1 persistently infects enteric neurons that in turn express viral antigens, leading them to recruit activated CD3+CD8+ lymphocytes. The T-cell responses toward HSV-1 antigens persistently expressed in enteric neurons can alter the integrity of the ENS predisposing to neuromuscular dysfunction.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jessica Conti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Venera Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Melania Scarpa
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Raffaele De Caro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Marco Scarpa
- General Surgery Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
22
|
Ahmed EA, Ahmed OM, Fahim HI, Mahdi EA, Ali TM, Elesawy BH, Ashour MB. Combinatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Indomethacin on Adjuvant-Induced Arthritis in Wistar Rats: Roles of IL-1 β, IL-4, Nrf-2, and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8899143. [PMID: 33488761 PMCID: PMC7803402 DOI: 10.1155/2021/8899143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a disorder triggered by autoimmune reactions and related with chronic inflammation and severe disability. Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs) have shown a hopeful immunomodulatory effect towards repairing cartilage and restoring joint function. Additionally, indomethacin (IMC), a nonsteroidal compound, has been considered as a potent therapeutic agent that exhibits significant antipyretic properties and analgesic effects. The target of the current research is to assess the antiarthritic efficacy of BM-MSCs (106 cells/rat at 1, 6, 12 and 18 days) and IMC (2 mg/kg body weight/day for 3 weeks) either alone or concurrently administered against complete Freund's adjuvant-induced arthritic rats. Changes in paw volume, body weight, gross lesions, and antioxidant defense system, as well as oxidative stress, were assessed. The Th1 cytokine (IL-1β) serum level and Th2 cytokine (IL-4) and Nrf-2 ankle joint expression were detected. In comparison to normal rats, it was found that the CFA-induced arthritic rats exhibited significant leukocytosis and increase in paw volume, LPO level, RF, and IL-1β serum levels. In parallel, arthritic rats that received BM-MSCs and/or IMC efficiently exhibited decrease in paw edema, leukocytosis, and enhancement in the antioxidant enzymatic levels of SOD, GPx, GST, and GSH in serum besides upregulation of Nrf-2 and anti-inflammatory IL-4 expression levels in the ankle articular joint. Likewise, these analyses were more evidenced by the histopathological sections and histological score. The data also revealed that the combined administration of BM-MSC and IMC was more potent in suppressing inflammation and enhancing the anti-inflammatory pathway than each agent alone. Thus, it can be concluded that the combined therapy with BM-MSC and IMC may be used as a promising therapeutic choice after assessing their efficacy and safety in human beings with RA, and the antiarthritic effects may be mediated via modulatory effects on Th1/Th2 cytokines, ozidative stress, and Nrf-2.
Collapse
Affiliation(s)
- Eman A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanaa I. Fahim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Emad A. Mahdi
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed B. Ashour
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
23
|
Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol 2020; 18:919-935. [PMID: 33235388 DOI: 10.1038/s41423-020-00586-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.
Collapse
|
24
|
Gorabi AM, Hajighasemi S, Kiaie N, Gheibi Hayat SM, Jamialahmadi T, Johnston TP, Sahebkar A. The pivotal role of CD69 in autoimmunity. J Autoimmun 2020; 111:102453. [PMID: 32291138 DOI: 10.1016/j.jaut.2020.102453] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Autoimmune disorders are outcomes of impaired activity of the immune system regarding the maintenance of tolerance, which results in tissue damage secondary to an excess in the inflammatory response. Under normal conditions, the cells in the adaptive immune system are highly controlled to remain unresponsive against self-antigens (self-Ags) through various mechanisms and during different stages of maturation. CD69 (cluster of differentiation 69), a C-type lectin disulfide-linked homodimer, is expressed on different leukocytes, including newly-activated lymphocytes, certain subtypes of memory T-cells, infiltrating lymphocytes isolated from patients with chronic inflammatory disorders, and regulatory T-cells (Tregs). Cumulative evidence from in vitro and in vivo studies has revealed an immunoregulatory role for CD69. This marker has been reported to play a controversial role in chronic human inflammatory disorders. Many investigations have linked the absence of CD69 with a predisposition to inflammatory and/or autoimmune conditions, which indicates an immunoregulatory function for CD69 by mechanisms such as controlling the balance between differentiation of Th/Treg cells and enhancing the suppressive activity of Tregs. However, some reports from human studies have indicated that CD69 may exert a stimulatory effect on the inflammatory response. In this review, we first present a brief summary of the concept of 'immune tolerance' and, subsequently, review previous studies to uncover the details that underlie the immunoregulatory effects of CD69.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Inflammation Alters the Secretome and Immunomodulatory Properties of Human Skin-Derived Precursor Cells. Cells 2020; 9:cells9040914. [PMID: 32276503 PMCID: PMC7226778 DOI: 10.3390/cells9040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Human skin-derived precursors (SKP) represent a group of somatic stem/precursor cells that reside in dermal skin throughout life that harbor clinical potential. SKP have a high self-renewal capacity, the ability to differentiate into multiple cell types and low immunogenicity, rendering them key candidates for allogeneic cell-based, off-the-shelf therapy. However, potential clinical application of allogeneic SKP requires that these cells retain their therapeutic properties under all circumstances and, in particular, in the presence of an inflammation state. Therefore, in this study, we investigated the impact of pro-inflammatory stimulation on the secretome and immunosuppressive properties of SKP. We demonstrated that pro-inflammatory stimulation of SKP significantly changes their expression and the secretion profile of chemo/cytokines and growth factors. Most importantly, we observed that pro-inflammatory stimulated SKP were still able to suppress the graft-versus-host response when cotransplanted with human PBMC in severe-combined immune deficient (SCID) mice, albeit to a much lesser extent than unstimulated SKP. Altogether, this study demonstrates that an inflammatory microenvironment has a significant impact on the immunological properties of SKP. These alterations need to be taken into account when developing allogeneic SKP-based therapies.
Collapse
|
26
|
Guo M, Bafligil C, Tapmeier T, Hubbard C, Manek S, Shang C, Martinez FO, Schmidt N, Obendorf M, Hess-Stumpp H, Zollner TM, Kennedy S, Becker CM, Zondervan KT, Cribbs AP, Oppermann U. Mass cytometry analysis reveals a distinct immune environment in peritoneal fluid in endometriosis: a characterisation study. BMC Med 2020; 18:3. [PMID: 31907005 PMCID: PMC6945609 DOI: 10.1186/s12916-019-1470-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological condition characterised by immune cell infiltration and distinct inflammatory signatures found in the peritoneal cavity. In this study, we aim to characterise the immune microenvironment in samples isolated from the peritoneal cavity in patients with endometriosis. METHODS We applied mass cytometry (CyTOF), a recently developed multiparameter single-cell technique, in order to characterise and quantify the immune cells found in peritoneal fluid and peripheral blood from endometriosis and control patients. RESULTS Our results demonstrate the presence of more than 40 different distinct immune cell types within the peritoneal cavity. This suggests that there is a complex and highly heterogeneous inflammatory microenvironment underpinning the pathology of endometriosis. Stratification by clinical disease stages reveals a dynamic spectrum of cell signatures suggesting that adaptations in the inflammatory system occur due to the severity of the disease. Notably, among the inflammatory microenvironment in peritoneal fluid (PF), the presence of CD69+ T cell subsets is increased in endometriosis when compared to control patient samples. On these CD69+ cells, the expression of markers associated with T cell function are reduced in PF samples compared to blood. Comparisons between CD69+ and CD69- populations reveal distinct phenotypes across peritoneal T cell lineages. Taken together, our results suggest that both the innate and the adaptive immune system play roles in endometriosis. CONCLUSIONS This study provides a systematic characterisation of the specific immune environment in the peritoneal cavity and identifies cell immune signatures associated with endometriosis. Overall, our results provide novel insights into the specific cell phenotypes governing inflammation in patients with endometriosis. This prospective study offers a useful resource for understanding disease pathology and opportunities for identifying therapeutic targets.
Collapse
Affiliation(s)
- Manman Guo
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Cemsel Bafligil
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Thomas Tapmeier
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Carol Hubbard
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Sanjiv Manek
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Catherine Shang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Fernando O Martinez
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nicole Schmidt
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Maik Obendorf
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Holger Hess-Stumpp
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Thomas M Zollner
- Bayer AG, Drug Discovery Pharmaceuticals, Gynecological Therapies, Müllerstr. 178, Berlin, Germany
| | - Stephen Kennedy
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Christian M Becker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Udo Oppermann
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
27
|
Yoon TW, Kim YI, Cho H, Brand DD, Rosloniec EF, Myers LK, Postlethwaite AE, Hasty KA, Stuart JM, Yi AK. Ameliorating effects of Gö6976, a pharmacological agent that inhibits protein kinase D, on collagen-induced arthritis. PLoS One 2019; 14:e0226145. [PMID: 31809526 PMCID: PMC6897462 DOI: 10.1371/journal.pone.0226145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Tae Won Yoon
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Young-In Kim
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hongsik Cho
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David D. Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Edward F. Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Linda K. Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Arnold E. Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Karen A. Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
28
|
Brait VH, Miró-Mur F, Pérez-de-Puig I, Notario L, Hurtado B, Pedragosa J, Gallizioli M, Jiménez-Altayó F, Arbaizar-Rovirosa M, Otxoa-de-Amezaga A, Monteagudo J, Ferrer-Ferrer M, de la Rosa X, Bonfill-Teixidor E, Salas-Perdomo A, Hernández-Vidal A, Garcia-de-Frutos P, Lauzurica P, Planas AM. CD69 Plays a Beneficial Role in Ischemic Stroke by Dampening Endothelial Activation. Circ Res 2019; 124:279-291. [PMID: 30582456 DOI: 10.1161/circresaha.118.313818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE CD69 is an immunomodulatory molecule induced during lymphocyte activation. Following stroke, T-lymphocytes upregulate CD69 but its function is unknown. OBJECTIVE We investigated whether CD69 was involved in brain damage following an ischemic stroke. METHODS AND RESULTS We used adult male mice on the C57BL/6 or BALB/c backgrounds, including wild-type mice and CD69-/- mice, and CD69+/+ and CD69-/- lymphocyte-deficient Rag2-/- mice, and generated chimeric mice. We induced ischemia by transient or permanent middle cerebral artery occlusion. We measured infarct volume, assessed neurological function, and studied CD69 expression, as well as platelet function, fibrin(ogen) deposition, and VWF (von Willebrand factor) expression in brain vessels and VWF content and activity in plasma, and performed the tail-vein bleeding test and the carotid artery ferric chloride-induced thrombosis model. We also performed primary glial cell cultures and sorted brain CD45-CD11b-CD31+ endothelial cells for mRNA expression studies. We blocked VWF by intravenous administration of anti-VWF antibodies. CD69-/- mice showed larger infarct volumes and worse neurological deficits than the wild-type mice after ischemia. This worsening effect was not attributable to lymphocytes or other hematopoietic cells. CD69 deficiency lowered the time to thrombosis in the carotid artery despite platelet function not being affected. Ischemia upregulated Cd69 mRNA expression in brain endothelial cells. CD69-deficiency increased fibrin(ogen) accumulation in the ischemic tissue, and plasma VWF content and activity, and VWF expression in brain vessels. Blocking VWF reduced infarct volume and reverted the detrimental effect of CD69-/- deficiency. CONCLUSIONS CD69 deficiency promotes a prothrombotic phenotype characterized by increased VWF and worse brain damage after ischemic stroke. The results suggest that CD69 acts as a downregulator of endothelial activation.
Collapse
Affiliation(s)
- Vanessa H Brait
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Francesc Miró-Mur
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Isabel Pérez-de-Puig
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Laura Notario
- Grupo de Activación Inmunológica, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.N., P.L.)
| | - Begoña Hurtado
- Department of Cell Death and Proliferation (B.H., P.G.-d.-F.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Jordi Pedragosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Mattia Gallizioli
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain (F.J.A.)
| | - Maria Arbaizar-Rovirosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Amaia Otxoa-de-Amezaga
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Juan Monteagudo
- Hemotherapy and Haemostasis Service, Hospital Clinic, Barcelona, Spain (J.M.)
| | - Maura Ferrer-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Xavier de la Rosa
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Ester Bonfill-Teixidor
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Angélica Salas-Perdomo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Alba Hernández-Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| | - Pablo Garcia-de-Frutos
- Department of Cell Death and Proliferation (B.H., P.G.-d.-F.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Pilar Lauzurica
- Grupo de Activación Inmunológica, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (L.N., P.L.)
| | - Anna M Planas
- From the Department of Brain Ischemia and Neurodegeneration (V.H.B., F.M.-M., I.P.-d.-P., J.P., M.G., M.A.-R., A.O.-d.-A., X.d.l.R., E.B.-T., A.M.P.), Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (V.H.B., F.M.-M., J.P., M.G., M.A.-R., A.O.-d.-A., M.F.-F., E.B.-T., A.S.-P., A.H.-V., A.M.P.)
| |
Collapse
|
29
|
Lower activation of CD4+ memory T cells in preeclampsia compared to healthy pregnancies persists postpartum. J Reprod Immunol 2019; 136:102613. [DOI: 10.1016/j.jri.2019.102613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
|
30
|
Tsilingiri K, de la Fuente H, Relaño M, Sánchez-Díaz R, Rodríguez C, Crespo J, Sánchez-Cabo F, Dopazo A, Alonso-Lebrero JL, Vara A, Vázquez J, Casasnovas JM, Alfonso F, Ibáñez B, Fuster V, Martínez-González J, Martín P, Sánchez-Madrid F. Oxidized Low-Density Lipoprotein Receptor in Lymphocytes Prevents Atherosclerosis and Predicts Subclinical Disease. Circulation 2019; 139:243-255. [PMID: 30586697 DOI: 10.1161/circulationaha.118.034326] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although the role of Th17 and regulatory T cells in the progression of atherosclerosis has been highlighted in recent years, their molecular mediators remain elusive. We aimed to evaluate the association between the CD69 receptor, a regulator of Th17/regulatory T cell immunity, and atherosclerosis development in animal models and in patients with subclinical disease. METHODS Low-density lipoprotein receptor-deficient chimeric mice expressing or not expressing CD69 on either myeloid or lymphoid cells were subjected to a high fat diet. In vitro functional assays with human T cells were performed to decipher the mechanism of the observed phenotypes. Expression of CD69 and NR4A nuclear receptors was evaluated by reverse transcription-polymerase chain reaction in 305 male participants of the PESA study (Progression of Early Subclinical Atherosclerosis) with extensive (n=128) or focal (n=55) subclinical atherosclerosis and without disease (n=122). RESULTS After a high fat diet, mice lacking CD69 on lymphoid cells developed large atheroma plaque along with an increased Th17/regulatory T cell ratio in blood. Oxidized low-density lipoprotein was shown to bind specifically and functionally to CD69 on human T lymphocytes, inhibiting the development of Th17 cells through the activation of NR4A nuclear receptors. Participants of the PESA study with evidence of subclinical atherosclerosis displayed a significant CD69 and NR4A1 mRNA downregulation in peripheral blood leukocytes compared with participants without disease. The expression of CD69 remained associated with the risk of subclinical atherosclerosis in an adjusted multivariable logistic regression model (odds ratio, 0.62; 95% CI, 0.40-0.94; P=0.006) after adjustment for traditional risk factors, the expression of NR4A1, the level of oxidized low-density lipoprotein, and the counts of different leucocyte subsets. CONCLUSIONS CD69 depletion from the lymphoid compartment promotes a Th17/regulatory T cell imbalance and exacerbates the development of atherosclerosis. CD69 binding to oxidized low-density lipoprotein on T cells induces the expression of anti-inflammatory transcription factors. Data from a cohort of the PESA study with subclinical atherosclerosis indicate that CD69 expression in PBLs inversely correlates with the presence of disease. The expression of CD69 remained an independent predictor of subclinical atherosclerosis after adjustment for traditional risk factors.
Collapse
Affiliation(s)
- Katerina Tsilingiri
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Marta Relaño
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Raquel Sánchez-Díaz
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Cristina Rodríguez
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB-Sant Pau, Barcelona, Spain (C.R., J.C.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Javier Crespo
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB-Sant Pau, Barcelona, Spain (C.R., J.C.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit (F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit (A.D.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José L Alonso-Lebrero
- Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain
| | - Alicia Vara
- Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit (J.V.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Fernando Alfonso
- Department of Cardiology (F.A.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain
| | - Borja Ibáñez
- Myocardial Pathophysiology Area (B.I.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.I.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Valentín Fuster
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (V.F.)
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona, IIB-Sant Pau, Spain (J.M.-G.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Pilar Martín
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| |
Collapse
|
31
|
Zheng G, Xiang W, Pan M, Huang Y, Li Z. Identification of the association between rs41274221 polymorphism in the seed sequence of microRNA-25 and the risk of neonate sepsis. J Cell Physiol 2019; 234:15147-15155. [PMID: 30666638 DOI: 10.1002/jcp.28155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Many studies have investigated the role of microRNA-25 (miR-25) in the initiation and progression of sepsis in newborns. In this study, we aim to explore how rs41274221 polymorphism in miR-25 compromises the interaction between miR-25 and CD69, so as to understand the mechanisms involved in the control of sepsis in newborns. METHODS Computational analysis, luciferase assay, real-time polymerase chain reaction (PCR), and western blot analysis were performed in this study. RESULTS The luciferase assays results showed that CD69 was a target gene of miR-25, because the luciferase activity in cells transfected with wild type CD69 was much lower than that in the cells transfected with mutant CD69 or the scramble control. Real-time PCR and western blot analysis results showed that the expression of miR-25 in sepsis patients was significantly upregulated as compared with that in the normal control group, and the CD69 position ratio as well as the messenger RNA (mRNA) and protein level of CD69 in sepsis patients was much higher than those in the normal control group. As compared with the scramble control, miR-25 mimics, and CD69 small interfering RNA (siRNA) downregulated the mRNA and protein expression of CD69, whereas the expression of CD69 mRNA and protein in cells transfected with miR-25 inhibitors was significantly higher as compared with that in the scramble control. In addition, interferonγ production was significantly downregulated in cells transfected with miR-25 inhibitors but notably upregulated in cells transfected with miR-25 mimics or CD69 siRNA. CONCLUSION The single-nucleotide polymorphism (SNP; rs41274221) in miR-25 is associated with the risk of sepsis in newborns.
Collapse
Affiliation(s)
- Ge Zheng
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Wenna Xiang
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Minli Pan
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Yihua Huang
- Department of Pediatrics, Children and Woman's Hospital of Ruian, Zhejiang, People's Republic of China
| | - Zhishu Li
- Department of Pediatrics, People's Hospital of Ruian, Zhejiang, People's Republic of China
| |
Collapse
|
32
|
Fontela MG, Notario L, Alari-Pahissa E, Lorente E, Lauzurica P. The Conserved Non-Coding Sequence 2 (CNS2) Enhances CD69 Transcription through Cooperation between the Transcription Factors Oct1 and RUNX1. Genes (Basel) 2019; 10:genes10090651. [PMID: 31466317 PMCID: PMC6770821 DOI: 10.3390/genes10090651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 08/23/2019] [Indexed: 02/02/2023] Open
Abstract
The immune regulatory receptor CD69 is expressed upon activation in all types of leukocytes and is strongly regulated at the transcriptional level. We previously described that, in addition to the CD69 promoter, there are four conserved noncoding regions (CNS1-4) upstream of the CD69 promoter. Furthermore, we proposed that CNS2 is the main enhancer of CD69 transcription. In the present study, we mapped the transcription factor (TF) binding sites (TFBS) from ChIP-seq databases within CNS2. Through luciferase reporter assays, we defined a ~60 bp sequence that acts as the minimum enhancer core of mouse CNS2, which includes the Oct1 TFBS. This enhancer core establishes cooperative interactions with the 3′ and 5′ flanking regions, which contain RUNX1 BS. In agreement with the luciferase reporter data, the inhibition of RUNX1 and Oct1 TF expression by siRNA suggests that they synergistically enhance endogenous CD69 gene transcription. In summary, we describe an enhancer core containing RUNX1 and Oct1 BS that is important for the activity of the most potent CD69 gene transcription enhancer.
Collapse
Affiliation(s)
- Miguel G. Fontela
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Laura Notario
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Elisenda Alari-Pahissa
- Department of Experimental and Health Science, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Elena Lorente
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Lauzurica
- Microbiology National Center, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: ; Tel.: +34-918222720
| |
Collapse
|
33
|
Yao Y, Cai X, Yu H, Xu Q, Li X, Yang Y, Meng X, Huang C, Li J. PSTPIP2 attenuates joint damage and suppresses inflammation in adjuvant-induced arthritis. Eur J Pharmacol 2019; 859:172558. [PMID: 31325437 DOI: 10.1016/j.ejphar.2019.172558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) is related to inflammation. In this study, we investigated the function of PSTPIP2 in adjuvant-induced arthritis (AIA) by using adeno-associated virus (AAV) to overexpress PSTPIP2 in rat. AIA rats were developed by injecting Lewis rats with complete Freund's adjuvant (CFA) on day 0. AAV-empty or AAV-PSTPIP2, or PBS was administered intraarticularly into each knee joint on day 8 postinduction. All animals were killed at day 18 after adjuvant injection. WB was used to detect the expression of PSTPIP2 in rat synovial tissues. Fluorescence microscopy showed the transduction efficiency in synovial tissue. The morphology of arthritic joints was examined by HE, safranin O/fast green, or Toluidine blue staining. The bone destruction was examined via X-ray and micro-CT analysis. Immunohistochemical analysis or TRAP staining were used to investigate the role of PSTPIP2 in osteoclasts and the expression of PSTPIP2 in synovial tissue. RT-qPCR and ELISA were used to examine the expression of pro-inflammatory cytokines in synovial tissue or serum. AIA rats were found to have decreased PSTPIP2 expression and AIA-associated bone loss and inflammatory infiltration. We showed that administration of AAV-PSTPIP2 before arthritis onset significantly reduces the severity of AIA. PSTPIP2 was highly expressed in synovial cells. In addition, inflammatory responses and the number of osteoclasts were reduced with AAV-PSTPIP2 treatment. These findings demonstrate that PSTPIP2 may improve the severity of AIA by inhibiting the function of fibroblast-like synoviocytes, suppressing inflammation and reducing the number of osteoclasts.
Collapse
Affiliation(s)
- Yao Yao
- The Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaoyu Cai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Haixia Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yang Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
34
|
Fikry EM, Gad AM, Eid AH, Arab HH. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother 2019. [DOI: https://doi.org/10.1016/j.biopha.2018.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Fikry EM, Gad AM, Eid AH, Arab HH. Caffeic acid and ellagic acid ameliorate adjuvant-induced arthritis in rats via targeting inflammatory signals, chitinase-3-like protein-1 and angiogenesis. Biomed Pharmacother 2019; 110:878-886. [PMID: 30562713 DOI: 10.1016/j.biopha.2018.12.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory arthropathy that principally attacks the joints. The present study aimed to explore the potential anti-arthritic effects of caffeic acid and ellagic acid in adjuvant-induced arthritis, compared to celecoxib. The current study also explored the underlying molecular mechanisms e.g., pro-inflammatory signals including chitinase-3-like protein-1 (CHI3L1); a glycoprotein that correlates with RA joint destruction besides angiogenesis, oxidative stres and apoptosis. Interestingly, caffeic and ellagic acids attenuated the severity of arthritis with comparable efficacy to celecoxib. Both agents effectively mitigated paw edema and inflammatory cell infiltration and protected the joint tissues against pannus formation along with cartilage and bone destruction. Notably, they also lowered the paw expression of NF-κB and the downstream effector CHI3L1 and its synthesis inducer IL-1β. They also lowered the levels of the tissue remodeling factor MMP-9 and the angiogenic signal VEGF in rat paws. Both agents also suppressed serum oxidative stress via diminishing lipid peroxides and nitric oxide together with augmentation of reduced glutathione in arthritic animals. Regarding apoptosis, they attenuated paw caspase-3 levels, favoring cell survival. Together, these favorable findings may advocate the use of caffeic and ellagic acids as adjunct modalities for the management of RA to mitigate joint damage.
Collapse
Affiliation(s)
- Ebtehal Mohammad Fikry
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Ahmed H Eid
- Department of Pharmacology, National Organization for Drug Control and Research, NODCAR, Giza, Egypt
| | - Hany H Arab
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
36
|
miRNA Expression and Interaction with Genes Involved in Susceptibility to Pristane-Induced Arthritis. J Immunol Res 2018; 2018:1928405. [PMID: 30648118 PMCID: PMC6311868 DOI: 10.1155/2018/1928405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 11/24/2022] Open
Abstract
Pristane-induced arthritis (PIA) in mice is an experimental model that resembles human rheumatoid arthritis, a chronic autoimmune disease that affects joints and is characterized by synovial inflammation and articular cartilage and bone destruction. AIRmax and AIRmin mouse lines differ in their susceptibility to PIA, and linkage analysis in this model mapped arthritis severity QTLs in chromosomes 5 and 8. miRNAs are a class of small RNA molecules that have been extensively studied in the development of arthritis. We analyzed miRNA and gene expression profiles in peritoneal cells of AIRmax and AIRmin lines, in order to evaluate the genetic architecture in this model. Susceptible AIRmax mice showed higher gene (2025 vs 1043) and miRNA (240 vs 59) modulation than resistant AIRmin mice at the onset of disease symptoms. miR-132-3p/212-3p, miR-106-5p, miR-27b-3p, and miR-25-3p were among the miRNAs with the highest expression in susceptible animals, showing a negative correlation with the expression of predicted target genes (Il10, Cd69, and Sp1r1). Our study showed that global gene and miRNA expression profiles in peritoneal cells of susceptible AIRmax and resistant AIRmin lines during pristane-induced arthritis are distinct, evidencing interesting targets for further validation.
Collapse
|
37
|
Yu L, Yang F, Zhang F, Guo D, Li L, Wang X, Liang T, Wang J, Cai Z, Jin H. CD69 enhances immunosuppressive function of regulatory T-cells and attenuates colitis by prompting IL-10 production. Cell Death Dis 2018; 9:905. [PMID: 30185773 PMCID: PMC6125584 DOI: 10.1038/s41419-018-0927-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) can inhibit immune responses and maintain immune tolerance by secreting immunosuppressive TGF-β1 and IL-10. However, the efficiency of Tregs become the major obstacle to their use for immunotherapy. In this study, we investigated the relevance of the C-type lectin receptor CD69 to the suppressive function. Compared to CD4+Foxp3+CD69- Tregs (CD69- Tregs), CD4+Foxp3+CD69+ Tregs (CD69+ Tregs) displayed stronger ability to maintain immune tolerance. CD69+ Tregs expressed higher levels of suppression-associated markers such as CTLA-4, ICOS, CD38 and GITR, and secreted higher levels of IL-10 but not TGF-β1. CD69+ Tregs from Il10+/+ rather than Il10-/- mice significantly inhibit the proliferation of CD4+ T cells. CD69 over-expression stimulated higher levels of IL-10 and c-Maf expression, which was compromised by silencing of STAT3 or STAT5. In addition, the direct interaction of STAT3 with the c-Maf promoter was detected in cells with CD69 over-expression. Moreover, adoptive transfer of CD69+ Tregs but not CD69-Tregs or CD69+ Tregs deficient in IL-10 dramatically prevented the development of inflammatory bowel disease (IBD) in mice. Taken together, CD69 is important to the suppressive function of Tregs by promoting IL-10 production. CD69+ Tregs have the potential to develop new therapeutic approach for autoimmune diseases like IBD.
Collapse
Affiliation(s)
- Lei Yu
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Chronic Disease Research Institute, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fanghui Zhang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Danfeng Guo
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ling Li
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Hongchuan Jin
- Laboratory of Cancer Biology, The Key Lab of Biotherapy in Zhejiang Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Sun J, Li L, Li L, Ding L, Liu X, Chen X, Zhang J, Qi X, Du J, Huang Z. Metallothionein-1 suppresses rheumatoid arthritis pathogenesis by shifting the Th17/Treg balance. Eur J Immunol 2018; 48:1550-1562. [PMID: 30055006 DOI: 10.1002/eji.201747151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 05/27/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022]
Abstract
It is now well accepted that an imbalance between the Th17 and regulatory T-cell responses is closely associated with the development of rheumatoid arthritis (RA). However, the precise regulatory mechanism for the differentiation of Th17 and Treg in RA is not well characterized. The present study showed that metallothionein-1 (MT-1), which is a low molecular weight protein that is involved in the detoxification of heavy metals and scavenging of free radicals, was upregulated in RA. Furthermore, the synovial inflammation and pathologic symptoms in collagen-induced arthritis and collagen antibody-induced arthritis mice were significantly suppressed when MT-1 was expressed intraarticularly. Further investigation revealed that MT-1 inhibited the differentiation of Th17 cells but enhanced that of Treg cells. Furthermore, it markedly decreased both STAT3 and RAR-related orphan receptor gamma t (RORγt) expression in vitro and in vivo. Collectively, our studies demonstrated that MT-1 might manifest as a protein involved in immunosuppression of RA pathogenesis by shifting Th17/Treg balance and may prove to be a potential therapeutic target for RA autoimmune diseases.
Collapse
Affiliation(s)
- Jinxia Sun
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Liping Ding
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaokai Liu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xianxiong Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jinshun Zhang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xin Qi
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
39
|
Hu H, Li J, Zhang J. Dysregulation of CD69 by overexpression of microRNA‑367‑3p associated with post‑myocardial infarction cardiac fibrosis. Mol Med Rep 2018; 18:3085-3092. [PMID: 30015935 DOI: 10.3892/mmr.2018.9234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis is characterized as net accumulation of ECM (extracellular matrix) proteins in the cardiac interstitium, which contributes to dysfunction of both systolic and diastolic. The present study aimed to identify the association between microRNA (miR)‑367‑3p and cluster of differentiation 69 (CD69), and their roles in regulating the development of cardiac fibrosis. Participants (n=34) were enrolled and diagnosed with cardiac fibrosis [fibrosis (+); n=16] or non‑fibrosis control [fibrosis (‑); n=18]. In‑silicon analysis and luciferase assay were used to identify CD69 as a target of miR‑367‑3p. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were used to determine the expression level of miR‑367‑3p and CD69 mRNA and protein, in patient groups or cells transfected with miR‑367‑3p mimics or inhibitors. Cytokine assays were used to detect the level of interleukin (IL)‑17, tumor necrosis factor (TNF)‑α, interferon (IFN)‑γ and granulocyte macrophage colony‑stimulating factor. Flow cytometry was used to detect the T helper (Th)‑17 fraction of cells in different treatment groups. Analysis by RT‑qPCR indicated that the expression of miR‑367‑3p was decreased in the cardiac fibrosis (+) group compared with the fibrosis (‑) control group. In contrast, the level of CD69 mRNA was increased in the cardiac fibrosis group compared with the control group. The CD69 3'‑untranslated region (UTR) contained two potential seed regions for miR‑367‑3p and was therefore predicted as a target. A dual‑luciferase reporter assay demonstrated a reduced luciferase activity of cells transfected with wild‑type CD69 3'‑UTR and the mutant2 CD69 3'‑UTR, however, the mutant1 CD69 3'‑UTR completely abolished the interaction with miR‑367‑3p. Furthermore, the CD69 mRNA and protein expression levels in cells transfected with miR‑367‑3p mimics and CD69 siRNA were downregulated compared with the scramble control. Cytokine analysis demonstrated increased levels of IL‑17 and TNF‑α in cells transfected with miR‑367‑3p mimics or CD69 siRNA, compared with the scramble control. The IFN‑γ and GM‑CSF levels of cells transfected with pcDNA3‑CD69, miR‑367‑3p mimics or miR‑367‑3p + pcDNA3‑CD69 were comparable with the scramble control. Notably, the Th17 fraction of cells was upregulated following the introduction of miR‑367‑3p mimics or CD69 siRNA. In conclusion, these results provide evidence that a decrease in miR‑367‑3p levels may be associated with cardiac fibrosis.
Collapse
Affiliation(s)
- Haiyan Hu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710038, P.R. China
| | - Jing Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710038, P.R. China
| | - Jingfang Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
40
|
Kimura MY, Hayashizaki K, Tokoyoda K, Takamura S, Motohashi S, Nakayama T. Crucial role for CD69 in allergic inflammatory responses: CD69-Myl9 system in the pathogenesis of airway inflammation. Immunol Rev 2018; 278:87-100. [PMID: 28658550 DOI: 10.1111/imr.12559] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD69 has been known as an early activation marker of lymphocytes; whereas, recent studies demonstrate that CD69 also has critical functions in immune responses. Early studies using human samples revealed the involvement of CD69 in various inflammatory diseases including asthma. Moreover, murine disease models using Cd69-/- mice and/or anti-CD69 antibody (Ab) treatment have revealed crucial roles for CD69 in inflammatory responses. However, it had not been clear how the CD69 molecule contributes to the pathogenesis of inflammatory diseases. We recently elucidated a novel mechanism, in which the interaction between CD69 and its ligands, myosin light chain 9, 12a and 12b (Myl9/12) play a critical role in the recruitment of activated T cells into the inflammatory lung. In this review, we first summarize CD69 function based on its structure and then introduce the evidence for the involvement of CD69 in human diseases and murine disease models. Then, we will describe how we discovered CD69 ligands, Myl9 and Myl12, and how the CD69-Myl9 system regulates airway inflammation. Finally, we will discuss possible therapeutic usages of the blocking Ab to the CD69-Myl9 system.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Hayashizaki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Tokoyoda
- Department of Osteoimmunology, German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
41
|
Abstract
Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE.
Collapse
|
42
|
Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol 2017; 47:946-953. [PMID: 28475283 PMCID: PMC6485631 DOI: 10.1002/eji.201646837] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
CD69 is a membrane-bound, type II C-lectin receptor. It is a classical early marker of lymphocyte activation due to its rapid appearance on the surface of the plasma membrane after stimulation. CD69 is expressed by several subsets of tissue resident immune cells, including resident memory T (TRM) cells and gamma delta (γδ) T cells, and is therefore considered a marker of tissue retention. Recent evidence has revealed that CD69 regulates some specific functions of selected T-cell subsets, determining the migration-retention ratio as well as the acquisition of effector or regulatory phenotypes. Specifically, CD69 regulates the differentiation of regulatory T (Treg) cells as well as the secretion of IFN-γ, IL-17, and IL-22. The identification of putative CD69 ligands, such as Galectin-1 (Gal-1), suggests that CD69-induced signaling can be regulated not only during cognate contacts between T cells and antigen-presenting cells in lymphoid organs, but also in the periphery, where cytokines and other metabolites control the final outcome of the immune response. Here, we will discuss new aspects of the molecular signaling mediated by CD69 and its involvement in the metabolic reprogramming regulating TH-effector lineages.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/physiology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Differentiation
- Cytokines/immunology
- Cytokines/metabolism
- Galectins/immunology
- Gene Expression Regulation
- Humans
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/physiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/physiology
Collapse
Affiliation(s)
- Danay Cibrián
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
- Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
- Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Kotredes KP, Thomas B, Gamero AM. The Protective Role of Type I Interferons in the Gastrointestinal Tract. Front Immunol 2017; 8:410. [PMID: 28428788 PMCID: PMC5382159 DOI: 10.3389/fimmu.2017.00410] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
The immune system of the gastrointestinal (GI) tract manages the significant task of recognizing and eliminating pathogens while maintaining tolerance of commensal bacteria. Dysregulation of this delicate balance can be detrimental, resulting in severe inflammation, intestinal injury, and cancer. Therefore, mechanisms to relay important signals regulating cell growth and immune reactivity must be in place to support GI homeostasis. Type I interferons (IFN-I) are a family of pleiotropic cytokines, which exert a wide range of biological effects including promotion of both pro- and anti-inflammatory activities. Using animal models of colitis, investigations into the regulation of intestinal epithelium inflammation highlight the role of IFN-I signaling during fine modulation of the immune system. The intestinal epithelium of the gut guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the IFN-I signal-transduction pathway. The current paradigm depicts an IFN-I-induced antiproliferative state in the intestinal epithelium enabling cell differentiation, cell maturation, and proper intestinal barrier function, strongly supporting its role in maintaining baseline immune activity and clearance of damaged epithelia or pathogens. In this review, we will highlight the importance of IFN-I in intestinal homeostasis by discussing its function in inflammation, immunity, and cancer.
Collapse
Affiliation(s)
- Kevin P Kotredes
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - Brianna Thomas
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Characterization of the Microenvironment of Nodular Lymphocyte Predominant Hodgkin Lymphoma. Int J Mol Sci 2016; 17:ijms17122127. [PMID: 27999289 PMCID: PMC5187927 DOI: 10.3390/ijms17122127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is characterized by a low percentage of neoplastic lymphocyte predominant (LP) cells in a background of lymphocytes. The goal of this study is to characterize the microenvironment in NLPHL. Ten NLPHL cases and seven reactive lymph nodes (RLN) were analyzed by flow cytometry for the main immune cells and multiple specific subpopulations. To discriminate between cells in or outside the tumor cell area, we used CD26. We observed significantly lower levels of CD20+ B-cells and CD56+ NK cells and higher levels of CD4+ T-cells in NLPHL in comparison to RLN. In the subpopulations, we observed increased numbers of PD-1+CD4+ T follicular helper cells (TFH), CD69+CD4+ and CD69+CD8+ T-cells and CCR7-CD45RA-CD4+ effector memory T-cells, while FoxP3+CD4+ T regulatory cells (Tregs) and CCR7-CD45RA+ terminally differentiated CD4+ T-cells were decreased in NLPHL compared to RLN. CD69+ cells were increased in the tumor cell area in CD4+ and CD8+ T-cells, while FoxP3+CD25+CD4+ Tregs and CD25+CD8+ T-cells were significantly increased outside the tumor area. Thus, we show a markedly altered microenvironment in NLPHL, with lower numbers of NK cells and Tregs. PD-1+CD4+ and CD69+ T-cells were located inside, and Tregs and CD25+CD8+ cells outside the tumor cell area.
Collapse
|
45
|
Studies in a Murine Model Confirm the Safety of Griffithsin and Advocate Its Further Development as a Microbicide Targeting HIV-1 and Other Enveloped Viruses. Viruses 2016; 8:v8110311. [PMID: 27869695 PMCID: PMC5127025 DOI: 10.3390/v8110311] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Griffithsin (GRFT), a lectin from Griffithsia species, inhibits human immunodeficiency virus-1 (HIV-1) replication at sub-nanomolar concentrations, with limited cellular toxicity. However, in vivo safety of GRFT is not fully understood, especially following parenteral administration. We first assessed GRFT’s effects in vitro, on mouse peripheral blood mononuclear cell (mPBMC) viability, mitogenicity, and activation using flow-cytometry, as well as cytokine secretion through enzyme-linked immunosorbent assay (ELISA). Toxicological properties of GRFT were determined after a single subcutaneous administration of 50 mg/kg or 14 daily doses of 10 mg/kg in BALB/c mice. In the context of microbicide development, toxicity of GRFT at 2 mg/kg was determined after subcutaneous, intravaginal, and intraperitoneal administrations, respectively. Interestingly, GRFT caused no significant cell death, mitogenicity, activation, or cytokine release in mPBMCs, validating the usefulness of a mouse model. An excellent safety profile for GRFT was obtained in vivo: no overt changes were observed in animal fitness, blood chemistry or CBC parameters. Following GRFT treatment, reversible splenomegaly was observed with activation of certain spleen B and T cells. However, spleen tissues were not pathologically altered by GRFT (either with a single high dose or chronic doses). Finally, no detectable toxicity was found after mucosal or systemic treatment with 2 mg/kg GRFT, which should be further developed as a microbicide for HIV prevention.
Collapse
|
46
|
Cold-inducible RNA-binding protein activates splenic T cells during sepsis in a TLR4-dependent manner. Cell Mol Immunol 2016; 15:38-47. [PMID: 27569563 DOI: 10.1038/cmi.2016.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a novel inflammatory mediator that stimulates the release of proinflammatory cytokines from macrophages in sepsis. Given the immune dysregulation that characterizes sepsis, the effect of CIRP on other immune cells is an area of increasing interest that has not yet been studied. In the present study, we hypothesized that extracellular CIRP promotes activation of T lymphocytes in the spleen during sepsis. We observed that mice subjected to sepsis by cecal ligation and puncture showed significantly higher expression of the early activation markers CD69 and CD25 at 20 h on CD4+ splenic T cells, and significantly higher CD69 expression on CD8+ splenic T cells compared with sham-operated controls. Furthermore, at 20 h after receiving intravenous injection of recombinant murine CIRP (rmCIRP, 5 mg/kg body weight (BW)) or PBS (vehicle), those mice receiving rmCIRP showed significantly increased expression of CD69 and CD25 on both CD4+ and CD8+ splenic T cells. This effect, however, was not seen in TLR4-deficient mice after rmCIRP injection. In addition, treatment with CIRP predisposed CD4+ T cells to a Th1 hyperinflammatory response profile, and influenced CD8+ T cells toward a cytotoxic profile. Taken together, our findings indicate that CIRP is a proinflammatory mediator that plays an important role in T-cell dysregulation during sepsis in a TLR4-dependent manner.
Collapse
|
47
|
Cibrián Vera D, Saiz ML, de la Fuente H, Sánchez-Díaz R, Moreno-Gonzalo O, Jorge Cerrudo I, Ferrarini A, Vázquez J, Punzón C, Fresno M, Vicente-Manzanares M, Daudén Tello E, Fernández-Salguero PM, Martín P, Sánchez-Madrid F. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat Immunol 2016; 17:985-96. [PMID: 27376471 PMCID: PMC5146640 DOI: 10.1038/ni.3504] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The activation marker CD69 is expressed by skin γδ T cells. Here we found that CD69 controlled the aryl hydrocarbon receptor (AhR)-dependent secretion of interleukin 22 (IL-22) by γδ T cells, which contributed to the development of psoriasis induced by IL-23. CD69 associated with the aromatic-amino-acid-transporter complex LAT1-CD98 and regulated its surface expression and uptake of L-tryptophan (L-Trp) and the intracellular quantity of L-Trp-derived activators of AhR. In vivo administration of L-Trp, an inhibitor of AhR or IL-22 abrogated the differences between CD69-deficient mice and wild-type mice in skin inflammation. We also observed LAT1-mediated regulation of AhR activation and IL-22 secretion in circulating Vγ9(+) γδ T cells of psoriatic patients. Thus, CD69 serves as a key mediator of the pathogenesis of psoriasis by controlling LAT1-CD98-mediated metabolic cues.
Collapse
MESH Headings
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+L
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cells, Cultured
- Endocytosis
- Fusion Regulatory Protein-1/metabolism
- Interleukin-23/immunology
- Interleukins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Psoriasis/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Skin/immunology
- T-Lymphocyte Subsets/immunology
- Th17 Cells/immunology
- Tryptophan/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Danay Cibrián Vera
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria Princesa, Madrid, Spain
| | - María Laura Saiz
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria Princesa, Madrid, Spain
| | - Raquel Sánchez-Díaz
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Olga Moreno-Gonzalo
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria Princesa, Madrid, Spain
| | - Inmaculada Jorge Cerrudo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alessia Ferrarini
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carmen Punzón
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Vicente-Manzanares
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria Princesa, Madrid, Spain
| | | | - Pedro M. Fernández-Salguero
- Department of Biochemistry, Molecular Biology and Genetic, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Pilar Martín
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria Princesa, Madrid, Spain
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
48
|
Colbeck EJ, Hindley JP, Smart K, Jones E, Bloom A, Bridgeman H, McPherson RC, Turner DG, Ladell K, Price DA, O'Connor RA, Anderton SM, Godkin AJ, Gallimore AM. Eliminating roles for T-bet and IL-2 but revealing superior activation and proliferation as mechanisms underpinning dominance of regulatory T cells in tumors. Oncotarget 2016; 6:24649-59. [PMID: 26433463 PMCID: PMC4694785 DOI: 10.18632/oncotarget.5584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are often highly enriched within the tumor-infiltrating T cell pool. Using a well-characterised model of carcinogen-induced fibrosarcomas we show that the enriched tumor-infiltrating Treg population comprises largely of CXCR3+ T-bet+ ‘TH1-like’ Tregs which are thymus-derived Helios+ cells. Whilst IL-2 maintains homeostatic ratios of Tregs in lymphoid organs, we found that the perturbation in Treg frequencies in tumors is IL-2 independent. Moreover, we show that the TH1 phenotype of tumor-infiltrating Tregs is dispensable for their ability to influence tumor progression. We did however find that unlike Tconvs, the majority of intra-tumoral Tregs express the activation markers CD69, CD25, ICOS, CD103 and CTLA4 and are significantly more proliferative than Tconvs. Moreover, we have found that CD69+ Tregs are more suppressive than their CD69− counterparts. Collectively, these data indicate superior activation of Tregs in the tumor microenvironment, promoting their suppressive ability and selective proliferation at this site.
Collapse
Affiliation(s)
- Emily J Colbeck
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - James P Hindley
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Kathryn Smart
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Emma Jones
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Anja Bloom
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Hayley Bridgeman
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rhoanne C McPherson
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Darryl G Turner
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kristin Ladell
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Richard A O'Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew J Godkin
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Awen M Gallimore
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
49
|
Tajuddin SM, Schick UM, Eicher JD, Chami N, Giri A, Brody JA, Hill WD, Kacprowski T, Li J, Lyytikäinen LP, Manichaikul A, Mihailov E, O'Donoghue ML, Pankratz N, Pazoki R, Polfus LM, Smith AV, Schurmann C, Vacchi-Suzzi C, Waterworth DM, Evangelou E, Yanek LR, Burt A, Chen MH, van Rooij FJA, Floyd JS, Greinacher A, Harris TB, Highland HM, Lange LA, Liu Y, Mägi R, Nalls MA, Mathias RA, Nickerson DA, Nikus K, Starr JM, Tardif JC, Tzoulaki I, Velez Edwards DR, Wallentin L, Bartz TM, Becker LC, Denny JC, Raffield LM, Rioux JD, Friedrich N, Fornage M, Gao H, Hirschhorn JN, Liewald DCM, Rich SS, Uitterlinden A, Bastarache L, Becker DM, Boerwinkle E, de Denus S, Bottinger EP, Hayward C, Hofman A, Homuth G, Lange E, Launer LJ, Lehtimäki T, Lu Y, Metspalu A, O'Donnell CJ, Quarells RC, Richard M, Torstenson ES, Taylor KD, Vergnaud AC, Zonderman AB, Crosslin DR, Deary IJ, Dörr M, Elliott P, Evans MK, Gudnason V, Kähönen M, Psaty BM, Rotter JI, Slater AJ, Dehghan A, White HD, Ganesh SK, Loos RJF, Esko T, Faraday N, Wilson JG, Cushman M, Johnson AD, Edwards TL, Zakai NA, Lettre G, Reiner AP, Auer PL. Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases. Am J Hum Genet 2016; 99:22-39. [PMID: 27346689 DOI: 10.1016/j.ajhg.2016.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Salman M Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John D Eicher
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Nathalie Chami
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Ayush Giri
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and Ernst-Mortiz-Arndt University Greifswald, Greifswald 17475, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Linda M Polfus
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caterina Vacchi-Suzzi
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Dawn M Waterworth
- Genetics, Target Sciences, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Lisa R Yanek
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amber Burt
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Heather M Highland
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Rasika A Mathias
- Department of Medicine, Divisions of Allergy and Clinical Immunology and General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, Finland; University of Tampere School of Medicine, Tampere 33014, Finland
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, Edinburgh EH8 9JZ, UK
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, and Uppsala Clinical Research Center, Uppsala University, 751 85 Uppsala, Sweden
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Lewis C Becker
- Department of Medicine, Divisions of Cardiology and General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN 37203, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - John D Rioux
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Nele Friedrich
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 13347, Germany
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Joel N Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Andre Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam 3015, the Netherlands
| | - Lisa Bastarache
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN 37203, USA
| | - Diane M Becker
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Simon de Denus
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and Ernst-Mortiz-Arndt University Greifswald, Greifswald 17475, Germany
| | - Ethan Lange
- Departments of Genetics and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Chris J O'Donnell
- National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA; Cardiology Section and Center for Population Genomics, Boston Veteran's Administration (VA) Healthcare, Boston, MA 02118, USA
| | - Rakale C Quarells
- Morehouse School of Medicine, Social Epidemiology Research Center, Cardiovascular Research Institute, Atlanta, GA 30310, USA
| | - Melissa Richard
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric S Torstenson
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Department of Cardiology, University Medicine Greifswald, Greifswald 17475, Germany
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland; Department of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Health Services, and Medicine, University of Washington, Seattle, WA 98101, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew J Slater
- OmicSoft Corporation, Cary, NC 27513, USA; Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland 1142, New Zealand
| | - Santhi K Ganesh
- Departments of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI 48108, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary Cushman
- Division of Hematology Oncology, Department of Medicine, The University of Vermont, Colchester, VT 05446, USA
| | - Andrew D Johnson
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Neil A Zakai
- Division of Hematology Oncology, Department of Medicine, The University of Vermont, Colchester, VT 05446, USA
| | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
50
|
CD69 Deficiency Enhances the Host Response to Vaccinia Virus Infection through Altered NK Cell Homeostasis. J Virol 2016; 90:6464-6474. [PMID: 27147744 DOI: 10.1128/jvi.00550-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED During the host response to viral infection, the transmembrane CD69 protein is highly upregulated in all immune cells. We have studied the role of CD69 in the murine immune response to vaccinia virus (VACV) infection, and we report that the absence of CD69 enhances protection against VACV at both short and long times postinfection in immunocompetent and immunodeficient mice. Natural killer (NK) cells were implicated in the increased infection control, since the differences were greatly diminished when NK cells were depleted. This role of NK cells was not based on an altered NK cell reactivity, since CD69 did not affect the NK cell activation threshold in response to major histocompatibility complex class I NK cell targets or protein kinase C activation. Instead, NK cell numbers were increased in the spleen and peritoneum of CD69-deficient infected mice. That was not just secondary to better infection control in CD69-deficient mice, since NK cell numbers in the spleens and the blood of uninfected CD69(-/-) mice were already augmented. CD69-deficient NK cells from infected mice did not have an altered proliferation capacity. However, a lower spontaneous cell death rate was observed for CD69(-/-) lymphocytes. Thus, our results suggest that CD69 limits the innate immune response to VACV infection at least in part through cell homeostatic survival. IMPORTANCE We show that increased natural killer (NK) cell numbers augment the host response and survival after infection with vaccinia virus. This phenotype is found in the absence of CD69 in immunocompetent and immunodeficient hosts. As part of the innate immune system, NK lymphocytes are activated and participate in the defense against infection. Several studies have focused on the contribution of NK cells to protection against infection with vaccinia virus. In this study, it was demonstrated that the augmented early NK cell response in the absence of CD69 is responsible for the increased protection seen during infection with vaccinia virus even at late times of infection. This work indicates that the CD69 molecule may be a target of therapy to augment the response to poxvirus infection.
Collapse
|