1
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 PMCID: PMC11964952 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
2
|
Arowosegbe A, Guo Z, Vanderleeden E, Derr AG, Wang JP. Janus kinase inhibition prevents autoimmune diabetes in LEW.1WR1 rats. J Autoimmun 2025; 151:103358. [PMID: 39823736 DOI: 10.1016/j.jaut.2025.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/11/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Numerous studies highlight the essential role of type I interferon (IFN) responses in type 1 diabetes. The absence of type I IFN signaling is associated with a partial reduction of autoimmune diabetes incidence in LEW.1WR1 rats. We sought to delineate type I IFN-independent mechanisms that drive diabetes using type I IFN α/β receptor (IFNAR) knockout rats. Rats were treated with polyinosinic:polycytidylic acid plus Kilham rat virus to induce diabetes. Single-cell RNA-sequencing of islets and cytokine measurements in blood and spleen from prediabetic Ifnar1-/- rats were employed to identify factors driving insulitis in the global absence of IFNAR signaling. Islet immune cells were enriched for Ccl4, Ccl5, and Ifng. In addition, interleukin-1 (IL-1) was increased in spleen, and IFN-γ was increased in serum from prediabetic Ifnar1-/- rats. Based on these findings, rats were treated with a C-C chemokine receptor type 5 inhibitor, an IL-1 receptor antagonist, or a nucleotide-binding oligomerization domain-like receptor family pyrin-domain containing 3 inhibitor, none of which prevented diabetes. The Janus kinase inhibitor ruxolitinib, which blocks both type I and II interferon-driven signaling, completely prevented diabetes, but only when given for a sustained period starting from the time of induction. The tyrosine kinase 2 inhibitor deucravacitinib also prevented diabetes to a significant degree. We conclude that type I and II IFNs act in concert as the main drivers of autoimmune diabetes and that inhibition of downstream signaling events for both is required for disease prevention.
Collapse
Affiliation(s)
- Adediwura Arowosegbe
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Zhiru Guo
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Emma Vanderleeden
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Alan G Derr
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA
| | - Jennifer P Wang
- University of Massachusetts Chan Medical School, Department of Medicine, Diabetes Center of Excellence, USA.
| |
Collapse
|
3
|
De George DJ, Jhala G, Selck C, Trivedi P, Brodnicki TC, Mackin L, Kay TW, Thomas HE, Krishnamurthy B. Altering β Cell Antigen Exposure to Exhausted CD8+ T Cells Prevents Autoimmune Diabetes in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1658-1669. [PMID: 38587315 DOI: 10.4049/jimmunol.2300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Chronic destruction of insulin-producing pancreatic β cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated β cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the β cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated β cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.
Collapse
Affiliation(s)
- David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Prerak Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Leanne Mackin
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
4
|
Waibel M, Wentworth JM, So M, Couper JJ, Cameron FJ, MacIsaac RJ, Atlas G, Gorelik A, Litwak S, Sanz-Villanueva L, Trivedi P, Ahmed S, Martin FJ, Doyle ME, Harbison JE, Hall C, Krishnamurthy B, Colman PG, Harrison LC, Thomas HE, Kay TWH. Baricitinib and β-Cell Function in Patients with New-Onset Type 1 Diabetes. N Engl J Med 2023; 389:2140-2150. [PMID: 38055252 DOI: 10.1056/nejmoa2306691] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors, including baricitinib, block cytokine signaling and are effective disease-modifying treatments for several autoimmune diseases. Whether baricitinib preserves β-cell function in type 1 diabetes is unclear. METHODS In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with type 1 diabetes diagnosed during the previous 100 days to receive baricitinib (4 mg once per day) or matched placebo orally for 48 weeks. The primary outcome was the mean C-peptide level, determined from the area under the concentration-time curve, during a 2-hour mixed-meal tolerance test at week 48. Secondary outcomes included the change from baseline in the glycated hemoglobin level, the daily insulin dose, and measures of glycemic control assessed with the use of continuous glucose monitoring. RESULTS A total of 91 patients received baricitinib (60 patients) or placebo (31 patients). The median of the mixed-meal-stimulated mean C-peptide level at week 48 was 0.65 nmol per liter per minute (interquartile range, 0.31 to 0.82) in the baricitinib group and 0.43 nmol per liter per minute (interquartile range, 0.13 to 0.63) in the placebo group (P = 0.001). The mean daily insulin dose at 48 weeks was 0.41 U per kilogram of body weight per day (95% confidence interval [CI], 0.35 to 0.48) in the baricitinib group and 0.52 U per kilogram per day (95% CI, 0.44 to 0.60) in the placebo group. The levels of glycated hemoglobin were similar in the two trial groups. However, the mean coefficient of variation of the glucose level at 48 weeks, as measured by continuous glucose monitoring, was 29.6% (95% CI, 27.8 to 31.3) in the baricitinib group and 33.8% (95% CI, 31.5 to 36.2) in the placebo group. The frequency and severity of adverse events were similar in the two trial groups, and no serious adverse events were attributed to baricitinib or placebo. CONCLUSIONS In patients with type 1 diabetes of recent onset, daily treatment with baricitinib over 48 weeks appeared to preserve β-cell function as estimated by the mixed-meal-stimulated mean C-peptide level. (Funded by JDRF International and others; BANDIT Australian New Zealand Clinical Trials Registry number, ACTRN12620000239965.).
Collapse
Affiliation(s)
- Michaela Waibel
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - John M Wentworth
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Michelle So
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Jennifer J Couper
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Fergus J Cameron
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Richard J MacIsaac
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Gabby Atlas
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Alexandra Gorelik
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Sara Litwak
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Laura Sanz-Villanueva
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Prerak Trivedi
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Simi Ahmed
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Francis J Martin
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Madeleine E Doyle
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Jessica E Harbison
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Candice Hall
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Balasubramanian Krishnamurthy
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Peter G Colman
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Leonard C Harrison
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Helen E Thomas
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Thomas W H Kay
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| |
Collapse
|
5
|
De George DJ, Ge T, Krishnamurthy B, Kay TWH, Thomas HE. Inflammation versus regulation: how interferon-gamma contributes to type 1 diabetes pathogenesis. Front Cell Dev Biol 2023; 11:1205590. [PMID: 37293126 PMCID: PMC10244651 DOI: 10.3389/fcell.2023.1205590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8+ cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis. The NOD mouse model, with many similarities to, but also some significant differences from human diabetes, provides an opportunity, in a single in-bred genotype, to explore pathogenic mechanisms in molecular detail. The pleiotropic cytokine IFN-γ is believed to contribute to pathogenesis of type 1 diabetes. Evidence of IFN-γ signaling in the islets, including activation of the JAK-STAT pathway and upregulation of MHC class I, are hallmarks of the disease. IFN-γ has a proinflammatory role that is important for homing of autoreactive T cells into islets and direct recognition of beta cells by CD8+ T cells. We recently showed that IFN-γ also controls proliferation of autoreactive T cells. Therefore, inhibition of IFN-γ does not prevent type 1 diabetes and is unlikely to be a good therapeutic target. In this manuscript we review the contrasting roles of IFN-γ in driving inflammation and regulating the number of antigen specific CD8+ T cells in type 1 diabetes. We also discuss the potential to use JAK inhibitors as therapy for type 1 diabetes, to inhibit both cytokine-mediated inflammation and proliferation of T cells.
Collapse
Affiliation(s)
- David J. De George
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramaniam Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
6
|
Pancreatic Islet Cells Response to IFNγ Relies on Their Spatial Location within an Islet. Cells 2022; 12:cells12010113. [PMID: 36611907 PMCID: PMC9818682 DOI: 10.3390/cells12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.
Collapse
|
7
|
Ge T, Phung A, Jhala G, Trivedi P, Principe N, De George DJ, Pappas EG, Litwak S, Sanz‐Villanueva L, Catterall T, Fynch S, Boon L, Kay TW, Chee J, Krishnamurthy B, Thomas HE. Diabetes induced by checkpoint inhibition in nonobese diabetic mice can be prevented or reversed by a JAK1/JAK2 inhibitor. Clin Transl Immunology 2022; 11:e1425. [PMID: 36325490 PMCID: PMC9618467 DOI: 10.1002/cti2.1425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Immune checkpoint inhibitors have achieved clinical success in cancer treatment, but this treatment causes immune-related adverse events, including type 1 diabetes (T1D). Our aim was to test whether a JAK1/JAK2 inhibitor, effective at treating spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice, can prevent diabetes secondary to PD-L1 blockade. METHODS Anti-PD-L1 antibody was injected into NOD mice to induce diabetes, and JAK1/JAK2 inhibitor LN3103801 was administered by oral gavage to prevent diabetes. Flow cytometry was used to study T cells and beta cells. Mesothelioma cells were inoculated into BALB/c mice to induce a transplantable tumour model. RESULTS Anti-PD-L1-induced diabetes was associated with increased immune cell infiltration in the islets and upregulated MHC class I on islet cells. Anti-PD-L1 administration significantly increased islet T cell proliferation and islet-specific CD8+ T cell numbers in peripheral lymphoid organs. JAK1/JAK2 inhibitor treatment blocked IFNγ-mediated MHC class I upregulation on beta cells and T cell proliferation mediated by cytokines that use the common γ chain receptor. As a result, anti-PD-L1-induced diabetes was prevented by JAK1/JAK2 inhibitor administered before or after checkpoint inhibitor therapy. Diabetes was also reversed when the JAK1/JAK2 inhibitor was administered after the onset of anti-PD-L1-induced hyperglycaemia. Furthermore, JAK1/JAK2 inhibitor intervention after checkpoint inhibitors did not reverse or abrogate the antitumour effects in a transplantable tumour model. CONCLUSION A JAK1/JAK2 inhibitor can prevent and reverse anti-PD-L1-induced diabetes by blocking IFNγ and γc cytokine activities. Our study provides preclinical validation of JAK1/JAK2 inhibitor use in checkpoint inhibitor-induced diabetes.
Collapse
Affiliation(s)
- Tingting Ge
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Amber‐Lee Phung
- National Centre for Asbestos Related Diseases, Institute for Respiratory HealthThe University of Western AustraliaCrawleyWAAustralia
| | - Gaurang Jhala
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Prerak Trivedi
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory HealthThe University of Western AustraliaCrawleyWAAustralia
| | - David J De George
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Evan G Pappas
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Sara Litwak
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Laura Sanz‐Villanueva
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Tara Catterall
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Stacey Fynch
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | | | - Thomas W Kay
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory HealthThe University of Western AustraliaCrawleyWAAustralia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Helen E Thomas
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| |
Collapse
|
8
|
Cai S, Hu Z, Chen Y, Zhong J, Dong L. Potential roles of non-lymphocytic cells in the pathogenesis of IgG4-related disease. Front Immunol 2022; 13:940581. [PMID: 35967331 PMCID: PMC9366038 DOI: 10.3389/fimmu.2022.940581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Studies have confirmed the involvement of a variety of lymphocyte subsets, including type 2 helper T lymphocytes (Th2) and IgG4+ B lymphocytes, in the pathogenesis of IgG4-related disease (IgG4-RD). Those lymphocytes contribute to the major pathogenetic features of IgG4-RD. However, they are not the only cellular components in the immunoinflammatory environment of this mysterious disease entity. Recent studies have suggested that various non-lymphocytic components, including macrophages and fibroblasts, may also play an important role in the pathogenetic process of IgG4-RD in terms of contributing to the chronic and complex progress of the disease. Therefore, the potential role of non-lymphocyte in the pathogenesis of IgG4-RD is worth discussing.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Piñeros AR, Kulkarni A, Gao H, Orr KS, Glenn L, Huang F, Liu Y, Gannon M, Syed F, Wu W, Anderson CM, Evans-Molina C, McDuffie M, Nadler JL, Morris MA, Mirmira RG, Tersey SA. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep 2022; 39:111011. [PMID: 35767947 PMCID: PMC9297711 DOI: 10.1016/j.celrep.2022.111011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of β cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in β cells exhibit an increase in a population of β cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in β cells promotes autoimmunity during type 1 diabetes progression.
Collapse
Affiliation(s)
- Annie R Piñeros
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kara S Orr
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Glenn
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University and Department of Veterans Affairs, Tennessee Valley Authority, Nashville, TN, USA
| | - Farooq Syed
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenting Wu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cara M Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Marcia McDuffie
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jerry L Nadler
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Margaret A Morris
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Raghavendra G Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Sarah A Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intra- and extracellular regulatory circuits. J Biol Chem 2022; 298:102096. [PMID: 35660019 PMCID: PMC9251788 DOI: 10.1016/j.jbc.2022.102096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low–density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-βH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-βH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element–binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low–density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell–lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.
Collapse
|
11
|
Waibel M, Thomas HE, Wentworth JM, Couper JJ, MacIsaac RJ, Cameron FJ, So M, Krishnamurthy B, Doyle MC, Kay TW. Investigating the efficacy of baricitinib in new onset type 1 diabetes mellitus (BANDIT)—study protocol for a phase 2, randomized, placebo controlled trial. Trials 2022; 23:433. [PMID: 35606820 PMCID: PMC9125350 DOI: 10.1186/s13063-022-06356-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type 1 diabetes (T1D) places an extraordinary burden on individuals and their families, as well as on the healthcare system. Despite recent advances in glucose sensors and insulin pump technology, only a minority of patients meet their glucose targets and face the risk of both acute and long-term complications, some of which are life-threatening.
The JAK-STAT pathway is critical for the immune-mediated pancreatic beta cell destruction in T1D. Our pre-clinical data show that inhibitors of JAK1/JAK2 prevent diabetes and reverse newly diagnosed diabetes in the T1D non-obese diabetic mouse model. The goal of this study is to determine if the JAK1/JAK2 inhibitor baricitinib impairs type 1 diabetes autoimmunity and preserves beta cell function.
Methods
This will be as a multicentre, two-arm, double-blind, placebo-controlled randomized trial in individuals aged 10–30 years with recent-onset T1D. Eighty-three participants will be randomized in a 2:1 ratio within 100 days of diagnosis to receive either baricitinib 4mg/day or placebo for 48 weeks and then monitored for a further 48 weeks after stopping study drug. The primary outcome is the plasma C-peptide 2h area under the curve following ingestion of a mixed meal. Secondary outcomes include HbA1c, insulin dose, continuous glucose profile and adverse events. Mechanistic assessments will characterize general and diabetes-specific immune responses.
Discussion
This study will determine if baricitinib slows the progressive, immune-mediated loss of beta cell function that occurs after clinical presentation of T1D. Preservation of beta cell function would be expected to improve glucose control and prevent diabetes complications, and justify additional trials of baricitinib combined with other therapies and of its use in at-risk populations to prevent T1D.
Trial registration
ANZCTR ACTRN12620000239965. Registered on 26 February 2020. ClinicalTrials.gov NCT04774224. Registered on 01 March 2021
Collapse
|
12
|
Jhala G, Krishnamurthy B, Brodnicki TC, Ge T, Akazawa S, Selck C, Trivedi PM, Pappas EG, Mackin L, Principe N, Brémaud E, De George DJ, Boon L, Smyth I, Chee J, Kay TWH, Thomas HE. Interferons limit autoantigen-specific CD8 + T-cell expansion in the non-obese diabetic mouse. Cell Rep 2022; 39:110747. [PMID: 35476975 DOI: 10.1016/j.celrep.2022.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Interferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes. Diabetes is minimally affected, but at 125 days of age, antigen-specific CD8+ T cells, quantified using major histocompatibility complex class I tetramers, are present in 10-fold greater numbers in Ifngr-mutant NOD mice. T cells from Ifngr-mutant mice have increased proliferative responses to interleukin-2 (IL-2). They also have reduced phosphorylated STAT1 and its target gene, suppressor of cytokine signaling 1 (SOCS-1). IFNγ controls the expansion of antigen-specific CD8+ T cells by mechanisms which include increased SOCS-1 expression that regulates IL-2 signaling. The expanded CD8+ T cells are likely to contribute to normal diabetes progression despite reduced inflammation in Ifngr-mutant mice.
Collapse
Affiliation(s)
- Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Satoru Akazawa
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Prerak M Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Evan G Pappas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Leanne Mackin
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Nicola Principe
- National Centre of Asbestos-Related Diseases, Institute of Respiratory Health, School of Biomedical Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Erwan Brémaud
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Louis Boon
- Polpharma Biologics, 3584 CM Utrecht, the Netherlands
| | - Ian Smyth
- Australian Phenomics Network, Monash Genome Modification Platform, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jonathan Chee
- National Centre of Asbestos-Related Diseases, Institute of Respiratory Health, School of Biomedical Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
13
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Akazawa S, Mackin L, Jhala G, Fynch S, Catterall T, Selck C, Graham KL, Krishnamurthy B, Pappas EG, Kwong CTJ, Sutherland APR, Kay TWH, Brodnicki TC, Thomas HE. Deficiency of the innate immune adaptor STING promotes autoreactive T cell expansion in NOD mice. Diabetologia 2021; 64:878-889. [PMID: 33483762 DOI: 10.1007/s00125-020-05378-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway. Recent studies suggest that STING also has antiproliferative and proapoptotic functions in T cells that are independent of IFN. To investigate whether STING is involved in autoimmune diabetes, we examined the impact of genetic deletion of STING in NOD mice. METHODS CRISPR/Cas9 gene editing was used to generate STING-deficient NOD mice. Quantitative real-time PCR was used to assess the level of type I IFN-regulated genes in islets from wild-type and STING-deficient NOD mice. The number of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214-specific CD8+ T cells was determined by magnetic bead-based MHC tetramer enrichment and flow cytometry. The incidence of spontaneous diabetes and diabetes after adoptive transfer of T cells was determined. RESULTS STING deficiency partially attenuated the type I IFN gene signature in islets but did not suppress insulitis. STING-deficient NOD mice accumulated an increased number of IGRP206-214-specific CD8+ T cells (2878 ± 642 cells in NOD.STING-/- mice and 728.8 ± 196 cells in wild-type NOD mice) in peripheral lymphoid tissue, associated with a higher incidence of spontaneous diabetes (95.5% in NOD.STING-/- mice and 86.2% in wild-type NOD mice). Splenocytes from STING-deficient mice rapidly induced diabetes after adoptive transfer into irradiated NOD recipients (median survival 75 days for NOD recipients of NOD.STING-/- mouse splenocytes and 121 days for NOD recipients of NOD mouse splenocytes). CONCLUSIONS/INTERPRETATION Data suggest that sensing of endogenous nucleic acids through the STING pathway may be partially responsible for the type I IFN gene signature but not autoimmunity in NOD mice. Our results show that the STING pathway may play an unexpected intrinsic role in suppressing the number of diabetogenic T cells.
Collapse
Affiliation(s)
- Satoru Akazawa
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | - Kate L Graham
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | | | - Chun-Ting J Kwong
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Andrew P R Sutherland
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Thomas W H Kay
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Thomas C Brodnicki
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, Australia.
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia.
| |
Collapse
|
15
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
16
|
Ge T, Jhala G, Fynch S, Akazawa S, Litwak S, Pappas EG, Catterall T, Vakil I, Long AJ, Olson LM, Krishnamurthy B, Kay TW, Thomas HE. The JAK1 Selective Inhibitor ABT 317 Blocks Signaling Through Interferon-γ and Common γ Chain Cytokine Receptors to Reverse Autoimmune Diabetes in NOD Mice. Front Immunol 2020; 11:588543. [PMID: 33343569 PMCID: PMC7746546 DOI: 10.3389/fimmu.2020.588543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 01/31/2023] Open
Abstract
Cytokines that signal through the JAK-STAT pathway, such as interferon-γ (IFN-γ) and common γ chain cytokines, contribute to the destruction of insulin-secreting β cells by CD8+ T cells in type 1 diabetes (T1D). We previously showed that JAK1/JAK2 inhibitors reversed autoimmune insulitis in non-obese diabetic (NOD) mice and also blocked IFN-γ mediated MHC class I upregulation on β cells. Blocking interferons on their own does not prevent diabetes in knockout NOD mice, so we tested whether JAK inhibitor action on signaling downstream of common γ chain cytokines, including IL-2, IL-7 IL-15, and IL-21, may also affect the progression of diabetes in NOD mice. Common γ chain cytokines activate JAK1 and JAK3 to regulate T cell proliferation. We used a JAK1-selective inhibitor, ABT 317, to better understand the specific role of JAK1 signaling in autoimmune diabetes. ABT 317 reduced IL-21, IL-2, IL-15 and IL-7 signaling in T cells and IFN-γ signaling in β cells, but ABT 317 did not affect GM-CSF signaling in granulocytes. When given in vivo to NOD mice, ABT 317 reduced CD8+ T cell proliferation as well as the number of KLRG+ effector and CD44hiCD62Llo effector memory CD8+ T cells in spleen. ABT 317 also prevented MHC class I upregulation on β cells. Newly diagnosed diabetes was reversed in 94% NOD mice treated twice daily with ABT 317 while still on treatment at 40 days and 44% remained normoglycemic after a further 60 days from discontinuing the drug. Our results indicate that ABT 317 blocks common γ chain cytokines in lymphocytes and interferons in lymphocytes and β cells and are thus more effective against diabetes pathogenesis than IFN-γ receptor deficiency alone. Our studies suggest use of this class of drug for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Stacey Fynch
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Satoru Akazawa
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Sara Litwak
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Evan G Pappas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Tara Catterall
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Ishan Vakil
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andrew J Long
- AbbVie Bioresearch Center, Worcester, MA, United States
| | - Lisa M Olson
- AbbVie Bioresearch Center, Worcester, MA, United States
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
17
|
Enteroviral Pathogenesis of Type 1 Diabetes: The Role of Natural Killer Cells. Microorganisms 2020; 8:microorganisms8070989. [PMID: 32630332 PMCID: PMC7409131 DOI: 10.3390/microorganisms8070989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that NK cells response to CV-B infection play a crucial role in the enteroviral pathogenesis of T1D. Indeed, CV-B-infected cells can escape from cytotoxic T cells recognition and destruction by inhibition of cell surface expression of HLA class I antigen through non-structural viral proteins, but they can nevertheless be killed by NK cells. Cytolytic activity of NK cells towards pancreatic beta cells persistently-infected with CV-B has been reported and defective viral clearance by NK cells of patients with T1D has been suggested as a mechanism leading to persistence of CV-B and triggering autoimmunity reported in these patients. The knowledge about host antiviral defense against CV-B infection is not only crucial to understand the susceptibility to virus-induced T1D but could also contribute to the design of new preventive or therapeutic approaches for individuals at risk for T1D or newly diagnosed patients.
Collapse
|
18
|
Sabouri S, Benkahla MA, Kiosses WB, Rodriguez-Calvo T, Zapardiel-Gonzalo J, Castillo E, von Herrath MG. Human herpesvirus-6 is present at higher levels in the pancreatic tissues of donors with type 1 diabetes. J Autoimmun 2019; 107:102378. [PMID: 31818546 DOI: 10.1016/j.jaut.2019.102378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
Human herpesvirus-6 (HHV-6) is a ubiquitous pathogen associated with nervous and endocrine autoimmune disorders. The aim of this study was to investigate the presence of HHV-6 in pancreatic tissue sections from non-diabetic, auto-antibody positive (AAB+), and donors with type 1 diabetes (T1D) and explore whether there is any association between HHV-6 and MHC class I hyperexpression and CD8 T cell infiltration. HHV-6 DNA was detected by PCR and its protein was examined by indirect immunofluorescence assay followed by imaging using high-resolution confocal microscopy. Viral DNA (U67) was found in most pancreata of non-diabetic (3 out of 4), AAB+ (3 out of 5) and T1D donors (6 out of 7). Interestingly, HHV-6 glycoprotein B (gB) was more expressed in islets and exocrine pancreas of donors with T1D. However, gB expression was not directly associated with other pathologies. Out of 20 islets with high gB expression, only 3 islets (15%) showed MHC class I hyperexpression. Furthermore, no correlation was found between gB expression and CD8 T cell infiltration on a per-islet basis in any of the groups. Our observations indicate that HHV-6 DNA and protein are present in the pancreas of non-diabetic subjects but gB expression is higher in the pancreas of donors with T1D. The possible role of HHV-6 as a contributory factor for T1D should therefore be further investigated.
Collapse
Affiliation(s)
- Somayeh Sabouri
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Mehdi A Benkahla
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - William B Kiosses
- Core Microscopy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Helmholtz Zentrum München, Helmholtz Diabetes Center, Institute of Diabetes Research Heidemannstrasse, 1, 80939, München, Germany
| | - Jose Zapardiel-Gonzalo
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Helmholtz Zentrum München, Helmholtz Diabetes Center, Institute of Diabetes Research Heidemannstrasse, 1, 80939, München, Germany
| | - Ericka Castillo
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | |
Collapse
|
19
|
IL-21 regulates SOCS1 expression in autoreactive CD8 + T cells but is not required for acquisition of CTL activity in the islets of non-obese diabetic mice. Sci Rep 2019; 9:15302. [PMID: 31653894 PMCID: PMC6814838 DOI: 10.1038/s41598-019-51636-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
In type 1 diabetes, maturation of activated autoreactive CD8+ T cells to fully armed effector cytotoxic T lymphocytes (CTL) occurs within the islet. At present the signals required for the maturation process are poorly defined. Cytokines could potentially provide the necessary "third signal" required to generate fully mature CTL capable of killing insulin-producing β-cells. To determine whether autoreactive CTL within islets respond to cytokines we generated non-obese diabetic (NOD) mice with a reporter for cytokine signalling. These mice express a reporter gene, hCD4, under the control of the endogenous regulatory elements for suppressor of cytokine signalling (SOCS)1, which is itself regulated by pro-inflammatory cytokines. In NOD mice, the hCD4 reporter was expressed in infiltrated islets and the expression level was positively correlated with the frequency of infiltrating CD45+ cells. SOCS1 reporter expression was induced in transferred β-cell-specific CD8+ 8.3T cells upon migration from pancreatic draining lymph nodes into islets. To determine which cytokines induced SOCS1 promoter activity in islets, we examined hCD4 reporter expression and CTL maturation in the absence of the cytokine receptors IFNAR1 or IL-21R. We show that IFNAR1 deficiency does not confer protection from diabetes in 8.3 TCR transgenic mice, nor is IFNAR1 signalling required for SOCS1 reporter upregulation or CTL maturation in islets. In contrast, IL-21R-deficient 8.3 mice have reduced diabetes incidence and reduced SOCS1 reporter activity in islet CTLs. However IL-21R deficiency did not affect islet CD8+ T cell proliferation or expression of granzyme B or IFNγ. Together these data indicate that autoreactive CD8+ T cells respond to IL-21 and not type I IFNs in the islets of NOD mice, but neither IFNAR1 nor IL-21R are required for islet intrinsic CTL maturation.
Collapse
|
20
|
Marro BS, Legrain S, Ware BC, Oldstone MB. Macrophage IFN-I signaling promotes autoreactive T cell infiltration into islets in type 1 diabetes model. JCI Insight 2019; 4:125067. [PMID: 30674713 DOI: 10.1172/jci.insight.125067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
Here, we report a pathogenic role for type I IFN (IFN-I) signaling in macrophages, and not β cells in the islets, for the development of type 1 diabetes (T1D). Following lymphocytic choriomeningitis (LCMV) infection in the Rip-LCMV-GP T1D model, macrophages accumulated near islets and in close contact to islet-infiltrating GP-specific (autoimmune) CD8+ T cells. Depletion of macrophages with clodronate liposomes or genetic ablation of Ifnar in macrophages aborted T1D, despite proliferation of GP-specific (autoimmune) CD8+ T cells. Histopathologically, disrupted IFNα/β receptor (IFNAR) signaling in macrophages resulted in restriction of CD8+ T cells entering into the islets with significant lymphoid accumulation around the islet. Collectively, these results provide evidence that macrophages via IFN-I signaling, while not entering the islets, are directly involved in interacting, directing, or restricting trafficking of autoreactive-specific T cells into the islets as an important component in causing T1D.
Collapse
|
21
|
Scott NA, Zhao Y, Krishnamurthy B, Mannering SI, Kay TWH, Thomas HE. IFNγ-Induced MHC Class II Expression on Islet Endothelial Cells Is an Early Marker of Insulitis but Is Not Required for Diabetogenic CD4 + T Cell Migration. Front Immunol 2018; 9:2800. [PMID: 30555479 PMCID: PMC6282031 DOI: 10.3389/fimmu.2018.02800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Diabetogenic T cells infiltrate the pancreatic islets by transmigrating across the microcapillaries residing close to, or within, the pancreatic islets. Deficiency in IFNγ signaling prevents efficient migration of T cells into the pancreatic islets, but the IFNγ-regulated molecules that mediate this are uncertain. Homing of autoreactive T cells into target tissues may require antigen specificity through presentation of cognate antigen by MHC expressed on the vascular endothelium. We investigated the hypothesis that IFNγ promotes the migration of islet antigen-specific CD4+ T cells by upregulating MHC class II on islet endothelial cells (IEC), thereby providing an antigen-specific signal for islet infiltration. Upon IFNγ stimulation, MHC class II, which is not constitutively expressed on IEC, was induced. IFNγ-dependent upregulation of MHC class II was detected in IEC isolated from prediabetic NOD mice at the earliest stages of insulitis, before other markers of inflammation were present. Using a CD4+ T cell-mediated adoptive transfer model of autoimmune diabetes we observed that even though diabetes does not develop in recipient mice lacking IFNγ receptors, mice with MHC class II-deficient IEC were not protected from disease. Thus, IFNγ-regulated molecules, but not MHC class II or antigen presentation by IECs is required for the early migration of antigen-specific CD4+ T cells into the pancreatic islets.
Collapse
Affiliation(s)
- Nicholas A Scott
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Yuxing Zhao
- St. Vincent's Institute, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
22
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Trivedi PM, Graham KL, Scott NA, Jenkins MR, Majaw S, Sutherland RM, Fynch S, Lew AM, Burns CJ, Krishnamurthy B, Brodnicki TC, Mannering SI, Kay TW, Thomas HE. Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice. Diabetes 2017; 66:1650-1660. [PMID: 28292965 DOI: 10.2337/db16-1250] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022]
Abstract
Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in β-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human β-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8+ T cells and β-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes.
Collapse
Affiliation(s)
- Prerak M Trivedi
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Kate L Graham
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Nicholas A Scott
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Misty R Jenkins
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | | | - Robyn M Sutherland
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stacey Fynch
- St. Vincent's Institute, Fitzroy, Victoria, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Balasubramanian Krishnamurthy
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas W Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- The University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
24
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
25
|
Richardson SJ, Rodriguez-Calvo T, Gerling IC, Mathews CE, Kaddis JS, Russell MA, Zeissler M, Leete P, Krogvold L, Dahl-Jørgensen K, von Herrath M, Pugliese A, Atkinson MA, Morgan NG. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia 2016; 59:2448-2458. [PMID: 27506584 PMCID: PMC5042874 DOI: 10.1007/s00125-016-4067-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Human pancreatic beta cells may be complicit in their own demise in type 1 diabetes, but how this occurs remains unclear. One potentially contributing factor is hyperexpression of HLA class I antigens. This was first described approximately 30 years ago, but has never been fully characterised and was recently challenged as artefactual. Therefore, we investigated HLA class I expression at the protein and RNA levels in pancreases from three cohorts of patients with type 1 diabetes. The principal aims were to consider whether HLA class I hyperexpression is artefactual and, if not, to determine the factors driving it. METHODS Pancreas samples from type 1 diabetes patients with residual insulin-containing islets (n = 26) from the Network for Pancreatic Organ donors with Diabetes (nPOD), Diabetes Virus Detection study (DiViD) and UK recent-onset type 1 diabetes collections were immunostained for HLA class I isoforms, signal transducer and activator of transcription 1 (STAT1), NLR family CARD domain containing 5 (NLRC5) and islet hormones. RNA was extracted from islets isolated by laser-capture microdissection from nPOD and DiViD samples and analysed using gene-expression arrays. RESULTS Hyperexpression of HLA class I was observed in the insulin-containing islets of type 1 diabetes patients from all three tissue collections, and was confirmed at both the RNA and protein levels. The expression of β2-microglobulin (a second component required for the generation of functional HLA class I complexes) was also elevated. Both 'classical' HLA class I isoforms (i.e. HLA-ABC) as well as a 'non-classical' HLA molecule, HLA-F, were hyperexpressed in insulin-containing islets. This hyperexpression did not correlate with detectable upregulation of the transcriptional regulator NLRC5. However, it was strongly associated with increased STAT1 expression in all three cohorts. Islet hyperexpression of HLA class I molecules occurred in the insulin-containing islets of patients with recent-onset type 1 diabetes and was also detectable in many patients with disease duration of up to 11 years, declining thereafter. CONCLUSIONS/INTERPRETATION Islet cell HLA class I hyperexpression is not an artefact, but is a hallmark in the immunopathogenesis of type 1 diabetes. The response is closely associated with elevated expression of STAT1 and, together, these occur uniquely in patients with type 1 diabetes, thereby contributing to their selective susceptibility to autoimmune-mediated destruction.
Collapse
Affiliation(s)
- Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| | | | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | - Clayton E Mathews
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA, USA
| | - Mark A Russell
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Marie Zeissler
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Pia Leete
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
26
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
27
|
Graham K, Fynch S, Papas E, Tan C, Kay T, Thomas H. Isolation and Culture of the Islets of Langerhans from Mouse Pancreas. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
28
|
Fred RG, Kappe C, Ameur A, Cen J, Bergsten P, Ravassard P, Scharfmann R, Welsh N. Role of the AMP kinase in cytokine-induced human EndoC-βH1 cell death. Mol Cell Endocrinol 2015. [PMID: 26213325 DOI: 10.1016/j.mce.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present investigation was to delineate cytokine-induced signaling and death using the EndoC-βH1 cells as a model for primary human beta-cells. The cytokines IL-1β and IFN-γ induced a rapid and transient activation of NF-κB, STAT-1, ERK, JNK and eIF-2α signaling. The EndoC-βH1 cells died rapidly when exposed to IL-1β + IFN-γ, and this occurred also in the presence of the actinomycin D. Inhibition of NF-κB and STAT-1 did not protect against cell death, nor did the cytokines activate iNOS expression. Instead, cytokines promoted a rapid decrease in EndoC-βH1 cell respiration and ATP levels, and we observed protection by the AMPK activator AICAR against cytokine-induced cell death. It is concluded that EndoC-βH1 cell death can be prevented by AMPK activation, which suggests a role for ATP depletion in cytokine-induced human beta-cell death.
Collapse
Affiliation(s)
- Rikard G Fred
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Camilla Kappe
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Peter Bergsten
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden
| | - Phillippe Ravassard
- Biotechnology and Biotherapy Laboratory, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, CHU Pitié-Salpêtrière, Paris, France
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
29
|
Zhao Y, Scott NA, Quah HS, Krishnamurthy B, Bond F, Loudovaris T, Mannering SI, Kay TWH, Thomas HE. Mouse pancreatic beta cells express MHC class II and stimulate CD4(+) T cells to proliferate. Eur J Immunol 2015; 45:2494-503. [PMID: 25959978 DOI: 10.1002/eji.201445378] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/25/2015] [Accepted: 05/07/2015] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes results from destruction of pancreatic beta cells by autoreactive T cells. Both CD4(+) and CD8(+) T cells have been shown to mediate beta-cell killing. While CD8(+) T cells can directly recognize MHC class I on beta cells, the interaction between CD4(+) T cells and beta cells remains unclear. Genetic association studies have strongly implicated HLA-DQ alleles in human type 1 diabetes. Here we studied MHC class II expression on beta cells in nonobese diabetic mice that were induced to develop diabetes by diabetogenic CD4(+) T cells with T-cell receptors that recognize beta-cell antigens. Acute infiltration of CD4(+) T cells in islets occurred with rapid onset of diabetes. Beta cells from islets with immune infiltration expressed MHC class II mRNA and protein. Exposure of beta cells to IFN-γ increased MHC class II gene expression, and blocking IFN-γ signaling in beta cells inhibited MHC class II upregulation. IFN-γ also increased HLA-DR expression in human islets. MHC class II(+) beta cells stimulated the proliferation of beta-cell-specific CD4(+) T cells. Our study indicates that MHC class II molecules may play an important role in beta-cell interaction with CD4(+) T cells in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Yuxing Zhao
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Nicholas A Scott
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Hong Sheng Quah
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Francene Bond
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
30
|
Lees JR. Interferon gamma in autoimmunity: A complicated player on a complex stage. Cytokine 2014; 74:18-26. [PMID: 25464925 DOI: 10.1016/j.cyto.2014.10.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/19/2022]
Abstract
Early views of autoimmune disease cast IFNγ as a prototypic pro-inflammatory factor. It is now clear that IFNγ is capable of both pro- and anti-inflammatory activities with the functional outcome dependent on the physiological and pathological setting examined. Here, the major immune modulatory activities of IFNγ are reviewed and current evidence for the impact of IFNγ on pathology and regulation of several autoimmune diseases and disease models is summarized.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
31
|
Quah HS, Miranda-Hernandez S, Khoo A, Harding A, Fynch S, Elkerbout L, Brodnicki TC, Baxter AG, Kay TWH, Thomas HE, Graham KL. Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice. Diabetes 2014; 63:1032-40. [PMID: 24353186 DOI: 10.2337/db13-1210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)). Expression of the type I IFN-induced genes Mx1, Isg15, Ifit1, Oas1a, and Cxcr4 was detectable in NOD islets as early as 1 week of age. Of these five genes, expression of Isg15, Ifit1, Oas1a, and Mx1 peaked at 3-4 weeks of age, corresponding with an increase in Ifnα mRNA, declined at 5-6 weeks of age, and increased again at 10-14 weeks of age. Increased IFN-induced gene expression was ablated in NOD.IFNAR1(-/-) islets. Loss of Toll-like receptor 2 (TLR2) resulted in reduced islet expression of Mx1 at 2 weeks of age, but TLR2 or TLR9 deficiency did not change the expression of other IFN-induced genes in islets compared with wild-type NOD islets. We observed increased β-cell major histocompatibility complex class I expression with age in NOD and NOD.IFNAR1(-/-) mice. NOD.IFNAR1(-/-) mice developed insulitis and diabetes at a similar rate to NOD controls. These results indicate type I IFN is produced within islets in young mice but is not essential for the initiation and progression of diabetes in NOD mice.
Collapse
|
32
|
Pane JA, Webster NL, Zufferey C, Coulson BS. Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells. Virus Res 2014; 179:73-84. [DOI: 10.1016/j.virusres.2013.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 01/08/2023]
|
33
|
Wang P, Yigit MV, Ran C, Ross A, Wei L, Dai G, Medarova Z, Moore A. A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes 2012; 61:3247-54. [PMID: 22923469 PMCID: PMC3501867 DOI: 10.2337/db12-0441] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Islet transplantation has recently emerged as an acceptable clinical modality for restoring normoglycemia in patients with type 1 diabetes mellitus (T1DM). The long-term survival and function of islet grafts is compromised by immune rejection-related factors. Downregulation of factors that mediate immune rejection using RNA interference holds promise for improving islet graft resistance to damaging factors after transplantation. Here, we used a dual-purpose therapy/imaging small interfering (si)RNA magnetic nanoparticle (MN) probe that targets β(2) microglobulin (B2M), a key component of the major histocompatibility class I complex (MHC I). In addition to serving as a siRNA carrier, this MN-siB2M probe enables monitoring of graft persistence noninvasively using magnetic resonance imaging (MRI). Human islets labeled with these MNs before transplantation into B2M (null) NOD/scid mice showed significantly improved preservation of graft volume starting at 2 weeks, as determined by longitudinal MRI in an adoptive transfer model (P < 0.05). Furthermore, animals transplanted with MN-siB2M-labeled islets demonstrated a significant delay of up to 23.8 ± 4.8 days in diabetes onset after the adoptive transfer of T cells relative to 6.5 ± 4.5 days in controls. This study demonstrated that our approach could protect pancreatic islet grafts from immune rejection and could potentially be applied to allotransplantation and prevention of the autoimmune recurrence of T1DM in islet transplantation or endogenous islets.
Collapse
Affiliation(s)
- Ping Wang
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Mehmet V. Yigit
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Chongzhao Ran
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Alana Ross
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Lingling Wei
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guangping Dai
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Zdravka Medarova
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Anna Moore
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
- Corresponding author: Anna Moore,
| |
Collapse
|
34
|
Thomas HE, Graham KL, Chee J, Thomas R, Kay TW, Krishnamurthy B. Proinflammatory cytokines contribute to development and function of regulatory T cells in type 1 diabetes. Ann N Y Acad Sci 2012; 1283:81-6. [DOI: 10.1111/j.1749-6632.2012.06797.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Kate L. Graham
- Immunology and Diabetes Unit; St. Vincent's Institute; Fitzroy; Victoria; Australia
| | - Jonathan Chee
- Immunology and Diabetes Unit; St. Vincent's Institute; Fitzroy; Victoria; Australia
| | - Ranjeny Thomas
- Diamantina Institute for Cancer, Immunology, and Metabolic Medicine; University of Queensland, Princess Alexandra Hospital; Brisbane; Queensland; Australia
| | | | | |
Collapse
|
35
|
Yi Z, Li L, Garland A, He Q, Wang H, Katz JD, Tisch R, Wang B. IFN-γ receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 2012; 42. [PMID: 22865049 PMCID: PMC3883988 DOI: 10.1002/eji.201242374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IFN-γ is generally believed to be important in the autoimmune pathogenesis of type 1 diabetes (T1D). However, the development of spontaneous β-cell autoimmunity is unaffected in NOD mice lacking expression of IFN-γ or the IFN-γ receptor (IFNγR), bringing into question the role IFN-γ has in T1D. In the current study, an adoptive transfer model was employed to define the contribution of IFN-γ in CD4(+) versus CD8(+) T cell-mediated β-cell autoimmunity. NOD.scid mice lacking expression of the IFNγR β chain (NOD.scid.IFNγRB(null)) developed diabetes following transfer of β cell-specific CD8(+) T cells alone. In contrast, β cell-specific CD4(+) T cells alone failed to induce diabetes despite significant infiltration of the islets in NOD.scid.IFNγRB(null) recipients. The lack of pathogenicity of CD4(+) T-cell effectors was due to the resistance of IFNγR-deficient β cells to inflammatory cytokine-induced cell death. On the other hand, CD4(+) T cells indirectly promoted β-cell destruction by providing help to CD8(+) T cells in NOD.scid.IFNγRB(null) recipients. These results demonstrate that IFN-γR may play a key role in CD4(+) T cell-mediated β-cell destruction.
Collapse
Affiliation(s)
- Zuoan Yi
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Li Li
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Qiuming He
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Haidong Wang
- Department of Endocrinology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jonathan D Katz
- Diabetes Research Center, Cincinnati Children’s Research Foundation, and Division of Endocrinology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
36
|
Yi Z, Li L, Garland A, He Q, Wang H, Katz JD, Tisch R, Wang B. IFN-γ receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 2012; 42:2010-8. [PMID: 22865049 PMCID: PMC3883988 DOI: 10.1002/eji.201142374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IFN-γ is generally believed to be important in the autoimmune pathogenesis of type 1 diabetes (T1D). However, the development of spontaneous β-cell autoimmunity is unaffected in NOD mice lacking expression of IFN-γ or the IFN-γ receptor (IFNγR), bringing into question the role IFN-γ has in T1D. In the current study, an adoptive transfer model was employed to define the contribution of IFN-γ in CD4(+) versus CD8(+) T cell-mediated β-cell autoimmunity. NOD.scid mice lacking expression of the IFNγR β chain (NOD.scid.IFNγRB(null)) developed diabetes following transfer of β cell-specific CD8(+) T cells alone. In contrast, β cell-specific CD4(+) T cells alone failed to induce diabetes despite significant infiltration of the islets in NOD.scid.IFNγRB(null) recipients. The lack of pathogenicity of CD4(+) T-cell effectors was due to the resistance of IFNγR-deficient β cells to inflammatory cytokine-induced cell death. On the other hand, CD4(+) T cells indirectly promoted β-cell destruction by providing help to CD8(+) T cells in NOD.scid.IFNγRB(null) recipients. These results demonstrate that IFN-γR may play a key role in CD4(+) T cell-mediated β-cell destruction.
Collapse
Affiliation(s)
- Zuoan Yi
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Li Li
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Qiuming He
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Haidong Wang
- Department of Endocrinology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jonathan D Katz
- Diabetes Research Center, Cincinnati Children’s Research Foundation, and Division of Endocrinology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
37
|
Graham KL, Krishnamurthy B, Fynch S, Ayala-Perez R, Slattery RM, Santamaria P, Thomas HE, Kay TWH. Intra-islet proliferation of cytotoxic T lymphocytes contributes to insulitis progression. Eur J Immunol 2012; 42:1717-22. [DOI: 10.1002/eji.201242435] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/12/2012] [Accepted: 04/06/2012] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Stacey Fynch
- St. Vincent's Institute; Fitzroy; Victoria; Australia
| | | | - Robyn M. Slattery
- Department of Immunology; Faculty of Medicine; Nursing and Health Sciences; Monash University; The Alfred Hospital; Victoria; Australia
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre and Department of Microbiology; Immunology and Infectious Disease; Faculty of Medicine, University of Calgary; Calgary; Alberta; Canada
| | | | | |
Collapse
|
38
|
Coppieters KT, von Herrath MG. Viruses and cytotoxic T lymphocytes in type 1 diabetes. Clin Rev Allergy Immunol 2012; 41:169-78. [PMID: 21181304 DOI: 10.1007/s12016-010-8220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histopathological studies on pancreas tissues from individuals with recent-onset type 1 diabetes (T1D) consistently find that CD8 T cells substantially contribute to the formation of islet lesions. CD8 T cells reactive against islet-associated antigens can also be found in blood samples from T1D patients. Mechanistic studies on the pathogenic role of this T cell subset have mostly focused on two animal models, i.e., the non-obese diabetic mouse and the virally induced rat insulin promoter-lymphocytic choriomeningitis virus model. Data were obtained in support of a role for viral infection in expanding a population of diabetogenic cytotoxic T lymphocytes. In view of the theorized association of viral infection with initiation of islet autoimmunity and progression to clinically overt disease, CD8 T cells thus represent an attractive target for immunotherapy. We will review here arguments in favor of a pivotal role for CD8 T cells in driving T1D development and speculate on etiologic agents that may provoke their aberrant activation.
Collapse
Affiliation(s)
- Ken T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, CA, 92037, USA
| | | |
Collapse
|
39
|
Pathogenesis of Type 1 Diabetes Mellitus: A Brief Overview. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2012. [DOI: 10.2478/v10255-012-0009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenesis of Type 1 Diabetes Mellitus: A Brief OverviewBefore the discovery of insulin, type 1 diabetes mellitus (DM) was a disease with acute evolution, leading to death shortly after diagnosis. During the first years of insulin therapy, the medical world was optimistic, even enthusiastic, considering that the therapeutic solution for the malady was found. Unfortunately this was only an illusion, because the patients started to develop chronic complications that shortened their lifespan and impaired their quality of life. In other words, insulin therapy transformed type 1 DM into a chronic disease. The prevention or the delay of the onset of hyperglycemia emerged as a new solution for the patients and, consequently, the understanding of the pathogenesis of the disease (a prerequisite for developing efficient preventive methods) became a priority for all the diabetologists involved in research. Almost 40 years have passed since the autoimmune theory regarding the pathogenesis of type 1 DM was imagined but, despite the tremendous research performed in this field since then, the prevention could not be obtained. The aim of this paper is to present the most important theoretic notions regarding the mechanisms that underlie the development of type 1 DM, in the way they are understood today.
Collapse
|
40
|
Zarfeshani A, Khaza’ai H, Mohd Ali R, Hambali Z, Wahle KWJ, Mutalib MSA. Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2011; 3:168-74. [DOI: 10.1007/s12602-011-9080-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Sachithanandan N, Graham KL, Galic S, Honeyman JE, Fynch SL, Hewitt KA, Steinberg GR, Kay TW. Macrophage deletion of SOCS1 increases sensitivity to LPS and palmitic acid and results in systemic inflammation and hepatic insulin resistance. Diabetes 2011; 60:2023-31. [PMID: 21646388 PMCID: PMC3142066 DOI: 10.2337/db11-0259] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Macrophage secretion of proinflammatory cytokines contributes to the pathogenesis of obesity-related insulin resistance. An important regulator of inflammation is the suppressor of cytokine signaling-1 (SOCS1), which inhibits the JAK-STAT and toll-like receptor-4 (TLR4) pathways. Despite the reported role of SOCS1 in inhibiting insulin signaling, it is surprising that a SOCS1 polymorphism that increases SOCS1 promoter activity is associated with enhanced insulin sensitivity despite obesity. In the current study, we investigated the physiological role of myeloid and lymphoid cell SOCS1 in regulating inflammation and insulin sensitivity. RESEARCH DESIGN AND METHODS We used mice generated by crossing SOCS1 floxed mice with mice expressing Cre recombinase under the control of the LysM-Cre promoter (SOCS1 LysM-Cre). These mice have deletion of SOCS1 in macrophages and lymphocytes. We assessed macrophage inflammation using flow cytometry and serum cytokine levels using Bioplex assays. We then measured insulin sensitivity using glucose tolerance tests and the euglycemic-hyperinsulinemic clamp. Using bone marrow-derived macrophages, we tested the effects of SOCS1 deletion in regulating responses to the TLR4 ligands: lipopolysaccharide (LPS) and palmitic acid. RESULTS SOCS1 LysM-Cre mice had increased macrophage expression of CD11c, enhanced sensitivity to LPS, and palmitic acid and increased serum concentrations of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein. Increased inflammation was associated with impaired glucose tolerance and hyperinsulinemia as a result of reduced hepatic but not skeletal muscle insulin sensitivity. CONCLUSIONS The expression of SOCS1 in hematopoietic cells protects mice against systemic inflammation and hepatic insulin resistance potentially by inhibiting LPS and palmitate-induced TLR4 signaling in macrophages.
Collapse
Affiliation(s)
- Nirupa Sachithanandan
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Kate L. Graham
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jane E. Honeyman
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Stacey L. Fynch
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Kimberly A. Hewitt
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | - Gregory R. Steinberg
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
- McMaster University, Division of Endocrinology and Metabolism, Department of Medicine, Hamilton, Ontario, Canada
| | - Thomas W. Kay
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
42
|
Chee J, Angstetra E, Mariana L, Graham KL, Carrington EM, Bluethmann H, Santamaria P, Allison J, Kay TWH, Krishnamurthy B, Thomas HE. TNF receptor 1 deficiency increases regulatory T cell function in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1702-12. [PMID: 21734073 DOI: 10.4049/jimmunol.1100511] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to β cell-specific, highly diabetogenic TCR transgenic I-A(g7)-restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for β cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4(+)CD25(+)Foxp3(+) T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.
Collapse
Affiliation(s)
- Jonathan Chee
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Graham KL, Krishnamurthy B, Fynch S, Mollah ZU, Slattery R, Santamaria P, Kay TW, Thomas HE. Autoreactive cytotoxic T lymphocytes acquire higher expression of cytotoxic effector markers in the islets of NOD mice after priming in pancreatic lymph nodes. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2716-25. [PMID: 21641394 PMCID: PMC3124028 DOI: 10.1016/j.ajpath.2011.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/03/2011] [Accepted: 02/16/2011] [Indexed: 01/02/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) that cause type 1 diabetes are activated in draining lymph nodes and become concentrated as fully active CTLs in inflamed pancreatic islets. It is unclear whether CTL function is driven by signals received in the lymph node or also in the inflamed tissue. We studied whether the development of cytotoxicity requires further activation in islets. Autoreactive CTLs found in the islets of diabetes-prone NOD mice had acquired much higher expression of the cytotoxic effector markers granzyme B, interferon γ, and CD107a than had those in the pancreatic lymph node (PLN). Increased expression seemed to result from stimulation in the islet itself. T cells held up from migrating from the PLN by administration of the sphingosine-1-phosphate agonist FTY720 did not increase expression of cytotoxic molecules in the PLN. Stimulation did not require antigen presentation or cytokine secretion by the target β cells because it was not affected by the absence of class I major histocompatibility complex expression or by the overexpression of suppressor of cytokine signaling-1. Activation of CD40-expressing cells stimulated increased CTL function and β-cell destruction, suggesting that signals derived from CD40-expressing cells promote the acquisition of cytotoxicity in the islet environment. These data provide in vivo evidence that stimulation of cytotoxic effector molecule expression occurs in inflamed islets and is independent of β cells.
Collapse
Affiliation(s)
| | | | | | | | - Robyn Slattery
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Monash University, The Alfred Hospital, Melbourne, Australia
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre and Department of Microbiology and Infectious Disease, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - Thomas W. Kay
- St. Vincent's Institute, Fitzroy, Australia
- University of Melbourne Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
| | - Helen E. Thomas
- St. Vincent's Institute, Fitzroy, Australia
- University of Melbourne Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
| |
Collapse
|
44
|
Boettler T, von Herrath M. Protection against or triggering of Type 1 diabetes? Different roles for viral infections. Expert Rev Clin Immunol 2011; 7:45-53. [PMID: 21162649 DOI: 10.1586/eci.10.91] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of autoreactivity that ultimately destroys insulin-producing β-cells and causes Type 1 diabetes (T1D) is a result of genetic susceptibility and environmental factors, such as viral infections. The ability to induce strong cellular immune responses and to cause inflammation in the target organ makes viral infections prime candidates for the initiation of islet autoreactivity. Indeed, certain viruses have been linked to the occurrence of T1D based on epidemiological, serological and histological findings; and several rodent studies clearly demonstrate that viral infections can trigger autoimmunity. However, viruses have also been shown to efficiently prevent autoimmunity, which underlines the beneficial aspects of exposure to microbial agents as suggested by the hygiene hypothesis. Here, we will try to untangle some aspects of the complex interplay between viruses and the immune system and we will recapitulate by what rationale certain viruses have been associated with T1D.
Collapse
Affiliation(s)
- Tobias Boettler
- La Jolla Institute for Allergy and Immunology - LIAI, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Sigalov AB. The SCHOOL of nature: IV. Learning from viruses. SELF/NONSELF 2010; 1:282-298. [PMID: 21487503 PMCID: PMC3062383 DOI: 10.4161/self.1.4.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 02/05/2023]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that modulate signaling mediated by cell surface receptors. Despite tremendous advancement in recent years, the exact molecular mechanisms underlying these critical points in viral pathogenesis remain unknown. In this work, based on a novel platform of receptor signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, I suggest specific mechanisms used by different viruses such as human immunodeficiency virus (HIV), cytomegalovirus (CMV), severe acute respiratory syndrome coronavirus, human herpesvirus 6 and others, to modulate receptor signaling. I also use the example of HIV and CMV to illustrate how two unrelated enveloped viruses use a similar SCHOOL mechanism to modulate the host immune response mediated by two functionally different receptors: T cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly non-viral pathogens. Learning from viruses how to target cell surface receptors not only helps us understand viral strategies to escape from the host immune surveillance, but also provides novel avenues in rational drug design and the development of new therapies for immune disorders.
Collapse
|
46
|
Shoda L, Kreuwel H, Gadkar K, Zheng Y, Whiting C, Atkinson M, Bluestone J, Mathis D, Young D, Ramanujan S. The Type 1 Diabetes PhysioLab Platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse. Clin Exp Immunol 2010; 161:250-67. [PMID: 20491795 DOI: 10.1111/j.1365-2249.2010.04166.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease whose clinical onset signifies a lifelong requirement for insulin therapy and increased risk of medical complications. To increase the efficiency and confidence with which drug candidates advance to human type 1 diabetes clinical trials, we have generated and validated a mathematical model of type 1 diabetes pathophysiology in a well-characterized animal model of spontaneous type 1 diabetes, the non-obese diabetic (NOD) mouse. The model is based on an extensive survey of the public literature and input from an independent scientific advisory board. It reproduces key disease features including activation and expansion of autoreactive lymphocytes in the pancreatic lymph nodes (PLNs), islet infiltration and beta cell loss leading to hyperglycaemia. The model uses ordinary differential and algebraic equations to represent the pancreas and PLN as well as dynamic interactions of multiple cell types (e.g. dendritic cells, macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, regulatory T cells, beta cells). The simulated features of untreated pathogenesis and disease outcomes for multiple interventions compare favourably with published experimental data. Thus, a mathematical model reproducing type 1 diabetes pathophysiology in the NOD mouse, validated based on accurate reproduction of results from multiple published interventions, is available for in silico hypothesis testing. Predictive biosimulation research evaluating therapeutic strategies and underlying biological mechanisms is intended to deprioritize hypotheses that impact disease outcome weakly and focus experimental research on hypotheses likely to provide insight into the disease and its treatment.
Collapse
Affiliation(s)
- L Shoda
- Entelos Inc., Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Richardson SJ, Willcox A, Bone AJ, Morgan NG, Foulis AK. Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 2010; 33:9-21. [DOI: 10.1007/s00281-010-0205-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/18/2010] [Indexed: 12/27/2022]
|
48
|
Abstract
Apoptosis of beta cells is a feature of both type 1 and type 2 diabetes as well as loss of islets after transplantation. In type 1 diabetes, beta cells are destroyed by immunological mechanisms. In type 2 diabetes abnormal levels of metabolic factors contribute to beta cell failure and subsequent apoptosis. Loss of beta cells after islet transplantation is due to many factors including the stress associated with islet isolation, primary graft non-function and allogeneic graft rejection. Irrespective of the exact mediators, highly conserved intracellular pathways of apoptosis are triggered. This review will outline the molecular mediators of beta cell apoptosis and the intracellular pathways activated.
Collapse
Affiliation(s)
- Helen E Thomas
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, VIC 3065, Australia.
| | | | | | | | | |
Collapse
|
49
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
50
|
Wolfe DN, Karanikas AT, Hester SE, Kennett MJ, Harvill ET. IL-10 induction by Bordetella parapertussis limits a protective IFN-gamma response. THE JOURNAL OF IMMUNOLOGY 2009; 184:1392-400. [PMID: 20042578 DOI: 10.4049/jimmunol.0803045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bordetella parapertussis causes the prolonged coughing illness known as pertussis or whooping cough, persisting for weeks within the respiratory tracts of infected hosts but inducing a very poor T cell response relative to that induced by Bordetella pertussis, the more common cause of pertussis. In this study, we examine the contributions of cytokines involved in the clearance of B. parapertussis and immunomodulation that delays effective clearance. The slow elimination of this pathogen from the respiratory tracts of mice coincides with the gradual accumulation of CD4(+) T cells in the lungs and B. parapertussis-responsive IFN-gamma-producing cells in the spleen. IFN-gamma-deficient mice were defective in the accumulation of leukocytes in lungs and in clearance of B. parapertussis from the lungs. In vitro B. parapertussis-stimulated macrophages produced IL-10, which inhibited the generation of the IFN-gamma response that is required for protection in vivo. As compared with wild-type mice, IL-10-deficient mice produced significantly higher levels of IFN-gamma, had higher numbers of leukocytes accumulated in the lungs, and cleared B. parapertussis more rapidly. Together, these data indicate that B. parapertussis induces the production of IL-10, which facilitates its persistence within infected hosts by limiting a protective IFN-gamma response.
Collapse
Affiliation(s)
- Daniel N Wolfe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|