1
|
Forghani P, Liu W, Wang Z, Ling Z, Takaesu F, Yang E, Tharp GK, Nielsen S, Doraisingam S, Countryman S, Davis ME, Wu R, Jia S, Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials 2025; 317:123080. [PMID: 39809079 PMCID: PMC11788069 DOI: 10.1016/j.biomaterials.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs. Cardiac spheroids derived from hiPSCs were transported to the International Space Station (ISS) via the SpaceX Crew-8 mission and cultured under space microgravity for 8 days. Beating cardiac spheroids were observed on the ISS and upon successful experimentation by the astronauts in space, the live cultures were returned to Earth. These cells had normal displacement (an indicator of contraction) and Ca2+ transient parameters in 3D live cell imaging. Proteomic analysis revealed that spaceflight upregulated many proteins involved in metabolism (n = 90), cellular component of mitochondrion (n = 62) and regulation of proliferation (n = 10). Specific metabolic pathways enriched by spaceflight included glutathione metabolism, biosynthesis of amino acids, and pyruvate metabolism. In addition, the top upregulated proteins in spaceflight samples included those involved in cellular stress response, cell survival, and metabolism. Transcriptomic profiles indicated that spaceflight upregulated genes associated with cardiomyocyte development, and cellular components of cardiac structure and mitochondrion. Furthermore, spaceflight upregulated genes in metabolic pathways associated with cell survival such as glycerophospholipid metabolism and glycerolipid metabolism. These findings indicate that short-term exposure of 3D hiPSC-CMs to the space environment led to significant changes in protein levels and gene expression involved in cell survival and metabolism.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhi Ling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Takaesu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Evan Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | - Michael E Davis
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Guo M, Watanabe T, Shinoka T. Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature. J Funct Biomater 2025; 16:152. [PMID: 40422817 DOI: 10.3390/jfb16050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity and ability for deep myocardial tissue penetration. Various methods of cell delivery, ranging in level of invasiveness and procedural complexity, have been developed, and numerous cell types have been studied as potential sources of stem cells, each with distinct advantages and disadvantages. We discuss key challenges associated with this approach, including low stem cell retention after transplantation and the innovative biomolecular strategies that have been explored to address this issue. Overall, investigations into the application of stem cells toward cardiac regeneration remain predominantly in the preclinical stage with a number of small, early-phase clinical trials. However, continued scientific advancements in stem cell technology may provide transformative treatment options for patients with heart failure, offering improved survival and quality of life.
Collapse
Affiliation(s)
- Marissa Guo
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
3
|
Hughes L, Lopez LV, Kearns-Jonker M. Prostaglandin E2 Induces YAP1 and Agrin Through EP4 in Neonatally-Derived Islet-1+ Stem Cells. Stem Cells Dev 2024; 33:496-504. [PMID: 38943285 DOI: 10.1089/scd.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Prostaglandin E2 (PGE2) has recently gained attention in the field of regenerative medicine because of the beneficial effects of this molecule on stem cell proliferation and migration. Furthermore, PGE2 has the ability to mitigate immune rejection and fibrosis. In the colon and kidney, PGE2 induces YAP1, a transcription factor critical for cardiac regeneration. Establishing a similar connection in stem cells that can be transplanted in the heart could lead to the development of more effective therapeutics. In this report, we identify the effects of PGE2 on neonatal Islet-1+ stem cells. These stem cells synthesize PGE2, which functions by stimulating the transcription of the extracellular matrix protein Agrin. Agrin upregulates YAP1. Consequently, both YAP1 and Agrin are induced by PGE2 treatment. Our study shows that PGE2 upregulated the expression of both YAP1 and Agrin in Islet-1+ stem cells through the EP4 receptor and stimulated proliferation using the same mechanisms. PGE2 administration further elevated the expression of stemness markers and the matrix metalloproteinase MMP9, a key regulator of remodeling in the extracellular matrix post-injury. The expression of PGE2 in neonatal Islet-1+ cells is a factor which contributes to improving the functional efficacy of these cells for cardiac repair.
Collapse
Affiliation(s)
- Lorelei Hughes
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
4
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
6
|
Scholz J, Secreto FJ, Wobig J, Kurian J, Hagen C, Zinnen A, Vu D, Johnson SJ, Cetta F, Qureshi Y, Reams R, Cannon B, Heyer CM, Chang M, Fadra N, Coonen J, Simmons HA, Mejia A, Hayes JM, Basu P, Capuano S, Bondarenko V, Metzger JM, Nelson TJ, Emborg ME. Human Stem Cell-Derived Cardiomyocytes Integrate Into the Heart of Monkeys With Right Ventricular Pressure Overload. Cell Transplant 2024; 33:9636897241290367. [PMID: 39487759 PMCID: PMC11531674 DOI: 10.1177/09636897241290367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024] Open
Abstract
Cardiac ventricular pressure overload affects patients with congenital heart defects and can cause cardiac insufficiency. Grafts of stem cell-derived cardiomyocytes are proposed as a complementary treatment to surgical repair of the cardiac defect, aiming to support ventricular function. Here, we report successful engraftment of human induced pluripotent stem cell-derived cardiac lineage cells into the heart of immunosuppressed rhesus macaques with a novel surgical model of right ventricular pressure overload. The human troponin+ grafts were detected in low-dose (2 × 106 cells/kg) and high-dose (10 × 106 cells/kg) treatment groups up to 12 weeks post-injection. Transplanted cells integrated and progressively matched the organization of the surrounding host myocardium. Ventricular tachycardia occurred in five out of 16 animals receiving cells, with episodes of incessant tachycardia observed in two animals; ventricular tachycardia events resolved within 19 days. Our results demonstrate that grafted cardiomyocytes mature and integrate into the myocardium of nonhuman primates modeling right ventricular pressure overload.
Collapse
Affiliation(s)
- Jodi Scholz
- Department of Comparative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Frank J. Secreto
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Joan Wobig
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | - Joe Kurian
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Clint Hagen
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Don Vu
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Steven J. Johnson
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Frank Cetta
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasir Qureshi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Bryan Cannon
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christina M. Heyer
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | | | - Numrah Fadra
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jeanette M. Metzger
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Timothy J. Nelson
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
7
|
Amirzadeh Gougheri K, Ahmadi A, Ahmadabadi MG, Babajani A, Yazdanpanah G, Bahrami S, Hassani M, Niknejad H. Exosomal Cargo: Pro-angiogeneic, anti-inflammatory, and regenerative effects in ischemic and non-ischemic heart diseases - A comprehensive review. Biomed Pharmacother 2023; 168:115801. [PMID: 37918257 DOI: 10.1016/j.biopha.2023.115801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Heart diseases are the primary cause of mortality and morbidity worldwide which inflict a heavy social and economic burden. Among heart diseases, most deaths are due to myocardial infarction (MI) or heart attack, which occurs when a decrement in blood flow to the heart causes injury to cardiac tissue. Despite several available diagnostic, therapeutic, and prognostic approaches, heart disease remains a significant concern. Exosomes are a kind of small extracellular vesicles released by different types of cells that play a part in intercellular communication by transferring bioactive molecules important in regenerative medicine. Many studies have reported the diagnostic, therapeutic, and prognostic role of exosomes in various heart diseases. Herein, we reviewed the roles of exosomes as new emerging agents in various types of heart diseases, including ischemic heart disease, cardiomyopathy, arrhythmia, and valvular disease, focusing on pathogenesis, therapeutic, diagnostic, and prognostic roles in different areas. We have also mentioned different routes of exosome delivery to target tissues, the effects of preconditioning and modification on exosome's capability, exosome production in compliance with good manufacturing practice (GMP), and their ongoing clinical applications in various medical contexts to shed light on possible clinical translation.
Collapse
Affiliation(s)
- Kowsar Amirzadeh Gougheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, 1855 W. Taylor Street, MC 648, Chicago, IL 60612, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
9
|
Hsieh YK, Wang MT, Wang CY, Chen CF, Ko YL, Huang WC. Recent advances in the diagnosis and management of acute myocardial infarction. J Chin Med Assoc 2023; 86:950-959. [PMID: 37801590 DOI: 10.1097/jcma.0000000000001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
With the discovery of new biomarkers for the early detection of acute myocardial infarction (AMI), advancements in valid medication, and percutaneous coronary intervention (PCI), the overall prognosis of AMI has improved remarkably. Nevertheless, challenges remain which require more difficult work to overcome. Novel diagnostic and therapeutic techniques include new AMI biomarkers, hypothermia therapy, supersaturated oxygen (SSO 2 ) therapy, targeted anti-inflammatory therapy, targeted angiogenesis therapy, and stem cell therapy. With these novel methods, we believe that the infarction size after AMI will decrease, and myocardial injury-associated ventricular remodeling may be avoided. This review focuses on novel advances in the diagnosis and management of AMI.
Collapse
Affiliation(s)
- Yi-Keng Hsieh
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
10
|
Alhejailan RS, Garoffolo G, Raveendran VV, Pesce M. Cells and Materials for Cardiac Repair and Regeneration. J Clin Med 2023; 12:jcm12103398. [PMID: 37240504 DOI: 10.3390/jcm12103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
After more than 20 years following the introduction of regenerative medicine to address the problem of cardiac diseases, still questions arise as to the best cell types and materials to use to obtain effective clinical translation. Now that it is definitively clear that the heart does not have a consistent reservoir of stem cells that could give rise to new myocytes, and that there are cells that could contribute, at most, with their pro-angiogenic or immunomodulatory potential, there is fierce debate on what will emerge as the winning strategy. In this regard, new developments in somatic cells' reprogramming, material science and cell biophysics may be of help, not only for protecting the heart from the deleterious consequences of aging, ischemia and metabolic disorders, but also to boost an endogenous regeneration potential that seems to be lost in the adulthood of the human heart.
Collapse
Affiliation(s)
- Reem Saud Alhejailan
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Vineesh Vimala Raveendran
- Cell Biology Department, King's Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| |
Collapse
|
11
|
Genetic Mechanism Study of Auditory Phoenix Spheres and Transcription Factors Prediction for Direct Reprogramming by Bioinformatics. Int J Mol Sci 2022; 23:ijms231810287. [PMID: 36142199 PMCID: PMC9499413 DOI: 10.3390/ijms231810287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hearing loss is the most common irreversible sensory disorder. By delivering regenerative cells into the cochlea, cell-based therapy provides a novel strategy for hearing restoration. Recently, newly-identified phoenix cells have drawn attention due to their nearly unlimited self-renewal and neural differentiation capabilities. They are a promising cell source for cell therapy and a potential substitute for induced pluripotent stem cells (iPSCs) in many in vitro applications. However, the underlying genomic mechanism of their self-renewal capabilities is largely unknown. The aim of this study was to identify hub genes and potential molecular mechanisms between differentiated and undifferentiated phoenix cells and predict transcription factors (TFs) for direct reprogramming. Material and Methods: The datasets were downloaded from the ArrayExpress database. Samples of differentiated and undifferentiated phoenix cells with three biological replicates were utilised for bioinformatic analysis. Differentially expressed genes (DEGs) were screened and the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were investigated. The gene set enrichment analysis (GSEA) was conducted to verify the enrichment of four self-defined gene set collections, followed by protein-protein interaction (PPI) network construction and subcluster analysis. The prediction of TFs for direct reprogramming was performed based on the TRANSFAC database. Results: Ten hub genes were identified to be the key candidates for self-renewal. Ten TFs were predicted as the direct reprogramming factors. This study provides a theoretical foundation for understanding phoenix cells and clues for direct reprogramming, which would stimulate further experiments and clinical applications in hearing research and treatment.
Collapse
|
12
|
Lin J, Yang Z, Wang L, Xing D, Lin J. Global research trends in extracellular vesicles based on stem cells from 1991 to 2021: A bibliometric and visualized study. Front Bioeng Biotechnol 2022; 10:956058. [PMID: 36110319 PMCID: PMC9468424 DOI: 10.3389/fbioe.2022.956058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: With the development of extracellular vesicles (EVs) based on stem cells research all over the world, our present study was aiming to discover the global trends in this field. Methods: All publications related to EVs based on stem cells from 1991 to 2021 were collected from the Science Citation Index-Expanded of Web of Science Subsequently, the data were evaluated using the bibliometric methodology. In terms of visualized study, the VOS viewer software was performed to investigate the bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, and last for the publication's trends involved in the field of EVs based on stem cells. Results: A total of 8,208 publications were retrieved and the relative number of global publications and research interests were increasing every year especially in recent 5 years. China rank top one in terms of total publications, prolific authors, and funds, whereas the USA made the greatest contributions with the most total citations and highest H-index to the global research. Stem cell research therapy contributed the highest publications, whereas the journal of PLOS ONE showed the best total link strength. The Shanghai Jiao Tong University, University of California System, and Harvard University were the most contributive institutions. The global studies could be divided into six clusters as follows: cancer research, musculoskeletal system research, respiratory system research, urinary system and endocrine system research, nerve system research, and cardiovascular system research. All the directions were predicted to still hotspots in near future researches in this field. Conclusion: The total number of publications about EVs based stem cells would be increasing according to the current global trends. China and the USA was the largest contributors in this field. Further efforts should be put in the directions of cancer research, musculoskeletal system research, respiratory system research, urinary system and endocrine system research, nerve system research, as well was cardiovascular system research in this field of EVs based stem cells.
Collapse
Affiliation(s)
- Jianjing Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Li Wang
- Department of Biomedical Engineering, Institute of Future Technology, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
13
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
14
|
Munderere R, Kim SH, Kim C, Park SH. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med 2022; 19:969-986. [PMID: 35857259 DOI: 10.1007/s13770-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea. .,Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
15
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
16
|
Wang J, Gu S, Liu F, Chen Z, Xu H, Liu Z, Cheng W, Wu L, Xu T, Chen Z, Chen D, Chen X, Zeng F, Zhao Z, Zhang M, Cao N. Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nat Biomed Eng 2022; 6:403-420. [PMID: 35361933 DOI: 10.1038/s41551-022-00865-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
A major hurdle in cardiac cell therapy is the lack of a bona fide autologous stem-cell type that can be expanded long-term and has authentic cardiovascular differentiation potential. Here we report that a proliferative cell population with robust cardiovascular differentiation potential can be generated from mouse or human fibroblasts via a combination of six small molecules. These chemically induced cardiovascular progenitor cells (ciCPCs) self-renew long-term in fully chemically defined and xeno-free conditions, with faithful preservation of the CPC phenotype and of cardiovascular differentiation capacity in vitro and in vivo. Transplantation of ciCPCs into infarcted mouse hearts improved animal survival and cardiac function up to 13 weeks post-infarction. Mechanistically, activated fibroblasts revert to a plastic state permissive to cardiogenic signals, enabling their reprogramming into ciCPCs. Expanded autologous cardiovascular cells may find uses in drug discovery, disease modelling and cardiac cell therapy.
Collapse
Affiliation(s)
- Jia Wang
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Shanshan Gu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Fang Liu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zihao Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - He Xu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zhun Liu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Weisheng Cheng
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Linwei Wu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Tao Xu
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zhongyan Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Ding Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Xuena Chen
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Fanzhu Zeng
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Zhiju Zhao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China.,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China
| | - Mingliang Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Nan Cao
- Zhongshan School of Medicine and the Seventh Affiliated Hospital, Sun Yat-Sen University, Guangdong, China. .,Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong, China.
| |
Collapse
|
17
|
Jiang L, Liang J, Huang W, Ma J, Park KH, Wu Z, Chen P, Zhu H, Ma JJ, Cai W, Paul C, Niu L, Fan GC, Wang HS, Kanisicak O, Xu M, Wang Y. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol Ther 2022; 30:54-74. [PMID: 34678511 PMCID: PMC8753567 DOI: 10.1016/j.ymthe.2021.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian-Jie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
18
|
Fan D, Wu H, Pan K, Peng H, Wu R. Regenerating Damaged Myocardium: A Review of Stem-Cell Therapies for Heart Failure. Cells 2021; 10:3125. [PMID: 34831347 PMCID: PMC8625160 DOI: 10.3390/cells10113125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the contributing factors to more than one-third of human mortality and the leading cause of death worldwide. The death of cardiac myocyte is a fundamental pathological process in cardiac pathologies caused by various heart diseases, including myocardial infarction. Thus, strategies for replacing fibrotic tissue in the infarcted region with functional myocardium have long been a goal of cardiovascular research. This review begins by briefly discussing a variety of somatic stem- and progenitor-cell populations that were frequently studied in early investigations of regenerative myocardial therapy and then focuses primarily on pluripotent stem cells (PSCs), especially induced-pluripotent stem cells (iPSCs), which have emerged as perhaps the most promising source of cardiomyocytes for both therapeutic applications and drug testing. We also describe attempts to generate cardiomyocytes directly from cardiac fibroblasts (i.e., transdifferentiation), which, if successful, may enable the pool of endogenous cardiac fibroblasts to be used as an in-situ source of cardiomyocytes for myocardial repair.
Collapse
Affiliation(s)
- Dihan Fan
- Psychiatric Genetics Group, McGill University, Montreal, QC H4H 1R3, Canada; (D.F.); (H.W.); (H.P.)
- Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, McGill University, Montreal, QC H4H 1R3, Canada; (D.F.); (H.W.); (H.P.)
- Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Kaichao Pan
- Division of Cardiology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University, Montreal, QC H4H 1R3, Canada; (D.F.); (H.W.); (H.P.)
- Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Rongxue Wu
- Division of Cardiology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
19
|
Eschenhagen T, Ridders K, Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 163:106-117. [PMID: 34687723 DOI: 10.1016/j.yjmcc.2021.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | | | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
20
|
Das S, Nam H, Jang J. 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair. APL Bioeng 2021; 5:031508. [PMID: 34368602 PMCID: PMC8318604 DOI: 10.1063/5.0030353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Stem cell-laden three-dimensional (3D) bioprinted cardiac patches offer an alternative and promising therapeutic and regenerative approach for ischemic cardiomyopathy by reversing scar formation and promoting myocardial regeneration. Numerous studies have reported using either multipotent or pluripotent stem cells or their combination for 3D bioprinting of a cardiac patch with the sole aim of restoring cardiac function by faithfully rejuvenating the cardiomyocytes and associated vasculatures that are lost to myocardial infarction. While many studies have demonstrated success in mimicking cardiomyocytes' behavior, improving cardiac function and providing new hope for regenerating heart post-myocardial infarction, some others have reported contradicting data in apparent ways. Nonetheless, all investigators in the field are speed racing toward determining a potential strategy to effectively treat losses due to myocardial infarction. This review discusses various types of candidate stem cells that possess cardiac regenerative potential, elucidating their applications and limitations. We also brief the challenges of and an update on the implementation of the state-of-the-art 3D bioprinting approach to fabricate cardiac patches and highlight different strategies to implement vascularization and augment cardiac functional properties with respect to electrophysiological similarities to native tissue.
Collapse
Affiliation(s)
- Sanskrita Das
- Department of Convergence IT Engineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Hyoryung Nam
- Department of Convergence IT Engineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
21
|
Abstract
Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.
Collapse
|
22
|
Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 2021; 274:120818. [PMID: 34023620 DOI: 10.1016/j.biomaterials.2021.120818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Engineered cardiac tissues that can be directly produced from human induced pluripotent stem cells (hiPSCs) in scalable, suspension culture systems are needed to meet the demands of cardiac regenerative medicine. Here, we demonstrate successful production of functional cardiac tissue microspheres through direct differentiation of hydrogel encapsulated hiPSCs. To form the microspheres, hiPSCs were suspended within the photocrosslinkable biomaterial, PEG-fibrinogen (25 million cells/mL), and encapsulated at a rate of 420,000 cells/minute using a custom microfluidic system. Even at this high cell density and rapid production rate, high intra-batch and batch-to-batch reproducibility was achieved. Following microsphere formation, hiPSCs maintained high cell viability and continued to grow within and beyond the original PEG-fibrinogen matrix. These initially soft microspheres (<250 Pa) supported efficient cardiac differentiation; spontaneous contractions initiated by differentiation day 8, and the microspheres contained >75% cardiomyocytes (CMs). CMs responded appropriately to pharmacological stimuli and exhibited 1:1 capture up to 6.0 Hz when electrically paced. Over time, cells formed cell-cell junctions and aligned myofibril fibers; engineered cardiac microspheres were maintained in culture over 3 years. The capability to rapidly generate uniform cardiac microsphere tissues is critical for advancing downstream applications including biomanufacturing, multi-well plate drug screening, and injection-based regenerative therapies.
Collapse
|
23
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
24
|
Wysoczynski M, Bolli R. A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. Eur Heart J 2021; 41:2397-2404. [PMID: 31778154 DOI: 10.1093/eurheartj/ehz787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Despite the well-documented capacity of embryonic stem cells (ESCs) to differentiate into cardiomyocytes, transplantation of ESCs or ESC-derived cells is plagued by several formidable problems, including graft rejection, arrhythmias, and potential risk of teratomas. Life-long immunosuppression is a disease in itself. Transplantation of human ESC-derived cells in primates causes life-threatening arrhythmias, and the doses used to show efficacy are not clinically relevant. In contemporary clinical research, the margin of tolerance for such catastrophic effects as malignancies is zero, and although the probability of tumours can be reduced by ESC differentiation, it is unlikely to be completely eliminated, particularly when billions of cells are injected. Although ESCs and ESC-derived cells were touted as capable of long-term regeneration, these cells disappear rapidly after transplantation and there is no evidence of long-term engraftment, let alone regeneration. There is, however, mounting evidence that they act via paracrine mechanisms-just like adult cells. To date, no controlled clinical trial of ESC-derived cells in cardiovascular disease has been conducted or even initiated. In contrast, adult cells have been used in thousands of patients with heart disease, with no significant adverse effects and with results that were sufficiently encouraging to warrant Phase II and III trials. Furthermore, induced pluripotent stem cells offer pluripotency similar to ESCs without the need for lifelong immunosuppression. After two decades, the promise that ESC-derived cells would regenerate dead myocardium has not been fulfilled. The most reasonable interpretation of current data is that ESC-based therapies are not likely to have clinical application for heart disease.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
25
|
Bi W, Wang J, Jiang Y, Li Q, Wang S, Liu M, Liu Q, Li F, Paul C, Wang Y, Yang HT. Neurotrophin-3 contributes to benefits of human embryonic stem cell-derived cardiovascular progenitor cells against reperfused myocardial infarction. Stem Cells Transl Med 2021; 10:756-772. [PMID: 33529481 PMCID: PMC8046156 DOI: 10.1002/sctm.20-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) resulting from coronary ischemia is a major cause of disability and death worldwide. Transplantation of human embryonic stem cell (hESC)‐derived cardiovascular progenitor cells (hCVPCs) promotes the healing of infarcted hearts by secreted factors. However, the hCVPC‐secreted proteins contributing to cardiac repair remain largely unidentified. In this study, we investigated protective effects of neurotrophin (NT)‐3 secreted from hCVPCs in hearts against myocardial ischemia/reperfusion (I/R) injury and explored the underlying mechanisms to determine the potential of using hCVPC products as a new therapeutic strategy. The implantation of hCVPCs into infarcted myocardium at the beginning of reperfusion following 1 hour of ischemia improved cardiac function and scar formation of mouse hearts. These beneficial effects were concomitant with reduced cardiomyocyte death and increased angiogenesis. Moreover, hCVPCs secreted a rich abundance of NT‐3. The cardioreparative effect of hCVPCs in the I/R hearts was mimicked by human recombinant NT‐3 (hNT‐3) but canceled by NT‐3 neutralizing antibody (NT‐3‐Ab). Furthermore, endogenous NT‐3 was detected in mouse adult cardiomyocytes and its level was enhanced in I/R hearts. Adenovirus‐mediated NT‐3 knockdown exacerbated myocardial I/R injury. Mechanistically, hNT‐3 and endogenous NT‐3 inhibited I/R‐induced cardiomyocyte apoptosis through activating the extracellular signal‐regulated kinase (ERK) and reducing the Bim level, resulting in the cardioreparative effects of infarcted hearts together with their effects in the improvement of angiogenesis. These results demonstrate for the first time that NT‐3 is a cardioprotective factor secreted by hCVPCs and exists in adult cardiomyocytes that reduces I/R‐induced cardiomyocyte apoptosis via the ERK‐Bim signaling pathway and promotes angiogenesis. As a cell product, NT‐3 may represent as a noncell approach for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Jinxi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Shihui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Meilan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China.,Institute for Stem Cell and Regeneration, CAS, Beijing, People's Republic of China
| |
Collapse
|
26
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
27
|
Hanna M, Sahito RGA, Rateb M, Kachiwal AB, Seddiek HA, Bhutto B, Hescheler J. Generation of transgene-free induced pluripotent stem cells from cardiac fibroblasts of goat embryos. J Stem Cells Regen Med 2020; 16:34-43. [PMID: 33414579 DOI: 10.46582/jsrm.1602007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 11/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold a great potential for therapeutic regenerative medicine. The aim of this study was to generate induced pluripotent stem cells from goat embryonic cardiac tissue derived fibroblasts. The isolated cardiac fibroblasts from the cardiac tissue of goat embryos were positive for alfa smooth muscle actin, vimentin and discoidin domain receptor2. From these cells, we generated transgene free iPSCs using piggyBac transposons / transposase using five transcription factors (Oct4, Sox2, Klf, Myc and Lin 28). The generated iPSCs were SSEA1, SSEA4 and Oct4 positive. They were cultured on neofeeders using 20% Serum replacement - IMDM with bFGF. They could form cystic and compact embryoid bodies that showed differentiated ectodermal and mesodermal like cells when cultured using 20% FBS-IMDM without bFGF. The iPSCs, generated in the frame of this approach were produced without the use of integrating virus and the reprogramming transgenes were removed at the end of the process. Though there were limitations in the approach used, a substantial sign of reprogramming was obtained.
Collapse
Affiliation(s)
- Mira Hanna
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany.,Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | | | - Moshira Rateb
- Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | - Allah Bux Kachiwal
- Department of Veterinary Physiology and Biochemistry, Sindh Agriculture University Tandojam, Pakistan
| | - Hanan A Seddiek
- Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | - Bachal Bhutto
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Pakistan
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany
| |
Collapse
|
28
|
Menasché P. Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Front Bioeng Biotechnol 2020; 8:601560. [PMID: 33195177 PMCID: PMC7649799 DOI: 10.3389/fbioe.2020.601560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In the ongoing quest for the “ideal” cell type for heart repair, pluripotent stem cells (PSC) derived from either embryonic or reprogrammed somatic cells have emerged as attractive candidates because of their unique ability to give rise to lineage-specific cells and to transplant them at the desired stage of differentiation. The technical obstacles which have initially hindered their clinical use have now been largely overcome and several trials are under way which encompass several different diseases, including heart failure. So far, there have been no safety warning but it is still too early to draw definite conclusions regarding efficacy. In parallel, mechanistic studies suggest that the primary objective of “remuscularizing” the heart with PSC-derived cardiac cells can be challenged by their alternate use as ex vivo sources of a biologically active extracellular vesicle-enriched secretome equally able to improve heart function through harnessing endogenous repair pathways. The exclusive use of this secretome would combine the advantages of a large-scale production more akin to that of a biological medication, the likely avoidance of cell-associated immune and tumorigenicity risks and the possibility of intravenous infusions compatible with repeated dosing.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.,PARCC, INSERM, University of Paris, Paris, France
| |
Collapse
|
29
|
Desgres M, Menasché P. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem Cell 2020; 25:594-606. [PMID: 31703770 DOI: 10.1016/j.stem.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the clinical outcomes of cell therapy trials have not met initial expectations, emerging evidence suggests that injury-mediated tissue damage might benefit from the delivery of cells or their secreted products. Pluripotent stem cells (PSCs) are promising cell sources primarily because of their capacity to generate stage- and lineage-specific differentiated derivatives. However, they carry inherent challenges for safe and efficacious clinical translation. This Review describes completed or ongoing trials of PSCs, discusses their potential mechanisms of action, and considers how to address the challenges required for them to become a major therapy, using heart repair as a case study.
Collapse
Affiliation(s)
- Manon Desgres
- Université de Paris, PARCC, INSERM, 75015 Paris, France
| | - Philippe Menasché
- Université de Paris, PARCC, INSERM, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
30
|
Montazeri L, Sobat M, Kowsari-Esfahan R, Rabbani S, Ansari H, Barekat M, Firoozi S, Rajabi S, Vahdat S, Baharvand H, Pahlavan S. Vascular endothelial growth factor sustained delivery augmented cell therapy outcomes of cardiac progenitor cells for myocardial infarction. J Tissue Eng Regen Med 2020; 14:1939-1944. [PMID: 32885899 DOI: 10.1002/term.3125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023]
Abstract
Cell therapy has become a novel promising approach for improvement of cardiac functional capacity in the instances of ventricular remodeling and fibrosis caused by episodes of coronary artery occlusion and hypoxia. The challenge toward enhancing cell engraftment as well as formation of functional tissue, however, necessitated combinatorial approaches. Here, we complemented human embryonic stem cell-derived cardiac progenitor cell (hESC-CPC) therapy by heparin-conjugated, vascular endothelial growth factor (VEGF)-loaded fibrin hydrogel as VEGF delivery system. Transplantation of these cardiac committed cells along with sustained VEGF release could surpass the cardiac repair effects of each constituent alone in a rat model of acute myocardial infarction. The histological sections of rat hearts revealed improved vascularization as well as inclusion of hESC-CPC-derived cardiomyocytes, endothelial, and smooth muscle cells in host myocardium. Thus, co-transplantation of hESC-CPC and proangiogenic factor by a suitable delivery rate may resolve the shortcomings of conventional cell therapy.
Collapse
Affiliation(s)
- Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Motahareh Sobat
- Department of Biotechnology, Collage of Science, University of Tehran, Tehran, Iran
| | - Reza Kowsari-Esfahan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Medical Sciences University of Tehran, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Firoozi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
32
|
Wang L, Zhang F, Duan F, Huang R, Chen X, Ming J, Na J. Homozygous MESP1 knock-in reporter hESCs facilitated cardiovascular cell differentiation and myocardial infarction repair. Theranostics 2020; 10:6898-6914. [PMID: 32550911 PMCID: PMC7295063 DOI: 10.7150/thno.42347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/09/2020] [Indexed: 12/15/2022] Open
Abstract
Different populations of cardiovascular progenitor cells have been shown to possess varying differentiation potentials. They have also been used to facilitate heart repair. However, sensitive reporter cell lines that mark the human cardiovascular progenitors are in short supply. Methods: MESP1 marks the earliest population of cardiovascular progenitor cells during embryo development. Here, we generated a homozygous MESP1 knock-in reporter hESC line where mTomato gene joined to the MESP1 coding region via a 2A peptide, in which both MESP1 alleles were preserved. We performed transcriptome and functional analysis of human MESP1+ cardiovascular progenitor cells and tested their therapeutic potential using a rat model of myocardial infarction. Results: MESP1-mTomato knock-in reporter faithfully recapitulated the endogenous level of MESP1. Transcriptome analysis revealed that MESP1+ cells highly expressed early cardiovascular genes and heart development genes. The activation of MESP1 relied on the strength of canonical Wnt signaling, peak MESP1-mTomato fluorescence correlated with the window of canonical Wnt inhibition during in vitro differentiation. We further showed that MESP1 bound to the promoter of the WNT5A gene and the up-regulation of WNT5A expression suppressed canonical Wnt/β-CATENIN signaling. Moreover, induced MESP1 expression could substitute the canonical Wnt inhibition step and promote robust cardiomyocyte formation. We used a configurable, chemically defined, tri-lineage differentiation system to obtain cardiomyocytes, endothelial cells, and smooth muscle cells from MESP1+ cells at high efficiency. Finally, we showed that the engraftment of MESP1+ cells repaired rat myocardial infarction model. Conclusions: MESP1-mTomato reporter cells offered a useful platform to study cardiovascular differentiation from human pluripotent stem cells and explore their therapeutic potential in regenerative medicine.
Collapse
|
33
|
Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death Dis 2020; 11:354. [PMID: 32393784 PMCID: PMC7214429 DOI: 10.1038/s41419-020-2508-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs)-derived cardiovascular progenitor cells (CVPCs) are a promising source for myocardial repair, while the mechanisms remain largely unknown. Extracellular vesicles (EVs) are known to mediate cell–cell communication, however, the efficacy and mechanisms of hPSC-CVPC-secreted EVs (hCVPC-EVs) in the infarct healing when given at the acute phase of myocardial infarction (MI) are unknown. Here, we report the cardioprotective effects of the EVs secreted from hESC-CVPCs under normoxic (EV-N) and hypoxic (EV-H) conditions in the infarcted heart and the long noncoding RNA (lncRNA)-related mechanisms. The hCVPC-EVs were confirmed by electron microscopy, nanoparticle tracking, and immunoblotting analysis. Injection of hCVPC-EVs into acutely infracted murine myocardium significantly improved cardiac function and reduced fibrosis at day 28 post MI, accompanied with the improved vascularization and cardiomyocyte survival at border zones. Consistently, hCVPC-EVs enhanced the tube formation and migration of human umbilical vein endothelial cells (HUVECs), improved the cell viability, and attenuated the lactate dehydrogenase release of neonatal rat cardiomyocytes (NRCMs) with oxygen glucose deprivation (OGD) injury. Moreover, the improvement of the EV-H in cardiomyocyte survival and tube formation of HUVECs was significantly better than these in the EV-N. RNA-seq analysis revealed a high abundance of the lncRNA MALAT1 in the EV-H. Its abundance was upregulated in the infarcted myocardium and cardiomyocytes treated with hCVPC-EVs. Overexpression of human MALAT1 improved the cell viability of NRCM with OGD injury, while knockdown of MALAT1 inhibited the hCVPC-EV-promoted tube formation of HUVECs. Furthermore, luciferase activity assay, RNA pull-down, and manipulation of miR-497 levels showed that MALAT1 improved NRCMs survival and HUVEC tube formation through targeting miR-497. These results reveal that hCVPC-EVs promote the infarct healing through improvement of cardiomyocyte survival and angiogenesis. The cardioprotective effects of hCVPC-EVs can be enhanced by hypoxia-conditioning of hCVPCs and are partially contributed by MALAT1 via targeting the miRNA.
Collapse
|
34
|
How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7874109. [PMID: 32190680 PMCID: PMC7073483 DOI: 10.1155/2020/7874109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Stem cell-based therapy has been considered as a promising option in the treatment of ischemic heart disease. Although stem cell administration resulted in the temporary improvement of myocardial contractility in the majority of studies, the formation of new cardiomyocytes within the injured myocardium has not been conclusively demonstrated. Consequently, the focus of research in the field has since shifted to stem cell-derived paracrine factors, including cytokines, growth factors, mRNA, and miRNA. Notably, both mRNA and miRNA can enter into the extracellular space either in soluble form or packed into membrane vesicles. Stem cell-derived paracrine factors have been shown to suppress inflammation and apoptosis, stimulate angiogenesis, and amplify the proliferation and differentiation of resident cardiac stem cells (CSCs). Such features have led to exosomes being considered as potential drug candidates affording myocardial regeneration. The search for chemical signals capable of stimulating cardiomyogenesis is ongoing despite continuous debates regarding the ability of mature cardiomyocytes to divide or dedifferentiate, transdifferentiation of other cells into cardiomyocytes, and the ability of CSCs to differentiate into cardiomyocytes. Future research is aimed at identifying novel cell candidates capable of differentiating into cardiomyocytes. The observation that CSCs can undergo intracellular development with the formation of “cell-in-cell structure” and subsequent release of transitory amplifying cells with the capacity to differentiate into cardiomyocytes may provide clues for stimulating regenerative cardiomyogenesis.
Collapse
|
35
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
36
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
37
|
Abstract
The investment of nearly 2 decades of clinical investigation into cardiac cell therapy has yet to change cardiovascular practice. Recent insights into the mechanism of cardiac regeneration help explain these results and provide important context in which we can develop next-generation therapies. Non-contractile cells such as bone marrow or adult heart derivatives neither engraft long-term nor induce new muscle formation. Correspondingly, these cells offer little functional benefit to infarct patients. In contrast, preclinical data indicate that transplantation of bona fide cardiomyocytes derived from pluripotent stem cells induces direct remuscularization. This new myocardium beats synchronously with the host heart and induces substantial contractile benefits in macaque monkeys, suggesting that regeneration of contractile myocardium is required to fully recover function. Through a review of the preclinical and clinical trials of cardiac cell therapy, distinguishing the primary mechanism of benefit as either contractile or non-contractile helps appreciate the barriers to cardiac repair and establishes a rational path to optimizing therapeutic benefit.
Collapse
Affiliation(s)
- Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Center for Cardiovascular Biology, University of Washington
- Department of Medicine/Cardiology, University of Washington
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington
- Center for Cardiovascular Biology, University of Washington
- Department of Medicine/Cardiology, University of Washington
- Department of Pathology, University of Washington
- Department of Bioengineering, University of Washington
| |
Collapse
|
38
|
Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, Aghdami N, Baharvand H. Expansion of Human Pluripotent Stem Cell-derived Early Cardiovascular Progenitor Cells by a Cocktail of Signaling Factors. Sci Rep 2019; 9:16006. [PMID: 31690816 PMCID: PMC6831601 DOI: 10.1038/s41598-019-52516-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular progenitor cells (CPCs) derived from human pluripotent stem cells (hPSCs) are proposed to be invaluable cell sources for experimental and clinical studies. This wide range of applications necessitates large-scale production of CPCs in an in vitro culture system, which enables both expansion and maintenance of these cells. In this study, we aimed to develop a defined and efficient culture medium that uses signaling factors for large-scale expansion of early CPCs, called cardiogenic mesodermal cells (CMCs), which were derived from hPSCs. Chemical screening resulted in a medium that contained a reproducible combination of three factors (A83-01, bFGF, and CHIR99021) that generated 1014 CMCs after 10 passages without the propensity for tumorigenicity. Expanded CMCs retained their gene expression pattern, chromosomal stability, and differentiation tendency through several passages and showed both the safety and possible cardio-protective potentials when transplanted into the infarcted rat myocardium. These CMCs were efficiently cryopreserved for an extended period of time. This culture medium could be used for both adherent and suspension culture conditions, for which the latter is required for large-scale CMC production. Taken together, hPSC-derived CMCs exhibited self-renewal capacity in our simple, reproducible, and defined medium. These cells might ultimately be potential, promising cell sources for cardiovascular studies.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elena Mahmoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
39
|
Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11:729-747. [PMID: 31692979 PMCID: PMC6828592 DOI: 10.4252/wjsc.v11.i10.729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ten years after the initial generation of induced pluripotent stem cells (hiPSCs) from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest. Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eléanor Luce
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
- Service de Biochimie, Pôle Biospharm, CHU de Poitiers, Poitiers F-86021, France
- Fédération Hospitalo-Universitaire SUPORT, CHU de Poitiers, Poitiers F-86021, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| |
Collapse
|
40
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
41
|
Wang J, Liu M, Wu Q, Li Q, Gao L, Jiang Y, Deng B, Huang W, Bi W, Chen Z, Chin YE, Paul C, Wang Y, Yang HT. Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages via Activation of Signal Transducer and Activator of Transcription 6. Antioxid Redox Signal 2019; 31:369-386. [PMID: 30854870 PMCID: PMC6602123 DOI: 10.1089/ars.2018.7688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: Human embryonic stem cell derived-cardiovascular progenitor cells (hESC-CVPCs) are a promising cell source for cardiac repair, while the underlying mechanisms need to be elucidated. We recently observed cardioprotective effects of human pluripotent stem cell (hPSC)-CVPCs in infarcted nonhuman primates, but their effects on inflammation during early phase of myocardial infarction (MI) and the contribution of such effect to the cardioprotection are unclear. Results: Injection of hESC-CVPCs into acutely infarcted myocardium significantly ameliorated the functional worsening and scar formation, concomitantly with reduced inflammatory reactions and cardiomyocyte apoptosis as well as increased vascularization. Moreover, hESC-CVPCs modulated cardiac macrophages toward a reparative phenotype in the infarcted hearts, and such modulation was further confirmed in vitro using human cardiovascular progenitor cell (hCVPC)-conditioned medium (hCVPC-CdM) and highly contained interleukin (IL)-4/IL-13. Furthermore, signal transducer and activator of transcription 6 (STAT6) was activated in hCVPC-CdM- and IL-4/IL-13-treated macrophages in vitro and in hESC-CVPC-implanted MI hearts, resulting in the polarization of macrophages toward a reparative phenotype in the post-MI hearts. However, hESC-CVPC-mediated modulation on macrophages and cardioprotection were abolished in STAT6-deficient MI mice. Innovation: This is the first report about the immunoregulatory role played by hESC-CVPCs in the macrophage polarization in the infarcted hearts, its importance for the infarct repair, and the underlying signaling pathway. The findings provide new insight into the mechanism of microenvironmental regulation of stem cell-based therapy during acute MI. Conclusions: Implantion of hESC-CVPCs during the early phase of MI promotes infarct repair via the modulation of macrophage polarization through secreted cytokine-mediated STAT6 activation. The findings suggest a therapeutic potential by modulating macrophage polarization during acute phase of MI.
Collapse
Affiliation(s)
- Jinxi Wang
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Meilan Liu
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qiang Wu
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qiang Li
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ling Gao
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yun Jiang
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Boxiong Deng
- 3 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Tumor and Stem Cell, SIBS, Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Wei Huang
- 4 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Wei Bi
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhongyan Chen
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| | - Y Eugene Chin
- 3 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Tumor and Stem Cell, SIBS, Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Christian Paul
- 4 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Yigang Wang
- 4 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Huang-Tian Yang
- 1 CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences (CAS), Chinese Academy of Sciences, Shanghai, People's Republic of China.,2 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
42
|
Fujita B, Zimmermann WH. Myocardial tissue engineering strategies for heart repair: current state of the art. Interact Cardiovasc Thorac Surg 2019; 27:916-920. [PMID: 30084989 DOI: 10.1093/icvts/ivy208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
The current state-of-the-art treatment for heart failure patients is aimed at delaying disease progression, relieving symptoms, reducing morbidity and improving survival. Cardiac regeneration of the injured heart, however, is not achieved. Currently, numerous alternative treatment approaches aiming at cardiac regeneration are under investigation. Myocardial tissue engineering strategies follow the idea of in vitro generation of myocardium-like structures for epicardial transplantation. Recently, this field has made tremendous advances regarding in vitro optimization of tissue-engineered constructs, and valuable data have been generated in small animal models. This review summarizes the technical aspects of engineered human myocardium generation, lessons learned from preclinical in vitro and in vivo studies and the current state of this approach on its way to clinical translation.
Collapse
Affiliation(s)
- Buntaro Fujita
- Department of Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Identification of Cardiomyocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. Cell Rep 2019; 22:546-556. [PMID: 29320747 DOI: 10.1016/j.celrep.2017.12.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/22/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023] Open
Abstract
Here, we find that human-induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM)-fated progenitors (CFPs) that express a tetraspanin family glycoprotein, CD82, almost exclusively differentiate into CMs both in vitro and in vivo. CD82 is transiently expressed in late-stage mesoderm cells during hiPSC differentiation. Purified CD82+ cells gave rise to CMs under nonspecific in vitro culture conditions with serum, as well as in vivo after transplantation to the subrenal space or injured hearts in mice, indicating that CD82 successfully marks CFPs. CD82 overexpression in mesoderm cells as well as in undifferentiated hiPSCs increased the secretion of exosomes containing β-catenin and reduced nuclear β-catenin protein, suggesting that CD82 is involved in fated restriction to CMs through Wnt signaling inhibition. This study may contribute to the understanding of CM differentiation mechanisms and to cardiac regeneration strategies.
Collapse
|
44
|
A comprehensive, multiscale framework for evaluation of arrhythmias arising from cell therapy in the whole post-myocardial infarcted heart. Sci Rep 2019; 9:9238. [PMID: 31239508 PMCID: PMC6592890 DOI: 10.1038/s41598-019-45684-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Direct remuscularization approaches to cell-based heart repair seek to restore ventricular contractility following myocardial infarction (MI) by introducing new cardiomyocytes (CMs) to replace lost or injured ones. However, despite promising improvements in cardiac function, high incidences of ventricular arrhythmias have been observed in animal models of MI injected with pluripotent stem cell-derived cardiomyocytes (PSC-CMs). The mechanisms of arrhythmogenesis remain unclear. Here, we present a comprehensive framework for computational modeling of direct remuscularization approaches to cell therapy. Our multiscale 3D whole-heart modeling framework integrates realistic representations of cell delivery and transdifferentiation therapy modalities as well as representation of spatial distributions of engrafted cells, enabling simulation of clinical therapy and the prediction of emergent electrophysiological behavior and arrhythmogenensis. We employ this framework to explore how varying parameters of cell delivery and transdifferentiation could result in three mechanisms of arrhythmogenesis: focal ectopy, heart block, and reentry.
Collapse
|
45
|
Iop L, Assunta F, Gerosa G. Mechanical Circulatory Support and Stem Cell-Based Heart Treatment in Europe-2018 Clinical Update. Artif Organs 2019; 42:871-878. [PMID: 30328625 DOI: 10.1111/aor.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Iop
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Fabozzo Assunta
- Cardiac Surgery, University Hospital of Padua, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy.,Cardiac Surgery, University Hospital of Padua, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| |
Collapse
|
46
|
Romagnuolo R, Masoudpour H, Porta-Sánchez A, Qiang B, Barry J, Laskary A, Qi X, Massé S, Magtibay K, Kawajiri H, Wu J, Valdman Sadikov T, Rothberg J, Panchalingam KM, Titus E, Li RK, Zandstra PW, Wright GA, Nanthakumar K, Ghugre NR, Keller G, Laflamme MA. Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias. Stem Cell Reports 2019; 12:967-981. [PMID: 31056479 PMCID: PMC6524945 DOI: 10.1016/j.stemcr.2019.04.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show considerable promise for regenerating injured hearts, and we therefore tested their capacity to stably engraft in a translationally relevant preclinical model, the infarcted pig heart. Transplantation of immature hESC-CMs resulted in substantial myocardial implants within the infarct scar that matured over time, formed vascular networks with the host, and evoked minimal cellular rejection. While arrhythmias were rare in infarcted pigs receiving vehicle alone, hESC-CM recipients experienced frequent monomorphic ventricular tachycardia before reverting back to normal sinus rhythm by 4 weeks post transplantation. Electroanatomical mapping and pacing studies implicated focal mechanisms, rather than macro-reentry, for these graft-related tachyarrhythmias as evidenced by an abnormal centrifugal pattern with earliest electrical activation in histologically confirmed graft tissue. These findings demonstrate the suitability of the pig model for the preclinical development of a hESC-based cardiac therapy and provide new insights into the mechanistic basis of electrical instability following hESC-CM transplantation. hESC-CM transplantation partially remuscularizes the infarcted pig heart hESC-CM recipients show frequent tachyarrhythmias at early time points Graft-related arrhythmias arise from focal mechanisms rather than macro-reentry
Collapse
Affiliation(s)
- Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Hassan Masoudpour
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andreu Porta-Sánchez
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jennifer Barry
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Laskary
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiuling Qi
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Stéphane Massé
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Karl Magtibay
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Hiroyuki Kawajiri
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Janet Rothberg
- Centre for Commercialization of Regenerative Medicine, Toronto, ON M5G 1M1, Canada
| | | | - Emily Titus
- Centre for Commercialization of Regenerative Medicine, Toronto, ON M5G 1M1, Canada
| | - Ren-Ke Li
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter W Zandstra
- Centre for Commercialization of Regenerative Medicine, Toronto, ON M5G 1M1, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Graham A Wright
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kumaraswamy Nanthakumar
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nilesh R Ghugre
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada; University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
47
|
Neri T, Hiriart E, van Vliet PP, Faure E, Norris RA, Farhat B, Jagla B, Lefrancois J, Sugi Y, Moore-Morris T, Zaffran S, Faustino RS, Zambon AC, Desvignes JP, Salgado D, Levine RA, de la Pompa JL, Terzic A, Evans SM, Markwald R, Pucéat M. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat Commun 2019; 10:1929. [PMID: 31028265 PMCID: PMC6486645 DOI: 10.1038/s41467-019-09459-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish. There are few human models that can recapitulate valve development in vitro. Here, the authors derive human pre-valvular endocardial cells (HPVCs) from iPSCs and show they can recapitulate early valvulogenesis, and patient derived HPVCs have features of mitral valve prolapse and identified SHH dysregulation.
Collapse
Affiliation(s)
- Tui Neri
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,Istituto di Ricerca Genetica e Biomedica, UOS di Milano, CNR, Rozzano, 20138, Italy
| | - Emilye Hiriart
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Patrick P van Vliet
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA.,Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, H7G 4W7, QC, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Emilie Faure
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Russell A Norris
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Batoul Farhat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Bernd Jagla
- Institut Pasteur - Cytometry and Biomarkers Unit of Technology and Service, Center for Translational Science and Bioinformatics and Biostatistics Hub - C3BI, USR, 3756 IP CNRS, 75015, Paris, France
| | - Julie Lefrancois
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Yukiko Sugi
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Thomas Moore-Morris
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Stéphane Zaffran
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | | | - Alexander C Zambon
- Department of Biopharmaceutical Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - David Salgado
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02111, USA
| | - Jose Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, E-28029, Spain
| | - André Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55901, USA
| | - Sylvia M Evans
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA
| | - Roger Markwald
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Michel Pucéat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France. .,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France. .,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada.
| |
Collapse
|
48
|
Wang H, Zhao S, Barton M, Rosengart T, Cooney AJ. Reciprocity of Action of Increasing Oct4 and Repressing p53 in Transdifferentiation of Mouse Embryonic Fibroblasts into Cardiac Myocytes. Cell Reprogram 2019; 20:27-37. [PMID: 29412738 DOI: 10.1089/cell.2017.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
p53 is a barrier to somatic cell reprogramming. Deletion or transient suppression of p53 increases the efficiency of reprogramming of somatic cells into induced pluripotent stem cells. Whether p53 represents an obstacle to a similar process transdifferentiation of somatic cells is unknown. However, it is predicted that inhibition of p53 would promote transdifferentiation of fibroblasts into cardiomyocytes. In this study, the effect of p53 on the capacity of cardiogenic transdifferentiation is evaluated using p53 wild-type (p53+/+), p53 heterozygous mutant (p53+/-), and p53 homozygous mutant (p53-/-) mouse embryonic fibroblasts (MEFs). Repression of p53 in MEFs increases the expression level of mesoderm transcription factors Brachyury (T) and MESP1. The cardiac-specific markers, Myh6 (Myosin, Heavy Chain 6), Myh7 (Myosin, Heavy Chain 7), and cTnI (cardiac muscle troponin I), show elevated expression in p53+/- and p53-/- MEFs compared with wild-type MEFs, but cardiac muscle troponin T (cTnT) showed a lower expression level when p53 was inhibited. After induction to cardiac differentiation, cTnT expression increased and markers of endoderm and ectoderm decreased in p53+/- and p53-/- MEFs. The effect of an important reprogramming factor Oct4 on cardiac transdifferentiation was also evaluated in the allelic series of p53 MEFs. We found that overexpression of Oct4 significantly enhanced Mesp1, Tbx5, and Isl1 expression in p53+/+ and p53+/- MEFs. Oct4 also enhanced cTnT expression in all three cell lines, especially in p53+/- MEFs. Thus, inhibition of p53 expression and viral expression of Oct4 both promote transdifferentiation of MEFs into cardiomyocytes, establishing reciprocity of action in the process.
Collapse
Affiliation(s)
- Hongran Wang
- 1 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School , Austin, Texas
| | - Shuying Zhao
- 1 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School , Austin, Texas
| | - Michelle Barton
- 2 Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center , Houston, Texas
| | - Todd Rosengart
- 3 Department of Surgery, Baylor College of Medicine , Houston, Texas
| | - Austin J Cooney
- 1 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School , Austin, Texas
| |
Collapse
|
49
|
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285:1-9. [PMID: 30939341 DOI: 10.1016/j.atherosclerosis.2019.03.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The stem cell-based therapy has emerged as a promising therapeutic strategy for treating cardiovascular ischemic diseases (CVIDs), such as myocardial infarction (MI). However, some important functional shortcomings of stem cell transplantation, such as immune rejection, tumorigenicity and infusional toxicity, have overshadowed stem cell therapy in the setting of cardiovascular diseases (CVDs). Accumulating evidence suggests that the therapeutic effects of transplanted stem cells are predominately mediated by secreting paracrine factors, importantly, microRNAs (miRs) present in the secreted exosomes. Therefore, novel cell-free therapy based on the stem cell-secreted exosomal miRs can be considered as a safe and effective alternative tool to stem cell therapy for the treatment of CVDs. Stem cell-derived miRs have recently been found to transfer, via exosomes, from a transplanted stem cell into a recipient cardiac cell, where they regulate various cellular process, such as proliferation, apoptosis, stress responses, as well as differentiation and angiogenesis. The present review aimed to summarize cardioprotective exosomal miRs secreted by transplanted stem cells from various sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and cardiac stem/progenitor cells, which showed beneficial modulatory effects on the myocardial infracted heart. In summary, stem cell-exosomal miRs, including miR-19a, mirR-21, miR-21-5p, miR-21-a5p, miR-22 miR-24, miR-26a, miR-29, miR-125b-5p, miR-126, miR-201, miR-210, and miR-294, have been shown to have cardioprotective effects by enhancing cardiomyocyte survival and function and attenuating cardiac fibrosis. Additionally, MCS-exosomal miRs, including miR-126, miR-210, miR-21, miR-23a-3p and miR-130a-3p, are found to exert cardioprotective effects through induction of angiogenesis in ischemic heart after MI.
Collapse
|
50
|
Vahdat S, Pahlavan S, Aghdami N, Bakhshandeh B, Baharvand H. Establishment of A Protocol for In Vitro Culture of Cardiogenic Mesodermal Cells Derived from Human Embryonic Stem Cells. CELL JOURNAL 2019; 20:496-504. [PMID: 30123995 PMCID: PMC6099148 DOI: 10.22074/cellj.2019.5661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cardiovascular progenitor cells (CPCs) are introduced as one of the promising cell sources for preclinical studies and regenerative medicine. One of the earliest type of CPCs is cardiogenic mesoderm cells (CMCs), which have the capability to generate all types of cardiac lineage derivatives. In order to benefit from CMCs, development of an efficient culture strategy is required. We aim to explore an optimized culture condition that uses human embryonic stem cell (hESC)-derived CMCs. MATERIALS AND METHODS In this experimental study, hESCs were expanded and induced toward cardiac lineage in a suspension culture. Mesoderm posterior 1-positive (MESP1+) CMCs were subjected to four different culture conditions: i. Suspension culture of CMC spheroids, ii. Adherent culture of CMC spheroids, iii. Adherent culture of single CMCs using gelatin, and iv. Adherent culture of single CMCs using Matrigel. RESULTS Although, we observed no substantial changes in the percentage of MESP1+ cells in different culture conditions, there were significantly higher viability and total cell numbers in CMCs cultured on Matrigel (condition iv) compared to the other groups. CMCs cultivated on Matrigel maintained their progenitor cell signature, which included the tendency for cardiogenic differentiation. CONCLUSION These results showed the efficacy of an adherent culture on Matrigel for hESC-derived CMCs, which would facilitate their use for future applications.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|