1
|
Akhtar Khan N. Polyunsaturated fatty acids in the modulation of T-cell signalling. Prostaglandins Leukot Essent Fatty Acids 2010; 82:179-87. [PMID: 20189788 DOI: 10.1016/j.plefa.2010.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Indexed: 11/25/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFA) have been shown to modulate immune responses. These agents, being considered as adjuvant immunosuppressants, have been used in the treatment of various inflammatory and autoimmune diseases. However, the molecular mechanisms of action of n-3 PUFA-induced immunosuppressive effects are not well-understood. Since exogenous n-3 PUFA, under in vitro and in vivo conditions, are efficiently incorporated into T-cell plasma membranes, a number of recent studies have demonstrated that these agents may modulate T-cell signalling. In this review, the interactions of n-3 PUFA with the second messenger cascade initiated during early and late events of T-cell activation are discussed. We particularly focus on how these fatty acids can modulate the production of diacylglycerol and the activation of protein kinase C, mitogen activated protein kinase, calcium signalling and translocation of transcriptional factors, implicated in the regulation of gene transcription in T-cells.
Collapse
Affiliation(s)
- Naim Akhtar Khan
- University of Burgundy, Department of Physiology, UPRES EA4183 Lipids and Cell Signalling, Faculty of Life Sciences, Dijon, France.
| |
Collapse
|
2
|
Abstract
Tyrosine phosphorylation and dephosphorylation of proteins play a critical role for many T-cell functions. The opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) determine the level of tyrosine phosphorylation at any time. It is well accepted that PTKs are essential during T-cell signaling; however, the role and importance of PTPs are much less known and appreciated. Both transmembrane and cytoplasmic tyrosine phosphatases have been identified in T cells and shown to regulate T-cell responses. This review focuses on the roles of the two cytoplasmic PTPs, the Src-homology 2 domain (SH2)-containing SHP-1 and SHP-2, in T-cell signaling, development, differentiation, and function.
Collapse
Affiliation(s)
- Ulrike Lorenz
- Department of Microbiology and The Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
3
|
Li Z, Xie Z. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch 2008; 457:635-44. [DOI: 10.1007/s00424-008-0470-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/24/2008] [Accepted: 01/29/2008] [Indexed: 01/01/2023]
|
4
|
Duchardt E, Sigalov AB, Aivazian D, Stern LJ, Schwalbe H. Structure induction of the T-cell receptor zeta-chain upon lipid binding investigated by NMR spectroscopy. Chembiochem 2007; 8:820-7. [PMID: 17410622 DOI: 10.1002/cbic.200600413] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The conformation of the cytoplasmic part of the zeta-chain of the T-cell receptor (TCR) in its free form and bound to detergent micelles has been investigated by heteronuclear NMR spectroscopy. The zeta-chain is considered to be a mediator between the extracellular antigen and the intracellular signal-transduction cascade leading to T-cell activation. Earlier studies suggested a T-cell activation mechanism that involved a TCR-state-dependent lipid incorporation propensity of the zeta-chain accompanied by a helical folding transition. In order to support this proposed mechanism, standard protein NMR assignment and secondary-structure-elucidation techniques have been applied to the free TCR zeta-chain and to the zeta-chain bound to the detergent LMPG, which forms a micelle, in order to obtain the structural characteristics of this folding transition in a residue-resolved manner. We could assign the resonances of the free zeta-chain at 278 K, and this formed the basis for chemical-shift-perturbation studies to identify lipid binding sites. Our NMR results show that the free TCR zeta-chain is indeed intrinsically unstructured. Regions around the ITAM2 and ITAM3 sequences are involved in a highly dynamic binding of the free zeta-chain to a detergent micelle formed by the acidic lipid LMPG.
Collapse
Affiliation(s)
- Elke Duchardt
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University Frankfurt, 60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
5
|
O'Neill FJ, Gillett J, Foltz KR. Distinct roles for multiple Src family kinases at fertilization. J Cell Sci 2005; 117:6227-38. [PMID: 15564383 DOI: 10.1242/jcs.01547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg activation at fertilization requires the release of Ca2+ from the endoplasmic reticulum of the egg. Recent evidence indicates that Src family kinases (SFKs) function in the signaling pathway that initiates this Ca2+ release in the eggs of many deuterostomes. We have identified three SFKs expressed in starfish (Asterina miniata) eggs, designated AmSFK1, AmSFK2 and AmSFK3. Antibodies made against the unique domains of each AmSFK protein revealed that all three are expressed in eggs and localized primarily to the membrane fraction. Both AmSFK1 and AmSFK3 (but not AmSFK2) are necessary for egg activation, as determined by injection of starfish oocytes with dominant-interfering Src homology 2 (SH2) domains, which specifically delay and reduce the initial release of Ca2+ at fertilization. AmSFK3 exhibits a very rapid and transient kinase activity in response to fertilization, peaking at 30 seconds post sperm addition. AmSFK1 kinase activity also increases transiently at fertilization, but peaks later, at 2 minutes. These results indicate that there are multiple SFKs present in starfish eggs with distinct, perhaps sequential, signaling roles.
Collapse
Affiliation(s)
- Forest J O'Neill
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
6
|
Fawcett VCJ, Lorenz U. Localization of Src homology 2 domain-containing phosphatase 1 (SHP-1) to lipid rafts in T lymphocytes: functional implications and a role for the SHP-1 carboxyl terminus. THE JOURNAL OF IMMUNOLOGY 2005; 174:2849-59. [PMID: 15728495 DOI: 10.4049/jimmunol.174.5.2849] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1) has previously been shown to be a negative regulator of signaling mediated via the TCR. A growing body of evidence indicates that the regulated localization of proteins within certain membrane subdomains, referred to as lipid rafts, is important for the successful transduction of signaling events downstream of the TCR. However, considerably less is known about the localization of negative regulators during these lipid raft-dependent signaling events. In this study we have investigated the subcellular localization of SHP-1 and its role in regulation of TCR-mediated signaling. Our studies demonstrate that in a murine T cell hybridoma as well as in primary murine thymocytes, a fraction of SHP-1 localizes to the lipid rafts, both basally and after TCR stimulation. Interestingly, although SHP-1 localized in the nonraft fractions is tyrosine phosphorylated, the SHP-1 isolated from the lipid rafts lacks the TCR-induced tyrosine phosphorylation, suggesting physical and/or functional differences between these two subpopulations. We identify a requirement for the C-terminal residues of SHP-1 in optimal localization to the lipid rafts. Although expression of SHP-1 that localizes to lipid rafts potently inhibits TCR-mediated early signaling events and IL-2 production, the expression of lipid raft-excluded SHP-1 mutants fails to elicit any of the inhibitory effects. Taken together these studies reveal a key role for lipid raft localization of SHP-1 in mediating the inhibitory effects on T cell signaling events.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Binding Sites, Antibody
- Cell Line
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Membrane Microdomains/enzymology
- Membrane Microdomains/genetics
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C3H
- Mutagenesis, Site-Directed
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Phosphorylation
- Protein Phosphatase 1
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Receptor-CD3 Complex, Antigen, T-Cell/antagonists & inhibitors
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Sequence Deletion
- Signal Transduction/immunology
- Subcellular Fractions/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- Tyrosine/metabolism
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Vicki C J Fawcett
- Department of Microbiology and The Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
7
|
Gupta S, Fanzo JC, Hu C, Cox D, Jang SY, Lee AE, Greenberg S, Pernis AB. T cell receptor engagement leads to the recruitment of IBP, a novel guanine nucleotide exchange factor, to the immunological synapse. J Biol Chem 2003; 278:43541-9. [PMID: 12923183 DOI: 10.1074/jbc.m308960200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reorganization of the actin cytoskeleton is crucial to the formation and function of the immunological synapse. Rho GTPases are critical mediators of cytoskeletal reorganization, and their activity at the synapse is likely to be stringently regulated. Guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins represent one major class of proteins that regulate the activity of Rho GTPases. Here we demonstrate that IBP, a homologue of SWAP-70, is a novel GEF for Rac1 and Cdc42 in T lymphocytes, which is recruited to the immunological synapse upon engagement of the antigen receptor. Mutational analysis supports a model whereby IBP is inactive in unstimulated cells. Upon engagement of the T cell receptor, its GEF activity is enhanced by tyrosine phosphorylation, as well as by binding newly generated phosphatidylinositol 3,4,5-trisphosphate. Although it is known that T cell receptor engagement leads to the recruitment of Vav to the immunological synapse, these findings indicate that other GEFs, such as IBP, also relocalize to this intercellular region. The recruitment and activation of distinct classes of GEFs may allow for precise control of Rho GTPase function at the crucial interface between T cells and antigen presenting cells.
Collapse
Affiliation(s)
- Sanjay Gupta
- Departments of Medicine and Medicine and Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Matthews SA, Dayalu R, Thompson LJ, Scharenberg AM. Regulation of protein kinase Cnu by the B-cell antigen receptor. J Biol Chem 2003; 278:9086-91. [PMID: 12506120 DOI: 10.1074/jbc.m211295200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diacylglycerol-dependent signaling plays an important role in signal transduction through T- and B-lymphocyte antigen receptors. Recently, a novel serine-threonine kinase of the protein kinase C (PKC) family has been described and designated as PKCnu. PKCnu has two putative diacylglycerol binding C1 domains, suggesting that it may participate in a novel diacylglycerol-mediated signaling pathway. Here we show that both endogenous and recombinant PKCnu are trans-located to the plasma membrane and activated by the diacylglycerol mimic phorbol 12-myristate 13-acetate. Mutational analysis demonstrates that PKCnu activation is dependent on trans-phosphorylation of two conserved activation loop serine residues. We also find that PKCnu is an important physiologic target of the B-cell receptor (BCR), because PKCnu is found to be abundantly expressed in chicken and human B-cell lines and, in addition, exhibits robust activation after BCR engagement. Genetic and pharmacologic analyses of BCR-mediated PKCnu activation indicate that it requires intact phospholipase Cgamma and PKC signaling pathways. Furthermore, in co-transfection assays, PKCnu can be trans-phosphorylated by the novel PKC isozymes PKCepsilon, PKCeta, or PKCtheta but not the classical PKC enzyme, PKCalpha. Taken together, these results suggest that PKCnu is an important component of signaling pathways downstream from novel PKC enzymes after B-cell receptor engagement.
Collapse
Affiliation(s)
- Sharon A Matthews
- Department of Pediatrics and Immunology, University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
9
|
Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 2003; 23:2017-28. [PMID: 12612075 PMCID: PMC149484 DOI: 10.1128/mcb.23.6.2017-2028.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAG/Cbp (hereafter named PAG) is a transmembrane adaptor molecule found in lipid rafts. In resting human T cells, PAG is tyrosine phosphorylated and associated with Csk, an inhibitor of Src-related protein tyrosine kinases. These modifications are rapidly lost in response to T-cell receptor (TCR) stimulation. Overexpression of PAG was reported to inhibit TCR-mediated responses in Jurkat T cells. Herein, we have examined the physiological relevance and the mechanism of PAG-mediated inhibition in T cells. Our studies showed that PAG tyrosine phosphorylation and association with Csk are suppressed in response to activation of normal mouse T cells. By expressing wild-type and phosphorylation-defective (dominant-negative) PAG polypeptides in these cells, we found that the inhibitory effect of PAG is dependent on its capacity to be tyrosine phosphorylated and to associate with Csk. PAG-mediated inhibition was accompanied by a repression of proximal TCR signaling and was rescued by expression of a constitutively activated Src-related kinase, implying that it is due to an inactivation of Src kinases by PAG-associated Csk. We also attempted to identify the protein tyrosine phosphatases (PTPs) responsible for dephosphorylating PAG in T cells. Through cell fractionation studies and analyses of genetically modified mice, we established that PTPs such as PEP and SHP-1 are unlikely to be involved in the dephosphorylation of PAG in T cells. However, the transmembrane PTP CD45 seems to play an important role in this process. Taken together, these data provide firm evidence that PAG is a bona fide negative regulator of T-cell activation as a result of its capacity to recruit Csk. They also suggest that the inhibitory function of PAG in T cells is suppressed by CD45. Lastly, they support the idea that dephosphorylation of proteins on tyrosine residues is critical for the initiation of T-cell activation.
Collapse
Affiliation(s)
- Dominique Davidson
- Laboratory of Molecular Oncology, IRCM, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
10
|
August A, Fischer A, Hao S, Mueller C, Ragin M. The Tec family of tyrosine kinases in T cells, amplifiers of T cell receptor signals. Int J Biochem Cell Biol 2002; 34:1184-9. [PMID: 12127569 DOI: 10.1016/s1357-2725(02)00068-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ITK and Rlk/Txk are the predominant Tec family of tyrosine kinases expressed in T cells, and are involved in T cell antigen receptor mediated activation of T cells. These kinases require prior activation of Lck, Zap-70 and PI3-kinase for efficient activation. They share major substrates with both Lck and Zap-70, however the pathways they regulate are unclear. Recent evidence suggests that these kinases may not activate unique pathways, but instead serve as amplifiers for the upstream kinases Lck and Zap-70. This review will discuss the evidence for this view.
Collapse
Affiliation(s)
- Avery August
- Immunology Research Laboratories and Department of Veterinary Science, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The complex cellular interactions that govern the mammalian immune response are now known to include specific receptor/ligand interactions, recruitment of intracellular signaling molecules, activation of both kinases and phosphatases, and redistribution of macromolecular complexes into specific subcellular membrane locations that, in aggregate, result in transcriptional activation. While the TCR-CD3 signal is critical for activation of the resting T cell, it alone is not sufficient to initiate transcriptional activation or generate an effective immune response. A number of other coreceptor molecules, including CD4, CD8, and CD28, have now been characterized that also play important roles in initiating or amplifying the activation of the T cell. A 40 kDa member of the immunoglobulin superfamily, the CD7 molecule, has also been shown to have costimulatory activity and to induce tyrosine and lipid kinase activities. Here we will review the signaling pathways initiated by TCR, CD28, and CD7, as well as the functional consequences of signal transduction through these receptors.
Collapse
Affiliation(s)
- R Stillwell
- Laboratory of Lymphocyte Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
12
|
Douziech N, Seres I, Larbi A, Szikszay E, Roy PM, Arcand M, Dupuis G, Fulop T. Modulation of human lymphocyte proliferative response with aging. Exp Gerontol 2002; 37:369-87. [PMID: 11772524 DOI: 10.1016/s0531-5565(01)00204-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previously, we have demonstrated age-associated alterations in transmembrane signaling. One of the most reproducible alterations found in the immune response with aging is the decrease of lymphocyte proliferation on stimulation with various different mitogens. Here, we confirm that proliferative responses to stimulation with phytohaemagglutin (PHA), recombinant human IL-2, or anti-CD3 monoclonal antibody are all greater in the young (20-25 years) than old (60-87 years) population. We attempted to modulate the proliferative response using various agents acting at different levels of transmembrane signaling (pertussis toxin, cholera toxin, isoproterenol, PMA, Ca ionophore A23187), as well as at the level of the lymphocyte plasma membrane (methyl-beta-cyclodextrin, MBCD), or by using antioxidant vitamins (Vitamin E or C). None of these agents was able to restore effectively the proliferative response of lymphocytes from the aged to the level of young subjects. Even the combination of A23187 and PMA acting directly on calcium metabolism and protein kinase C activity was insufficient to restore the decreased mitogenic capacity of T cells from elderly subjects. Cyclodextrin, which decreases the cholesterol content of the membrane, increased the proliferative response of lymphocytes of elderly subjects, but not to the level of the young. Vitamin E had a very strong inhibitory effect on lymphocyte stimulation in both the age groups, except in combination with MBCD in T cells of the elderly, while Vitamin C had no significant modulatory effect. MAPK ERK and p38 activation was found to be decreased with aging in T cells after anti-CD3 mAb stimulation. Vitamin E but not Vitamin C strongly inhibited MAPK ERK or p38 activation. The direct activation of certain molecules or the modulation of the cholesterol content of the membrane seems to be effective immunomodulatory interventions with aging.
Collapse
Affiliation(s)
- Nadine Douziech
- Centre de Recherche en Gérontologie et Gériatrie, Institut Universitaire de Gériatrie de Sherbrooke, 1036 rue Belvedère sud, Sherbrooke, Quebec, Canada J1H 4C4
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31530-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Majeed M, Caveggion E, Lowell CA, Berton G. Role of Src kinases and Syk in Fcγ receptor‐mediated phagocytosis and phagosome‐lysosome fusion. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.5.801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Meytham Majeed
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy, and
| | - Elena Caveggion
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy, and
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California San Francisco, San Francisco
| | - Giorgio Berton
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy, and
| |
Collapse
|
15
|
Yu J, Riou C, Davidson D, Minhas R, Robson JD, Julius M, Arnold R, Kiefer F, Veillette A. Synergistic regulation of immunoreceptor signaling by SLP-76-related adaptor Clnk and serine/threonine protein kinase HPK-1. Mol Cell Biol 2001; 21:6102-12. [PMID: 11509653 PMCID: PMC87327 DOI: 10.1128/mcb.21.18.6102-6112.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, the identification of Clnk, a third member of the SLP-76 family of adaptors expressed exclusively in cytokine-stimulated hemopoietic cells, has been reported by us and by others. Like SLP-76 and Blnk, Clnk was shown to act as a positive regulator of immunoreceptor signaling. Interestingly, however, it did not detectably associate with known binding partners of SLP-76, including Vav, Nck, and GADS. In contrast, it became complexed in activated T cells and myeloid cells with an as yet unknown tyrosine-phosphorylated polypeptide of approximately 92 kDa (p92). In order to understand better the function of Clnk, we sought to identify the Clnk-associated p92. Using a yeast two-hybrid screen and cotransfection experiments with Cos-1 cells, evidence was adduced that p92 is HPK-1, a serine/threonine-specific protein kinase expressed in hemopoietic cells. Further studies showed that Clnk and HPK-1 were also associated in hemopoietic cells and that their interaction was augmented by immunoreceptor stimulation. A much weaker association was detected between HPK-1 and SLP-76. Transient transfections in Jurkat T cells revealed that Clnk and HPK-1 cooperated to increase immunoreceptor-mediated activation of the interleukin 2 (IL-2) promoter. Moreover, the ability of Clnk to stimulate IL-2 promoter activity could be blocked by expression of a kinase-defective version of HPK-1. Lastly we found that in spite of the differential ability of Clnk and SLP-76 to bind cellular proteins, Clnk was apt at rescuing immunoreceptor signaling in a Jurkat T-cell variant lacking SLP-76. Taken together, these results show that Clnk physically and functionally interacts with HPK-1 in hemopoietic cells. Moreover, they suggest that Clnk is capable of functionally substituting for SLP-76 in immunoreceptor signaling, albeit by using a distinct set of intracellular effectors.
Collapse
Affiliation(s)
- J Yu
- Laboratory of Molecular Oncology, IRCM, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Belton RJ, Adams NL, Foltz KR. Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization. Mol Reprod Dev 2001; 59:294-305. [PMID: 11424215 DOI: 10.1002/mrd.1034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Specialized membrane microdomains called rafts are thought to play a role in many types of cell-cell interactions and signaling. We have investigated the possibility that sea urchin eggs contain these specialized membrane microdomains and if they play a role in signal transduction at fertilization. A low density, TX-100 insoluble membrane fraction, typical of lipid rafts, was isolated by equilibrium gradient centrifugation. This raft fraction contained proteins distinct from cytoskeletal complexes. The fraction was enriched in tyrosine phosphorylated proteins and contained two proteins known to be involved in signaling during egg activation (an egg Src-type kinase and PLC gamma). This fraction was further characterized as a prototypical raft fraction by the release of proteins in response to in vitro treatment of the rafts with the cholesterol binding drug, methyl-beta-cyclodextrin (M beta CD). Furthermore, treatment of eggs with M beta CD inhibited fertilization, suggesting that egg lipid rafts play a physiological role in fertilization. Mol. Reprod. Dev. 59:294-305, 2001.
Collapse
Affiliation(s)
- R J Belton
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
17
|
Pelassy C, Breittmayer JP, Aussel C. Inhibition of phosphatidylserine synthesis in Jurkat T cells by hydrogen peroxide. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1539:256-64. [PMID: 11420123 DOI: 10.1016/s0167-4889(01)00113-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incubation of Jurkat cells in the presence of H2O2 either directly added to the culture medium or generated with glucose oxidase, menadione or the couple xanthine/xanthine oxidase induced a marked decrease of phosphatidylserine synthesis in the absence of changes in the synthesis of phosphatidylcholine and phosphatidylethanolamine. Concentration dependent response curves indicated that H2O2 induced inhibition of phosphatidylserine synthesis with an IC(50)=5 microM while both induction of tyrosine phosphorylation of proteins and Ca(2+) signals were obtained with an EC(50)=300 microM. The tyrosine kinase and Ca(2+) independent mechanism was confirmed by comparing the H2O2-induced and the CD3-induced inhibition of phosphatidylserine synthesis using several Jurkat clones differing in the expression of cell surface receptors such as CD3/TCR and CD45 and protein tyrosine kinase such as p72syk, ZAP-70 and p56lck. While CD3-induced inhibition of phosphatidylserine synthesis necessitates protein tyrosine phosphorylation and Ca(2+) signals, H2O2 provoked its effect in all the clones studied independently of the presence or absence of the proteins previously shown to be key elements in T cell signal transduction. Conversely, the antioxidant molecule, butylated hydroxanisole, generates an increased PtdSer synthesis, suggesting that the synthesis of this phospholipid is regulated by the redox status of the cells.
Collapse
Affiliation(s)
- C Pelassy
- INSERM U343, Hôpital de l'Archet, BP No. 79, 06202 Cedex 03, Nice, France
| | | | | |
Collapse
|
18
|
Herndon TM, Shan XC, Tsokos GC, Wange RL. ZAP-70 and SLP-76 regulate protein kinase C-theta and NF-kappa B activation in response to engagement of CD3 and CD28. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5654-64. [PMID: 11313406 DOI: 10.4049/jimmunol.166.9.5654] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transcription factor NF-kappaB is a critical regulator of T cell function that becomes strongly activated in response to coengagement of TCR and CD28. Although events immediately proximal to NF-kappaB activation are well understood, uncertainty remains over which upstream signaling pathways engaged by TCR and CD28 lead to NF-kappaB activation. By using Jurkat T cell lines that are deficient or replete for either the protein tyrosine kinase ZAP-70 or the cytosolic adapter molecule SLP-76, the role of these proteins in modulating NF-kappaB activation was examined. NF-kappaB was not activated in response to coengagement of TCR and CD28 in either the ZAP-70- or SLP-76-negative cells, whereas stimuli that bypass these receptors (PMA plus A23187, or TNF-alpha) activated NF-kappaB normally. Protein kinase C (PKC) theta activation, which is required for NF-kappaB activation, also was defective in these cells. Reexpression of ZAP-70 restored PKCtheta and NF-kappaB activation in response to TCR and CD28 coengagement. p95(vav) (Vav)-1 tyrosine phosphorylation was largely unperturbed in the ZAP-70-negative cells; however, receptor-stimulated SLP-76/Vav-1 coassociation was greatly reduced. Wild-type SLP-76 fully restored PKCtheta and NF-kappaB activation in the SLP-76-negative cells, whereas 3YF-SLP-76, which lacks the sites of tyrosine phosphorylation required for Vav-1 binding, only partially rescued signaling. These data illustrate the importance of the ZAP-70/SLP-76 signaling pathway in CD3/CD28-stimulated activation of PKC theta and NF-kappaB, and suggest that Vav-1 association with SLP-76 may be important in this pathway.
Collapse
Affiliation(s)
- T M Herndon
- Laboratory of Biological Chemistry, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
19
|
Pozzetto U, Facchiano A, Serino F. Rational design of biologically active peptides: inhibition of T cell activation through interference with CD4 function. Transplant Int (2000) 13 [Suppl 1]: S306-S310. Transpl Int 2001; 13:456-61. [PMID: 11140247 DOI: 10.1111/j.1432-2277.2000.tb01027.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In our laboratory we generated one synthetic cyclic peptide (Pep4) and tested it in human mitogen stimulation assays (MSA) and mixed lymphocytes reactions (MLR) generating dose-response curves showing a dose-dependent inhibition of MSA up to 80% and MLR up to 98%. MSA and MLR were repeated after pre incubation of the Pep4 with each separate responder cell subset and subsequent reconstitution: these experiments showed inhibition only when the peptide was present in culture. Pep4 showed species specificity since it was ineffective in inhibiting rat MLR. Combination effect analysis with Pep4 and cyclosporine showed a combination index > 1. This rationally designed peptide (Pep4) shows powerful inhibition of human T cell activation and, although the exact mechanism is still undefined, it seems to exert its major action on the T cell surface, interfering with co receptor interaction and disrupting the same activation signal pathway inhibited by cyclosporine A.
Collapse
Affiliation(s)
- U Pozzetto
- Shock Center CNR, c/o Universitá Sacro Cuore, Via Pineta Sacchetti 526, 00168 Rome, Italy
| | | | | |
Collapse
|
20
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
21
|
Wange RL. LAT, the Linker for Activation of T Cells: A Bridge Between T Cell-Specific and General Signaling Pathways. Sci Signal 2000. [DOI: 10.1126/scisignal.632000re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Wange RL. LAT, the linker for activation of T cells: a bridge between T cell-specific and general signaling pathways. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:re1. [PMID: 11752630 DOI: 10.1126/stke.2000.63.re1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A key event in the regulation of the adaptive immune response is the binding of major histocompatibility complex-bound foreign peptides to T cell antigen receptors (TCRs) that are present on the cell surface of T lymphocytes. Recognition of the presence of cognate antigen in the host animal induces a series of biochemical changes within the T cell; these changes, in the context of additional signals from other surface receptors, ultimately result in massive proliferation of receptor-engaged T cells and the acquisition of effector and memory functions. Early studies established the importance of the activation of the enzymes phospholipase C-gamma1 (PLC-gamma1) and phosphatidylinositol 3-kinase (PI3K), as well as the small molecular weight heterotrimeric guanine nucleotide binding protein (G protein) Ras, in this process. These biochemical events are dependent on the activity of several protein tyrosine kinases that become activated immediately upon TCR engagement. An unresolved question in the field has been which molecules and what sequence of events tie together the early tyrosine phosphorylation events with the activation of these downstream signaling molecules. A likely candidate for linking the proximal and distal portions of the TCR signaling pathway is the recently described protein, LAT. LAT is a 36-kD transmembrane protein that becomes rapidly tyrosine-phosphorylated after TCR engagement. Phosphorylation of LAT creates binding sites for the Src homology 2 (SH2) domains of other proteins, including PLC-gamma1, Grb2, Gads, Grap, 3BP2, and Shb, and indirectly binds SOS, c-Cbl, Vav, SLP-76, and Itk. LAT is localized to the glycolipid-enriched membrane (GEM) subdomains of the plasma membrane by virtue of palmitoylation of two cysteine residues positioned near the endofacial side of the plasma membrane. Notably, in the absence of LAT, TCR engagement does not lead to activation of distal signaling events. This review examines the circumstances surrounding the discovery of LAT and our current understanding of its properties, and discusses current models for how LAT may be functioning to support the transduction of TCR-initiated, T cell-specific signaling events to the distal, general signaling machinery.
Collapse
Affiliation(s)
- R L Wange
- Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
23
|
Cowan KJ, Law DA, Phillips DR. Identification of shc as the primary protein binding to the tyrosine-phosphorylated beta 3 subunit of alpha IIbbeta 3 during outside-in integrin platelet signaling. J Biol Chem 2000; 275:36423-9. [PMID: 10964917 DOI: 10.1074/jbc.m004068200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outside-in signaling mediated by the integrin alpha(IIb)beta(3) (GPIIbIIIa) is critical to platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic tail of beta(3). To identify proteins that bind directly to phosphorylated beta(3), we utilized an affinity column consisting of a peptide modeled on the tyrosine-phosphorylated cytoplasmic domain of beta(3). Tandem mass spectrometric sequencing and immunoblotting demonstrated that Shc was the primary protein binding to phosphorylated beta(3). To determine the involvement of Shc in outside-in alpha(IIb)beta(3) signaling, the phosphorylation of Shc during platelet aggregation was examined; transient Shc phosphorylation was observed when thrombin-stimulated platelets were allowed to aggregate or when aggregation was induced by an LIBS (ligand-induced binding site) antibody, D3. Moreover, Shc was co-immunoprecipitated with tyrosine-phosphorylated beta(3) in detergent lysates of aggregated platelets. Using purified, recombinant protein, it was found that the binding of Shc to monophosphorylated (C-terminal tyrosine) and diphosphorylated beta(3) peptides was direct, demonstrating Shc recognition motifs on phospho-beta(3). Aggregation-induced Shc phosphorylation was also observed to be robust in platelets from wild-type mice, but not in those from mice expressing (Y747F,Y759F) beta(3), which are defective in outside-in alpha(IIb)beta(3) signaling. Thus, Shc is the primary downstream signaling partner of beta(3) in its tyrosine phosphorylation outside-in signaling pathway.
Collapse
Affiliation(s)
- K J Cowan
- COR Therapeutics, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
24
|
Abstract
Stimulation of the T-cell lymphocyte surface receptor (TCR) initiates a cascade of intracellular signaling events leading to proliferation, anergy, cytokine secretion, or apoptosis. In prediabetic NOD mice, T cell proliferative hyporesponsiveness has been correlated to decreased TCR-mediated signal transduction along the PKC/p21ras/p42mapk pathway. Limited data regarding T cell signaling defects are available in patients with autoimmune diabetes mellitus. Some but not all investigators have found decreased in vitro proliferative hyporesponsiveness to lectin mitogens or anti-CD3 mAb associated with impaired PKC activation and cytokine production. More recently, defective expression and function of the p21ras cascade was reported in these patients. Taken together, these data suggest that lymphocytes from animals and patients with autoimmune diabetes have defective TCR mediated signaling which may result in aberrant T cell activation and proliferation. This may lead to an imbalance of Th1/Th2 cytokine secretory pattern and thereby promote disease development.
Collapse
Affiliation(s)
- A E Buchs
- Department of Medicine C, Assaf Harofe Medical Center, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
25
|
Curtis DJ, Jane SM, Hilton DJ, Dougherty L, Bodine DM, Begley CG. Adaptor protein SKAP55R is associated with myeloid differentiation and growth arrest. Exp Hematol 2000; 28:1250-9. [PMID: 11063873 DOI: 10.1016/s0301-472x(00)00537-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the SRC family of protein tyrosine kinases is an important component of intracellular signaling in hematopoiesis, but their critical substrates are less well understood. In this report, we describe the cloning and functional characterization of murine SKAP55R (mSKAP55R), an SRC family kinase substrate. Expression of mSKAP55R was examined by Northern blot. Phosphorylation of mSKAP55R was examined by transient transfection of COS cells. For overexpression studies, mSKAP55R was cloned into a bicistronic murine stem cell virus-based retrovirus. Transduced cells (FDC-P1 cell line and murine bone marrow) were FACS isolated by expression of the selectable marker green fluorescent protein.mSKAP55R showed 90% amino acid identity to the recently published human SKAP55R. mSKAP55R contained a central pleckstrin homology domain, a C-terminal SH3 domain, and a putative SRC kinase consensus substrate DEIY(260). mSKAP55R was expressed in all hematopoietic lineages, with relative mRNA levels greatest in cells of the myeloid and erythroid lineages. Induced myeloid differentiation of M1 and HL-60 cell lines was associated with an eight-fold increase in mSKAP55R mRNA. Transient expression of mSKAP55R in COS cells demonstrated that tyrosine 260 was the predominant site of phosphorylation by FYN kinase. Furthermore, this phosphotyrosine was essential for coimmunoprecipitation of FYN with mSKAP55R. Enforced expression of mSKAP55R inhibited in vitro growth of the myeloid FDC-P1 cell line and primary hematopoietic progenitors. In contrast, a tyrosine 260 mutant mSKAP55R had no effect on in vitro growth. These studies implicate mSKAP55R in the processes of myeloid differentiation and growth arrest.
Collapse
Affiliation(s)
- D J Curtis
- The Walter and Eliza Hall Institute of Medical Research and The Co-operative Research Centre for Cellular Growth Factors, Royal Melbourne Hospital, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Hehner SP, Breitkreutz R, Shubinsky G, Unsoeld H, Schulze-Osthoff K, Schmitz ML, Dröge W. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4319-28. [PMID: 11035067 DOI: 10.4049/jimmunol.165.8.4319] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure of T cells to the macrophage products hydrogen peroxide (HP) or L-lactate (LAC) was previously shown to enhance IL-2 production and to modulate glutathione (GSH) status. We now found that 50 microM HP and 30 mM LAC enhanced strongly the transcription from the IL-2 promoter in Jurkat T cells after stimulation with anti-CD28 together with or without anti-CD3 but not with anti-CD3 Abs alone. Therefore, we used anti-CD3 plus anti-CD28-stimulated cells to investigate the effect of the GSH reductase inhibitor 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) on the signal cascade. BCNU enhanced the transcription to a similar extent as HP or LAC. Lowering the intracellular GSH/GSH disulfide ratio by BCNU, HP, or NO resulted in all cases in the fulminant enhancement of Jun-N-terminal kinase and p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2. Jun-N-terminal kinase and NF-kappaB activation was enhanced through pathways involving Rac, Vav1, PKCTheta, p56(lck), p59(fyn), and IkappaB kinases. In a cell-free system, the autophosphorylation of rFyn was stimulated by GSH disulfide but not by HP. These findings suggest that the oxidation of the cellular thiol pool may play a role as an amplifying mechanism for TCR/CD3 signals in immune responses.
Collapse
Affiliation(s)
- S P Hehner
- Department of Immunochemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Hauck CR, Klingbeil CK, Schlaepfer DD. Focal adhesion kinase functions as a receptor-proximal signaling component required for directed cell migration. Immunol Res 2000; 21:293-303. [PMID: 10852130 DOI: 10.1385/ir:21:2-3:293] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In performing host-defense functions, cells of the immune system become activated by soluble chemokine signals and must migrate through endothelial cell or solid tissue barriers to reach sites of inflammation or infection. Regulated adhesive interactions of immune cells with endothelium, extracellular matrix components, and cells of solid organs are critical control points of the overall immune response. Both the soluble chemokine and cell adhesion receptor-mediated migration signals must converge on common intracellular targets to engage the cell migration machinery. In this article, we focus on the role of focal adhesion kinase (FAK) and its homolog Pyk2 as cytoplasmic mediators of motility events in multiple cell types. We introduce the overall domain structure of the FAK and Pyk2 nonreceptor protein tyrosine kinases (PTKs), highlight some of the signals that activate these PTKs, and detail the molecules that functionally interact and signal transduction pathways that may mediate cell migration responses. Emphasis is placed on the knowledge gained from studies using FAK-null cells as a model system to decipher the role of this PTK in promoting cell motility.
Collapse
Affiliation(s)
- C R Hauck
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
28
|
Runft LL, Jaffe LA. Sperm extract injection into ascidian eggs signals Ca(2+) release by the same pathway as fertilization. Development 2000; 127:3227-36. [PMID: 10887079 DOI: 10.1242/dev.127.15.3227] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Injection of eggs of various species with an extract of sperm cytoplasm stimulates intracellular Ca(2+) release that is spatially and temporally like that occurring at fertilization, suggesting that Ca(2+) release at fertilization may be initiated by a soluble factor from the sperm. Here we investigate whether the signalling pathway that leads to Ca(2+) release in response to sperm extract injection requires the same signal transduction molecules as are required at fertilization. Eggs of the ascidian Ciona intestinalis were injected with the Src-homology 2 domains of phospholipase C gamma or of the Src family kinase Fyn (which act as specific dominant negative inhibitors of the activation of these enzymes), and the effects on Ca(2+) release at fertilization or in response to injection of a sperm extract were compared. Our findings indicate that both fertilization and sperm extract injection initiate Ca(2+) release by a pathway requiring phospholipase C gamma and a Src family kinase. These results support the hypothesis that, in ascidians, a soluble factor from the sperm cytoplasm initiates Ca(2+) release at fertilization, and indicate that the activating factor from the sperm may be a regulator, directly or indirectly, of a Src family kinase in the egg.
Collapse
Affiliation(s)
- L L Runft
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | |
Collapse
|
29
|
Abe Y, Matsumoto S, Kito K, Ueda N. Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. J Biol Chem 2000; 275:21525-31. [PMID: 10781613 DOI: 10.1074/jbc.m909629199] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein kinase, TOPK (T-LAK cell-originated protein kinase), was isolated from a lymphokine-activated killer T (T-LAK) cell subtraction cDNA fragment library. The open reading frame of the TOPK gene encodes a protein of 322 amino acids, possessing a protein kinase domain profile. The cap site analysis of the 5'-end of TOPK mRNA revealed two forms, a major full-length form and a minor spliced form at the 5'-site, both encoding the same protein. A BLAST homology search and phylogenetic analysis indicated that TOPK is related to dual specific mitogen-activated protein kinase kinase (MAPKK). The transfection of the TOPK gene to COS-7 cells up-regulated a phosphorylation of p38 MAPK but not ERK1/2 or SAPK/JNK. Gel precipitation study indicated that TOPK protein can be associated with p38 in vitro. Tissue distribution of TOPK mRNA expression was specific for the testis, T-LAK cells, activated lymphoid cells, and lymphoid tumors. On the other hand, deactivated T-LAK cells did not show TOPK mRNA expression. These data suggest that TOPK is a newly identified member of a novel MEK3/6-related MAPKK that may be enrolled in the activation of lymphoid cells and support testicular functions.
Collapse
Affiliation(s)
- Y Abe
- First Department of Pathology, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan.
| | | | | | | |
Collapse
|
30
|
Giusti AF, Xu W, Hinkle B, Terasaki M, Jaffe LA. Evidence that fertilization activates starfish eggs by sequential activation of a Src-like kinase and phospholipase cgamma. J Biol Chem 2000; 275:16788-94. [PMID: 10747984 DOI: 10.1074/jbc.m001091200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence has indicated a requirement for a Src family kinase in initiating Ca(2+) release at fertilization in starfish eggs (Giusti, A. F., Carroll, D. J., Abassi, Y. A., Terasaki, M., Foltz, K. R., and Jaffe, L. A. (1999) J. Biol. Chem. 274, 29318-29322). We now show that injection of Src protein into starfish eggs initiates Ca(2+) release and DNA synthesis, as occur at fertilization. These responses depend on the phosphorylation state of the Src protein; only the kinase active form is effective. Like Ca(2+) release at fertilization, the Ca(2+) release in response to Src protein injection is inhibited by prior injection of the SH2 domains of phospholipase Cgamma. These findings support the conclusion that in starfish, sperm-egg interaction causes egg activation by sequential activation of a Src-like kinase and phospholipase Cgamma. Injection of the SH2 domain of Src, which inhibits Ca(2+) release at fertilization, does not inhibit Ca(2+) release caused by Src protein injection. This indicates that the requirement for a Src SH2 domain interaction is upstream of Src activation in the pathway leading to Ca(2+) release at fertilization.
Collapse
Affiliation(s)
- A F Giusti
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, the Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | |
Collapse
|
31
|
Pozzetto U, Facchiano A, Serino F. Rational design of biologically active peptides: inhibition of T cell activation through interference with CD4 function. Transpl Int 2000. [DOI: 10.1111/j.1432-2277.2000.tb02046.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Abassi YA, Carroll DJ, Giusti AF, Belton RJ, Foltz KR. Evidence that Src-type tyrosine kinase activity is necessary for initiation of calcium release at fertilization in sea urchin eggs. Dev Biol 2000; 218:206-19. [PMID: 10656764 DOI: 10.1006/dbio.1999.9582] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The initiation of Ca(2+) release from internal stores in the egg is a hallmark of egg activation. In sea urchins, PLCgamma activity is necessary for the production of IP(3), which leads to the initial rise in Ca(2+). To examine the possible function of a tyrosine kinase in activating PLCgamma at fertilization, sea urchin eggs were treated with the specific Src kinase inhibitor PP1 or microinjected with recombinant Src-family SH2-domain proteins, which act as dominant interfering inhibitors of Src-family kinase function. Both modes of inhibiting Src-family kinases resulted in a specific and dose-dependent delay in the onset of Ca(2+) release from the endoplasmic reticulum at fertilization. The rise in cytoplasmic pH at fertilization also was inhibited by microinjection of Src-family SH2-domain proteins. Further, an antibody directed against Src-type kinases recognized a protein of ca. M(r) 57K that was enriched in the membrane fraction of eggs. The kinase activity of this protein was stimulated rapidly and transiently at fertilization, as measured by autophosphorylation and by phosphorylation of an exogenous substrate. Together, these data indicate that a Src-type tyrosine kinase is necessary for the initiation of Ca(2+) release from the egg ER at fertilization and identify a Src-type p57 protein as a candidate in the signaling pathway leading to this Ca(2+) release.
Collapse
Affiliation(s)
- Y A Abassi
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
33
|
Wang G, Liszewski MK, Chan AC, Atkinson JP. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1839-46. [PMID: 10657632 DOI: 10.4049/jimmunol.164.4.1839] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane cofactor protein (MCP; CD46) is a widely expressed type 1 transmembrane glycoprotein that inhibits complement activation on host cells. It also is a receptor for several pathogens including measles virus, Streptococcus pyogenes, Neisseria gonorrhea, and Neisseria meningitidis. That MCP may have signaling capability was suggested by its microbial interactions. That is, binding of MCP on human monocytes by measles virus hemagglutinin or cross-linking by an anti-MCP Ab resulted in IL-12 down-regulation, while binding to MCP by Neisseria on epithelial cells produced a calcium flux. Through alternative splicing, MCP is expressed on most cells with two distinct cytoplasmic tails of 16 (CYT-1) or 23 (CYT-2) amino acids. These play pivotal roles in intracellular precursor processing and basolateral localization. We investigated the putative signal transduction pathway mediated by MCP and demonstrate that CYT-2, but not CYT-1, is phosphorylated on tyrosine. We examined MCP tail peptides and performed Ab cross-linking experiments on several human cell lines and MCP isoform transfectants. We found an MCP peptide of CYT-2 was phosphorylated by a src kinase system. Western blots of the cells lines demonstrated that cells bearing CYT-2 were also phosphorylated on tyrosine. Additionally, we provide genetic and biochemical evidence that the src family of kinases is responsible for the latter phosphorylation events. In particular, the src kinase, Lck, is required for phosphorylation of MCP in the Jurkat T cell line. Taken together, these studies suggest a src family-dependent pathway for signaling through MCP.
Collapse
Affiliation(s)
- G Wang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
34
|
Pelassy C, Breittmayer JP, Aussel C. Inhibition of phosphatidylserine synthesis during Jurkat T cell activation. The phosphatase inhibitor, sodium ortho-vanadate bypasses the CD3/T cell receptor-induced second messenger signaling pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:984-92. [PMID: 10672006 DOI: 10.1046/j.1432-1327.2000.01081.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sodium ortho-vanadate (Na3VO4), an inhibitor of protein tyrosine phosphatase, induces a rapid (15 min) and strong inhibition of phosphatidylserine synthesis with an IC50 = 100 microM. The mode of action of Na3VO4 was compared to that of CD3 mAbs. It was found that Na3VO4 bypasses the major CD3-induced T cell activation signals including protein tyrosine phosphorylation, p56lck activation and the generation of second messengers including inositol phosphates and its subsequent Ca2+ mobilization as well as diacylglycerol production. These facts were confirmed by using a panel of Jurkat clones that differs by the expression of either tyrosine kinases involved in the CD3-induced T cell activation pathway such as p56lck, p72syk and ZAP-70 or some cell surface receptors such as the CD3/TCR complex or the CD45 phosphatase.
Collapse
Affiliation(s)
- C Pelassy
- INSERM U343, Hôpital de l'Archet, Nice, France
| | | | | |
Collapse
|
35
|
Pelassy C, Breittmayer JP, Aussel C. Regulation of phosphatidylserine synthesis in Jurkat T cell clones: caffeine bypasses CD3/TCR-induced protein tyrosine kinases and calcium signals. Biochem Biophys Res Commun 1999; 266:497-503. [PMID: 10600531 DOI: 10.1006/bbrc.1999.1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylserine synthesis as measured by the incorporation of [(3)H]serine into phosphatidylserine (PtdSer) through the serine-base exchange enzyme system (serine-BEES) is markedly inhibited in Jurkat cells treated with caffeine. The caffeine-induced inhibition was compared to that observed in cells treated with either CD3 mAb or thapsigargin. While CD3- and thapsigargin-induced inhibition was related to the release of Ca(2+) from the endoplasmic reticulum (ER), a process that deprives the serine-BEES of its major cofactor, caffeine modified PtdSer synthesis in the absence of decreased Ca(2+) content of ER. Using Jurkat clones differing by the expression of cell surface markers or protein tyrosine kinases implicated in the CD3/TCR signal transmission pathway, we have shown that CD3 mAb-induced inhibition of PtdSer synthesis necessitates the expression of both the CD3/TCR and the protein tyrosine phosphatase CD45 at the cell surface as well as the presence of p56(lck) and ZAP-70 protein tyrosine kinases. By contrast, thapsigargin, a blocker of the Ca(2+)-ATPase of the ER, known for its Ca(2+) releasing properties, inhibited PtdSer synthesis in all the Jurkat clones tested, indicating that this compound bypasses the CD3/TCR-induced signals. Despite its lack of effect on Ca(2+) release from ER and on protein tyrosine phosphorylations, caffeine inhibited PtdSer synthesis in all the Jurkat clones. The use of several cAMP-inducing drugs and of others xanthine derivatives indicated that caffeine modify PtdSer synthesis either by a direct action on the serine-BEES or by a modification of the structure of the phospholipids used as substrate by the enzyme.
Collapse
Affiliation(s)
- C Pelassy
- INSERM U343, Hôpital de l'Archet, Nice cedex 03, 06202, France
| | | | | |
Collapse
|
36
|
Abstract
The development of B cells requires the expression of an antigen receptor at distinct points during maturation. The Ig-alpha/beta heterodimer signals for these receptors, and mice harboring a truncation of the Ig-alpha intracellular domain (mb-1(delta(c)/delta(c)) have severely reduced peripheral B cell numbers. Here we report that immature mb-1(delta(c)/delta(c) B cells are activated despite lacking a critical Ig-alpha-positive signaling motif. As a consequence of abnormal activation, transitional immature IgMhighIgDlow B cells are largely absent in mb-1delta(c)/delta(c) mutants, accounting for the paucity of mature B cells. Thus, Ig-alpha cytoplasmic tail truncation yields an antigen receptor complex on immature B cells that signals constitutively. These data illustrate a role for Ig-alpha in negatively regulating antigen receptor signaling during B cell development.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- B-Lymphocytes/cytology
- B7-2 Antigen
- CD79 Antigens
- Dimerization
- Immunoglobulin M/biosynthesis
- Immunophenotyping
- Liver/cytology
- Liver/embryology
- Lymphocyte Count
- Lymphoid Tissue/pathology
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Sequence Deletion
- Signal Transduction
- Specific Pathogen-Free Organisms
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- R M Torres
- Basel Institute for Immunology, Switzerland.
| | | |
Collapse
|
37
|
Abstract
Apoptosis is the fate of most thymocytes. Many molecules participate in the decision of whether a thymocyte is to live or to die, including cell surface receptors, such as the T cell receptor for antigen, Notch-1, and costimulatory receptors, ligand-regulated nuclear transcription factors such as the glucocorticoid receptor, signaling, and effector proteases, and direct regulators of the apoptotic machinery such IAPs. In this review we discuss recent data concerning these molecules and pathways and their implication for understanding the mechanisms underlying thymocyte death, survival, and the generation of inmmunocompetent T cells.
Collapse
Affiliation(s)
- Y Yang
- Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
38
|
Aifantis I, Pivniouk VI, Gärtner F, Feinberg J, Swat W, Alt FW, von Boehmer H, Geha RS. Allelic exclusion of the T cell receptor beta locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J Exp Med 1999; 190:1093-102. [PMID: 10523607 PMCID: PMC2195661 DOI: 10.1084/jem.190.8.1093] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1999] [Accepted: 08/10/1999] [Indexed: 01/18/2023] Open
Abstract
Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4(-)CD8(-) double-negative (DN) thymocytes into CD4(+)CD8(+) double-positive (DP) cells and for TCR-beta allelic exclusion. The adaptor protein SH2 domain-containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76(-/-) mice are arrested at the CD25(+)CD44(-) DN stage. Here we show that SLP-76(-/-) DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-alpha/beta transgene into the SLP-76(-/-) background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-beta rearrangement in SLP-76(-/-) TCR-transgenic mice or in single CD25(+)CD44(-) DN cells from SLP-76(-/-) mice indicates an essential role of SLP-76 in TCR-beta allelic exclusion.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Line
- Flow Cytometry
- Gene Expression Regulation
- Gene Rearrangement
- Mice
- Mice, Transgenic
- Phosphoproteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Signal Transduction/immunology
- src Homology Domains/immunology
Collapse
Affiliation(s)
- Iannis Aifantis
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Vadim I. Pivniouk
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frank Gärtner
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jacqueline Feinberg
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Wojciech Swat
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Harald von Boehmer
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Raif S. Geha
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|