1
|
Reno PL, Wallace S, Doelp SN, Biancaniello M, Kjosness KM. The role of the PTHrP/Ihh feedback loop in the unusual growth plate location in mammalian metatarsals and pisiforms. Dev Dyn 2025. [PMID: 40088130 DOI: 10.1002/dvdy.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Longitudinal skeletal growth takes place in the cartilaginous growth plates. While growth plates are found at either end of conventional long bones, they occur at a variety of locations in the mammalian skeleton. For example, the metacarpals and metatarsals (MT) in the hands and feet form only a single growth plate at one end, and the pisiform in the wrist is the only carpal bone to contain a growth plate. We take advantage of this natural anatomical variation to test which components of the PTHrP/Ihh feedback loop, a fundamental regulator of chondrocyte differentiation, are specific to growth plate function. RESULTS Parathyroid hormone-like hormone (Pthlh), the gene that transcribes parathyroid hormone-related peptide (PTHrP), is expressed in the reserve zone of the growth plate-forming end of the MT. At the opposite end, the absence of a PTHrP+ reserve zone results in premature chondrocyte differentiation and Indian hedgehog (Ihh) expression. Pthlh is expressed in the reserve zone of the developing pisiform, confirming the existence of a true growth plate. CONCLUSION A pool of PTHrP+ reserve zone chondrocytes is a defining characteristic of growth plates, and its patterning may be key to evolved differences in growth plate location in the mammalian skeleton.
Collapse
Affiliation(s)
- Philip L Reno
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Sherrie Wallace
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Sarah N Doelp
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Maria Biancaniello
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Kelsey M Kjosness
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Kamenický P, Houillier P, Vantyghem MC. Chapter 4: Differential diagnosis of primary hyperparathyroidism. ANNALES D'ENDOCRINOLOGIE 2025; 86:101693. [PMID: 39818292 DOI: 10.1016/j.ando.2025.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The differential diagnosis of primary hyperparathyroidism can be considered clinically, biologically and radiologically. Clinically, primary hyperparathyroidism should be suspected in case of diffuse pain, renal lithiasis, osteoporosis, repeated fracture, cognitive or psychiatric disorder, or disturbance of consciousness. Nevertheless, the differential diagnosis of primary hyperparathyroidism is mainly biological, particularly in atypical forms, which must be differentiated from hypercalcemia with hypocalciuria or non-elevated PTH on the one hand, and from normo-calcemia with elevated PTH, hypophosphatemia or hypercalciuria on the other. Any differential diagnosis must be preceded by an analysis of the factors likely to disturb phospho-calcium parameters: vitamin D deficiency (assay), renal insufficiency (eGFR measurement), malabsorption (inflammatory disease of the digestive tract, celiac disease, bariatric surgery, etc.), insufficient calcium intake (GRIO questionnaire) and iatrogenic causes (diuretics, anti-osteoporotic drugs, excessive vitamin D or calcium supplementation, lithium, corticosteroid therapy, phosphorus intake). Once these factors have been eliminated, hypercalcemia with hypocalciuria should suggest a genetic cause. Hypercalcemia with non-elevated PTH may be secondary to neoplasm, hypervitaminosis D (excessive intake, production or catabolism), immobilization or endocrine causes. Elevated PTH values without hypercalcemia must be differentiated from normo-calcemic hyperparathyroidism. High PTH levels are found in PTH-resistant patients, as well as in hypophosphatemic (especially X-linked) or hypercalciuric tubulopathies (certain rare diseases, immobilization, loop diuretics or idiopathic causes favored by a metabolic syndrome). Radiologically, brown tumor must be differentiated primarily from bone metastasis, chondrosarcoma and giant cell tumor.
Collapse
Affiliation(s)
- Peter Kamenický
- Inserm, physiologie et physiopathologie endocriniennes, service d'endocrinologie et des maladies de la reproduction, centre de référence des maladies rares du métabolisme du calcium et du phosphate, hôpital Bicêtre, université Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Pascal Houillier
- CNRS équipe mixte de recherche 8228, laboratoire de physiologie rénale et tubulopathies, centre de recherche des Cordeliers, institut national de la santé et de la recherche médicale, Sorbonne université, université Paris-Cité, 75006 Paris, France; Service de physiologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 75015 Paris, France; The European Reference Network on Rare Endocrine Conditions (Endo-ERN), centre de référence des maladies rares du calcium et du phosphate, 75015 Paris, France; Faculty of Medicine, Université Paris-Cité, 75006 Paris, France
| | - Marie-Christine Vantyghem
- Service d'endocrinologie, diabétologie, métabolisme, nutrition, hôpital Huriez, CHU de Lille, 1, rue Polonovski, 59037 Lille cedex, France; Inserm U1190, institut génomique européen pour le diabète, université de Lille, 59000 Lille, France.
| |
Collapse
|
3
|
Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL, Ono W. Etiological Mechanisms and Genetic/Biological Modulation Related to PTH1R in Primary Failure of Tooth Eruption. Calcif Tissue Int 2024; 115:101-116. [PMID: 38833001 DOI: 10.1007/s00223-024-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Man-Ting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhi-Fang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiang Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Xiao-Long Zang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
4
|
Yang D, Zhou Z, Wang S, Ying H, Wang S, Ma Q, Wu J, Jiao Q, Fan L, Chen M, Wang Y, Zhao L. A Novel Heterozygous Missense Variant in Parathyroid Hormone 1 is Related to the Occurrence of Developmental Dysplasia of the Hip. Genet Test Mol Biomarkers 2023; 27:74-80. [PMID: 36989525 DOI: 10.1089/gtmb.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Introduction: Developmental dysplasia of the hip (DDH) is one of the most common diseases in the pediatric orthopedics, with an incidence of 1-5%. Genetic factors are the bases of the pathogenesis of DDH, but the pathogenic variants and pathogenesis of DDH are still unknown. There are no key accurate diagnostic or prognostic molecular markers for DDH. The purpose of our study was to screen for genetic variant associated with DDH and explore its pathogenesis. Materials and Methods: The genetic variation of DDH was tested by variant NGS-based exome analyses, verified by the Sanger sequencing. Results: A four-generation family in which DDH was present in three generations was recruited. A novel heterozygous missense variant c.629C>T (p.(Ala210Val)) in exon 7/8 of the parathyroid hormone 1 receptor (PTH1R) gene was identified through screening of two affected and one unaffected family members. The candidate variant was validated in all available family members with all three affected members being positive for the PTH1R variant. Conclusion: Our results are highly supportive of PTH1R as a novel candidate gene for DDH and demonstrated that the combination of pedigree information and next-generation sequencing is an effective method for identifying pathogenic variants associated with DDH.
Collapse
Affiliation(s)
- Dan Yang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P.R. China
| | - Zaiwei Zhou
- Shanghai Xunyin Biotechnology Co., Ltd., Shanghai, P.R. China
| | - Shiqi Wang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hao Ying
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Sun Wang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qichao Ma
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jing Wu
- Laboratory of Translational Research, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qin Jiao
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lingyan Fan
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Mengjie Chen
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yichen Wang
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lihua Zhao
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
5
|
Collins MT, Marcucci G, Anders HJ, Beltrami G, Cauley JA, Ebeling PR, Kumar R, Linglart A, Sangiorgi L, Towler DA, Weston R, Whyte MP, Brandi ML, Clarke B, Thakker RV. Skeletal and extraskeletal disorders of biomineralization. Nat Rev Endocrinol 2022; 18:473-489. [PMID: 35578027 DOI: 10.1038/s41574-022-00682-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The physiological process of biomineralization is complex and deviation from it leads to a variety of diseases. Progress in the past 10 years has enhanced understanding of the genetic, molecular and cellular pathophysiology underlying these disorders; sometimes, this knowledge has both facilitated restoration of health and clarified the very nature of biomineralization as it occurs in humans. In this Review, we consider the principal regulators of mineralization and crystallization, and how dysregulation of these processes can lead to human disease. The knowledge acquired to date and gaps still to be filled are highlighted. The disorders of mineralization discussed comprise a broad spectrum of conditions that encompass bone disorders associated with alterations of mineral quantity and quality, as well as disorders of extraskeletal mineralization (hyperphosphataemic familial tumoural calcinosis). Included are disorders of alkaline phosphatase (hypophosphatasia) and phosphate homeostasis (X-linked hypophosphataemic rickets, fluorosis, rickets and osteomalacia). Furthermore, crystallopathies are covered as well as arterial and renal calcification. This Review discusses the current knowledge of biomineralization derived from basic and clinical research and points to future studies that will lead to new therapeutic approaches for biomineralization disorders.
Collapse
Affiliation(s)
- Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA.
| | - Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of the University of Munich, Ludwig-Maximilians University, Munich, Germany
| | - Giovanni Beltrami
- Department Paediatric Orthopedic Oncology, Careggi and Meyer Children Hospital, Florence, Italy
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Rajiv Kumar
- Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Agnès Linglart
- APHP, Endocrinologie et diabète de l'enfant, Paris, France
| | - Luca Sangiorgi
- Medical Genetics and Skeletal Rare Diseases, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dwight A Towler
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ria Weston
- Cardiovascular Research Group, Manchester Metropolitan University, Manchester, UK
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St Louis, MO, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Sarkar K, Joedicke L, Westwood M, Burnley R, Wright M, McMillan D, Byrne B. Modulation of PTH1R signaling by an extracellular binding antibody. VITAMINS AND HORMONES 2022; 120:109-132. [PMID: 35953107 DOI: 10.1016/bs.vh.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parathyroid hormone receptor 1 (PTH1R) is a class B G-protein coupled receptor with key roles in bone development. The receptor signals through both the Gs and Gq G-proteins as well as through β-arrestin in a G-protein independent manner. Current treatments for bone disorders, such as osteoporosis, target the PTH1R but are suboptimal in their efficacy. Monoclonal antibodies represent a major growth area in therapeutics as a result of their superior specificity and long serum half-life. Here, we discovered antibodies against the extracellular domain (ECD) of PTH1R from a phage display library. One of these antibodies, ECD-ScFvhFc, binds PTH1R with high affinity and although it has little or no effect on G-protein dependent receptor signaling, it does reduce PTH1R mediated β-arrestin signaling. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) demonstrated that the ECD-ScFvhFc binding site overlapped partially with that of the cognate ligand, PTH. The results of this study demonstrate the suitability of PTH1R as a target for therapeutic antibody development.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Life Sciences, Imperial College, London, United Kingdom; UCB Pharma, Slough, United Kingdom
| | | | | | | | | | | | - Bernadette Byrne
- Department of Life Sciences, Imperial College, London, United Kingdom.
| |
Collapse
|
7
|
Pieles O, Reichert TE, Morsczeck C. Protein kinase A is activated during bone morphogenetic protein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hormone-related protein. Arch Oral Biol 2022; 138:105409. [PMID: 35338829 DOI: 10.1016/j.archoralbio.2022.105409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the mechanisms of how protein kinase A (PKA) is activated during bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation in dental follicle stem cells. DESIGN Human dental follicle stem cells were cultured and treated with a BMP2-containing osteogenic differentiation medium or differentiation medium without BMP2. Specific siRNAs and substances/proteins were used to modulate pathways. PKA activity and activity of alkaline phosphatase were determined. Expression of targets was measured by Western Blots and reverse transcription-quantitative polymerase chain reaction, while protein interactions were investigated by immunoprecipitation. Immunofluorescence staining was used for subcellular target localization. RESULTS PKA activity is stimulated after osteogenic induction by BMP2. Differentiation medium without BMP2 strongly induces BMP2 gene expression, which correlates with downstream target expression. Elevation of cAMP levels does not affect alkaline phosphatase activity and PKA does not directly interact with Smad 4. However, PKA activation requires expression of parathyroid hormone-related protein (PTHrP), which is stimulated after BMP2-induced differentiation. Furthermore, neither supplementation with PTHrP nor with the receptor antagonist parathyroid hormone (7-34) affects PKA activity. Thus, endogenous PTHrP expression is required for PKA activation and immunofluorescence staining shows that PTHrP is mainly located in the nucleus of dental follicle stem cells. Beyond, knockdown of PKA stimulates the BMP2 signaling pathway and down-stream expression of PTHrP. CONCLUSIONS BMP2-induced osteogenic differentiation activates PKA in dental follicle stem cells via endogenous expression of PTHrP. Additionally, PKA inhibits BMP2 signaling and expression of PTHrP in a negative feedback loop.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
8
|
Coveney CR, Samvelyan HJ, Miotla-Zarebska J, Carnegie J, Chang E, Corrin CJ, Coveney T, Stott B, Parisi I, Duarte C, Vincent TL, Staines KA, Wann AK. Ciliary IFT88 Protects Coordinated Adolescent Growth Plate Ossification From Disruptive Physiological Mechanical Forces. J Bone Miner Res 2022; 37:1081-1096. [PMID: 35038201 PMCID: PMC9304194 DOI: 10.1002/jbmr.4502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
Compared with our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programs, including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signaling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl ) in the juvenile and adolescent skeleton using a cartilage-specific, inducible Cre (AggrecanCreERT2 Ift88fl/fl ). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption, and mineralization. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. Although normal patterns of hedgehog signaling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity, and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilization inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Clarissa R Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hasmik J Samvelyan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Jadwiga Miotla-Zarebska
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Josephine Carnegie
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Emer Chang
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - C Jonty Corrin
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Trystan Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Bryony Stott
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ida Parisi
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Claudia Duarte
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Katherine A Staines
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Angus Kt Wann
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Isojima T, Sims NA. Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell Mol Life Sci 2021; 78:5755-5773. [PMID: 34196732 PMCID: PMC11073036 DOI: 10.1007/s00018-021-03884-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Cortical bone structure is a crucial determinant of bone strength, yet for many years studies of novel genes and cell signalling pathways regulating bone strength have focused on the control of trabecular bone mass. Here we focus on mechanisms responsible for cortical bone development, growth, and degeneration, and describe some recently described genetic-driven modifications in humans and mice that reveal how these processes may be controlled. We start with embryonic osteogenesis of preliminary bone structures preceding the cortex and describe how this structure consolidates then matures to a dense, vascularised cortex containing an increasing proportion of lamellar bone. These processes include modelling-induced, and load-dependent, asymmetric cortical expansion, which enables the cortex's transition from a highly porous woven structure to a consolidated and thickened highly mineralised lamellar bone structure, infiltrated by vascular channels. Sex-specific differences emerge during this process. With aging, the process of consolidation reverses: cortical pores enlarge, leading to greater cortical porosity, trabecularisation and loss of bone strength. Each process requires co-ordination between bone formation, bone mineralisation, vascularisation, and bone resorption, with a need for locational-, spatial- and cell-specific signalling pathways to mediate this co-ordination. We will discuss these processes, and a number of cell-signalling pathways identified in both murine and human genetic studies to regulate cortical bone mass, including signalling through gp130, STAT3, PTHR1, WNT16, NOTCH, NOTUM and sFRP4.
Collapse
Affiliation(s)
- Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3122, Australia.
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
10
|
Martin TJ, Sims NA, Seeman E. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 2021; 42:383-406. [PMID: 33564837 DOI: 10.1210/endrev/bnab005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone (PTH) and the paracrine factor, PTH-related protein (PTHrP), have preserved in evolution sufficient identities in their amino-terminal domains to share equivalent actions upon a common G protein-coupled receptor, PTH1R, that predominantly uses the cyclic adenosine monophosphate-protein kinase A signaling pathway. Such a relationship between a hormone and local factor poses questions about how their common receptor mediates pharmacological and physiological actions of the two. Mouse genetic studies show that PTHrP is essential for endochondral bone lengthening in the fetus and is essential for bone remodeling. In contrast, the main postnatal function of PTH is hormonal control of calcium homeostasis, with no evidence that PTHrP contributes. Pharmacologically, amino-terminal PTH and PTHrP peptides (teriparatide and abaloparatide) promote bone formation when administered by intermittent (daily) injection. This anabolic effect is remodeling-based with a lesser contribution from modeling. The apparent lesser potency of PTHrP than PTH peptides as skeletal anabolic agents could be explained by lesser bioavailability to PTH1R. By contrast, prolongation of PTH1R stimulation by excessive dosing or infusion, converts the response to a predominantly resorptive one by stimulating osteoclast formation. Physiologically, locally generated PTHrP is better equipped than the circulating hormone to regulate bone remodeling, which occurs asynchronously at widely distributed sites throughout the skeleton where it is needed to replace old or damaged bone. While it remains possible that PTH, circulating within a narrow concentration range, could contribute in some way to remodeling and modeling, its main physiological role is in regulating calcium homeostasis.
Collapse
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Ego Seeman
- The University of Melbourne, Department of Medicine at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
11
|
Edwards CM, Johnson RW. From Good to Bad: The Opposing Effects of PTHrP on Tumor Growth, Dormancy, and Metastasis Throughout Cancer Progression. Front Oncol 2021; 11:644303. [PMID: 33828987 PMCID: PMC8019909 DOI: 10.3389/fonc.2021.644303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Parathyroid hormone related protein (PTHrP) is a multifaceted protein with several biologically active domains that regulate its many roles in normal physiology and human disease. PTHrP causes humoral hypercalcemia of malignancy (HHM) through its endocrine actions and tumor-induced bone destruction through its paracrine actions. PTHrP has more recently been investigated as a regulator of tumor dormancy owing to its roles in regulating tumor cell proliferation, apoptosis, and survival through autocrine/paracrine and intracrine signaling. Tumor expression of PTHrP in late stages of cancer progression has been shown to promote distant metastasis formation, especially in bone by promoting tumor-induced osteolysis and exit from dormancy. In contrast, PTHrP may protect against further tumor progression and improve patient survival in early disease stages. This review highlights current knowledge from preclinical and clinical studies examining the role of PTHrP in promoting tumor progression as well as skeletal and soft tissue metastasis, especially with regards to the protein as a regulator of tumor dormancy. The discussion will also provide perspectives on PTHrP as a prognostic factor and therapeutic target to inhibit tumor progression, prevent tumor recurrence, and improve patient survival.
Collapse
Affiliation(s)
- Courtney M. Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Abstract
Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Muthusami S, Vidya B, Shankar EM, Vadivelu J, Ramachandran I, Stanley JA, Selvamurugan N. The Functional Significance of Endocrine-immune Interactions in Health and Disease. Curr Protein Pept Sci 2021; 21:52-65. [PMID: 31702489 DOI: 10.2174/1389203720666191106113435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
Hormones are known to influence various body systems that include skeletal, cardiac, digestive, excretory, and immune systems. Emerging investigations suggest the key role played by secretions of endocrine glands in immune cell differentiation, proliferation, activation, and memory attributes of the immune system. The link between steroid hormones such as glucocorticoids and inflammation is widely known. However, the role of peptide hormones and amino acid derivatives such as growth and thyroid hormones, prolactin, dopamine, and thymopoietin in regulating the functioning of the immune system remains unclear. Here, we reviewed the findings pertinent to the functional role of hormone-immune interactions in health and disease and proposed perspective directions for translational research in the field.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari, Coimbatore 641021, Tamil Nadu, India
| | - Balasubramanian Vidya
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari, Coimbatore 641021, Tamil Nadu, India
| | - Esaki M Shankar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Jone A Stanley
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
14
|
Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct Target Ther 2020; 5:297. [PMID: 33361757 PMCID: PMC7762753 DOI: 10.1038/s41392-020-00328-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, the type 1 parathyroid hormone receptor (PTH1R) is a critical regulator of skeletal development and homeostasis; however, how it is modulated is incompletely understood. Here we report that deleting Kindlin-2 in osteoblastic cells using the mouse 10-kb Dmp1-Cre largely neutralizes the intermittent PTH-stimulated increasing of bone volume fraction and bone mineral density by impairing both osteoblast and osteoclast formation in murine adult bone. Single-cell profiling reveals that Kindlin-2 loss increases the proportion of osteoblasts, but not mesenchymal stem cells, chondrocytes and fibroblasts, in non-hematopoietic bone marrow cells, with concomitant depletion of osteoblasts on the bone surfaces, especially those stimulated by PTH. Furthermore, haploinsufficiency of Kindlin-2 and Pth1r genes, but not that of either gene, in mice significantly decreases basal and, to a larger extent, PTH-stimulated bone mass, supporting the notion that both factors function in the same genetic pathway. Mechanistically, Kindlin-2 interacts with the C-terminal cytoplasmic domain of PTH1R via aa 474–475 and Gsα. Kindlin-2 loss suppresses PTH induction of cAMP production and CREB phosphorylation in cultured osteoblasts and in bone. Interestingly, PTH promotes Kindlin-2 expression in vitro and in vivo, thus creating a positive feedback regulatory loop. Finally, estrogen deficiency induced by ovariectomy drastically decreases expression of Kindlin-2 protein in osteocytes embedded in the bone matrix and Kindlin-2 loss essentially abolishes the PTH anabolic activity in bone in ovariectomized mice. Thus, we demonstrate that Kindlin-2 functions as an intrinsic component of the PTH1R signaling pathway in osteoblastic cells to regulate bone mass accrual and homeostasis.
Collapse
|
15
|
Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep 2020; 10:22241. [PMID: 33335129 PMCID: PMC7747641 DOI: 10.1038/s41598-020-78983-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
There are currently no pharmacological approaches in fracture healing designed to therapeutically stimulate endochondral ossification. In this study, we test nerve growth factor (NGF) as an understudied therapeutic for fracture repair. We first characterized endogenous expression of Ngf and its receptor tropomyosin receptor kinase A (TrkA) during tibial fracture repair, finding that they peak during the cartilaginous phase. We then tested two injection regimens and found that local β-NGF injections during the endochondral/cartilaginous phase promoted osteogenic marker expression. Gene expression data from β-NGF stimulated cartilage callus explants show a promotion in markers associated with endochondral ossification such as Ihh, Alpl, and Sdf-1. Gene ontology enrichment analysis revealed the promotion of genes associated with Wnt activation, PDGF- and integrin-binding. Subsequent histological analysis confirmed Wnt activation following local β-NGF injections. Finally, we demonstrate functional improvements to bone healing following local β-NGF injections which resulted in a decrease in cartilage and increase of bone volume. Moreover, the newly formed bone contained higher trabecular number, connective density, and bone mineral density. Collectively, we demonstrate β-NGF’s ability to promote endochondral repair in a murine model and uncover mechanisms that will serve to further understand the molecular switches that occur during cartilage to bone transformation.
Collapse
|
16
|
Son C, Choi MS, Park JC. Different Responsiveness of Alveolar Bone and Long Bone to Epithelial-Mesenchymal Interaction-Related Factor. JBMR Plus 2020; 4:e10382. [PMID: 32803111 PMCID: PMC7422712 DOI: 10.1002/jbm4.10382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
Alveolar bone is both morphologically and functionally different from other bones of the axial or peripheral skeleton. Because of its sensitive nature to external stimuli including mechanical stress, bone loss stimuli, and medication-related osteonecrosis of the jaw, alveolar bone rendering is seen as an important factor in various dental surgical processes. Although multiple studies have validated the response of long bone to various factors, how alveolar bone responds to functional stimuli still needs further clarification. To examine the characteristics of bone in vitro, we isolated cells from alveolar, femur, and tibia bone tissue. Although primary cultured mouse alveolar bone-derived cells (mABDCs) and mouse long bone-derived cells (mLBDCs) exhibited similar osteoblastic characteristics, morphology, and proliferation rates, both showed distinct expression of neural crest (NC) and epithelial-mesenchymal interaction (EMI)-related genes. Furthermore, they showed significantly different mineralization rates. RNA sequencing data demonstrated distinct transcriptome profiles of alveolar bone and long bone. Osteogenic, NC-, and EMI-related genes showed distinct expression between mABDCs and mLBDCs. When the gene expression patterns during osteogenic differentiation were analyzed, excluding several osteogenic genes, NC- and EMI-related genes showed different expression patterns. Among EMI-related proteins, BMP4 elevated the expression levels of osteogenic genes, Msx2, Dlx5, and Bmp2 the most, more noticeably in mABDCs than in mLBDCs during osteogenic differentiation. In in vivo models, the BMP4-treated mABDC group showed massive bone formation and maturation as opposed to its counterpart. Bone sialoprotein expression was also validated in calcified tissues. Overall, our data suggest that alveolar bone and long bone have different responsiveness to EMI by distinct gene regulation. In particular, BMP4 has critical bone formation effects on alveolar bone, but not on long bone. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chul Son
- Department of Oral Histology and Developmental Biology, School of Dentistry Seoul National University Seoul South Korea
| | - Moon Sil Choi
- Department of Dental Hygiene Songwon University Gwangju South Korea
| | - Joo-Cheol Park
- Department of Oral Histology and Developmental Biology, School of Dentistry Seoul National University Seoul South Korea
| |
Collapse
|
17
|
Abstract
The resting zone houses a group of slowly proliferating 'reserve' chondrocytes and has long been speculated to serve as the stem cell niche of the postnatal growth plate. But are these resting chondrocytes bona fide stem cells? Recent technological advances in lineage tracing and next-generation sequencing have finally allowed researchers to answer this question. Several recent studies have also shed light into the signaling pathways and molecular mechanisms involved in the maintenance of resting chondrocytes, thus providing us with important new insights into the role of the resting zone in the paracrine and endocrine regulation of childhood bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy ShriverNational Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Parathyroid Hormone: A Uremic Toxin. Toxins (Basel) 2020; 12:toxins12030189. [PMID: 32192220 PMCID: PMC7150960 DOI: 10.3390/toxins12030189] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022] Open
Abstract
Parathyroid hormone (PTH) has an important role in the maintenance of serum calcium levels. It activates renal 1α-hydroxylase and increases the synthesis of the active form of vitamin D (1,25[OH]2D3). PTH promotes calcium release from the bone and enhances tubular calcium resorption through direct action on these sites. Hallmarks of secondary hyperparathyroidism associated with chronic kidney disease (CKD) include increase in serum fibroblast growth factor 23 (FGF-23), reduction in renal 1,25[OH]2D3 production with a decline in its serum levels, decrease in intestinal calcium absorption, and, at later stages, hyperphosphatemia and high levels of PTH. In this paper, we aim to critically discuss severe CKD-related hyperparathyroidism, in which PTH, through calcium-dependent and -independent mechanisms, leads to harmful effects and manifestations of the uremic syndrome, such as bone loss, skin and soft tissue calcification, cardiomyopathy, immunodeficiency, impairment of erythropoiesis, increase of energy expenditure, and muscle weakness.
Collapse
|
19
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, Jones RM, Pacifici R. PTH induces bone loss via microbial-dependent expansion of intestinal TNF + T cells and Th17 cells. Nat Commun 2020; 11:468. [PMID: 31980603 PMCID: PMC6981196 DOI: 10.1038/s41467-019-14148-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Bone loss is a frequent but not universal complication of hyperparathyroidism. Using antibiotic-treated or germ-free mice, we show that parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched by the Th17 cell-inducing taxa segmented filamentous bacteria (SFB). SFB+ microbiota enabled PTH to expand intestinal TNF+ T and Th17 cells and increase their S1P-receptor-1 mediated egress from the intestine and recruitment to the bone marrow (BM) that causes bone loss. CXCR3-mediated TNF+ T cell homing to the BM upregulated the Th17 chemoattractant CCL20, which recruited Th17 cells to the BM. This study reveals mechanisms for microbiota-mediated gut-bone crosstalk in mice models of hyperparathyroidism that may help predict its clinical course. Targeting the gut microbiota or T cell migration may represent therapeutic strategies for hyperparathyroidism.
Collapse
Affiliation(s)
- Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Emory Microbiome Research Center, Emory University, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Rheinallt M Jones
- Emory Microbiome Research Center, Emory University, Atlanta, GA, USA.,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA. .,Emory Microbiome Research Center, Emory University, Atlanta, GA, USA. .,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Modulation of PTH1R signaling by an ECD binding antibody results in inhibition of β-arrestin 2 coupling. Sci Rep 2019; 9:14432. [PMID: 31594997 PMCID: PMC6783463 DOI: 10.1038/s41598-019-51016-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Parathyroid hormone receptor 1 (PTH1R) belongs to the secretin class of G protein coupled receptors (GPCRs) and natively binds parathyroid hormone (PTH) and parathyroid hormone related peptide (PTHrP). Ligand binding to PTH1R involves binding to the large extracellular domain (ECD) and the orthosteric pocket, inducing conformational changes in the transmembrane domain and receptor activation. PTH1R regulates bone metabolism, signaling mainly through Gs and Gq/11 G-proteins. Here, we used phage display to generate PTH1R ECD-specific antibodies with the aim of modulating receptor functionality. We identified ECD-scFvhFc, which exhibited high affinity binding to both the isolated ECD and to the full-length receptor in styrene-maleic acid (SMA) lipid particles. Epitope mapping using hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicates that the α1 helix of the ECD is ECD-scFvhFc’s epitope which may partially overlap with the known PTH (1–34) binding site. However, PTH (1–34)-mediated Gs activation is Undisturbed by ECD-scFvhFc binding. In contrast, ECD-scFvhFc potently inhibits β-arrestin-2 recruitment after PTH (1–34)-driven receptor activation and thus represents the first monoclonal antibody to selectively inhibit distinct PTH1R signaling pathways. Given the complexity of PTH1R signaling and the emerging importance of biased GPCR activation in drug development, ECD-scFvhFc could be a valuable tool to study PTH1R signaling bias.
Collapse
|
22
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
23
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
24
|
Frieling JS, Lynch CC. Proteolytic Regulation of Parathyroid Hormone-Related Protein: Functional Implications for Skeletal Malignancy. Int J Mol Sci 2019; 20:ijms20112814. [PMID: 31181800 PMCID: PMC6600663 DOI: 10.3390/ijms20112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP), with isoforms ranging from 139 to 173 amino acids, has long been implicated in the development and regulation of multiple tissues, including that of the skeleton, via paracrine and autocrine signaling. PTHrP is also known as a potent mediator of cancer-induced bone disease, contributing to a vicious cycle between tumor cells and the bone microenvironment that drives the formation and progression of metastatic lesions. The abundance of roles ascribed to PTHrP have largely been attributed to the N-terminal 1-36 amino acid region, however, activities for mid-region and C-terminal products as well as additional shorter N-terminal species have also been described. Studies of the protein sequence have indicated that PTHrP is susceptible to post-translational proteolytic cleavage by multiple classes of proteases with emerging evidence pointing to novel functional roles for these PTHrP products in regulating cell behavior in homeostatic and pathological contexts. As a consequence, PTHrP products are also being explored as potential biomarkers of disease. Taken together, our enhanced understanding of the post-translational regulation of PTHrP bioactivity could assist in developing new therapeutic approaches that can effectively treat skeletal malignancies.
Collapse
Affiliation(s)
- Jeremy S Frieling
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
25
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Zheng J, Feng Q, Zheng S, Xiao X. Maternal nutrition and the developmental origins of osteoporosis in offspring: Potential mechanisms and clinical implications. Exp Biol Med (Maywood) 2018; 243:836-842. [PMID: 29792069 DOI: 10.1177/1535370218779024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis, the most frequent metabolic disorder of bone, is a complex disease with a multifactorial origin that is influenced by genes and environments. However, the pathogenesis of osteoporosis has not been fully elucidated. The theory of "Developmental Origins of Health and Disease" indicates that early life environment exposure determines the risks of cardiometabolic diseases in adulthood. However, investigations into the effects of maternal nutrition and nutrition exposure during early life on the development of osteoporosis are limited. Recently, emerging evidence has strongly suggested that maternal nutrition has long-term influences on bone metabolism in offspring, and epigenetic modifications maybe the underlying mechanisms of this process. This review aimed to address maternal nutrition and its implications for the developmental origins of osteoporosis in offspring. It is novel in providing a theoretical basis for the early prevention of osteoporosis. Impact statement Our review aimed to address maternal nutrition and its implications for the developmental origins of osteoporosis in offspring, that can novelly provide a theoretical basis for the early prevention of osteoporosis.
Collapse
Affiliation(s)
- Jia Zheng
- 1 Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qianyun Feng
- 2 Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,3 Department of Pediatrics, The Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
| | - Sheng Zheng
- 2 Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,4 Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Institute of Spine, Tianjin 300121, China
| | - Xinhua Xiao
- 1 Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
27
|
Liu Q, Yang HX, Wan XH, Zhang M, Zhang J, Lu L, Xie M, Ren HT, Yu SB, Liu XD, Wang M. Calcium-/calmodulin-dependent protein kinase II in occlusion-induced degenerative cartilage of rat mandibular condyle. J Oral Rehabil 2018; 45:442-451. [PMID: 29603329 DOI: 10.1111/joor.12629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Activated calcium-/calmodulin-dependent protein kinaseII (CaMKII) is important to promote chondrocytes from proliferative to pre-hypertrophic state, which probably plays a role in osteoarthritis (OA), a widespread degeneration disease with enhanced aberrant chondrocyte differentiation. Our aim was to detect the role of CaMKII, and its relationship with the feedback loop of Indian hedgehog (Ihh) and Parathyroid-related peptide (PTHrP) in the temporomandibular joints (TMJs) OA. KN93, the competitive inhibitor of CaMKII, was added to the culture medium in vitro and was locally injected to rats TMJs (n = 54, female) every other day for 4 weeks from the beginning of the 5th and 9th week after installing of unilateral anterior crossbite (UAC), termed as 4 wk+4 wk and 8 wk+4 wk, accordingly. The RNA expression of CaMKII α (1.49 ± 0.09), CaMKII β (3.36 ± 0.20), Ihh (1.88 ± 0.06) and PTHrP (1.87 ± 0.12) was all enhanced, especially at 24 dyn/cm2 in vitro (all P < .05), accompanied with downregulated expression of cartilage matrix, but upregulated markers of chondrocytes differentiation (all P < 0.05). Similarity was observed in the 4 wk+4 wk group in vivo. In the 8 wk+4 wk group, UAC upregulated the RNA expression of CaMKII α (1.81 ± 0.24), CaMKII β (1.36 ± 0.07) and Ihh (1.70 ± 0.21), however, down-regulated PTHrP (0.53 ± 0.04) (all P < .05), in consonance with the protein expression. All these changes were attenuated by KN93 (all P < .05). In conclusion, CaMKII took a role, via Ihh and PTHrP pathways, in promoting biomechanically induced TMJ chondrocytes differentiation, the initiation issue of UAC stimulated osteoarthritic changes in rodent TMJs. Inhibiting CaMKII is helpful to rescue the biomechanically stimulated cartilage degradation and prospective to be a target treatment of OA.
Collapse
Affiliation(s)
- Q Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - H-X Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - X-H Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - L Lu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Xie
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - H-T Ren
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - S-B Yu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - X-D Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
29
|
Vaca-González JJ, Moncayo-Donoso M, Guevara JM, Hata Y, Shefelbine SJ, Garzón-Alvarado DA. Mechanobiological modeling of endochondral ossification: an experimental and computational analysis. Biomech Model Mechanobiol 2018; 17:853-875. [DOI: 10.1007/s10237-017-0997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
|
30
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Yu M, D'Amelio P, Tyagi AM, Vaccaro C, Li JY, Hsu E, Buondonno I, Sassi F, Adams J, Weitzmann MN, DiPaolo R, Pacifici R. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep 2017; 19:156-171. [PMID: 29158349 DOI: 10.15252/embr.201744421] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Teriparatide is a bone anabolic treatment for osteoporosis, modeled in animals by intermittent PTH (iPTH) administration, but the cellular and molecular mechanisms of action of iPTH are largely unknown. Here, we show that Teriparatide and iPTH cause a ~two-threefold increase in the number of regulatory T cells (Tregs) in humans and mice. Attesting in vivo relevance, blockade of the Treg increase in mice prevents the increase in bone formation and trabecular bone volume and structure induced by iPTH Therefore, increasing the number of Tregs is a pivotal mechanism by which iPTH exerts its bone anabolic activity. Increasing Tregs pharmacologically may represent a novel bone anabolic therapy, while iPTH-induced Treg increase may find applications in inflammatory conditions and transplant medicine.
Collapse
Affiliation(s)
- Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Patrizia D'Amelio
- Gerontology Section, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chiara Vaccaro
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ilaria Buondonno
- Gerontology Section, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Francesca Sassi
- Gerontology Section, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA.,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Richard DiPaolo
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA .,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Diepenhorst N, Rueda P, Cook AE, Pastoureau P, Sabatini M, Langmead CJ. G protein-coupled receptors as anabolic drug targets in osteoporosis. Pharmacol Ther 2017; 184:1-12. [PMID: 29080701 DOI: 10.1016/j.pharmthera.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a progressive bone disorder characterised by imbalance between bone building (anabolism) and resorption (catabolism). Most therapeutics target inhibition of osteoclast-mediated bone resorption, but more recent attention in early drug discovery has focussed on anabolic targets in osteoblasts or their precursors. Two marketed agents that display anabolic properties, strontium ranelate and teriparatide, mediate their actions via the G protein-coupled calcium-sensing and parathyroid hormone-1 receptors, respectively. This review explores their activity, the potential for improved therapeutics targeting these receptors and other putative anabolic GPCR targets, including Smoothened, Wnt/Frizzled, relaxin family peptide, adenosine, cannabinoid, prostaglandin and sphingosine-1-phosphate receptors.
Collapse
Affiliation(s)
- Natalie Diepenhorst
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Patricia Rueda
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Anna E Cook
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Philippe Pastoureau
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Massimo Sabatini
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Christopher J Langmead
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia.
| |
Collapse
|
33
|
|
34
|
Nampoothiri S, Fernández-Rebollo E, Yesodharan D, Gardella TJ, Rush ET, Langman CB, Jüppner H. Jansen Metaphyseal Chondrodysplasia due to Heterozygous H223R-PTH1R Mutations With or Without Overt Hypercalcemia. J Clin Endocrinol Metab 2016; 101:4283-4289. [PMID: 27410178 PMCID: PMC5095231 DOI: 10.1210/jc.2016-2054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CONTEXT Jansen's metaphyseal chondrodysplasia (JMC) is a rare skeletal dysplasia characterized by abnormal endochondral bone formation and typically severe hypercalcemia despite normal/low levels of PTH. Five different heterozygous activating PTH/PTHrP receptor (PTH1R) mutations that change one of three different amino acid residues are known to cause JMC. OBJECTIVES Establishing the diagnosis of JMC during infancy or early childhood can be challenging, especially in the absence of family history and/or overt hypercalcemia. We therefore sought to provide radiographic findings supporting this diagnosis early in life. PATIENTS AND METHODS Three patients, a mother and her two sons, had radiographic evidence for JMC. However, obvious hypercalcemia and suppressed PTH levels were encountered only in both affected children. Sanger sequencing and endonuclease (SphI) digestion of PCR-amplified genomic DNA were performed to search for the H223R-PTH1R mutation. RESULTS The heterozygous H223R mutation was identified in all three affected individuals. Surprisingly, however, the now 38-year-old mother was never overtly hypercalcemic and was therefore not diagnosed until her sons were found to be affected by JMC at the ages of 28 months and 40 days, respectively. The presented radiographic findings at different ages will help diagnose other infants/toddlers suspected of having JMC. CONCLUSION The H223R mutation is typically associated with profound hypercalcemia despite low/normal PTH levels. However, the findings presented herein show that overt hypercalcemia is not always encountered in JMC, even if caused by this relatively frequent mutation, which is similar to observations with other PTH1R mutations that show less constitutive activity.
Collapse
Affiliation(s)
- Sheela Nampoothiri
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Eduardo Fernández-Rebollo
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Dhanya Yesodharan
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Thomas J Gardella
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Eric T Rush
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Craig B Langman
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Harald Jüppner
- Department of Pediatric Genetics (S.N., D.Y.), Amrita Institute of Medical Sciences and Research Center, Aims Ponekkara PO, Cochin 682041, Kerala, India; Munroe-Meyer Institute for Genetics and Rehabilitation (E.T.R.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Kidney Diseases (C.B.L.), Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Endocrine Unit (E.F.-R., T.J.G., H.J.) and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
35
|
Zhang X, Cheng Q, Wang Y, Leung PS, Mak KK. Hedgehog signaling in bone regulates whole-body energy metabolism through a bone-adipose endocrine relay mediated by PTHrP and adiponectin. Cell Death Differ 2016; 24:225-237. [PMID: 27740628 DOI: 10.1038/cdd.2016.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 01/27/2023] Open
Abstract
Bone plays a role in energy metabolism, but the interplay between bone and other organs in this process is not completely understood. Here, we show that upregulated Hh signaling in bones results in increased whole-body energy expenditure, white adipose tissue (WAT) browning, hypoglycemia and skeletal muscle atrophy. We found that Hh signaling induces PTHrP secretion from bones and causes WAT browning. Injection of PTHrP-neutralizing antibody attenuates WAT browning and improves the circulating blood glucose level while high-fat diet treatment only rescues hypoglycemia. Furthermore, bone-derived PTHrP stimulates adiponectin secretion in WAT and results in systemic increase of fatty acid oxidation and glucose uptake. Mechanistically, PTHrP activates both PKA/cAMP and Akt/Foxo pathways for Ucp1 expression in WAT. PTHrP couples adiponectin actions to activate the AMPK pathway in the skeletal muscles and liver, respectively, for fatty acid oxidation. Our findings establish a new bone-adipose hormonal relay that regulates whole-body energy metabolism.
Collapse
Affiliation(s)
- Xu Zhang
- Ministry of Education Key Laboratories for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, Shatin, The Chinese University of Hong Kong, HKSAR, China
| | - Qianni Cheng
- Reproduction, Development and Endocrinology Thematic Research Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, HKSAR
| | - Yixiang Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, HKSAR
| | - Po Sing Leung
- Reproduction, Development and Endocrinology Thematic Research Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, HKSAR
| | - Kinglun Kingston Mak
- Ministry of Education Key Laboratories for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, Shatin, The Chinese University of Hong Kong, HKSAR, China.,Stem Cell and Regeneration Thematic Research Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, HKSAR.,School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
36
|
Kamper M, Paulsson M, Zaucke F. Absence of collagen IX accelerates hypertrophic differentiation in the embryonic mouse spine through a disturbance of the Ihh-PTHrP feedback loop. Cell Tissue Res 2016; 367:359-367. [DOI: 10.1007/s00441-016-2501-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/28/2022]
|
37
|
Esbrit P, Herrera S, Portal-Núñez S, Nogués X, Díez-Pérez A. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies. Calcif Tissue Int 2016; 98:359-69. [PMID: 26259869 DOI: 10.1007/s00223-015-0050-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
The only bone anabolic agent currently available for osteoporosis treatment is parathyroid hormone (PTH)-either its N-terminal 1-34 fragment or the whole molecule of 1-84 aminoacids-whose intermittent administration stimulates new bone formation by targeting osteoblastogenesis and osteoblast survival. PTH-related protein (PTHrP) is an abundant factor in bone which shows N-terminal homology with PTH and thus exhibits high affinity for the same PTH type 1 receptor in osteoblasts. Therefore, it is not surprising that intermittently administered N-terminal PTHrP peptides induce bone anabolism in animals and humans. Furthermore, the C-terminal region of PTHrP also elicits osteogenic features in vitro in osteoblastic cells and in various animal models of osteoporosis. In this review, we discuss the current concepts about the cellular and molecular mechanisms whereby PTHrP may induce anabolic actions in bone. Pre-clinical studies and clinical data using N-terminal PTHrP analogs are also summarized, pointing to PTHrP as a promising alternative to current bone anabolic therapies.
Collapse
Affiliation(s)
- Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain.
| | - Sabina Herrera
- Hospital del Mar-IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Portal-Núñez
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Nogués
- Hospital del Mar-IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo Díez-Pérez
- Hospital del Mar-IMIM, Universidad Autónoma de Barcelona, Barcelona, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Frazier-Bowers SA, Long S, Tucker M. Primary failure of eruption and other eruption disorders—Considerations for management by the orthodontist and oral surgeon. Semin Orthod 2016. [DOI: 10.1053/j.sodo.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Chan ASM, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, Collins BM, Pavlos NJ. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell 2016; 27:1367-82. [PMID: 26912788 PMCID: PMC4831889 DOI: 10.1091/mbc.e15-12-0851] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
The parathyroid hormone 1 receptor (PTHR) is central to the process of bone formation and remodeling. PTHR signaling requires receptor internalization into endosomes, which is then terminated by recycling or degradation. Here we show that sorting nexin 27 (SNX27) functions as an adaptor that couples PTHR to the retromer trafficking complex. SNX27 binds directly to the C-terminal PDZ-binding motif of PTHR, wiring it to retromer for endosomal sorting. The structure of SNX27 bound to the PTHR motif reveals a high-affinity interface involving conserved electrostatic interactions. Mechanistically, depletion of SNX27 or retromer augments intracellular PTHR signaling in endosomes. Osteoblasts genetically lacking SNX27 show similar disruptions in PTHR signaling and greatly reduced capacity for bone mineralization, contributing to profound skeletal deficits in SNX27-knockout mice. Taken together, our data support a critical role for SNX27-retromer mediated transport of PTHR in normal bone development.
Collapse
Affiliation(s)
- Audrey S M Chan
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Euphemie Landao-Bassonga
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Genevieve Kinna
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Pei Ying Ng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Tak Sum Cheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Minghao Zheng
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia 4072, Australia
| | - Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
40
|
Fan Y, Bi R, Densmore MJ, Sato T, Kobayashi T, Yuan Q, Zhou X, Erben RG, Lanske B. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J 2016; 30:428-40. [PMID: 26428657 PMCID: PMC4684518 DOI: 10.1096/fj.15-278184] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/14/2015] [Indexed: 02/05/2023]
Abstract
Parathyroid-hormone-type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone-specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones. Circulating calcium and PTH levels were unchanged, but inorganic phosphate and 1,25(OH)2D3 levels were significantly decreased and accompanied by elevated urinary calcium and phosphate wasting. Key renal genes for balancing mineral ion homeostasis, calbindinD28k, Klotho, and Napi2a were suppressed by 30-40%. Intermittent hPTH(1-34) injections increased Fgf23 mRNA (7.3-fold), Nurr1 mRNA (3.1-fold), and serum intact-FGF23 (1.6-fold) in controls, but failed to induce Fgf23, Nurr1 mRNA, or intact FGF23 production in mutants. Moreover, a significant elevation in serum C-terminal-FGF23 levels (4-fold) was detected in both genotypes. PTH markedly downregulated Galnt3 expression (2.7-fold) in controls but not in mutants. These results demonstrate the pivotal role of PTH1R in long bones to regulate systemic mineral ion homeostasis and the direct induction of FGF23 by PTH1R signaling.
Collapse
MESH Headings
- Animals
- Bone and Bones/metabolism
- Calbindins/genetics
- Calbindins/metabolism
- Calcification, Physiologic
- Calcium/blood
- Calcium/metabolism
- Female
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Homeostasis
- Kidney/metabolism
- Klotho Proteins
- Male
- Mice
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phosphates/blood
- Phosphates/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Yi Fan
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ruiye Bi
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Michael J Densmore
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tadatoshi Sato
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Tatsuya Kobayashi
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Quan Yuan
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Xuedong Zhou
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Beate Lanske
- *Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; and Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
41
|
Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol 2016; 49:11-23. [PMID: 26688334 PMCID: PMC4761456 DOI: 10.1016/j.semcdb.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 12/01/2022]
Abstract
Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.
Collapse
Affiliation(s)
- Christian Santa Maria
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jiali Wang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Dolores Shoback
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
42
|
Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann N Y Acad Sci 2015; 1364:11-24. [PMID: 26662934 DOI: 10.1111/nyas.12969] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoimmunology is a field of research dedicated to the study of the interactions between the immune system and bone. Among the cells of the immune system that regulate bone turnover and the responsiveness of bone cells to calciothropic hormones are bone marrow T lymphocytes. T cells secrete osteoclastogenic cytokines such as RANKL and TNF-α, as well as factors that stimulate bone formation, one of which is Wnt10b. In addition, T cells regulate the differentiation and life span of stromal cells (SCs) and their responsiveness to parathyroid hormone (PTH) via costimulatory molecules expressed on their surface. The conditioning effect of T cells on SCs is inherited by the osteoblastic and osteocytic progeny of SCs. As a result, osteoblastic cells of T cell-deficient mice have functional characteristics different from corresponding cells of T cell-replete mice. These differences include the ratio of RANKL/OPG produced in response to continuous PTH treatment, and the osteoblastogenic response to intermittent PTH treatment. This article reviews the evidence indicating that the effects of PTH are mediated not only by osteoblasts and osteocytes but also by T cells.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia
| |
Collapse
|
43
|
Cerci DX, Portela GS, Cunha EJ, Grossi JRDA, Zielak JC, Araújo MR, Scariot R, Deliberador TM, Giovanini AF. Leukocyte-platelet-rich plasma diminishes bone matrix deposition in rat calvaria treated with autograft due to simultaneous increase in immunohistochemical expression of Indian Hedgehog, transforming growth factor-β, and parathyroid-1 receptor. J Craniomaxillofac Surg 2015. [DOI: 10.1016/j.jcms.2015.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Zhong L, Huang X, Karperien M, Post JN. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Int J Mol Sci 2015; 16:19225-47. [PMID: 26287176 PMCID: PMC4581295 DOI: 10.3390/ijms160819225] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.
Collapse
Affiliation(s)
- Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
45
|
Zhang H, Zhou Z, Luo J, Hou J. Effects of corticosterone on the metabolic activity of cultured chicken chondrocytes. BMC Vet Res 2015; 11:86. [PMID: 25880747 PMCID: PMC4393584 DOI: 10.1186/s12917-015-0398-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background Corticosterone is one of the most crucial glucocorticoids (GCs) in poultry. Our previous study shows that corticosterone can retard the longitudinal growth of bones by depressing the proliferation and differentiation of chondrocytes in broilers. The present study was designed to investigate whether corticosterone affect the development of chondrocytes and the synthesis of collagen in vitro. The chondrocytes were isolated from proximal tibial growth plates of 6-week-old broiler chickens and cultured with different doses of corticosterone for 48 h. Then the cell viability, alkaline phosphatase (ALP) activity and the expression of parathyroid hormone-related peptide (PTHrP) and type X collagen (Col X) were detected. Results At 10−9-10−6 M concentration, corticosterone significantly inhibited the viability and differentiation of chondrocytes, as indicated by decreases in ALP and type X collagen expression. Conversely, there was completely opposite effect at 10−10 M. In addition, the expression of PTHrP was significantly downregulated at 10−6 M and 10−8 M, and was upregulated at 10−10 M. Conclusions The results suggested that corticosterone regulated chicken chondrocytes performance depending on its concentration with high concentrations inhibiting the viability and differentiation of chondrocytes and light concentrations promoting them, and these roles of corticosterone may be in part mediated through PTHrP. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0398-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Jingwen Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Jiafa Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
46
|
Robinson JW, Li JY, Walker LD, Tyagi AM, Reott MA, Yu M, Adams J, Weitzmann MN, Pacifici R. T cell-expressed CD40L potentiates the bone anabolic activity of intermittent PTH treatment. J Bone Miner Res 2015; 30:695-705. [PMID: 25359628 PMCID: PMC4376617 DOI: 10.1002/jbmr.2394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023]
Abstract
T cells are known to potentiate the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. One of the involved mechanisms is increased T cell secretion of Wnt10b, a potent osteogenic Wnt ligand that activates Wnt signaling in stromal cells (SCs). However, additional mechanisms might play a role, including direct interactions between surface receptors expressed by T cells and SCs. Here we show that iPTH failed to promote SC proliferation and differentiation into osteoblasts (OBs) and activate Wnt signaling in SCs of mice with a global or T cell-specific deletion of the T cell costimulatory molecule CD40 ligand (CD40L). Attesting to the relevance of T cell-expressed CD40L, iPTH induced a blunted increase in bone formation and failed to increase trabecular bone volume in CD40L(-/-) mice and mice with a T cell-specific deletion of CD40L. CD40L null mice exhibited a blunted increase in T cell production of Wnt10b and abrogated CD40 signaling in SCs in response to iPTH treatment. Therefore, expression of the T cell surface receptor CD40L enables iPTH to exert its bone anabolic activity by activating CD40 signaling in SCs and maximally stimulating T cell production of Wnt10b.
Collapse
Affiliation(s)
- Jerid W Robinson
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Different effects of implanting sensory nerve or blood vessel on the vascularization, neurotization, and osteogenesis of tissue-engineered bone in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:412570. [PMID: 25101279 PMCID: PMC4101209 DOI: 10.1155/2014/412570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
Abstract
To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve.
Collapse
|
49
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
50
|
Microsurgical techniques used to construct the vascularized and neurotized tissue engineered bone. BIOMED RESEARCH INTERNATIONAL 2014; 2014:281872. [PMID: 24900962 PMCID: PMC4036431 DOI: 10.1155/2014/281872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/02/2014] [Indexed: 11/17/2022]
Abstract
The lack of vascularization in the tissue engineered bone results in poor survival and ossification. Tissue engineered bone can be wrapped in the soft tissue flaps which are rich in blood supply to complete the vascularization in vivo by microsurgical technique, and the surface of the bone graft can be invaded with new vascular network. The intrinsic vascularization can be induced via a blood vessel or an arteriovenous loop located centrally in the bone graft by microsurgical technique. The peripheral nerve especially peptidergic nerve has effect on the bone regeneration. The peptidergic nerve can be used to construct the neurotized tissue engineered bone by implanting the nerve fiber into the center of bone graft. Thus, constructing a highly vascularized and neurotized tissue engineered bone according with the theory of biomimetics has become a useful method for repairing the large bone defect. Many researchers have used the microsurgical techniques to enhance the vascularization and neurotization of tissue engineered bone and to get a better osteogenesis effect. This review aims to summarize the microsurgical techniques mostly used to construct the vascularized and neurotized tissue engineered bone.
Collapse
|