1
|
Ma R, Woods M, Burkhardt P, Crooks N, van Leeuwen DG, Shmidt D, Couturier J, Chaumette A, Popat D, Hill LC, Rouce RH, Thakkar S, Orozco AF, Carisey AF, Brenner MK, Mamonkin M. Chimeric antigen receptor-induced antigen loss protects CD5.CART cells from fratricide without compromising on-target cytotoxicity. Cell Rep Med 2024; 5:101628. [PMID: 38986621 PMCID: PMC11293353 DOI: 10.1016/j.xcrm.2024.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.CART cells induces similar internalization of CD5 on target cells, transiently shielding them from cytotoxicity. However, this protection is short-lived, as sustained activity of CD5.CART cells in patients with T cell malignancies results in full ablation of CD5+ T cells while sparing healthy T cells naturally lacking CD5. These results indicate that continuous downmodulation of the target antigen in CD5.CART cells produces effective fratricide resistance without undermining their on-target cytotoxicity.
Collapse
Affiliation(s)
- Royce Ma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Phillip Burkhardt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noah Crooks
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dayenne G van Leeuwen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniil Shmidt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jacob Couturier
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexandre Chaumette
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Divya Popat
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - LaQuisa C Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sachin Thakkar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Aaron F Orozco
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexandre F Carisey
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Mahmoud S, Ahmed M E, Mohamed I H. Progress in the development of vaccines for pancreatic adenocarcinoma. ANNALS OF PANCREATIC DISORDERS AND TREATMENT 2024; 6:001-005. [DOI: 10.17352/apdt.000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Pancreatic cancer, which is regarded as the third deadliest cancer globally, poses a significant challenge because of its limited range of treatment options and high mortality rate. Currently, there is a focus on both the development of a novel concept in vaccine designing and the parallel study of the associated immune mechanisms. To further our understanding of the healthcare field, a variety of promising designs have been introduced for in-depth study. The designs were developed to include the mKRAS-specific amphiphile vaccine, which targets a specific mutation in the KRAS gene in addition to the multi-antigen targeted DNA vaccine, which aims to stimulate an immune response against multiple cancer antigens. Furthermore, later designs of vaccines were introduced based on the development of peptide-based cancer vaccines, mRNA-based vaccines, cell-based vaccines, and engineered bacterial vectors using an oral Salmonella-based vaccine. The study presents the concept on which the new vaccine is based and discusses the up-to-date immunological manifestations of these designed vaccines.
Collapse
|
3
|
Clutton GT, Weideman AMK, Mischell MA, Kallon S, Conrad SZ, Shaw FR, Warren JA, Lin L, Kuruc JD, Xu Y, Gay CM, Armistead PM, G. Hudgens M, Goonetilleke NP. CD3 downregulation identifies high-avidity human CD8 T cells. Clin Exp Immunol 2024; 215:279-290. [PMID: 37950348 PMCID: PMC10876116 DOI: 10.1093/cei/uxad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
CD8 T cells recognize infected and cancerous cells via their T-cell receptor (TCR), which binds peptide-MHC complexes on the target cell. The affinity of the interaction between the TCR and peptide-MHC contributes to the antigen sensitivity, or functional avidity, of the CD8 T cell. In response to peptide-MHC stimulation, the TCR-CD3 complex and CD8 co-receptor are downmodulated. We quantified CD3 and CD8 downmodulation following stimulation of human CD8 T cells with CMV, EBV, and HIV peptides spanning eight MHC restrictions, observing a strong correlation between the levels of CD3 and CD8 downmodulation and functional avidity, regardless of peptide viral origin. In TCR-transduced T cells targeting a tumor-associated antigen, changes in TCR-peptide affinity were sufficient to modify CD3 and CD8 downmodulation. Correlation analysis and generalized linear modeling indicated that CD3 downmodulation was the stronger correlate of avidity. CD3 downmodulation, simply measured using flow cytometry, can be used to identify high-avidity CD8 T cells in a clinical context.
Collapse
Affiliation(s)
- Genevieve T Clutton
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ann Marie K Weideman
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Mischell
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallay Kallon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shayla Z Conrad
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fiona R Shaw
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lin Lin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - JoAnn D Kuruc
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia M Gay
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nilu P Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Mo G, Lu X, Wu S, Zhu W. Strategies and rules for tuning TCR-derived therapy. Expert Rev Mol Med 2023; 26:e4. [PMID: 38095091 PMCID: PMC11062142 DOI: 10.1017/erm.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?
Collapse
Affiliation(s)
- Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Manfredi F, Stasi L, Buonanno S, Marzuttini F, Noviello M, Mastaglio S, Abbati D, Potenza A, Balestrieri C, Cianciotti BC, Tassi E, Feola S, Toffalori C, Punta M, Magnani Z, Camisa B, Tiziano E, Lupo-Stanghellini MT, Branca RM, Lehtiö J, Sikanen TM, Haapala MJ, Cerullo V, Casucci M, Vago L, Ciceri F, Bonini C, Ruggiero E. Harnessing T cell exhaustion and trogocytosis to isolate patient-derived tumor-specific TCR. SCIENCE ADVANCES 2023; 9:eadg8014. [PMID: 38039364 PMCID: PMC10691777 DOI: 10.1126/sciadv.adg8014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Francesco Manfredi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Lorena Stasi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Silvia Buonanno
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Francesca Marzuttini
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Maddalena Noviello
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Sara Mastaglio
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
| | - Danilo Abbati
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Alessia Potenza
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Chiara Balestrieri
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Beatrice Claudia Cianciotti
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Elena Tassi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Sara Feola
- University of Helsinki, ImmunoVirotherapy Lab, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Cristina Toffalori
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Unit of Immunogenetics, Leukemia Genomics and Immunobiology, via Olgettina 60, Milan 20132, Italy
| | - Marco Punta
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Unit of Immunogenetics, Leukemia Genomics and Immunobiology, via Olgettina 60, Milan 20132, Italy
| | - Zulma Magnani
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Barbara Camisa
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Elena Tiziano
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Maria Teresa Lupo-Stanghellini
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
| | - Rui Mamede Branca
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 65 Solna, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 65 Solna, Sweden
| | - Tiina M. Sikanen
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, Helsinki University,, Viikinkaari 5E, 00014 Helsinki, Finland
| | - Markus J. Haapala
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, Helsinki University,, Viikinkaari 5E, 00014 Helsinki, Finland
| | - Vincenzo Cerullo
- University of Helsinki, ImmunoVirotherapy Lab, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Monica Casucci
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Innovative Immunotherapies Unit, via Olgettina 60, Milan 20132, Italy
| | - Luca Vago
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Unit of Immunogenetics, Leukemia Genomics and Immunobiology, via Olgettina 60, Milan 20132, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Innovative Immunotherapies Unit, via Olgettina 60, Milan 20132, Italy
| | - Chiara Bonini
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Innovative Immunotherapies Unit, via Olgettina 60, Milan 20132, Italy
| | - Eliana Ruggiero
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| |
Collapse
|
6
|
Scherer LD, Rouce RH. Targeted cellular therapy for treatment of relapsed or refractory leukemia. Best Pract Res Clin Haematol 2023; 36:101481. [PMID: 37612000 DOI: 10.1016/j.beha.2023.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/25/2023]
Abstract
While the mainstay of treatment for high-risk or relapsed, refractory leukemia has historically revolved around allogeneic hematopoietic stem cell transplant (allo-HSCT), targeted immunotherapies have emerged as a promising therapeutic option, especially given the poor prognosis of patients who relapse after allo-HSCT. Novel cellular immunotherapies that harness the cytotoxic abilities of the immune system in a targeted manner (often called "adoptive" cell therapy), have changed the way we treat r/r hematologic malignancies and continue to change the treatment landscape given the rapid evolution of these powerful, yet sophisticated precision therapies that often offer a less toxic alternative to conventional salvage therapies. Importantly, adoptive cell therapy can be allo-HSCT-enabling or a therapeutic option for patients in whom transplantation has failed or is contraindicated. A solid understanding of the core concepts of adoptive cell therapy is necessary for stem cell transplant physicians, nurses and ancillary staff given its proximity to the transplant field as well as its inherent complexities that require specific expertise in compliant manufacturing, clinical application, and risk mitigation. Here we will review use of targeted cellular therapy for the treatment of r/r leukemia, focusing on chimeric antigen receptor T-cells (CAR T-cells) given the remarkable sustained clinical responses leading to commercial approval for several hematologic indications including leukemia, with brief discussion of other promising investigational cellular immunotherapies and special considerations for sustainability and scalability.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA
| | - Rayne H Rouce
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA.
| |
Collapse
|
7
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
8
|
Fonseca AF, Antunes DA. CrossDome: an interactive R package to predict cross-reactivity risk using immunopeptidomics databases. Front Immunol 2023; 14:1142573. [PMID: 37377956 PMCID: PMC10291144 DOI: 10.3389/fimmu.2023.1142573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
T-cell-based immunotherapies hold tremendous potential in the fight against cancer, thanks to their capacity to specifically targeting diseased cells. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off-targets displayed by healthy cells. In a notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells, inducing lethal damage in melanoma patients. Such off-target toxicity has been related to T-cell cross-reactivity induced by molecular mimicry. In this context, there is growing interest in developing the means to avoid off-target toxicity, and to provide safer immunotherapy products. To this end, we present CrossDome, a multi-omics suite to predict the off-target toxicity risk of T-cell-based immunotherapies. Our suite provides two alternative protocols, i) a peptide-centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we evaluate our approach using 16 well-known cross-reactivity cases involving cancer-associated antigens. With CrossDome, the TITIN-derived peptide was predicted at the 99+ percentile rank among 36,000 scored candidates (p-value < 0.001). In addition, off-targets for all the 16 known cases were predicted within the top ranges of relatedness score on a Monte Carlo simulation with over 5 million putative peptide pairs, allowing us to determine a cut-off p-value for off-target toxicity risk. We also implemented a penalty system based on TCR hotspots, named contact map (CM). This TCR-centered approach improved upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g., from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended dataset of experimentally-determined cross-reactive peptides to evaluate alternative CrossDome protocols. The level of enrichment of validated cases among top 50 best-scored peptides was 63% for the peptide-centered protocol, and up to 82% for the TCR-centered protocol. Finally, we performed functional characterization of top ranking candidates, by integrating expression data, HLA binding, and immunogenicity predictions. CrossDome was designed as an R package for easy integration with antigen discovery pipelines, and an interactive web interface for users without coding experience. CrossDome is under active development, and it is available at https://github.com/AntunesLab/crossdome.
Collapse
Affiliation(s)
| | - Dinler A. Antunes
- Antunes Lab, Center for Nuclear Receptors and Cell Signaling (CNRCS), Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
9
|
Jefferson RE, Oggier A, Füglistaler A, Camviel N, Hijazi M, Villarreal AR, Arber C, Barth P. Computational design of dynamic receptor-peptide signaling complexes applied to chemotaxis. Nat Commun 2023; 14:2875. [PMID: 37208363 DOI: 10.1038/s41467-023-38491-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Engineering protein biosensors that sensitively respond to specific biomolecules by triggering precise cellular responses is a major goal of diagnostics and synthetic cell biology. Previous biosensor designs have largely relied on binding structurally well-defined molecules. In contrast, approaches that couple the sensing of flexible compounds to intended cellular responses would greatly expand potential biosensor applications. Here, to address these challenges, we develop a computational strategy for designing signaling complexes between conformationally dynamic proteins and peptides. To demonstrate the power of the approach, we create ultrasensitive chemotactic receptor-peptide pairs capable of eliciting potent signaling responses and strong chemotaxis in primary human T cells. Unlike traditional approaches that engineer static binding complexes, our dynamic structure design strategy optimizes contacts with multiple binding and allosteric sites accessible through dynamic conformational ensembles to achieve strongly enhanced signaling efficacy and potency. Our study suggests that a conformationally adaptable binding interface coupled to a robust allosteric transmission region is a key evolutionary determinant of peptidergic GPCR signaling systems. The approach lays a foundation for designing peptide-sensing receptors and signaling peptide ligands for basic and therapeutic applications.
Collapse
Affiliation(s)
- Robert E Jefferson
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Aurélien Oggier
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Andreas Füglistaler
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Nicolas Camviel
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University Hospital Lausanne (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mahdi Hijazi
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Ana Rico Villarreal
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University Hospital Lausanne (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Want MY, Bashir Z, Najar RA. T Cell Based Immunotherapy for Cancer: Approaches and Strategies. Vaccines (Basel) 2023; 11:vaccines11040835. [PMID: 37112747 PMCID: PMC10142387 DOI: 10.3390/vaccines11040835] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
T cells are critical in destroying cancer cells by recognizing antigens presented by MHC molecules on cancer cells or antigen-presenting cells. Identifying and targeting cancer-specific or overexpressed self-antigens is essential for redirecting T cells against tumors, leading to tumor regression. This is achieved through the identification of mutated or overexpressed self-proteins in cancer cells, which guide the recognition of cancer cells by T-cell receptors. There are two main approaches to T cell-based immunotherapy: HLA-restricted and HLA-non-restricted Immunotherapy. Significant progress has been made in T cell-based immunotherapy over the past decade, using naturally occurring or genetically engineered T cells to target cancer antigens in hematological malignancies and solid tumors. However, limited specificity, longevity, and toxicity have limited success rates. This review provides an overview of T cells as a therapeutic tool for cancer, highlighting the advantages and future strategies for developing effective T cell cancer immunotherapy. The challenges associated with identifying T cells and their corresponding antigens, such as their low frequency, are also discussed. The review further examines the current state of T cell-based immunotherapy and potential future strategies, such as the use of combination therapy and the optimization of T cell properties, to overcome current limitations and improve clinical outcomes.
Collapse
Affiliation(s)
- Muzamil Y Want
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zeenat Bashir
- Department of Chemistry and Biochemistry, Canisius College, Buffalo, NY 14208, USA
| | - Rauf A Najar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. SCIENCE ADVANCES 2023; 9:eadf3700. [PMID: 36791198 PMCID: PMC9931212 DOI: 10.1126/sciadv.adf3700] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 05/25/2023]
Abstract
T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far. T cells expressing an engineered T cell receptor (TCR-T cells) represent a promising therapeutic alternative. The target repertoire is not limited to membrane proteins, and intrinsic features of TCRs such as high antigen sensitivity and near-to-physiological signaling may improve tumor cell detection and killing while improving T cell persistence. In this review, we present the clinical results obtained with TCR-T cells targeting different tumor antigen families. We detail the different methods that have been developed to identify and optimize a TCR candidate. We also discuss the challenges of TCR-T cell therapies, including toxicity assessment and resistance mechanisms. Last, we share some perspectives and highlight future directions in the field.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
| | - Célia Gardet
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Martínez-Sifuentes MA, Bassol-Mayagoitia S, Nava-Hernández MP, Ruiz-Flores P, Ramos-Treviño J, Haro-Santa Cruz J, Hernández-Ibarra JA. Survivin in Breast Cancer: A Review. Genet Test Mol Biomarkers 2022; 26:411-421. [PMID: 36166738 DOI: 10.1089/gtmb.2021.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women and ranks second among causes for cancer-related death in women. Gene technology has led to the recognition that breast cancer is a heterogeneous disease composed of different biological subtypes, and genetic profiling enables the response to chemotherapy to be predicted. This fact emphasizes the importance of selecting sensitive diagnostic and prognostic markers in the early disease stage and more efficient targeted treatments for this disease. One such prognostic marker appears to be survivin. Many studies have shown that survivin is strongly expressed in different types of cancers. Its overexpression has been demonstrated in breast cancer, and high activity of the survivin gene has been associated with a poor prognosis and worse survival rates.
Collapse
Affiliation(s)
- Manuel Antonio Martínez-Sifuentes
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Susana Bassol-Mayagoitia
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Martha P Nava-Hernández
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Pablo Ruiz-Flores
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Juan Ramos-Treviño
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - Jorge Haro-Santa Cruz
- Department of Genetics and Molecular Medicine, Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| | - José Anselmo Hernández-Ibarra
- Department of Reproductive Biology and Biomedical Research Center, School of Medicine, Autonomous University of Coahuila, Torreón, Mexico
| |
Collapse
|
13
|
Bajwa G, Arber C. Rapid Generation of TCR and CD8αβ Transgenic Virus Specific T Cells for Immunotherapy of Leukemia. Front Immunol 2022; 13:830021. [PMID: 35572604 PMCID: PMC9100812 DOI: 10.3389/fimmu.2022.830021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Virus-specific T cells (VSTs) are an attractive cell therapy platform for the delivery of tumor-targeted transgenic receptors. However, manufacturing with conventional methods may require several weeks and intensive handling. Here we evaluated the feasibility and timelines when combining IFN-γ cytokine capture (CC) with retroviral transduction for the generation of T cell receptor (TCR) and CD8αβ (TCR8) transgenic VSTs to simultaneously target several viral and tumor antigens in a single product. Methods Healthy donor peripheral blood mononuclear cells were stimulated with cytomegalovirus (CMV) and Epstein-Barr-Virus (EBV) peptide mixtures derived from immunogenic viral proteins, followed by CC bead selection. After 3 days in culture, cells were transduced with a retroviral vector encoding four genes (a survivin-specific αβTCR and CD8αβ). TCR8-transgenic or control VSTs were expanded and characterized for their phenotype, specificity and anti-viral and anti-tumor functions. Results CC selected cells were efficiently transduced with TCR8. Average fold expansion was 269-fold in 10 days, and cells contained a high proportion of CD8+ T central memory cells. TCR8+ VSTs simultaneously expressed native anti-viral and transgenic anti-survivin TCRs on their cell surface. Both control and TCR8+ VSTs produced cytokines to and killed viral targets, while tumor targets were only recognized and killed by TCR8+ VSTs. Conclusions IFN-γ cytokine capture selects and activates CMV and EBV-specific memory precursor CD8+ T cells that can be efficiently gene-modified by retroviral transduction and rapidly ex vivo expanded. Our multi-specific T cells are polyfunctional and recognize and kill viral and leukemic targets expressing the cognate antigens.
Collapse
Affiliation(s)
- Gagan Bajwa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, United States
| | - Caroline Arber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, United States
- Department of Oncology UNIL CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), and Ludwig Institute for Cancer Research Lausanne Branch, Lausanne, Switzerland
- *Correspondence: Caroline Arber,
| |
Collapse
|
14
|
Kang S, Li Y, Qiao J, Meng X, He Z, Gao X, Yu L. Antigen-Specific TCR-T Cells for Acute Myeloid Leukemia: State of the Art and Challenges. Front Oncol 2022; 12:787108. [PMID: 35356211 PMCID: PMC8959347 DOI: 10.3389/fonc.2022.787108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The cytogenetic abnormalities and molecular mutations involved in acute myeloid leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies (ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising results in the treatment of leukemias, especially B-cell malignancies, the optimal target surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-redirected T cells can target intracellular antigens presented by HLA molecules, allowing the exploration of a broader territory of new therapeutic targets. Immunotherapy using adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive clinical successes in patients with AML. Nevertheless, AML can escape from immune system elimination by producing immunosuppressive factors or releasing several cytokines. This review presents recent advances of antigen-specific TCR-T cells in treating AML and discusses their challenges and future directions in clinical applications.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yisheng Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Jingqiao Qiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangyu Meng
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Ziqian He
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
15
|
Omer B, Cardenas MG, Pfeiffer T, Daum R, Huynh M, Sharma S, Nouraee N, Xie C, Tat C, Perconti S, Van Pelt S, Scherer L, DeRenzo C, Shum T, Gottschalk S, Arber C, Rooney CM. A Costimulatory CAR Improves TCR-based Cancer Immunotherapy. Cancer Immunol Res 2022; 10:512-524. [PMID: 35176142 DOI: 10.1158/2326-6066.cir-21-0307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/11/2021] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
T-cell receptors (TCR) recognize intracellular and extracellular cancer antigens, allowing T cells to target many tumor antigens. To sustain proliferation and persistence, T cells require not only signaling through the TCR (signal 1), but also costimulatory (signal 2) and cytokine (signal 3) signaling. Because most cancer cells lack costimulatory molecules, TCR engagement at the tumor site results in incomplete T-cell activation and transient antitumor effects. To overcome this lack of signal 2, we genetically modified tumor-specific T cells with a costimulatory chimeric antigen receptor (CoCAR). Like classical CARs, CoCARs combine the antigen-binding domain of an antibody with costimulatory endodomains to trigger T-cell proliferation, but CoCARs lack the cytotoxic CD3ζ chain to avoid toxicity to normal tissues. We first tested a CD19-targeting CoCAR in combination with an HLA-A*02:01-restricted, survivin-specific transgenic TCR (sTCR) in serial cocultures with leukemia cells coexpressing the cognate peptide-HLA complex (signal 1) and CD19 (signal 2). The CoCAR enabled sTCR+ T cells to kill tumors over a median of four additional tumor challenges. CoCAR activity depended on CD19 but was maintained in tumors with heterogeneous CD19 expression. In a murine tumor model, sTCR+CoCAR+ T cells improved tumor control and prolonged survival compared with sTCR+ T cells. We further evaluated the CoCAR in Epstein-Barr virus-specific T cells (EBVST). CoCAR-expressing EBVSTs expanded more rapidly than nontransduced EBVSTs and delayed tumor progression in an EBV+ murine lymphoma model. Overall, we demonstrated that the CoCAR can increase the activity of T cells expressing both native and transgenic TCRs and enhance antitumor responses.
Collapse
Affiliation(s)
- Bilal Omer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Mara G Cardenas
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Thomas Pfeiffer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Rachel Daum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Mai Huynh
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Cicilyn Xie
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Candise Tat
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Silvana Perconti
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Stacey Van Pelt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| | - Lauren Scherer
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Chris DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Thomas Shum
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Bone Marrow Transplant and Cellular Therapy, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Caroline Arber
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Department of Oncology UNIL-CHUV, Lausanne University Hospital, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Shafer P, Kelly LM, Hoyos V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front Immunol 2022; 13:835762. [PMID: 35309357 PMCID: PMC8928448 DOI: 10.3389/fimmu.2022.835762] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lauren M. Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Haydar D, Ibañez-Vega J, Krenciute G. T-Cell Immunotherapy for Pediatric High-Grade Gliomas: New Insights to Overcoming Therapeutic Challenges. Front Oncol 2021; 11:718030. [PMID: 34760690 PMCID: PMC8573171 DOI: 10.3389/fonc.2021.718030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Despite decades of research, pediatric central nervous system (CNS) tumors remain the most debilitating, difficult to treat, and deadliest cancers. Current therapies, including radiation, chemotherapy, and/or surgery, are unable to cure these diseases and are associated with serious adverse effects and long-term impairments. Immunotherapy using chimeric antigen receptor (CAR) T cells has the potential to elucidate therapeutic antitumor immune responses that improve survival without the devastating adverse effects associated with other therapies. Yet, despite the outstanding performance of CAR T cells against hematologic malignancies, they have shown little success targeting brain tumors. This lack of efficacy is due to a scarcity of targetable antigens, interactions with the immune microenvironment, and physical and biological barriers limiting the homing and trafficking of CAR T cells to brain tumors. In this review, we summarize experiences with CAR T-cell therapy for pediatric CNS tumors in preclinical and clinical settings and focus on the current roadblocks and novel strategies to potentially overcome those therapeutic challenges.
Collapse
Affiliation(s)
| | | | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
18
|
Survivin' Acute Myeloid Leukaemia-A Personalised Target for inv(16) Patients. Int J Mol Sci 2021; 22:ijms221910482. [PMID: 34638823 PMCID: PMC8508831 DOI: 10.3390/ijms221910482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
Despite recent advances in therapies including immunotherapy, patients with acute myeloid leukaemia (AML) still experience relatively poor survival rates. The Inhibition of Apoptosis (IAP) family member, survivin, also known by its gene and protein name, Baculoviral IAP Repeat Containing 5 (BIRC5), remains one of the most frequently expressed antigens across AML subtypes. To better understand its potential to act as a target for immunotherapy and a biomarker for AML survival, we examined the protein and pathways that BIRC5 interacts with using the Kyoto Encyclopedia of Genes and Genomes (KEGG), search tool for recurring instances of neighbouring genes (STRING), WEB-based Gene Set Analysis Toolkit, Bloodspot and performed a comprehensive literature review. We then analysed data from gene expression studies. These included 312 AML samples in the Microarray Innovations In Leukemia (MILE) dataset. We found a trend between above median levels of BIRC5 being associated with improved overall survival (OS) but this did not reach statistical significance (p = 0.077, Log-Rank). There was some evidence of a beneficial effect in adjusted analyses where above median levels of BIRC5 were shown to be associated with improved OS (p = 0.001) including in Core Binding Factor (CBF) patients (p = 0.03). Above median levels of BIRC5 transcript were associated with improved relapse free survival (p < 0.0001). Utilisation of a second large cDNA microarray dataset including 306 AML cases, again showed no correlation between BIRC5 levels and OS, but high expression levels of BIRC5 correlated with worse survival in inv(16) patients (p = 0.077) which was highly significant when datasets A and B were combined (p = 0.001). In addition, decreased BIRC5 expression was associated with better clinical outcome (p = 0.004) in AML patients exhibiting CBF mainly due to patients with inv(16) (p = 0.007). This study has shown that BIRC5 expression plays a role in the survival of AML patients, this association is not apparent when we examine CBF patients as a cohort, but when those with inv(16) independently indicating that those patients with inv(16) would provide interesting candidates for immunotherapies that target BIRC5.
Collapse
|
19
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
20
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
21
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
22
|
Lichtman EI, Du H, Shou P, Song F, Suzuki K, Ahn S, Li G, Ferrone S, Su L, Savoldo B, Dotti G. Preclinical Evaluation of B7-H3-specific Chimeric Antigen Receptor T Cells for the Treatment of Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:3141-3153. [PMID: 33531429 DOI: 10.1158/1078-0432.ccr-20-2540] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The development of safe and effective chimeric antigen receptor (CAR) T-cell therapy for acute myeloid leukemia (AML) has largely been limited by the concomitant expression of most AML-associated surface antigens on normal myeloid progenitors and by the potential prolonged disruption of normal hematopoiesis by the immunotargeting of these antigens. The purpose of this study was to evaluate B7-homolog 3 (B7-H3) as a potential target for AML-directed CAR T-cell therapy. B7-H3, a coreceptor belonging to the B7 family of immune checkpoint molecules, is overexpressed on the leukemic blasts of a significant subset of patients with AML and may overcome these limitations as a potential target antigen for AML-directed CAR-T therapy. EXPERIMENTAL DESIGN B7-H3 expression was evaluated on AML cell lines, primary AML blasts, and normal bone marrow progenitor populations. The antileukemia efficacy of B7-H3-specific CAR-T cells (B7-H3.CAR-T) was evaluated using in vitro coculture models and xenograft models of disseminated AML, including patient-derived xenograft models. The potential hematopoietic toxicity of B7-H3.CAR-Ts was evaluated in vitro using colony formation assays and in vivo in a humanized mouse model. RESULTS B7-H3 is expressed on monocytic AML cell lines and on primary AML blasts from patients with monocytic AML, but is not significantly expressed on normal bone marrow progenitor populations. B7-H3.CAR-Ts exhibit efficient antigen-dependent cytotoxicity in vitro and in xenograft models of AML, and are unlikely to cause unacceptable hematopoietic toxicity. CONCLUSIONS B7-H3 is a promising target for AML-directed CAR-T therapy. B7-H3.CAR-Ts control AML and have a favorable safety profile in preclinical models.
Collapse
Affiliation(s)
- Eben I Lichtman
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Kyogo Suzuki
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Sarah Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Bajwa G, Lanz I, Cardenas M, Brenner MK, Arber C. Transgenic CD8αβ co-receptor rescues endogenous TCR function in TCR-transgenic virus-specific T cells. J Immunother Cancer 2020; 8:e001487. [PMID: 33148692 PMCID: PMC7640589 DOI: 10.1136/jitc-2020-001487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Genetically engineered virus-specific T cells (VSTs) are a platform for adoptive cell therapy after allogeneic hematopoietic stem cell transplantation. However, redirection to a tumor-associated antigen by the introduction of a transgenic T-cell receptor (TCR) reduces anti-viral activity, thereby impeding the possibility of preventing or treating two distinct complications-malignant relapse and viral infection-with a single cell therapy product. Availability of CD8αβ co-receptor molecules can significantly impact class I restricted T-cell activation, and thus, we interrogated whether transgenic CD8αβ improves anti-viral activity mediated by native VSTs with or without a co-expressed transgenic TCR (TCR8). METHODS Our existing clinical VST manufacturing platform was adapted and validated to engineer TCR+ or TCR8+ VSTs targeting cytomegalovirus and Epstein-Barr virus. Simultaneous anti-viral and anti-tumor function of engineered VSTs was assessed in vitro and in vivo. We used pentamer staining, interferon (IFN)-γ enzyme-linked immunospot (ELISpot), intracellular cytokine staining (ICS), cytotoxicity assays, co-cultures, and cytokine secretion assays for the in vitro characterization. The in vivo anti-tumor function was assessed in a leukemia xenograft mouse model. RESULTS Both transgenic CD8αβ alone and TCR8 had significant impact on the anti-viral function of engineered VSTs, and TCR8+ VSTs had comparable anti-viral activity as non-engineered VSTs as determined by IFN-γ ELISpot, ICS and cytotoxicity assays. TCR8-engineered VSTs had improved anti-tumor function and greater effector cytokine production in vitro, as well as enhanced anti-tumor function against leukemia xenografts in mice. CONCLUSION Incorporation of transgenic CD8αβ into vectors for TCR-targetable antigens preserves anti-viral activity of TCR transgenic VSTs while simultaneously supporting tumor-directed activity mediated by a transgenic TCR. Our approach may provide clinical benefit in preventing and treating viral infections and malignant relapse post-transplant.
Collapse
Affiliation(s)
- Gagan Bajwa
- Department of Oncology UNIL CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Inès Lanz
- Department of Oncology UNIL CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mara Cardenas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Predictive Markers for Malignant Urothelial Transformation in Balkan Endemic Nephropathy: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12102945. [PMID: 33065960 PMCID: PMC7599787 DOI: 10.3390/cancers12102945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Balkan endemic nephropathy (BEN) is chronic kidney disease caused by intoxication with Aristolochia plant. Apart from subtle decline of renal function that eventually results in kidney failure, the patients are at increased risk for urothelial carcinoma (UC) development. Based on the observed UC markers, the aim of this study was to examine urinary and plasma levels of some these markers in BEN patients without carcinoma, in order to potentially identify those with predictive value. Our study revealed either plasma or urinary survivin levels as a potential predictors of future malignant transformation of urothelium. Abstract Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial disease frequently accompanied by urothelial carcinoma (UC). In light of the increased UC incidence and the markers observed in BEN patients with developed UC, the aim of the current case–control study is to assess survivin, p53 protein, growth factors and receptors (VEGF, VEGFR1, IGF I, IGF-1R and IGFBP5), tumor marker (TF)/CD142, circulating soluble Fas receptor and neopterin, as potentially predictive markers for UC in patients with BEN (52 patients), compared to healthy, age-matched subjects (40). A threefold increase was registered in both circulating and urinary survivin level in BEN patients. Especially noticeable was the ratio of U survivin/U Cr level five times the ratio of BEN patients associated with standard renal markers in multivariate regression models. The concentrations of VEGF, VEGFR1, (TF)/CD142, (sFas) were not significantly different in BEN patients, while urinary/plasma level demonstrated a significant decrease for VEGF. The levels of IGF I, IGFBP5 and IGF-1R were significantly reduced in the urine of BEN patients. Plasma concentration of neopterin was significantly higher, while urinary neopterin value was significantly lower in BEN patients compared to healthy controls, which reflected a significantly lower urine/plasma ratio and low local predictive value. As BEN is a slow-progressing chronic kidney disease, early detection of survivin may be proposed as potential predictor for malignant alteration and screening tool in BEN patients without the diagnosis of UC.
Collapse
|
25
|
Lin Y, Zhong H, Sun B, Peng Y, Lu F, Chen M, Zhu M, Huang J. USP22 promotes proliferation in renal cell carcinoma by stabilizing survivin. Oncol Lett 2020; 20:246. [PMID: 32973959 DOI: 10.3892/ol.2020.12108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/23/2020] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the commonest urological tumors. The incidence of RCC ranks third among urological tumors, after prostate cancer and bladder tumors. However, the etiology of RCC remains unclear. Ubiquitin-specific protease 22 (USP22), a potential marker of cancer stem cells, is associated with the occurrence and progression of numerous tumors. However, the roles of USP22 in RCC have not yet been investigated. Survivin is a member of the inhibitor of apoptotic protein family involved in RCC progression. The present study first detected the expression of USP22 and survivin in RCC tissues using immunohistochemistry and western blotting. It was revealed that the protein levels of USP22 and survivin in RCC tissues were higher than those in adjacent normal renal tissue. Subsequently, it was demonstrated that USP22 knockdown inhibited the growth of an RCC cell line ACHN and downregulated the protein level of survivin, accompanied by an increased level of cleaved-caspase-3. By contrast, overexpression of USP22 promoted the growth of ACHN cells, upregulated the expression of survivin and decreased the level of cleaved-caspase-3. Notably, the changes in USP22 expression did not affect the SURVIVIN mRNA level. Finally, it was confirmed that USP22 interacted with survivin and stabilized it by downregulating its ubiquitination. The present results indicate that USP22 may regulate survivin via deubiquitination, thereby promoting the proliferation of RCC cells. The results of the current study suggest that USP22 may represent a novel therapeutic target for patients with RCC.
Collapse
Affiliation(s)
- Ying Lin
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Hongbin Zhong
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Baicheng Sun
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Yongtiao Peng
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Fuhua Lu
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Miaoxuan Chen
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Maoshu Zhu
- Central Laboratory, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| | - Jiyi Huang
- Department of Nephrology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
26
|
Shin AR, Lee SE, Choi H, Sohn HJ, Cho HI, Kim TG. An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia. Br J Cancer 2020; 123:919-931. [PMID: 32595211 PMCID: PMC7492404 DOI: 10.1038/s41416-020-0955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 06/04/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Therapeutic cancer vaccines are an attractive approach for treating malignant tumours, and successful tumour eradication depends primarily on controlling tumour immunosuppression status as well as heterogeneity of tumour cells driven by epigenetic alterations. METHODS Peptide-loaded dendritic cell (DC) prime and non-infectious peptide booster heterologous immunisations were assessed for the immunogenicity of polo-like kinase-1 (PLK1)-derived peptides. Heterologous vaccination regimen targeting multiple shared tumour antigens simultaneously with PD-L1 blockade was assessed against murine myeloid leukaemia. RESULTS A synthetic PLK1122 (DSDFVFVVL)-based heterologous vaccination generated large numbers of long-lasting antigen-specific CD8 T-cells eliciting therapeutic effects against various established tumours. The therapeutic efficacy of single antigen-targeting PLK1122-based vaccine with sufficient endurance of PD-L1 blockade toward C1498 leukaemia relied on the heterogeneous clonal levels of MHC-I and PD-L1 expression. A novel multi-peptide-based vaccination targeting PLK1 and survivin simultaneously along with PD1 blockade led to complete tumour eradication and long-term survival in mice with clonally heterologous C1498 myeloid leukaemia. CONCLUSIONS Our findings suggest that PLK1 could be an attractive immunotherapeutic target antigen for cancer immunotherapy, and that similar strategies would be applicable for the optimisation of cancer vaccines for the treatment of numerous viral diseases and malignant tumours.
Collapse
Affiliation(s)
- A-Ri Shin
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sang-Eun Lee
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Haeyoun Choi
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc., Seoul, 06591, South Korea
| | - Hyun-Il Cho
- Translational and Clinical Division, ViGenCell Inc., Seoul, 06591, South Korea.
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| | - Tai-Gyu Kim
- Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
27
|
Abstract
Adoptive immunotherapy with engineered T cells is at the forefront of cancer treatment. T cells can be engineered to express T-cell receptors (TCRs) specific for tumor-associated antigens (TAAs) derived from intracellular or cell surface proteins. T cells engineered with TCRs (TCR-T) allow for targeting diverse types of TAAs, including proteins overexpressed in malignant cells, those with lineage-restricted expression, cancer-testis antigens, and neoantigens created from abnormal, malignancy-restricted proteins. Minor histocompatibility antigens can also serve as TAAs for TCR-T to treat relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Moreover, TCR constructs can be modified to improve safety and enhance function and persistence of TCR-T. Transgenic T-cell receptor therapies targeting 3 different TAAs are in early-phase clinical trials for treatment of hematologic malignancies. Preclinical studies of TCR-T specific for many other TAAs are underway and offer great promise as safe and effective therapies for a wide range of cancers.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Michelle Brault
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Rath JA, Bajwa G, Carreres B, Hoyer E, Gruber I, Martínez-Paniagua MA, Yu YR, Nouraee N, Sadeghi F, Wu M, Wang T, Hebeisen M, Rufer N, Varadarajan N, Ho PC, Brenner MK, Gfeller D, Arber C. Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR- and CD8αβ-engineered human CD4 + T cells. SCIENCE ADVANCES 2020; 6:eaaz7809. [PMID: 32923584 PMCID: PMC7455496 DOI: 10.1126/sciadv.aaz7809] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Transgenic coexpression of a class I-restricted tumor antigen-specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4+ T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4+ T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4+ and CD8+ T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8+ T cell function and preserved less differentiated CD4+ and CD8+ T cells after tumor challenge. TCR8+CD4+ T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation- and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies.
Collapse
Affiliation(s)
- Jan A. Rath
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Gagan Bajwa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Benoit Carreres
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Elisabeth Hoyer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Isabelle Gruber
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Yi-Ru Yu
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, USA
| | - Mengfen Wu
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Hebeisen
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, USA
| | - Ping-Chih Ho
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Gfeller
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
29
|
Rath JA, Arber C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020; 9:E1485. [PMID: 32570906 PMCID: PMC7349724 DOI: 10.3390/cells9061485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level.
Collapse
MESH Headings
- Biomedical Engineering
- Cell Engineering
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/trends
- Gene Editing
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Lymphocyte Activation
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Safety
- Synthetic Biology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Caroline Arber
- Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
30
|
Landoni E, Smith CC, Fucá G, Chen Y, Sun C, Vincent BG, Metelitsa LS, Dotti G, Savoldo B. A High-Avidity T-cell Receptor Redirects Natural Killer T-cell Specificity and Outcompetes the Endogenous Invariant T-cell Receptor. Cancer Immunol Res 2019; 8:57-69. [PMID: 31719055 DOI: 10.1158/2326-6066.cir-19-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
T-cell receptor (TCR) gene transfer redirects T cells to target intracellular antigens. However, the potential autoreactivity generated by TCR mispairing and occurrence of graft-versus-host disease in the allogenic setting due to the retention of native TCRs remain major concerns. Natural killer T cells (NKT) have shown promise as a platform for adoptive T-cell therapy in cancer patients. Here, we showed their utility for TCR gene transfer. We successfully engineered and expanded NKTs expressing a functional TCR (TCR NKTs), showing HLA-restricted antitumor activity in xenogeneic mouse models in the absence of graft-versus-mouse reactions. We found that TCR NKTs downregulated the invariant TCR (iTCR), leading to iTCR+TCR+ and iTCR-TCR+ populations. In-depth analyses of these subsets revealed that in iTCR-TCR+ NKTs, the iTCR, although expressed at the mRNA and protein levels, was retained in the cytoplasm. This effect resulted from a competition for binding to CD3 molecules for cell-surface expression by the transgenic TCR. Overall, our results highlight the feasibility and advantages of using NKTs for TCR expression for adoptive cell immunotherapies. NKT-low intrinsic alloreactivity that associated with the observed iTCR displacement by the engineered TCR represents ideal characteristics for "off-the-shelf" products without further TCR gene editing.
Collapse
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christof C Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giovanni Fucá
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Quach DH, Becerra-Dominguez L, Rouce RH, Rooney CM. A strategy to protect off-the-shelf cell therapy products using virus-specific T-cells engineered to eliminate alloreactive T-cells. J Transl Med 2019; 17:240. [PMID: 31340822 PMCID: PMC6657103 DOI: 10.1186/s12967-019-1988-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
Background The use of “off-the-shelf” cellular therapy products derived from healthy donors addresses many of the challenges associated with customized cell products. However, the potential of allogeneic cell products to produce graft-versus-host disease (GVHD), and their likely rejection by host alloreactive T-cells are major barriers to their clinical safety and efficacy. We have developed a molecule that when expressed in T-cells, can eliminate alloreactive T-cells and hence can be used to protect cell therapy products from allospecific rejection. Further, expression of this molecule in virus-specific T-cells (VSTs) should virtually eliminate the potential for recipients to develop GVHD. Methods To generate a molecule that can mediate killing of cognate alloreactive T-cells, we fused beta-2 microglobulin (B2M), a universal component of all human leukocyte antigen (HLA) class I molecules, to the cytolytic endodomain of the T cell receptor ζ chain, to create a chimeric HLA accessory receptor (CHAR). To determine if CHAR-modified human VSTs could eliminate alloreactive T-cells, we co-cultured them with allogeneic peripheral blood mononuclear cells (PBMC), and assessed proliferation of PBMC-derived alloreactive T-cells and the survival of CHAR-modified VSTs by flow cytometry. Results The CHAR was able to transport HLA molecules to the cell surface of Daudi cells, that lack HLA class I expression due to defective B2M expression, illustrating its ability to complex with human HLA class I molecules. Furthermore, VSTs expressing CHAR were protected from allospecific elimination in co-cultures with allogeneic PBMCs compared to unmodified VSTs, and mediated killing of alloreactive T-cells. Unexpectedly, CHAR-modified VSTs eliminated not only alloreactive HLA class I restricted CD8 T-cells, but also alloreactive CD4 T-cells. This beneficial effect resulted from non-specific elimination of activated T-cells. Of note, we confirmed that CHAR-modified VSTs did not affect pathogen-specific T-cells which are essential for protective immunity. Conclusions Human T-cells can be genetically modified to eliminate alloreactive T-cells, providing a unique strategy to protect off-the-shelf cell therapy products. Allogeneic cell therapies have already proved effective in treating viral infections in the stem cell transplant setting, and have potential in other fields such as regenerative medicine. A strategy to prevent allograft rejection would greatly increase their efficacy and commercial viability. Electronic supplementary material The online version of this article (10.1186/s12967-019-1988-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David H Quach
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, 1102 Bates Ave, Suite 1770, Houston, TX, 77030, USA
| | - Luis Becerra-Dominguez
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, 1102 Bates Ave, Suite 1770, Houston, TX, 77030, USA
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, 1102 Bates Ave, Suite 1770, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital and Baylor College of Medicine, 1102 Bates Ave, Suite 1770, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Virology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Echchannaoui H, Petschenka J, Ferreira EA, Hauptrock B, Lotz-Jenne C, Voss RH, Theobald M. A Potent Tumor-Reactive p53-Specific Single-Chain TCR without On- or Off-Target Autoimmunity In Vivo. Mol Ther 2018; 27:261-271. [PMID: 30528087 DOI: 10.1016/j.ymthe.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Genetic engineering of T cells with a T cell receptor (TCR) targeting tumor antigen is a promising strategy for cancer immunotherapy. Inefficient expression of the introduced TCR due to TCR mispairing may limit the efficacy and adversely affect the safety of TCR gene therapy. Here, we evaluated the safety and therapeutic efficiency of an optimized single-chain TCR (scTCR) specific for an HLA-A2.1-restricted (non-mutated) p53(264-272) peptide in adoptive T cell transfer (ACT) models using our unique transgenic mice expressing human p53 and HLA-A2.1 that closely mimic the human setting. Specifically, we showed that adoptive transfer of optimized scTCR-redirected T cells does not induce on-target and off-target autoimmunity. Furthermore, ACT resulted in full tumor protection and led to a long-lived effective, antigen-specific memory T cell response in syngeneic and xenograft models. Taken together, the study demonstrated that our scTCR specific for the broadly expressed tumor-associated antigen p53(264-272) can eradicate p53+A2.1+ tumor cells without inducing off-target or self-directed toxicities in mouse models of ACT. These data strongly support the improved safety and therapeutic efficacy of high-affinity p53scTCR for TCR-based immunotherapy of p53-associated malignancies.
Collapse
Affiliation(s)
- Hakim Echchannaoui
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center (UMC), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; German Consortium for Translational Cancer Research (DKTK), Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jutta Petschenka
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edite Antunes Ferreira
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Beate Hauptrock
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carina Lotz-Jenne
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ralf-Holger Voss
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Theobald
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center (UMC), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; German Consortium for Translational Cancer Research (DKTK), Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Circosta P, Vitaggio K, Elia AR, Todorovic M, Sangiolo D, Carnevale-Schianca F, Vallario A, Geuna M, Aglietta M, Cignetti A. Survivin-peptide vaccination elicits immune response after allogeneic nonmyeloablative transplantation: a safe strategy to enhance the graft versus tumor effect. Immunotherapy 2018; 10:753-767. [PMID: 30008257 DOI: 10.2217/imt-2017-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an adoptive immunotherapy strategy whose effectiveness relies on graft-versus-tumor (GVT) effect. We explored the feasibility of enhancing GVT after allo-HCT by peptide vaccination. Two myeloma patients were transplanted with a fludarabine-total body irradiation conditioning regimen and vaccinated with an HLA-A*0201-restricted modified survivin nonapeptide, plus montanide as adjuvant. At time of first vaccination, one patient had just attained serological remission despite documented relapse after transplant, while the other patient was in stable disease. Both patients had an immune response to vaccination: the frequency of survivin-specific CD8+ T cells increased between second and sixth vaccination and accounted for 0.5-0.8% of CD8+ cells; CD8+ cells were functional in ELISPOT assay. The first patient persists in complete remission with a follow-up of >5 years, while the second patient did not have a clinical response and vaccination was halted. We analyzed the T-cell receptor (TCR) repertoire of the first patient by spectratyping and found that vaccination did not affect the diversity of TCR profile, indicating that survivin clonotypes were probably spread in multiple TCR families. We generated a limited number (n = 4) of survivin-specific T cell clones: three were reactive only against the modified peptide, whereas one clone recognized also the naive peptide. Peptide vaccination is safe and applicable after allo-HCT and elicits an efficient antigen-specific T cell response without causing graft-versus-host disease.
Collapse
Affiliation(s)
- Paola Circosta
- Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Katia Vitaggio
- Department of Oncology, University of Torino, Turin, Italy
| | - Angela Rita Elia
- Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Maja Todorovic
- Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology-Experimental Cell Therapy, Candiolo Cancer Institute-FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Fabrizio Carnevale-Schianca
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, University of Torino Medical School, 10060 Candiolo, Turin, Italy
| | - Antonella Vallario
- Department of Pharmaceutical Sciences, University of Piemonte Orientale Amedeo Avogadro, 28100 Novara, Italy
| | - Massimo Geuna
- Laboratory of Immunopathology Mauriziano Hospital & University of Torino, 10128 Turin, Italy
| | - Massimo Aglietta
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, University of Torino Medical School, 10060 Candiolo, Turin, Italy
| | - Alessandro Cignetti
- Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy.,University Division of Hematology & Cell Therapy, Mauriziano Umberto I Hospital & University of Torino, 10128 Turin, Italy
| |
Collapse
|
34
|
|
35
|
Dotti G, Brenner MK. T-Cell Therapy of Hematologic Diseases. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
36
|
Nishimura CD, Brenner DA, Mukherjee M, Hirsch RA, Ott L, Wu MF, Liu H, Dakhova O, Orange JS, Brenner MK, Lin CY, Arber C. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals. Blood 2017; 130:2739-2749. [PMID: 29079582 PMCID: PMC5746163 DOI: 10.1182/blood-2017-02-769463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL+ polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents.
Collapse
Affiliation(s)
- Christopher D Nishimura
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
| | - Daniel A Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Center for Human Immunobiology
| | - Malini Mukherjee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Center for Human Immunobiology
| | | | - Leah Ott
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
| | - Meng-Fen Wu
- Department of Biostatistics, Dan L. Duncan Comprehensive Cancer Center
| | - Hao Liu
- Department of Biostatistics, Dan L. Duncan Comprehensive Cancer Center
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
| | | | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Department of Molecular and Human Genetics
- Department of Pediatrics, and
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | | | - Caroline Arber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX; and
- Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
37
|
Landoni E, Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther 2017; 18:65-75. [DOI: 10.1080/14712598.2018.1384810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Antunes DA, Rigo MM, Freitas MV, Mendes MFA, Sinigaglia M, Lizée G, Kavraki LE, Selin LK, Cornberg M, Vieira GF. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Front Immunol 2017; 8:1210. [PMID: 29046675 PMCID: PMC5632759 DOI: 10.3389/fimmu.2017.01210] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.
Collapse
Affiliation(s)
- Dinler A Antunes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Maurício M Rigo
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratório de Imunologia Celular e Molecular, Instituto de Pesquisas Biomédicas (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Martiela V Freitas
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcus F A Mendes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marialva Sinigaglia
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gregory Lizée
- Lizée Lab, Department of Melanoma Medical Oncology - Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - Lydia E Kavraki
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Liisa K Selin
- Selin Lab, Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Markus Cornberg
- Cornberg Lab, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Gustavo F Vieira
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Porto Alegre, Brazil
| |
Collapse
|
39
|
Velasquez MP, Szoor A, Vaidya A, Thakkar A, Nguyen P, Wu MF, Liu H, Gottschalk S. CD28 and 41BB Costimulation Enhances the Effector Function of CD19-Specific Engager T Cells. Cancer Immunol Res 2017; 5:860-870. [PMID: 28821531 DOI: 10.1158/2326-6066.cir-17-0171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/31/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023]
Abstract
T cells expressing CD19-specific chimeric antigen receptors (CARs) with endodomains that encode a signaling domain derived from CD3ζ and CD28 or 41BB have potent antitumor activity in early-phase clinical studies for B-cell malignancies. Besides CD19-specific CARs, other approaches are actively being pursued to redirect T cells to CD19, including recombinant bispecific T-cell engager (BiTE) proteins or T cells genetically modified to express BiTEs [engager (ENG) T cells]. As BiTEs provide no costimulation, we investigated here if provision of costimulation through CD28 and 41BB enhances the effector function of CD19-ENG T cells. CD19-ENG T cells expressing CD80 and 41BBL on their cell surface (CD19-ENG.41BBL/CD80 T cells) were generated by retroviral transduction. CD19-ENG.41BBL/CD80 T cells retained their antigen specificity and had superior effector function compared with both unmodified T cells and CD19-ENG T cells expressing either CD80, 41BBL, or no costimulatory molecule, as judged by cytokine (IFNγ and IL2) production, T-cell proliferation, and their ability to sequentially kill target cells. In vivo, CD19-ENG.41BBL/CD80 T cells had superior antileukemia activity in the BV173 xenograft model, resulting in a survival advantage in comparison to CD19-ENG T cells. Thus, provision of costimulation is critical for the effector function of ENG T cells. Cancer Immunol Res; 5(10); 860-70. ©2017 AACR.
Collapse
Affiliation(s)
- Mireya Paulina Velasquez
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Arpad Szoor
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Abishek Vaidya
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Aarohi Thakkar
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Phuong Nguyen
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Meng-Fen Wu
- Biostatistics Shared Resource, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Hao Liu
- Biostatistics Shared Resource, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas. .,Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Departments of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
40
|
Trenevska I, Li D, Banham AH. Therapeutic Antibodies against Intracellular Tumor Antigens. Front Immunol 2017; 8:1001. [PMID: 28868054 PMCID: PMC5563323 DOI: 10.3389/fimmu.2017.01001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8-10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I) molecules. These tumor-associated peptide-MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm) or T-cell receptor (TCR)-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.
Collapse
Affiliation(s)
- Iva Trenevska
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
41
|
Kunert A, Obenaus M, Lamers CHJ, Blankenstein T, Debets R. T-cell Receptors for Clinical Therapy: In Vitro Assessment of Toxicity Risk. Clin Cancer Res 2017. [PMID: 28645940 DOI: 10.1158/1078-0432.ccr-17-1012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive therapy with T-cell receptor (TCR)-engineered T cells has shown promising results in the treatment of patients with tumors, and the number of TCRs amenable for clinical testing is expanding rapidly. Notably, adoptive therapy with T cells is challenged by treatment-related side effects, which calls for cautious selection of target antigens and TCRs that goes beyond their mere ability to induce high T-cell reactivity. Here, we propose a sequence of in vitro assays to improve selection of TCRs and exemplify risk assessments of on-target as well as off-target toxicities using TCRs directed against cancer germline antigens. The proposed panel of assays covers parameters considered key to safety, such as expression of target antigen in healthy tissues, determination of a TCR's recognition motif toward its cognate peptide, and a TCR's cross-reactivity toward noncognate peptides. Clin Cancer Res; 23(20); 6012-20. ©2017 AACR.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Matthias Obenaus
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité Campus Buch, Berlin, Germany
| | - Cor H J Lamers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité Campus Buch, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Li D, Bentley C, Yates J, Salimi M, Greig J, Wiblin S, Hassanali T, Banham AH. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies. PLoS One 2017; 12:e0176642. [PMID: 28448627 PMCID: PMC5407768 DOI: 10.1371/journal.pone.0176642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/13/2017] [Indexed: 01/30/2023] Open
Abstract
Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy.
Collapse
Affiliation(s)
- Demin Li
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- * E-mail: (AHB); (DL)
| | - Carol Bentley
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenna Yates
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Maryam Salimi
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jenny Greig
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sarah Wiblin
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Tasneem Hassanali
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Level 4, Academic Block, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- * E-mail: (AHB); (DL)
| |
Collapse
|
43
|
Inderberg EM, Wälchli S, Myhre MR, Trachsel S, Almåsbak H, Kvalheim G, Gaudernack G. T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces in vivo tumor growth. Oncoimmunology 2017; 6:e1302631. [PMID: 28507809 PMCID: PMC5414866 DOI: 10.1080/2162402x.2017.1302631] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023] Open
Abstract
T-cell receptor (TCR) transfer is an attractive strategy to increase the number of cancer-specific T cells in adoptive cell therapy. However, recent clinical and pre-clinical findings indicate that careful consideration of the target antigen is required to limit the risk of off-target toxicity. Directing T cells against mutated proteins such as frequently occurring frameshift mutations may thus be a safer alternative to tumor-associated self-antigens. Furthermore, such frameshift mutations result in novel polypeptides allowing selection of TCRs from the non-tolerant T-cell repertoire circumventing the problem of low affinity TCRs due to central tolerance. The transforming growth factor β Receptor II frameshift mutation (TGFβRIImut) is found in Lynch syndrome cancer patients and in approximately 15% of sporadic colorectal and gastric cancers displaying microsatellite instability (MSI). The -1A mutation within a stretch of 10 adenine bases (nucleotides 709-718) of the TGFβRII gene gives rise to immunogenic peptides previously used for vaccination of MSI+ colorectal cancer patients in a Phase I clinical trial. From a clinically responding patient, we isolated a cytotoxic T lymphocyte (CTL) clone showing a restriction for HLA-A2 in complex with TGFβRIImut peptide. Its TCR was identified and shown to redirect T cells against colon carcinoma cell lines harboring the frameshift mutation. Finally, T cells transduced with the HLA-A2-restricted TGFβRIImut-specific TCR were demonstrated to significantly reduce the growth of colorectal cancer and enhance survival in a NOD/SCID xenograft mouse model.
Collapse
Affiliation(s)
- Else M Inderberg
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Marit R Myhre
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Sissel Trachsel
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Hilde Almåsbak
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind. Methods Mol Biol 2017; 1561:139-169. [PMID: 28236237 DOI: 10.1007/978-1-4939-6798-8_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many signaling and regulatory processes involve peptide-mediated protein interactions, i.e., the binding of a short stretch in one protein to a domain in its partner. Computational tools that generate accurate models of peptide-receptor structures and binding improve characterization and manipulation of known interactions, help to discover yet unknown peptide-protein interactions and networks, and bring into reach the design of peptide-based drugs for targeting specific systems of medical interest.Here, we present a concise overview of the Rosetta FlexPepDock protocol and its derivatives that we have developed for the structure-based characterization of peptide-protein binding. Rosetta FlexPepDock was built to generate precise models of protein-peptide complex structures, by effectively addressing the challenge of the considerable conformational flexibility of the peptide. Rosetta FlexPepBind is an extension of this protocol that allows characterizing peptide-binding affinities and specificities of various biological systems, based on the structural models generated by Rosetta FlexPepDock. We provide detailed descriptions and guidelines for the usage of these protocols, and on a specific example, we highlight the variety of different challenges that can be met and the questions that can be answered with Rosetta FlexPepDock.
Collapse
|
45
|
A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells. J Immunother 2016; 39:105-16. [PMID: 26938944 DOI: 10.1097/cji.0000000000000116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wilms tumor gene 1 (WT1) is an attractive target antigen for cancer immunotherapy because it is overexpressed in many hematologic malignancies and solid tumors but has limited, low-level expression in normal adult tissues. Multiple HLA class I and class II restricted epitopes have been identified in WT1, and multiple investigators are pursuing the treatment of cancer patients with WT1-based vaccines and adoptively transferred WT1-reactive T cells. Here we isolated an HLA-A*0201-restricted WT1-reactive T-cell receptor (TCR) by stimulating peripheral blood lymphocytes of healthy donors with the peptide WT1:126-134 in vitro. This TCR mediated peptide recognition down to a concentration of ∼0.1 ng/mL when pulsed onto T2 cells as well as recognition of HLA-A*0201 target cells transfected with full-length WT1 cDNA. However, it did not mediate consistent recognition of many HLA-A*0201 tumor cell lines or freshly isolated leukemia cells that endogeneously expressed WT1. We dissected this pattern of recognition further and observed that WT1:126-134 was more efficiently processed by immunoproteasomes compared with standard proteasomes. However, pretreatment of WT1 tumor cell lines with interferon gamma did not appreciably enhance recognition by our TCR. In addition, we highly overexpressed WT1 in several leukemia cell lines by electroporation with full-length WT1 cDNA. Some of these lines were still not recognized by our TCR suggesting possible antigen processing defects in some leukemias. These results suggest WT1:126-134 may not be a suitable target for T-cell based tumor immunotherapies.
Collapse
|
46
|
Attayek PJ, Hunsucker SA, Sims CE, Allbritton NL, Armistead PM. Identification and isolation of antigen-specific cytotoxic T lymphocytes with an automated microraft sorting system. Integr Biol (Camb) 2016; 8:1208-1220. [PMID: 27853786 PMCID: PMC5138107 DOI: 10.1039/c6ib00168h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems. We have developed a microraft array methodology that automatically measures the ability of individual T cells to kill a population of target cells and viably sorts specific cells into a 96-well plate for expansion. A human T cell culture was generated against the influenza M1p antigen. Individual microrafts on a 70 × 70 array were loaded with on average 1 CD8+ cell from the culture and a population of M1p presenting target cells. Target cell killing, measured by fluorescence microscopy, was quantified in each microraft. The rates of target cell death among the individual CD8+ T cells varied greatly; however, individual T cells maintained their rates of cytotoxicity throughout the time course of the experiment enabling rapid identification of highly cytotoxic CD8+ T cells. Microrafts with highly active CD8+ T cells were individually transferred to wells of a 96-well plate, using a needle-release device coupled to the microscope. Three sorted T cells clonally expanded. All of these expressed high-avidity T cell receptors for M1p/HLA*02:01 tetramers, and 2 of the 3 receptors were sequenced. While this study investigated single T cell cytotoxicity rates against simple targets with subsequent cell sorting, future studies will involve measuring T cell mediated cytotoxicity in more complex cellular environments, enlarging the arrays to identify very rare antigen specific T cells, and measuring single cell CD4+ and CD8+ T cell proliferation.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
47
|
Lulla P, Heslop HE. Checkpoint inhibition and cellular immunotherapy in lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:390-396. [PMID: 27913506 PMCID: PMC6142511 DOI: 10.1182/asheducation-2016.1.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hodgkin and non-Hodgkin lymphoma are both good targets for immunotherapy, as they are accessible to antibodies and cell-based immunotherapy, express costimulatory molecules, and express lineage-restricted, viral, and unique tumor antigens. Blockade of the programmed-death 1 (PD-1) immune checkpoint has produced very encouraging response rates in patients with Hodgkin lymphoma, whereas adoptive transfer of Epstein-Barr Virus (EBV)-specific T cells has shown clinical activity in patients with posttransplant lymphoma and other EBV-associated lymphomas. T cells can also be genetically modified with chimeric antigen receptors (CARs) to confer specificity for surface antigens, and studies of CD19 CARs in lymphoma also have had encouraging response rates. Future directions include combination of checkpoint blockade and adoptive T-cell studies.
Collapse
Affiliation(s)
- Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
48
|
Rouce RH, Sharma S, Huynh M, Heslop HE. Recent advances in T-cell immunotherapy for haematological malignancies. Br J Haematol 2016; 176:688-704. [PMID: 27897332 DOI: 10.1111/bjh.14470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro discoveries have paved the way for bench-to-bedside translation in adoptive T cell immunotherapy, resulting in remarkable clinical responses in a variety of haematological malignancies. Adoptively transferred T cells genetically modified to express CD19 CARs have shown great promise, although many unanswered questions regarding how to optimize T-cell therapies for both safety and efficacy remain. Similarly, T cells that recognize viral or tumour antigens though their native receptors have produced encouraging clinical responses. Honing manufacturing processes will increase the availability of T-cell products, while combining T-cell therapies has the ability to increase complete response rates. Lastly, innovative mechanisms to control these therapies may improve safety profiles while genome editing offers the prospect of modulating T-cell function. This review will focus on recent advances in T-cell immunotherapy, highlighting both clinical and pre-clinical advances, as well as exploring what the future holds.
Collapse
Affiliation(s)
- Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA.,Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Mai Huynh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
49
|
T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies. Sci Rep 2016; 6:27130. [PMID: 27255991 PMCID: PMC4891739 DOI: 10.1038/srep27130] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
T cells expressing chimeric antigen receptors (CARs) or the infusion of bispecific T-cell engagers (BITEs) have shown antitumor activity in humans for CD19-positive malignancies. While BITEs redirect the large reservoir of resident T cells to tumors, CAR T cells rely on significant in vivo expansion to exert antitumor activity. We have shown that it is feasible to modify T cells to secrete solid tumor antigen-specific BITEs, enabling T cells to redirect resident T cells to tumor cells. To adapt this approach to CD19-positive malignancies we now generated T cells expressing secretable, CD19-specific BITEs (CD19-ENG T cells). CD19-ENG T cells recognized tumor cells in an antigen-dependent manner as judged by cytokine production and tumor killing, and redirected bystander T cells to tumor cells. Infusion of CD19-ENG T cells resulted in regression of leukemia or lymphoma in xenograft models and a survival advantage in comparison to control mice. Genetically modified T cells expressing engager molecules may present a promising addition to current CD19-targeted immunotherapies.
Collapse
|
50
|
Control of leukemia relapse after allogeneic hematopoietic stem cell transplantation: integrating transplantation with genetically modified T cell therapies. Curr Opin Hematol 2016; 22:489-96. [PMID: 26335421 DOI: 10.1097/moh.0000000000000177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Leukemia relapse remains a significant cause of failure after allogeneic hematopoietic stem cell transplantation (HSCT). Although it is widely accepted that immunological components of the stem cell graft play a critical role in promoting leukemia eradication (graft versus leukemia effect), it is also evident that their efficacy is frequently inadequate and leukemia relapse still occurs. This article reviews recent insights into T cell-based posttransplant immunotherapy approaches aimed at preventing or controlling leukemia relapse. RECENT FINDINGS Donor lymphocyte infusion with T cells genetically modified with safety switches improves the patient's immune reconstitution while offering appropriate control of graft versus host disease. T lymphocytes engineered with artificial tumor-specific receptors such as αβT-cell receptor chains or chimeric antigen receptors are major players in promoting antileukemia effects after allogeneic HSCT. SUMMARY The landscape of adoptive T cell therapies after allogeneic HSCT has seen significant achievements with the introduction of T cell engineering. Gene transfer grants the generation of T cell products characterized by standardizable specificity and functionality. This aspect is critical for scalable and reproducible approaches for application in large clinical studies. The clinical results so far reported are encouraging and multicenter studies conducted by pharmaceutical companies will provide definitive conclusions on the clinical impact of these new methodologies.
Collapse
|