1
|
Kim J. Smart Nanocarriers in Cosmeceuticals Through Advanced Delivery Systems. Biomimetics (Basel) 2025; 10:217. [PMID: 40277615 PMCID: PMC12025235 DOI: 10.3390/biomimetics10040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Nanomaterials have revolutionized various biological applications, including cosmeceuticals, enabling the development of smart nanocarriers for enhanced skin delivery. This review focuses on the role of nanotechnologies in skincare and treatments, providing a concise overview of smart nanocarriers, including thermo-, pH-, and multi-stimuli-sensitive systems, focusing on their design, fabrication, and applications in cosmeceuticals. These nanocarriers offer controlled release of active ingredients, addressing challenges like poor skin penetration and ingredient instability. This work discusses the unique properties and advantages of various nanocarrier types, highlighting their potential in addressing diverse skin concerns. Furthermore, we address the critical aspect of biocompatibility, examining potential health risks associated with nanomaterials. Finally, this review highlights current challenges, including the precise control of drug release, scalability, and the transition from in vitro to in vivo applications. We also discuss future perspectives such as the integration of digital technologies and artificial intelligence for personalized skincare to further advance the technology of smart nanocarriers in cosmeceuticals.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
2
|
Ramos Angulo JV, Fernández Valenzuela J, Freire-Bernal SI, Niño-Castaño VE, Rodríguez Paez JE, Dueñas-Cuellar RA. Cytotoxicity and genotoxicity of zinc oxide nanoparticles in human peripheral blood mononuclear cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503838. [PMID: 39855820 DOI: 10.1016/j.mrgentox.2024.503838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro. ZnO-NPs caused significant reduction in cell viability and LDH release, indicating damage to cell membranes. Late apoptosis was significant and necrosis was significant at higher concentrations tested. ZnO-NPs did not induce micronucleus formation.
Collapse
Affiliation(s)
- Jovanna Vanessa Ramos Angulo
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia; Programa de Maestría en Biología, Universidad del Cauca, Popayán (Cauca), Colombia.
| | - Juliana Fernández Valenzuela
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| | - Sofía Isabel Freire-Bernal
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| | - Victoria Eugenia Niño-Castaño
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| | - Jorge Enrique Rodríguez Paez
- Universidad del Cauca, Facultad de Ciencias naturales, Exactas y de la Educación, Departamento de Física, Grupo de Investigación en Ciencia y Tecnología de Materiales Cerámicos, Popayán (Cauca), Colombia.
| | - Rosa Amalia Dueñas-Cuellar
- Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia.
| |
Collapse
|
3
|
Alves PLM, Nieri V, Moreli FDC, Constantino E, de Souza J, Oshima-Franco Y, Grotto D. Unveiling New Horizons: Advancing Technologies in Cosmeceuticals for Anti-Aging Solutions. Molecules 2024; 29:4890. [PMID: 39459258 PMCID: PMC11510423 DOI: 10.3390/molecules29204890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
In the last years, the landscape of anti-aging cosmetics has been marked by significant advances in cosmeceutical delivery systems. This study aimed to conduct a systematic review of these technological innovations, with a focus on anti-aging effects, from 2018 to 2023. The methodology included a thorough search on PubMed and through gray literature, applying rigorous exclusion criteria. The descriptors were selected based on the Medical Subject Headings (MeSH). A total of 265 articles were found. Exclusion criteria were applied, and 90 of them were selected for full reading. After reading the full 90 articles, 52 were excluded, leaving 38 articles for final evaluation composing this review. The key findings highlighted a clear prevalence of studies exploring nanotechnology, including nanoparticles, niosomes, and liposomes. Most of the formulations analyzed in this review emphasize antioxidant activities, which play a crucial role in preventing premature aging caused by free radicals. The reviewed studies revealed specific activities, such as the reduction in melanin synthesis, the inhibition of enzymes involved in the skin aging process, and the prevention of morphological changes typical of aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoko Oshima-Franco
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (P.L.M.A.); (V.N.); (F.d.C.M.); (E.C.); (J.d.S.)
| | - Denise Grotto
- Department of Pharmacy, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (P.L.M.A.); (V.N.); (F.d.C.M.); (E.C.); (J.d.S.)
| |
Collapse
|
4
|
Krajnak K, Farcas M, Richardson D, Hammer MA, Waugh S, McKinney W, Knepp A, Jackson M, Burns D, LeBouf R, Matheson J, Thomas T, Qian Y. Exposure to emissions generated by 3-dimensional printing with polycarbonate: effects on peripheral vascular function, cardiac vascular morphology and expression of markers of oxidative stress in male rat cardiac tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:541-559. [PMID: 38682597 PMCID: PMC11625379 DOI: 10.1080/15287394.2024.2346938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.
Collapse
Affiliation(s)
- Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary Anne Hammer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Dru Burns
- Respiratory Health Division, Morgantown, WV, USA
| | - Ryan LeBouf
- Respiratory Health Division, Morgantown, WV, USA
| | | | - Treye Thomas
- Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
5
|
Qian N, Gao X, Lang X, Deng H, Bratu TM, Chen Q, Stapleton P, Yan B, Min W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc Natl Acad Sci U S A 2024; 121:e2300582121. [PMID: 38190543 PMCID: PMC10801917 DOI: 10.1073/pnas.2300582121] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/24/2023] [Indexed: 01/10/2024] Open
Abstract
Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 μm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY10027
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY10027
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY10027
| | - Huiping Deng
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10964
| | | | - Qixuan Chen
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY10032
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, New Brunswick, NJ08854
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10964
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| |
Collapse
|
6
|
Otelea MR, Oancea C, Reisz D, Vaida MA, Maftei A, Popescu FG. Club Cells-A Guardian against Occupational Hazards. Biomedicines 2023; 12:78. [PMID: 38255185 PMCID: PMC10813369 DOI: 10.3390/biomedicines12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Club cells have a distinct role in the epithelial repair and defense mechanisms of the lung. After exposure to environmental pollutants, during chronic exposure, the secretion of club cells secretory protein (CCSP) decreases. Exposure to occupational hazards certainly has a role in a large number of interstitial lung diseases. According to the American Thoracic Society and the European Respiratory Society, around 40% of the all interstitial lung disease is attributed to occupational hazards. Some of them are very well characterized (pneumoconiosis, hypersensitivity pneumonitis), whereas others are consequences of acute exposure (e.g., paraquat) or persistent exposure (e.g., isocyanate). The category of vapors, gases, dusts, and fumes (VGDF) has been proven to produce subclinical modifications. The inflammation and altered repair process resulting from the exposure to occupational respiratory hazards create vicious loops of cooperation between epithelial cells, mesenchymal cells, innate defense mechanisms, and immune cells. The secretions of club cells modulate the communication between macrophages, epithelial cells, and fibroblasts mitigating the inflammation and/or reducing the fibrotic process. In this review, we describe the mechanisms by which club cells contribute to the development of interstitial lung diseases and the potential role for club cells as biomarkers for occupational-related fibrosis.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Corina Oancea
- Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Reisz
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Monica Adriana Vaida
- Department of Anatomy and Embryology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Andreea Maftei
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Florina Georgeta Popescu
- Department of Occupational Health, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| |
Collapse
|
7
|
Hebert D, Nelson J, Diehl BN, Zito P. Single-Particle ICP-MS/MS Application for Routine Screening of Nanoparticles Present in Powder-Based Facial Cosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2681. [PMID: 37836322 PMCID: PMC10574118 DOI: 10.3390/nano13192681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The short- and long-term impacts of nanoparticles (NPs) in consumer products are not fully understood. Current European Union (EU) regulations enforce transparency on products containing NPs in cosmetic formulations; however, those set by the U.S. Food and Drug Administration are lacking. This study demonstrates the potential of single-particle inductively coupled plasma tandem mass spectrometry (spICP-MS/MS) as a screening method for NPs present in powder-based facial cosmetics (herein referred to as FCs). A proposed spICP-MS/MS method is presented along with recommended criteria to confirm particle presence and particle detection thresholds in seven FCs. FC products of varying colors, market values, and applications were analyzed for the presence of Bi, Cr, Mg, Mn, Pb, Sn, Ag, Al, and Zn NPs based on their ingredient lists as well as those commonly used in cosmetic formulations. The presence of NPs smaller than 100 nm was observed in all FC samples, and no correlations with their presence and market value were observed. Here, we report qualitative and semi-quantitative results for seven FC samples ranging in color, brand, and shimmer.
Collapse
Affiliation(s)
- Deja Hebert
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; (D.H.); (B.N.D.)
| | - Jenny Nelson
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA;
| | - Brooke N. Diehl
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; (D.H.); (B.N.D.)
| | - Phoebe Zito
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; (D.H.); (B.N.D.)
| |
Collapse
|
8
|
Krajnak K, Farcas M, McKinney W, Waugh S, Mandler K, Knepp A, Jackson M, Richardson D, Hammer M, Matheson J, Thomas T, Qian Y. Inhalation of polycarbonate emissions generated during 3D printing processes affects neuroendocrine function in male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:575-596. [PMID: 37350301 PMCID: PMC10527863 DOI: 10.1080/15287394.2023.2226198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D) printing of manufactured goods has increased in the last 10 years. The increased use of this technology has resulted in questions regarding the influence of inhaling emissions generated during printing. The goal of this study was to determine if inhalation of particulate and/or toxic chemicals generated during printing with polycarbonate (PC) plastic affected the neuroendocrine system. Male rats were exposed to 3D-printer emissions (592 µg particulate/m3 air) or filtered air for 4 h/day (d), 4 days/week and total exposures lengths were 1, 4, 8, 15 or 30 days. The effects of these exposures on hormone concentrations, and markers of function and/or injury in the olfactory bulb, hypothalamus and testes were measured after 1, 8 and 30 days exposure. Thirty days of exposure to 3D printer emissions resulted in reductions in thyroid stimulating hormone, follicle stimulating hormone and prolactin. These changes were accompanied by (1) elevation in markers of cell injury; (2) reductions in active mitochondria in the olfactory bulb, diminished gonadotropin releasing hormone cells and fibers as well as less tyrosine hydroxylase immunolabeled fibers in the arcuate nucleus; and (3) decrease in spermatogonium. Polycarbonate plastics may contain bisphenol A, and the effects of exposure to these 3D printer-generated emissions on neuroendocrine function are similar to those noted following exposure to bisphenol A.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kyle Mandler
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - MaryAnne Hammer
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Yong Qian
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
9
|
Mahgoob AAE, Tousson E, Abd Eldaim MA, Ullah S, Al-Sehemi AG, Algarni H, El Sayed IET. Ameliorative role of chitosan nanoparticles against silver nanoparticle-induced reproductive toxicity in male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17374-17383. [PMID: 36192590 DOI: 10.1007/s11356-022-23312-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
This study was designed to evaluate the protective potentials of chitosan nanoparticles (ChNPs) against silver nanoparticle (AgNP)-induced reproductive toxicity in male Wister albino rats. AgNPs, ChNPs, and AgNPs particles coated with ChNPs were characterized by using transmission electron microscope. Control rats were injected interperitoneally with 0.5% aqueous carboxymethyl cellulose. Second group was given ChNPs at a dose 300 mg/kg bwt. Third group was given AgNPs at a dose 50 mg/kg bwt. Fourth group was given AgNPs with chitosan nanoparticles simultaneously. Fifth group was given silver nanoparticles coated with chitosan nanoparticles at a dose 300 mg/kg bwt. TEM showed the formation of AgNPs with average size of 42.7 nm, ChNPs with average size of 33.3 nm, and AgNPs coated with ChNPs with average size of 48.1 nm. AgNPs significantly reduced serum levels of FSH, LH, testosterone and prolactin, sperm count, morphology index, vitality, total motility and progressive motility, the activities of catalase and superoxide dismutase, and the concentration of reduced glutathione in testicular tissues. However, it significantly increased malondialdehyde concentration in testicular tissues, sperm abnormalities, testicular tissue damages, non-progressive motility, and immotile sperms. On the contrast, ChNPs ameliorated AgNP-induced alteration in serum levels of sex hormones, spermogram, and testicular tissue's structure and functions. These results indicated that ChNPs had protective potential against AgNP-induced reproductive toxicity and ChNPs coating AgNPs had more potent protective effect than ChNPs administrated together with AgNPs.
Collapse
Affiliation(s)
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Menoufia, Egypt.
| | - Sami Ullah
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | | |
Collapse
|
10
|
Lyu Y, Zhang Q, Liu Y, Zhang WP, Tian FJ, Zhang HF, Hu BH, Feng J, Qian Y, Jiang Y, Zhang PH, Ma N, Tang SC, Zheng JP, Qiu YL. Nano-Calcium Carbonate Affect the Respiratory and Function Through Inducing Oxidative Stress: A Cross-sectional Study Among Occupational Exposure of Workers and a Further Research for Underlying Mechanisms. J Occup Environ Med 2023; 65:184-191. [PMID: 36165499 DOI: 10.1097/jom.0000000000002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study is to investigate whether nano-calcium carbonate (nano-CaCO 3 ) occupational exposure could induce adverse health effects in workers. METHODS A cross-sectional study was conducted in a nano-CaCO 3 manufacturing plant in China. Then, we have studied the dynamic distribution of nano-CaCO 3 in nude mice and examined the oxidative damage biomarkers of subchronic administrated nano-CaCO 3 on Sprague-Dawley rats. RESULTS The forced vital capacity (%) and the ratio of FEV1 to FVC is the rate of one second of workers were significantly decreased than unexposed individuals. Dynamic imaging in mice of fluorescence labeled nano-CaCO 3 showed relatively high uptake and slow washout in lung. Similar to population data, the decline in serum glutathione level and elevation in serum MDA were observed in nano-CaCO 3 -infected Sprague-Dawley rats. CONCLUSIONS We found that nano-CaCO 3 exposure may result in the poor pulmonary function in workers and lead to the changes of oxidative stress indexes.
Collapse
Affiliation(s)
- Yi Lyu
- From the Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China (Ms Lyu, Ms Zhang, Ms Liu, Dr Zhang, Ms Tian, Ms Zhang, Mr Hu, Ms Feng, Ms Qian, Mr Jiang, Ms Zhang, Ms Ma, Dr Zheng, Dr Qiu); Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Shanxi Medical University, Taiyuan, China (Ms Lyu); Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China (Dr Zheng); and Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China (Dr Tang)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sharma A, Shambhwani D, Pandey S, Singh J, Lalhlenmawia H, Kumarasamy M, Singh SK, Chellappan DK, Gupta G, Prasher P, Dua K, Kumar D. Advances in Lung Cancer Treatment Using Nanomedicines. ACS OMEGA 2023; 8:10-41. [PMID: 36643475 PMCID: PMC9835549 DOI: 10.1021/acsomega.2c04078] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
Carcinoma of the lungs is among the most menacing forms of malignancy and has a poor prognosis, with a low overall survival rate due to delayed detection and ineffectiveness of conventional therapy. Therefore, drug delivery strategies that may overcome undesired damage to healthy cells, boost therapeutic efficacy, and act as imaging tools are currently gaining much attention. Advances in material science have resulted in unique nanoscale-based theranostic agents, which provide renewed hope for patients suffering from lung cancer. Nanotechnology has vastly modified and upgraded the existing techniques, focusing primarily on increasing bioavailability and stability of anti-cancer drugs. Nanocarrier-based imaging systems as theranostic tools in the treatment of lung carcinoma have proven to possess considerable benefits, such as early detection and targeted therapeutic delivery for effectively treating lung cancer. Several variants of nano-drug delivery agents have been successfully studied for therapeutic applications, such as liposomes, dendrimers, polymeric nanoparticles, nanoemulsions, carbon nanotubes, gold nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, hydrogels, and micelles. In this Review, we present a comprehensive outline on the various types of overexpressed receptors in lung cancer, as well as the various targeting approaches of nanoparticles.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | | | - Sadanand Pandey
- Department
of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Murali Kumarasamy
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur 844102, India
| | - Sachin Kumar Singh
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara 144411, India
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department
of Life Sciences, School of Pharmacy, International
Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- Department
of Pharmacology, School of Pharmacy, Suresh
Gyan Vihar University, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602117, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Parteek Prasher
- Department
of Chemistry, University of Petroleum &
Energy Studies, Dehradun 248007, India
| | - Kamal Dua
- Faculty
of Health, Australian Research Centre in Complementary and Integrative
Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline
of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| |
Collapse
|
12
|
Suzuki Y, Kondo M, Akiyama H, Ogra Y. Presence of nano-sized mercury-containing particles in seafoods, and an estimate of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119555. [PMID: 35654251 DOI: 10.1016/j.envpol.2022.119555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The toxicity of nano-sized particles of mercury (NP-Hg), which are thought to be generated during the detoxification of methyl mercury (MeHg), may differ from that of MeHg, elemental Hg (Hg0), and inorganic Hg (I-Hg). From a human health perspective, it is important to evaluate the presence of NP-Hg in seafoods. We investigated the in vivo formation of NP-Hg in fish and shellfish, which are the main sources of Hg exposure in humans. NP-Hg was measured in 90 fish samples with single-particle inductively coupled plasma mass spectrometry (spICP-MS) after enzyme degradation with pancreatin and lipase. In addition to NP-Hg, total Hg (T-Hg), MeHg, and selenium (Se) concentrations were evaluated. Transient Hg signals were detected as nanoparticles from almost all samples by using spICP-MS. Higher particle number concentrations (CPN) were observed in the tuna-swordfish group than in the shellfish group (17.7 × 107 vs. 1.2 × 106 particles/g, respectively). Although the CPN and maximum particle mass increased significantly with increasing T-Hg concentration, the increase in CPN was greater than those in maximum particle mass. Assuming that the NP-Hg detected was HgSe (tiemannite) and spherical based on previous reports, the maximum particle diameter was estimated to be 89 nm. The mean dietary exposures to NP-Hg, T-Hg, and MeHg were estimated to be 0.067, 5.75, and 5.32 μg/person per day, respectively. Generation of NP-Hg was inferred to be widespread in marine animals, with a preferential increase in the number of particles rather than an increase in particle size. The mean dietary exposure to NP-Hg in Japanese people was estimated to be 1.2 ng/kg body weight (BW) per day. Compared to PTWI of 4 μg/kg BW per week (0.57 μg/kg BW per day) derived by JECFA (2011), the health risk from redissolved I-Hg from NP-Hg is small.
Collapse
Affiliation(s)
- Yoshinari Suzuki
- Division of Foods, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Midori Kondo
- Division of Foods, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Hiroshi Akiyama
- Division of Foods, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan; Department of Analytical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan
| |
Collapse
|
13
|
Cacciamali A, Pascucci L, Villa R, Dotti S. Engineered nanoparticles toxicity on adipose tissue derived mesenchymal stem cells: A preliminary investigation. Res Vet Sci 2022; 152:134-149. [PMID: 35969916 DOI: 10.1016/j.rvsc.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
Nanoscience and nanotechnologies have recently gained importance in several fields, such as industry and medicine. A big issue of the increasing application of nanomaterials is the poor literature regarding their potential toxicity in humans and animals. Recently, adult stem cells have been proposed as putative targets of nanoparticles (NPs). This study aims to investigate the effects of zerovalent-metallic NPs on isolated and amplified equine Adipose tissue derived Mesenchymal Stem Cells (eAdMSCs). Cells were treated with Cobalt (Co-), Iron (Fe-), and Nickel (Ni-) nanoparticles (NPs) at different concentrations and were characterized for the cytotoxic and genotoxic effects of exposure. Treatment with NPs resulted in reduced cell viability and proliferative capability in comparison with untreated cells. However, this did not influence eAdMSCs potency, as treated cells were able to differentiate towards the adipogenic and osteogenic lineages. Ni- and Fe-NPs showed cytoplasmic localization, while Co-NPs entered the nucleus and mitochondria, suggesting a potential genotoxic activity. Regarding p53 expression, it was enhanced in the first 48 h after treatments, with a drastic reduction of expression within 72 h. Higher p53 expression was reported in the case of Co-NP treatment, suggesting the tumorigenic potential of these NPs. Telomerase activity was enhanced by Fe- and Ni-NP treatments in a concentration- and time-dependent way. This was not true for Co-NP treated samples, suggesting a reduced replicative capacity of eAdMSCs upon Co-NP exposure. The present study is a preliminary investigation of the influence exerted by NPs on eAdMSC physiological activity in terms of cytotoxic and genotoxic effects. The present results revealed eAdMSC physiology to be strongly influenced by NPs in a dose-, time- and NP-dependent way.
Collapse
Affiliation(s)
- Andrea Cacciamali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy.
| | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| |
Collapse
|
14
|
Li M, Gong J, Gao L, Zou T, Kang J, Xu H. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113429. [PMID: 35325609 DOI: 10.1016/j.ecoenv.2022.113429] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Tremendous progress has been made in the field of toxicology leading to the advance of developmental toxicity assessment. Conventional animal models and in vitro two-dimensional models cannot accurately describe toxic effects and predict actual in vivo responses due to obvious inter-species differences between humans and animals, as well as the lack of a physiologically relevant tissue microenvironment. Human embryonic stem cell (hESC)- and induced pluripotent stem cell (iPSC)-derived three-dimensional organoids are ideal complex and multicellular organotypic models, which are indispensable in recapitulating morphogenesis, cellular interactions, and molecular processes of early human organ development. Recently, human organoids have been used for drug discovery, chemical toxicity and safety in vitro assessment. This review discusses the recent advances in the use of human organoid models, (i.e., brain, retinal, cardiac, liver, kidney, lung, and intestinal organoid models) for developmental toxicity and teratogenicity assessment of distinct tissues/organs following exposure to pharmaceutical compounds, heavy metals, persistent organic pollutants, nanomaterials, and ambient air pollutants. Combining next-generation organoid models with innovative engineering technologies generates novel and powerful tools for developmental toxicity and teratogenicity assessment, and the rapid progress in this field is expected to continue.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
15
|
O’Connell RC, Dodd TM, Clingerman SM, Fluharty KL, Coyle J, Stueckle TA, Porter DW, Bowers L, Stefaniak AB, Knepp AK, Derk R, Wolfarth M, Mercer RR, Boots TE, Sriram K, Hubbs AF. Developing a Solution for Nasal and Olfactory Transport of Nanomaterials. Toxicol Pathol 2022; 50:329-343. [PMID: 35416103 PMCID: PMC9872725 DOI: 10.1177/01926233221089209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omptm3Mom/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies.
Collapse
Affiliation(s)
- Ryan C. O’Connell
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA,West Virginia University, Morgantown, West Virginia, USA
| | - Tiana M. Dodd
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Kara L. Fluharty
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Jayme Coyle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Todd A. Stueckle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Dale W. Porter
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Lauren Bowers
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Alycia K. Knepp
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Raymond Derk
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Michael Wolfarth
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Theresa E. Boots
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Krishnan Sriram
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Ann F. Hubbs
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
Bhat SA, Sher F, Hameed M, Bashir O, Kumar R, Vo DVN, Ahmad P, Lima EC. Sustainable nanotechnology based wastewater treatment strategies: achievements, challenges and future perspectives. CHEMOSPHERE 2022; 288:132606. [PMID: 34678350 DOI: 10.1016/j.chemosphere.2021.132606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology is being an emerging science for wastewater treatment requires more research emphasis and depth knowledge. For wastewater treatment, different forms of nanomaterials are used based on the type of contaminants and treatment efficiency desired. With the development in the field of nanomaterials, novel and emerging nanomaterials are coming into existence. The nanomaterials used for wastewater treatment can be carbon, single-walled carbon nanotubes, multiple walled carbon nanotubes, covalent organic frameworks, metal and metal oxide- based nanoparticles. Graphene based nanoparticles, their oxides (GO) and reduced graphene oxide (rGO) find tremendous applicability to be used in wastewater treatment purposes. Due to the introduction of graphene oxide nanoparticles in the adsorbent materials, their adsorption capacities have get enhanced and such materials have also improved the mechanical stability of the adsorbent. Ferric oxide shows greater adsorption capacities for organic pollutants. Furthermore, magnetic nano-powder confers a low adsorption capacity for phenols. Pyrrolidone reduced graphene oxide (PVP-RGO) nanoparticles have been used as adsorbents for the elimination of inorganic target contaminant copper, with great adsorption (1698 mg/g). The present study comprehensively reviews nanotechnology as a wastewater treatment strategy besides enlightening its safety issues and efficiency. The novelty of this article is that it highlights the overview of recent applications of various types of nanomaterials and research works releated to it. Such an approach will be helpful to get insights into technological advances, applications and future challenges of nanotechnology implementation for wastewater treatment.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Mariam Hameed
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan; International Society of Engineering Science and Technology, United Kingdom
| | - Omar Bashir
- Department of Food Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir,Shalimar Srinagar,India
| | - Rohitashw Kumar
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, ZIP, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Nagarajan M, Maadurshni GB, Tharani GK, Udhayakumar I, Kumar G, Mani KP, Sivasubramanian J, Manivannan J. Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis - Role of oxidative stress and MAPK signaling. Chem Biol Interact 2021; 351:109719. [PMID: 34699767 DOI: 10.1016/j.cbi.2021.109719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
The precise toxico-pathogenic effects of zinc oxide nanoparticles (ZnO-NPs) on the cardiovascular system under normal and cardiovascular disease (CVD) risk factor milieu are unclear. In this study, we have investigated the dose-dependent effects of ZnO-NPs on developing chicken embryo and cell culture (H9c2 cardiomyoblast, HUVEC and aortic VSMC) models. In addition, the potentiation effect of ZnO-NPs on simulated risk factor conditions was evaluated using; 1. Reactive oxygen species (ROS) induced cardiac remodeling, 2. Angiotensin-II induced cardiac hypertrophy, 3. TNF-α induced HUVEC cell death and 4. Inorganic phosphate (Pi) induced aortic VSMC calcification models. The observed results illustrates that ZnO-NPs exposure down regulates vascular development and elevates oxidative stress in heart tissue. At the cellular level, ZnO-NPs exposure reduced the cell viability and increased the intracellular ROS generation, lipid peroxidation and caspase-3 activity in a dose-dependent manner in all three cell types. In addition, ZnO-NPs exposure significantly suppressed the endothelial nitric oxide (NO) generation, cardiac Ca2+ - ATPase activity and enhanced the cardiac mitochondrial swelling. Moreover, inhibition of p38 MAPK and JNK signaling pathways influence the cytotoxicity. Overall, ZnO-NPs exposure affects the cardiovascular system under normal conditions and it exacerbates the cardiovascular pathogenesis under selected risk factor milieu.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Ganeshmurthy Kanniamal Tharani
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Inbamani Udhayakumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Kumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
18
|
Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021; 13:pharmaceutics13091408. [PMID: 34575484 PMCID: PMC8470546 DOI: 10.3390/pharmaceutics13091408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanosystems exhibit various innovative physico-chemical properties as well as a range of cosmetic functions, including increased skin retention for loaded compounds. The worldwide nano-market has therefore been consistently extensive in recent decades. This review summarizes the most important properties of nanosystems that are employed in cosmetics, including composition, functions and interactions with skin, with particular attention being paid to marketed products. Moreover, the worldwide regulatory landscape of nanomaterials used as cosmetic ingredients is considered, and the main safety concerns are indicated. In general, advanced physico-chemical characterization is preliminarily needed to assess the safety of nanomaterials for human health and the environment. However, there is currently a shortfall in global legislation as a universally accepted and unambiguous definition of a nanomaterial is still lacking. Therefore, each country follows its own regulations. Anyhow, the main safety concerns arise from the European context, which is the most restrictive. Accordingly, the poor dermal permeation of nanomaterials generally limits their potential toxic effects, which should be mainly ascribed to unwanted or accidental exposure routes.
Collapse
|
19
|
Johnson ME, Bennett J, Montoro Bustos AR, Hanna SK, Kolmakov A, Sharp N, Petersen EJ, Lapasset PE, Sims CM, Murphy KE, Nelson BC. Combining secondary ion mass spectrometry image depth profiling and single particle inductively coupled plasma mass spectrometry to investigate the uptake and biodistribution of gold nanoparticles in Caenorhabditis elegans. Anal Chim Acta 2021; 1175:338671. [PMID: 34330435 DOI: 10.1016/j.aca.2021.338671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Analytical techniques capable of determining the spatial distribution and quantity (mass and/or particle number) of engineered nanomaterials in organisms are essential for characterizing nano-bio interactions and for nanomaterial risk assessments. Here, we combine the use of dynamic secondary ion mass spectrometry (dynamic SIMS) and single particle inductively coupled mass spectrometry (spICP-MS) techniques to determine the biodistribution and quantity of gold nanoparticles (AuNPs) ingested by Caenorhabditis elegans. We report the application of SIMS in image depth profiling mode for visualizing, identifying, and characterizing the biodistribution of AuNPs ingested by nematodes in both the lateral and z (depth) dimensions. In parallel, conventional- and sp-ICP-MS quantified the mean number of AuNPs within the nematode, ranging from 2 to 36 NPs depending on the size of AuNP. The complementary data from both SIMS image depth profiling and spICP-MS provides a complete view of the uptake, translocation, and size distribution of ingested NPs within Caenorhabditis elegans.
Collapse
Affiliation(s)
- Monique E Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States.
| | - Joe Bennett
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Antonio R Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Shannon K Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Andrei Kolmakov
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Nicholas Sharp
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Elijah J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Patricia E Lapasset
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Christopher M Sims
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Karen E Murphy
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Bryant C Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| |
Collapse
|
20
|
Zhang F, You X, Zhu T, Gao S, Wang Y, Wang R, Yu H, Qian B. Silica nanoparticles enhance germ cell apoptosis by inducing reactive oxygen species (ROS) formation in Caenorhabditis elegans. J Toxicol Sci 2020; 45:117-129. [PMID: 32147635 DOI: 10.2131/jts.45.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Silica nanoparticles (SiO2 NPs) are widely used in daily life and can enter organisms through several pathways, often causing unpredictable toxicity. Although SiO2 NPs are known to cause damage to the respiratory system, little is known about their oral toxicity, and their potential harm to the reproductive system is unclear. In this study, we used a Caenorhabditis elegans model to clarify SiO2 NPs oral toxicity in vivo and explore their effect on the reproductive system. We exposed C. elegans to 0.25, 0.5 and 1 mg /mL SiO2 NPs for 24 hr. Our results showed that SiO2 NPs exposure for 24 hr did not affect nematode survival rates, but did affect, to varying degrees, the reproduction, development, and movement of nematodes, with nematode fecundity being the most sensitive to SiO2 NPs toxicity. The NPs exposed group showed enhanced germ cell apoptosis and increased oxidative stress as seen through an increase in ROS and malondialdehyde (MDA), and decrease in reduced glutathione (GSH). N-acetyl-L-cysteine (NAC), an antioxidant, negated SiO2 NPs effect on germ cells and restored nematodes reproductive ability. We also found that SiO2 NPs could affect the expression of genes related to metal detoxification, oxidative stress, and apoptosis. The expression of metallothionein coding genes mtl-1 and mtl-2 changed most significantly among the tested genes. We demonstrated that SiO2 NPs could enhance germ cell apoptosis by inducing oxidative stress, providing a new area for studies of the mechanism of SiO2 NP toxicity.
Collapse
Affiliation(s)
- Fangfang Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Xinyue You
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Tengteng Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Sumeng Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yu Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Ruoyang Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, USA
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
21
|
Antitumoral Drug: Loaded Hybrid Nanocapsules Based on Chitosan with Potential Effects in Breast Cancer Therapy. Int J Mol Sci 2020; 21:ijms21165659. [PMID: 32784525 PMCID: PMC7460861 DOI: 10.3390/ijms21165659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains one of the world's most devastating diseases and is responsible for more than 20% of all deaths. It is defined as uncontrolled proliferation of cells and spreads rapidly to healthy tissue. Controlled drug delivery systems offers great opportunities for the development of new non-invasive strategies for the treatment of cancers. The main advantage of these systems is their capacity to accumulate in tumors via enhanced permeability and retention effects. In the present study, an innovative hybrid drug delivery system based on nanocapsules obtained from the interfacial condensation between chitosan and poly(N-vinyl pyrrolidone-alt-itaconic anhydride) and containing both magnetic nanoparticles and an antitumoral drug was developed in order to improve the efficiency of the antitumoral treatment. Using dynamic light scattering, it was observed that the mean diameter of these hybrid nanocapsules was in the range of 43 to 142 nm. SEM confirmed their nanometric size and their well-defined spherical shape. These nanocapsules allowed the encapsulation of an increased amount of 5-fluorouracil and provided controlled drug release. In vitro studies have revealed that these drug-loaded hybrid nanocapsules were able to induce a cytostatic effect on breast carcinoma MCF-7 cell lines (Human Caucasian breast adenocarcinoma - HTB-22) comparable to that of the free drug.
Collapse
|
22
|
Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS, Mitropoulos AC, Mokarrar MH, Kyzas GZ. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E852. [PMID: 32354113 PMCID: PMC7712148 DOI: 10.3390/nano10050852] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making the situation more dangerous and currently available medical care futile. This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.
Collapse
Affiliation(s)
| | - Akhilash M. Pillai
- Department of Chemistry, University College, Thiruvananthapuram, Kerala 695034, India;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98615538, Iran
| | - Anumol P. Sobha
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India;
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | | | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| |
Collapse
|
23
|
Nie WB, Zhang D, Wang LS. Growth Factor Gene-Modified Mesenchymal Stem Cells in Tissue Regeneration. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1241-1256. [PMID: 32273686 PMCID: PMC7105364 DOI: 10.2147/dddt.s243944] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
There have been marked changes in the field of stem cell therapeutics in recent years, with many clinical trials having been conducted to date in an effort to treat myriad diseases. Mesenchymal stem cells (MSCs) are the cell type most frequently utilized in stem cell therapeutic and tissue regenerative strategies, and have been used with excellent safety to date. Unfortunately, these MSCs have limited ability to engraft and survive, reducing their clinical utility. MSCs are able to secrete growth factors that can support the regeneration of tissues, and engineering MSCs to express such growth factors can improve their survival, proliferation, differentiation, and tissue reconstructing abilities. As such, it is likely that such genetically modified MSCs may represent the next stage of regenerative therapy. Indeed, increasing volumes of preclinical research suggests that such modified MSCs expressing growth factors can effectively treat many forms of tissue damage. In the present review, we survey recent approaches to producing and utilizing growth factor gene-modified MSCs in the context of tissue repair and discuss its prospects for clinical application.
Collapse
Affiliation(s)
- Wen-Bo Nie
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Li-Sheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
24
|
Sportelli MC, Longano D, Bonerba E, Tantillo G, Torsi L, Sabbatini L, Cioffi N, Ditaranto N. Electrochemical Preparation of Synergistic Nanoantimicrobials. Molecules 2019; 25:E49. [PMID: 31877834 PMCID: PMC6983245 DOI: 10.3390/molecules25010049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022] Open
Abstract
The rapid spreading of resistance among common bacterial pathogens towards the misused antibiotics/disinfectant agents has drawn much attention worldwide to bacterial infections. In light of this, the present work aimed at the realization of core-shell nanoparticles possessing remarkable antimicrobial properties thanks to the synergistic action of the metal core and the disinfectant shell. Copper nanoparticles stabilized by benzalkonium chloride were prepared, characterized, and implemented in poly-vinyl-methyl ketone to obtain nanoantimicrobial composite coatings. Bioactivity tests are reported, proving the excellent disinfectant properties of the proposed nanomaterials, as compared to one of the well-known and strongest silver-based nanoantimicrobials. Applications are also briefly described.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, I–70125 Bari, Italy; (M.C.S.); (D.L.); (L.T.); (L.S.)
- Dipartimento di Fisica, Istituto di Fotonica e Nanotecnologie UOS Bari, CNR, Via Amendola 173, I–70126 Bari, Italy
| | - Daniela Longano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, I–70125 Bari, Italy; (M.C.S.); (D.L.); (L.T.); (L.S.)
| | - Elisabetta Bonerba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, Strada Prov. 62 per Casamassima, Km 3, I–70010 Valenzano (BA), Italy; (E.B.); (G.T.)
| | - Giuseppina Tantillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, Strada Prov. 62 per Casamassima, Km 3, I–70010 Valenzano (BA), Italy; (E.B.); (G.T.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, I–70125 Bari, Italy; (M.C.S.); (D.L.); (L.T.); (L.S.)
| | - Luigia Sabbatini
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, I–70125 Bari, Italy; (M.C.S.); (D.L.); (L.T.); (L.S.)
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, I–70125 Bari, Italy; (M.C.S.); (D.L.); (L.T.); (L.S.)
| | - Nicoletta Ditaranto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, I–70125 Bari, Italy; (M.C.S.); (D.L.); (L.T.); (L.S.)
| |
Collapse
|
25
|
Kielbik P, Kaszewski J, Dominiak B, Damentko M, Serafińska I, Rosowska J, Gralak MA, Krajewski M, Witkowski BS, Gajewski Z, Godlewski M, Godlewski MM. Preliminary Studies on Biodegradable Zinc Oxide Nanoparticles Doped with Fe as a Potential Form of Iron Delivery to the Living Organism. NANOSCALE RESEARCH LETTERS 2019; 14:373. [PMID: 31823131 PMCID: PMC6904721 DOI: 10.1186/s11671-019-3217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/20/2019] [Indexed: 05/06/2023]
Abstract
Iron is the crucial element for living organisms and its deficiency is described as the most common nutritional disorder all over the world. Nowadays, more effective and safe iron supplementation strategies for both humans and animals become one of the most important challenges in the therapy of nutritional deficiencies. Our previous in vivo studies confirmed safety and biodegradability of in-house manufactured zinc oxide-based nanoparticles and their rapid distribution to majority of organs and tissues in the body. In vitro examinations performed on Caco-2 cell line, a model of epithelial cells of the gastrointestinal tract, revealed a low toxicity of studied nanomaterials. In the current study, we investigated biodegradable zinc oxide nanoparticles doped with Fe(III) as a perspective supplementation strategy for iron deficiency. Biodegradable ZnO:Fe nanoparticles were intra-gastrically administered to adult mice and following 24 h, animals were sacrificed with collection of internal organs for further analyses. The iron concentration measured with atomic absorption spectrometry and histological staining (Perl's method) showed a rapid distribution of iron-doped nanoparticles to tissues specifically related with iron homeostasis. Accumulation of iron was also visible within hepatocytes and around blood vessels within the spleen, which might indicate the transfer of Fe-doped nanoparticles from the bloodstream into the tissue. Reassuming, preliminary results obtained in the current study suggest that biodegradable ZnO nanoparticles doped with Fe might be a good carriers of exogenous iron in the living body. Therefore, subsequent investigations focus on determination an exact mechanisms related with an iron deposition in the tissue and influence of nanoparticle carriers on iron metabolism are required.
Collapse
Affiliation(s)
- Paula Kielbik
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Jarosław Kaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Bartłomiej Dominiak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Magdalena Damentko
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Izabela Serafińska
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Julita Rosowska
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Mikołaj A. Gralak
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Marcin Krajewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | | | - Zdzislaw Gajewski
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Marek Godlewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Michal M. Godlewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Veterinary Research Centre, Centre for Biomedical Research, Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| |
Collapse
|
26
|
Wu WT, Li LA, Tsou TC, Wang SL, Lee HL, Shih TS, Liou SH. Longitudinal follow-up of health effects among workers handling engineered nanomaterials: a panel study. Environ Health 2019; 18:107. [PMID: 31818305 PMCID: PMC6902474 DOI: 10.1186/s12940-019-0542-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although no human illness to date is confirmed to be attributed to engineered nanoparticles, occupational epidemiological studies are needed to verify the health effects of nanoparticles. This study used a repeated measures design to explore the potential adverse health effects of workers handling nanomaterials. METHODS Study population was 206 nanomaterial-handling workers and 108 unexposed controls, who were recruited from 14 nanotechnology plants. They were followed up no less than two times in four years. A questionnaire was used to collect potential confounders and detailed work conditions. Control banding was adopted to categorize risk level for each participant as a surrogate marker of exposure. Health hazard markers include cardiopulmonary dysfunction markers, inflammation and oxidative damage markers, antioxidant enzymes activity, and genotoxicity markers. The Generalized Estimating Equation model was applied to analyze repeated measurements. RESULTS In comparison to the controls, a significant dose-dependent increase on risk levels for the change of superoxide dismutase (p<0.01) and a significant increase of glutathione peroxidase change in risk level 1 was found for nanomaterial-handling workers. However, the change of cardiovascular dysfunction, lung damages, inflammation, oxidative damages, neurobehavioral and genotoxic markers were not found to be significantly associated with nanomaterials handling in this panel study. CONCLUSIONS This repeated measurement study suggests that there was no evidence of potential adverse health effects under the existing workplace exposure levels among nanomaterials handling workers, except for the increase of antioxidant enzymes.
Collapse
Affiliation(s)
- Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan.
| | - Lih-Ann Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, Taipei, Taiwan
| | - Tung-Sheng Shih
- Institute of Labor, Occupational Safety, and Health, Ministry of Labor, Taipei, Taiwan
| | - Saou-Hsing Liou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Division of occupational medicine, Division of fanily medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
27
|
Izzi M, Sportelli MC, Ditaranto N, Picca RA, Innocenti M, Sabbatini L, Cioffi N. Pros and Cons of Sacrificial Anode Electrolysis for the Preparation of Transition Metal Colloids: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201901837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Margherita Izzi
- Chemistry Dept.University of Bari Via Orabona 4 70125 Bari Italy
| | - Maria Chiara Sportelli
- Chemistry Dept.University of Bari Via Orabona 4 70125 Bari Italy
- CSGI (Center for Colloid and Surface Science) c/o Chemistry Dept.University of Bari Via Orabona 4 70125- Bari Italy
| | - Nicoletta Ditaranto
- Chemistry Dept.University of Bari Via Orabona 4 70125 Bari Italy
- CSGI (Center for Colloid and Surface Science) c/o Chemistry Dept.University of Bari Via Orabona 4 70125- Bari Italy
| | - Rosaria Anna Picca
- Chemistry Dept.University of Bari Via Orabona 4 70125 Bari Italy
- CSGI (Center for Colloid and Surface Science) c/o Chemistry Dept.University of Bari Via Orabona 4 70125- Bari Italy
| | - Massimo Innocenti
- CSGI (Center for Colloid and Surface Science) c/o Chemistry Dept.University of Bari Via Orabona 4 70125- Bari Italy
- Chemistry DeptUniversity of Florence Via Lastruccia, 3 50019- Sesto Fiorentino Italy
| | - Luigia Sabbatini
- Chemistry Dept.University of Bari Via Orabona 4 70125 Bari Italy
| | - Nicola Cioffi
- Chemistry Dept.University of Bari Via Orabona 4 70125 Bari Italy
- CSGI (Center for Colloid and Surface Science) c/o Chemistry Dept.University of Bari Via Orabona 4 70125- Bari Italy
| |
Collapse
|
28
|
Pfaff F, Glück B, Hoyer T, Rohländer D, Sauerbrei A, Zell R. Tungsten carbide nanoparticles show a broad spectrum virucidal activity against enveloped and nonenveloped model viruses using a guideline-standardized in vitro test. Lett Appl Microbiol 2019; 69:302-309. [PMID: 31436888 DOI: 10.1111/lam.13208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Five tungsten carbide nanoparticle preparations (denoted WC1-WC5) were investigated for broad spectrum virucidal activity against four recommended model viruses. These are modified vaccinia virus Ankara (MVA), human adenovirus type 5 (HAdV-5), poliovirus type 1 (PV-1) and murine norovirus (MNV). All virucidal tests were performed two to five times using the quantitative suspension test, which is a highly standardized test method to evaluate the virucidal efficacy of disinfectants in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Quantitative detection of viruses was conducted by endpoint titration and quantitative real-time PCR. Results showed that three of the five tested compounds (WC1-WC3) were able to reduce the infectivity of all model viruses by at least four log10 of tissue culture infective dose 50% per ml after 15 min, whereas the other two compounds exhibited only limited efficacy (WC4) or showed cytotoxicity (WC5). Virucidal activity of nanoparticles increased with incubation time and a dose-effect curve showed dependence of virucidal activity with particle concentration. Whereas WC1-WC4 showed little cytotoxicity, WC5 which was doped with copper exhibited a significant cytotoxic effect. These findings propose tungsten carbide nanoparticles to be very promising in terms of new disinfection techniques. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study investigates the virucidal activity of tungsten carbide nanoparticles using the quantitative suspension test in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Due to highly standardized assay conditions, results of this test are considered very reliable for evaluation of the virucidal activity of disinfectants. Broad-spectrum activity and high efficacy of three different tungsten carbide nanoparticles preparations is concluded.
Collapse
Affiliation(s)
- F Pfaff
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - B Glück
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - T Hoyer
- Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany
| | - D Rohländer
- Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany
| | - A Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - R Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
29
|
|
30
|
Ali I, AlGhamdi K, Al-Wadaani FT. Advances in iridium nano catalyst preparation, characterization and applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Duke KS, Thompson EA, Ihrie MD, Taylor-Just AJ, Ash EA, Shipkowski KA, Hall JR, Tokarz DA, Cesta MF, Hubbs AF, Porter DW, Sargent LM, Bonner JC. Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes. Nanotoxicology 2018; 12:975-991. [PMID: 30317900 DOI: 10.1080/17435390.2018.1502830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fiber-like shape of multi-walled carbon nanotubes (MWCNTs) is reminiscent of asbestos, suggesting they pose similar health hazards when inhaled, including pulmonary fibrosis and mesothelioma. Mice deficient in the tumor suppressor p53 are susceptible to carcinogenesis. However, the chronic pathologic effect of MWCNTs delivered to the lungs of p53 heterozygous (p53+/-) mice has not been investigated. We hypothesized that p53+/- mice would be susceptible to lung tumor development after exposure to either tangled (t-) or rod-like (r-) MWCNTs. Wild-type (p53+/+) or p53+/- mice were exposed to MWCNTs (1 mg/kg) via oropharyngeal aspiration weekly over four consecutive weeks and evaluated for cellular and pathologic outcomes 11-months post-initial exposure. No lung or pleural tumors were observed in p53+/+ or p53+/- mice exposed to either t- or rMWCNTs. In comparison to tMWCNTs, the rMWCNTs induced the formation of larger granulomas, a greater number of lymphoid aggregates and greater epithelial cell hyperplasia in terminal bronchioles in both p53+/- and p53+/+ mice. A constitutively larger area of CD45R+/CD3+ lymphoid tissue was observed in p53+/- mice compared to p53+/+ mice. Importantly, p53+/- mice had larger granulomas induced by rMWCNTs as compared to p53+/+ mice. These findings indicate that a combination of p53 deficiency and physicochemical characteristics including nanotube geometry are factors in susceptibility to MWCNT-induced lymphoid infiltration and granuloma formation.
Collapse
Affiliation(s)
- Katherine S Duke
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Elizabeth A Thompson
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Mark D Ihrie
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Alexia J Taylor-Just
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Elizabeth A Ash
- b College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Kelly A Shipkowski
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Jonathan R Hall
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Debra A Tokarz
- b College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Mark F Cesta
- c National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Ann F Hubbs
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Dale W Porter
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Linda M Sargent
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - James C Bonner
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
32
|
Could fibrinogen and hsCRP be useful for assessing personal risk in workers exposed to a mixture of ultrafine particles and organic solvents? REV ROMANA MED LAB 2018. [DOI: 10.2478/rrlm-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Purpose: Our study focuses on elucidating if two common inflammatory biomarkers, easily performed in any laboratory - high-sensitivity C-reactive protein (hsCRP), as well as fibrinogen - could be used to assess the personal health risk of workers exposed to a complex occupational exposure to ultrafine particles (UFP) and a mixture of organic solvents. Methods: To assess the inflammatory response on the body, laboratory determinations were performed by testing the serum levels of hsCRP and fibrinogen, in exposed and unexposed groups. Results: There are no statistically significant differences for hsCRPs (p-0.25), medians were similar in groups. The mean values of fibrinogen in the three groups were: in the workers group (1st group): 346.2 mg/dl, in the office staff group (2nd group): 328.7 mg/dl, and in the control group (3rd group): 284.8 mg/dl, with significant differences between 1st group vs 3rd group and between 2nd group vs 3rd group (p-0.002). UFP levels differ between the groups, as follows: 1st group were exposed to the highest levels, ranging from 48349 to 3404000 part/cm3; 2nd group, ranging from 17371 to 40595 part/cm3; and 3rd group, ranging from 213 to 16255 part/cm3. Conclusions: Our study demonstrates that fibrinogen is a useful inflammatory biomarker for exposure to a mixture of UFP and organic solvents. On the other hand, hsCRP is not a useful inflammatory biomarker in occupational exposure to UFP and organic solvents. Further studies are needed to demonstrate the extent to which fibrinogen is more or less influenced by organic solvents or UFP alone.
Collapse
|
33
|
Vidanapathirana AK, Thompson LC, Herco M, Odom J, Sumner SJ, Fennell TR, Brown JM, Wingard CJ. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod Toxicol 2018; 75:10-22. [PMID: 29154916 PMCID: PMC6241519 DOI: 10.1016/j.reprotox.2017.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
The use of silver nanoparticles (AgNP) raises safety concerns during susceptible life stages such as pregnancy. We hypothesized that acute intravenous exposure to AgNP during late stages of pregnancy will increase vascular tissue contractility, potentially contributing to alterations in fetal growth. Sprague Dawley rats were exposed to a single dose of PVP or Citrate stabilized 20 or 110nm AgNP (700μg/kg). Differential vascular responses and EC50 values were observed in myographic studies in uterine, mesenteric arteries and thoracic aortic segments, 24h post-exposure. Reciprocal responses were observed in aortic and uterine vessels following PVP stabilized AgNP with an increased force of contraction in uterine artery and increased relaxation responses in aorta. Citrate stabilized AgNP exposure increased contractile force in both uterine and aortic vessels. Intravenous AgNP exposure during pregnancy displayed particle size and vehicle dependent moderate changes in vascular tissue contractility, potentially influencing fetal blood supply.
Collapse
Affiliation(s)
- A K Vidanapathirana
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - L C Thompson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - M Herco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - J Odom
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - S J Sumner
- Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA; Department of Nutrition School of Public Health University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - T R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA
| | - J M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, CO, 80045, USA
| | - C J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Department of Physical Therapy, Bellarmine University, Louisville, KY, 40205, USA.
| |
Collapse
|
34
|
Chen X, Nomani A, Patel N, Nouri FS, Hatefi A. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials 2018; 152:1-14. [PMID: 29078136 PMCID: PMC5671363 DOI: 10.1016/j.biomaterials.2017.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023]
Abstract
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Niket Patel
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Faranak S Nouri
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
Chen M, Li Y, Zhou J, Yang Z, Wang Z, Yang Y, Zhang H, Li Z, Mei X. In vitro toxicity assessment of nanocrystals in tissue-type cells and macrophage cells. J Appl Toxicol 2017; 38:656-664. [DOI: 10.1002/jat.3570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/22/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Meiling Chen
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
- Hunan Research Center for Safety Evaluation of Drugs; Changsha China
| | - Ying Li
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Jiezhao Zhou
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Zhenbo Yang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Zhiyuan Wang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Yang Yang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Hui Zhang
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Zhiping Li
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| | - Xingguo Mei
- Department of Pharmaceutical Sciences; Beijing Institute of Pharmacology and Toxicology; Beijing China
| |
Collapse
|
36
|
Abstract
Respiratory immunity is accomplished using multiple mechanisms including structure/anatomy of the respiratory tract, mucosal defense in the form of the mucociliary apparatus, innate immunity using cells and molecules and acquired immunity. There are species differences of the respiratory immune system that influence the response to environmental challenges and pharmaceutical, industrial and agricultural compounds assessed in nonclinical safety testing and hazard identification. These differences influence the interpretation of respiratory system changes after exposure to these challenges and compounds in nonclinical safety assessment and hazard identification and their relevance to humans.
Collapse
|
37
|
Zhang Y, Lin Y, Li X, Zhang L, Pan W, Zhu H, Xi Z, Yang D. Silica dioxide nanoparticles combined with cold exposure induce stronger systemic inflammatory response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:291-298. [PMID: 27714660 DOI: 10.1007/s11356-016-7649-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Growing concern has been raised over the potential hazard of nanoparticles (NPs) on human health from ambient particulate air pollution. Silicon dioxide (SiO2) NPs are one of the most widely used nanoparticles in many sectors of industry. Research on NPs has focused mainly on their toxicity in organs. Meanwhile, NPs are present in the air year-round, but are more serious in winter. Thus, the aim of this study was to evaluate the inflammatory response to SiO2 NPs using in vivo test systems. The composition of particulate matter is complicated; however, elemental silicon accounts for a significant proportion. Cold exposure can induce many kinds of systemic reactions. Thus, the second aim of this study was also to evaluate the combined effect of NPs and cold exposure on human health. There is little research on the combined effects of nanoparticles and cold on inflammation. Sprague-Dawley rats were randomly divided into four groups: those exposed to SiO2 NPs by intratracheal instillation, those exposed to at 4 °C 4 h/day for 4 weeks, a combined SiO2 NPs and cold exposure group, and a control group. Inflammatory cell infiltration in the lungs was mainly observed after exposure to SiO2 NPs or cold. Hematoxylin and eosin staining revealed that inflammation of the lungs was more serious in the combined group. In the white adipose tissue and brown adipose tissue of the combined groups, the mRNA expressions of pro-inflammatory cytokines were upregulated. In conclusion, SiO2 NPs combined with cold exposure induced a stronger systemic inflammatory response, accompanied by more serious health hazards.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China
| | - Yangsheng Lin
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China
| | - Xi Li
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China
| | - Li Zhang
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China
| | - Wei Pan
- Tianjin No. 254 Hospital, Tianjin, 300142, China
| | - Huili Zhu
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China
| | - Zhuge Xi
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China.
| | - Danfeng Yang
- Tianjin Institute of Health and Environmental Medicine, No.1 DaLi Road, Tianjin, 300050, China.
| |
Collapse
|
38
|
Armstead AL, Li B. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6421-6433. [PMID: 27942214 PMCID: PMC5138053 DOI: 10.2147/ijn.s121238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no “standardized” approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) “dusts,” composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
39
|
Sportelli MC, Picca RA, Cioffi N. Recent advances in the synthesis and characterization of nano-antimicrobials. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). J Mol Histol 2016; 48:9-27. [DOI: 10.1007/s10735-016-9701-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022]
|
41
|
Graves JL, Reiber C, Thanukos A, Hurtado M, Wolpaw T. Evolutionary Science as a Method to Facilitate Higher Level Thinking and Reasoning in Medical Training. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:358-368. [PMID: 27744353 PMCID: PMC5101907 DOI: 10.1093/emph/eow029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
Abstract
Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. To facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus, we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes. Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training.
Collapse
Affiliation(s)
- Joseph L Graves
- Joint School for Nanoscience & Nanoengineering, North Carolina A&T State University & UNC Greensboro, 2907 E. Gate City Blvd, Greensboro, NC
| | - Chris Reiber
- Department of Anthropology, Binghamton University, PO Box 6000, Binghamton, NY 13902-6000
| | - Anna Thanukos
- University of California Museum of Paleontology, 1101 Valley Sciences Building, Berkeley, CA 94720-4780
| | - Magdalena Hurtado
- Department of Anthropology, Arizona State University, Tempe, AZ 85281
| | - Terry Wolpaw
- Penn State Health, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| |
Collapse
|
42
|
Gormley PT, Callaghan NI, MacCormack TJ, Dieni CA. Assessment of the toxic potential of engineered metal oxide nanomaterials using an acellular model: citrated rat blood plasma. Toxicol Mech Methods 2016; 26:601-610. [DOI: 10.1080/15376516.2016.1218986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Handral HK, Tong HJ, Islam I, Sriram G, Rosa V, Cao T. Pluripotent stem cells: An in vitro model for nanotoxicity assessments. J Appl Toxicol 2016; 36:1250-8. [PMID: 27241574 DOI: 10.1002/jat.3347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/18/2022]
Abstract
The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Harish K Handral
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Huei Jinn Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Intekhab Islam
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Experimental Dermatology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinicus Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Tong Cao
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore.,National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
44
|
da Silveira KL, da Silveira LL, Thorstenberg MLP, Cabral FL, Castilhos LG, Rezer JFP, de Andrade DF, Beck RCR, Einloft Palma H, de Andrade CM, Pereira RDS, Martins NMB, Bertonchel Dos Santos CDM, Leal DBR. Free and nanoencapsulated vitamin D3 : effects on E-NTPDase and E-ADA activities in an animal model with induced arthritis. Cell Biochem Funct 2016; 34:262-73. [PMID: 27102374 DOI: 10.1002/cbf.3188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 03/12/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED The effect of vitamin D3 in oral solution (VD3 ) and vitamin D3 -loaded nanocapsules (NC-VD3 ) was analysed in animals with complete Freund's adjuvant (CFA) induced arthritis (AR). For this purpose, we evaluated scores for arthritis, thermal hyperalgesia and paw oedema, as well as histological analyses and measurements of the activity of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) enzymes in rat lymphocytes. Haematological and biochemical parameters were also determined. The doses administered were 120 UI/day of VD3 and 15.84 UI/day of NC-VD3 . Fifteen days after the induction of AR, the groups were treated for 15 days with vitamin D3 . The results demonstrated that VD3 was able to reduce arthritis scores, thermal hyperalgesia and paw oedema in rats with CFA-induced arthritis. However, treatment with NC-VD3 did not reduce arthritis scores. The histological analyses showed that both formulations were able to reduce the inflammatory changes induced by CFA. The activity of E-NTPDase in rat lymphocytes was higher in the AR compared with the control group, while the activity of E-ADA was lower. This effect was reversed after the 15-day treatment. Data from this study indicates that both forms of vitamin D3 seem to contribute to decreasing the inflammatory process induced by CFA, possibly altering the activities of ectoenzymes. Copyright © 2016 John Wiley & Sons, Ltd. SIGNIFICANCE OF THE STUDY The effects promoted by both formulations of vitamin D3 , either in oral solution or nanoencapsulated form, strongly suggests the softening of the inflammatory process induced by complete Freund's adjuvant (CFA), possibly altering the E-NTPDase and E-ADA activities. However, it is known that vitamin D has a beneficial effect on the modulation of the immune system components responsible for the inflammatory process. Moreover, the establishment of responses to treatment with vitamin D3 may provide an alternative for inhibiting the proinflammatory response, assisting in our understanding of the immunopathology of this disease and possibly improving the signs and symptoms that hinder the quality of life of patients with rheumatoid arthritis. HIGHLIGHTS Evaluation of the effects on the E-NTPDase and E-ADA activities in an animal model of induced arthritis. Two formulations of vitamin D3 were used: form oral solution and nanoencapsulated. Vitamin D3 seems to contribute to the inflammatory process induced by CFA. Vitamin D3 possibly alters the E-NTPDase and E-ADA activities. Vitamin D3 may be an alternative supplementary treatment for chronic arthritis.
Collapse
Affiliation(s)
- Karine Lanes da Silveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Lanes da Silveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Luiza Prates Thorstenberg
- Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Licker Cabral
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Livia Gelain Castilhos
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - João Felipe Peres Rezer
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Ruy Carlos Ruver Beck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Heloísa Einloft Palma
- Hospital Veterinário Universitário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Renata da Silva Pereira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nara Maria Beck Martins
- Centro de Ciências da Saúde, Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Daniela Bitencourt Rosa Leal
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
45
|
Cappelletti R, Ceppi M, Claudatus J, Gennaro V. Health status of male steel workers at an electric arc furnace (EAF) in Trentino, Italy. J Occup Med Toxicol 2016; 11:7. [PMID: 26900394 PMCID: PMC4761198 DOI: 10.1186/s12995-016-0095-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Background The aim of this retrospective cohort study was to determine if the workers of an Electric Arc Furnace (EAF), which recycles scrap, had higher mortality and morbidity due to possible exposure to pollutants at work. EAFs do not run on coke ovens. In EAFs 40 % of the particulate matter (PM) is made up of PM 2.5. The foundry dust contained iron, aluminum, zinc, manganese, lead, chromium, nickel, cadmium, mercury, arsenic, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls and dioxins. Methods Mortality study: a cohort of 331 exposed workers (6731 person-years) was studied from 19/03/1979 to 31/12/2009 (mean follow up 20.7 years). The group of exposed workers was compared to the general population and to a small control group of 32 workers from the same company. Morbidity study: rates of exemption from health fee for the seven major diseases of 235 exposed workers were compared to the rates of exemption in the Province of Trento. Results Mortality study: an excess mortality was found in the exposed workers as compared to the general population (SMR 1.13; 95 % CI: 0.76–1.62; 29 deaths) and to the internal group (RR 2.34; 95 % CI: 0.39–95.7). The mortality rate was increased for all tumours (SMR 1.36; 95 % CI: 0.75–2.29; 14 cases), for lung cancer (SMR 3.35; 95 % CI 1.45–6.60; 8 cases), for ischemic heart disease (SMR 1.27; 95 % CI: 0.35–3.26; 4 cases), for chronic liver disease (SMR 1.16; 95 % CI: 0.14–4.20; 2 cases) and for injury and poisoning (SMR 1.32; 95 % CI: 0.48–2.88; 6 cases). Morbidity study: there was a statistically significant increase of diabetes, rheumatoid arthritis, hypertension and cardiovascular diseases in exposed workers. Conclusions With the limitations of this relatively small cohort, we found a statistically significant increase of diabetes, cardiovascular diseases and deaths due to lung cancer in exposed workers. These findings cannot be explained by PAH exposure alone; metal particulates are the most important pollutants in the working area of EAFs. A reliable method for measuring metal PM in tissues is urgently needed for exposure assessment. This study underlines the necessity to maximize the standards of security toward foundry dusts/diffuse emission. Further studies on EAF’s are needed to confirm our findings and to increase statistical power.
Collapse
Affiliation(s)
- Roberto Cappelletti
- International Society of Doctors for the Environment (ISDE Italy), via della Fioraia 17/19, 52100 Arezzo, Italy
| | - Marcello Ceppi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria "San Martino" Istituto Nazionale per la Ricerca sul Cancro (IST), largo R. Benzi 10, 16132 Genoa, Italy
| | - Justina Claudatus
- International Society of Doctors for the Environment (ISDE Italy), via della Fioraia 17/19, 52100 Arezzo, Italy
| | - Valerio Gennaro
- International Society of Doctors for the Environment (ISDE Italy), via della Fioraia 17/19, 52100 Arezzo, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria "San Martino" Istituto Nazionale per la Ricerca sul Cancro (IST), largo R. Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
46
|
Frank EA, Carreira VS, Birch ME, Yadav JS. Carbon Nanotube and Asbestos Exposures Induce Overlapping but Distinct Profiles of Lung Pathology in Non-Swiss Albino CF-1 Mice. Toxicol Pathol 2016; 44:211-25. [PMID: 26839332 PMCID: PMC4976500 DOI: 10.1177/0192623315620587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon nanotubes (CNTs) are emerging as important occupational and environmental toxicants owing to their increasing prevalence and potential to be inhaled as airborne particles. CNTs are a concern because of their similarities to asbestos, which include fibrous morphology, high aspect ratio, and biopersistence. Limitations in research models have made it difficult to experimentally ascertain the risk of CNT exposures to humans and whether these may lead to lung diseases classically associated with asbestos, such as mesothelioma and fibrosis. In this study, we sought to comprehensively compare profiles of lung pathology in mice following repeated exposures to multiwall CNTs or crocidolite asbestos (CA). We show that both exposures resulted in granulomatous inflammation and increased interstitial collagen; CA exposures caused predominantly bronchoalveolar hyperplasia, whereas CNT exposures caused alveolar hyperplasia of type II pneumocytes (T2Ps). T2Ps isolated from CNT-exposed lungs were found to have upregulated proinflammatory genes, including interleukin 1ß (IL-1ß), in contrast to those from CA exposed. Immunostaining in tissue showed that while both toxicants increased IL-1ß protein expression in lung cells, T2P-specific IL-1ß increases were greater following CNT exposure. These results suggest related but distinct mechanisms of action by CNTs versus asbestos which may lead to different outcomes in the 2 exposure types.
Collapse
Affiliation(s)
- Evan A Frank
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vinicius S Carreira
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - M Eileen Birch
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
47
|
Patlolla AK, Hackett D, Tchounwou PB. Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food Chem Toxicol 2015; 85:52-60. [PMID: 26032631 PMCID: PMC4659778 DOI: 10.1016/j.fct.2015.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/31/2022]
Abstract
The antimicrobial properties of silver nanoparticles (Ag-NPs) have resulted in their extensive application in consumer and health care products. Although Ag-NPs have great potential benefits, their side effects are unknown and seem inevitable due to their ability to reach the nucleus and damage genetic material. This study aimed to determine genotoxic potential of Ag-NPs using mitotic index (MI), DNA damage (comet assay), structural chromosome aberrations (SCA), micronuclei (MN) formation as genetic endpoints and induction of reactive oxygen species (ROS) as oxidative stress endpoint in bone marrow of Sprague-Dawley rats. Four groups of five male rats were orally administered Ag-NPs, once a day for five days with doses of 5, 25, 50, 100, mg/Kg. A control group was also made of five rats. Bone marrow samples were collected 24 h after the last treatment following standard protocols. Ag-NPs exposure significantly increased (p < 0.05) the induction of ROS, number of SCA, the frequency of micro-nucleated cells, damaged the DNA and decreased the mitotic index compared to negative control. The results suggest that Ag-NPs may have the potential to induce oxidative stress mediated genotoxicity in rats. Further characterization of their genotoxicity and also their potential health implications should be monitored regularly.
Collapse
Affiliation(s)
- Anita K Patlolla
- NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS, USA.
| | - Diahanna Hackett
- NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS, USA; Department of Biology-LS-MAMP Program, CSET, Jackson State University, Jackson, MS, USA
| | - Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS, USA
| |
Collapse
|
48
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|
49
|
Noël A, Truchon G. Inhaled Titanium Dioxide Nanoparticles: A Review of Their Pulmonary Responses with Particular Focus on the Agglomeration State. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1793984414500081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nanotechnology represents major scientific and economic issues for the future. TiO 2 is used as a reference nanoparticle (NP) for research and workplace exposure assessments due to its important industrial production. However, to date little consistent information exists about its human health effects. Approximately 50% of all TiO 2in vivo studies targeting the respiratory tract have been by inhalation and these exposures are often in the form of agglomerates rather than as individual NPs. Therefore, the size of the NP agglomerates represents the effective size interacting with the biological material and could thereby influence the NP mechanisms of action. Thus, interpretation of nanotoxicological data without considering the agglomeration state could partly explain the heterogeneous results found in the scientific literature for TiO 2 NPs. The objective of this review is to examine the literature concerning the importance of TiO 2 aerosol characterization in the assessment of pulmonary toxicity in rodents. In this way, this review reveals that the pulmonary responses following inhalation of TiO 2 NPs might not depend solely on the primary NP size, but also on the crystal phase, the NP agglomerate size, its structure and the mass concentration. It also shows that TiO 2 NPs may exert their toxicity mechanisms specifically because of the size of their agglomerates in aerosols, thus supporting the concept that aerosols composed essentially of small (< 100 nm) or large (> 100 nm) NP agglomerates do not seem to follow the same pulmonary toxicity mechanisms.
Collapse
Affiliation(s)
- Alexandra Noël
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, C. P. 6128 Succursale Centre-Ville, Montréal (Québec) H3C 3J7, Canada
| | - Ginette Truchon
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), 505 Boul. De Maisonneuve Ouest, Montréal (Québec) H3A 3C2, Canada
| |
Collapse
|
50
|
Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS One 2015; 10:e0118778. [PMID: 25738830 PMCID: PMC4349695 DOI: 10.1371/journal.pone.0118778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022] Open
Abstract
Exposure to hard metal tungsten carbide cobalt (WC-Co) "dusts" in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.
Collapse
Affiliation(s)
- Andrea L. Armstead
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
| | - Valerie C. Minarchick
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Dale W. Porter
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Timothy R. Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Bingyun Li
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|