1
|
Arens Y, Bilker WB, Han X, Plankey M, Ware D, Friedman MR, D'Souza G, Stosor V, Shoptaw S, Schnoll RA, Tyndale RF, Ashare R, Gross R. Brief Report: HIV Infection Does Not Explain Higher Nicotine Metabolism in People Living With HIV. J Acquir Immune Defic Syndr 2022; 91:497-501. [PMID: 36083509 PMCID: PMC9649853 DOI: 10.1097/qai.0000000000003089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Smoking contributes to significant morbidity and mortality in people with HIV. People with HIV have relatively high nicotine metabolism rates, as measured by the nicotine metabolite ratio (NMR, 3-hydroxycotinine/cotinine). A higher NMR is associated with difficulty quitting smoking. We hypothesized that HIV infection might upregulate nicotine metabolism. SETTING A retrospective study of male current smokers in the Multicenter AIDS Cohort Study who HIV seroconverted between 1985 and 1993. METHODS Eligibility included having plasma stored before and after confirmed HIV seroconversion and current tobacco use. Samples were selected from the closest available visits before (median 3.3 months) and after (median 9.4 months) seroconversion. Antiretroviral therapy use was exclusionary. Cotinine and 3-hydroxycotinine were measured using liquid chromatography-tandem mass spectrometry. We compared NMR from plasma pre-HIV and post-HIV infection using signed-rank tests. We targeted a sample size of 71 pairs to achieve 80% power to detect a 0.1 unit increase in NMR with P = 0.05. RESULTS We analyzed paired samples from 78 participants; the median age was 34.5 years [interquartile range (IQR 29-40 years)]. The median NMR pre-HIV and post-HIV was 0.45 (IQR 0.32-0.54) and 0.46 (IQR 0.34-0.56), respectively. The median change in NMR postseroconversion was +0.01 (IQR -0.05, +0.09), P = 0.25. Stratification of median change in NMR by timing between samples or time since HIV seroconversion did not alter this finding. CONCLUSIONS Acquiring HIV had no measurable effect on NMR. We postulate that upregulation of the NMR may be due to direct pharmacologic effects of HIV medications or metabolic changes in response to HIV infection.
Collapse
Affiliation(s)
- Yotam Arens
- Division of Infectious Diseases, Departments of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Warren B Bilker
- Departments of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Xiaoyan Han
- Departments of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael Plankey
- Department of Medicine, Division of General Internal Medicine, Georgetown University Medical Center, Washington, DC
| | - Deanna Ware
- Department of Medicine, Division of General Internal Medicine, Georgetown University Medical Center, Washington, DC
| | - M Reuel Friedman
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Gypsyamber D'Souza
- Department of Epidemology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Valentina Stosor
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Steven Shoptaw
- Department of Family Medicine, University of California, Los Angeles, CA
| | - Robert A Schnoll
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Penn Medicine, Philadelphia, PA
| | - Rachel F Tyndale
- Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rebecca Ashare
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY; and
| | - Robert Gross
- Division of Infectious Diseases, Departments of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Departments of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Niu Y, Fan S, Luo Q, Chen L, Huang D, Chang W, Qin W, Shi G. Interaction of Hepatitis B Virus X Protein with the Pregnane X Receptor Enhances the Synergistic Effects of Aflatoxin B1 and Hepatitis B Virus on Promoting Hepatocarcinogenesis. J Clin Transl Hepatol 2021; 9:466-476. [PMID: 34447675 PMCID: PMC8369009 DOI: 10.14218/jcth.2021.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection has been found to increase hepatocellular sensitivity to carcinogenic xenobiotics, by unknown mechanisms, in the generation of hepatocellular carcinoma. The pregnane X receptor (PXR) is a key regulator of the body's defense against xenobiotics, including xenobiotic carcinogens and clinical drugs. In this study, we aimed to investigate the molecular mechanisms of HBV X protein (HBx)-PXR signaling in the synergistic effects of chemical carcinogens in HBV-associated hepatocarcinogenesis. METHODS The expression profile of PXR-cytochrome p450 3A4 (CYP3A4) signaling was determined by PCR, western blotting, and tissue microarray. Cell viability and aflatoxin B1 (AFB1) cytotoxicity were measured using the cell counting kit-8 assay. Target gene expression was evaluated using transient transfection and real time-PCR. The genotoxicity of AFB1 was assessed in newborn mice with a single dose of AFB1. RESULTS HBx enhanced the hepatotoxicity of AFB1 by activating CYP3A4 and reducing glutathione S-transferase Mu 1 (GSTM1) in cell lines. Activation of PXR by pregnenolone 16α-carbonitrile increased AFB1-induced liver tumor incidence by up-regulating oncogenic KRAS to enhance interleukin (IL)-11:IL-11 receptor subunit alpha-1 (IL11RA-1)-mediated inflammation in an HBx transgenic model. CONCLUSIONS Our finding regarding AFB1 toxicity enhancement by an HBx-PXR-CYP3A4/ GSTM1-KRAS-IL11:IL11RA signaling axis provides a rational explanation for the synergistic effects of chemical carcinogens in HBV infection-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
- Correspondence to: Yongdong Niu, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-5392-3736. Tel: +86-754-88900432, Fax: +86-754-88557562, E-mail: ; Wenxin Qin, Shanghai Cancer Institute, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-1989-3027. Tel: +86-21-68371105, Fax: +86-21-64432142, E-mail: ; Ganggang Shi, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-6856-1192. Tel: +86-754-88900301, Fax: +86-754-88557562, E-mail:
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qin Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Chen
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Yongdong Niu, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-5392-3736. Tel: +86-754-88900432, Fax: +86-754-88557562, E-mail: ; Wenxin Qin, Shanghai Cancer Institute, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-1989-3027. Tel: +86-21-68371105, Fax: +86-21-64432142, E-mail: ; Ganggang Shi, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-6856-1192. Tel: +86-754-88900301, Fax: +86-754-88557562, E-mail:
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
- Correspondence to: Yongdong Niu, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-5392-3736. Tel: +86-754-88900432, Fax: +86-754-88557562, E-mail: ; Wenxin Qin, Shanghai Cancer Institute, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-1989-3027. Tel: +86-21-68371105, Fax: +86-21-64432142, E-mail: ; Ganggang Shi, Shantou University Medical College, Shantou, Guangdong 515041, China. ORCID: https://orcid.org/0000-0002-6856-1192. Tel: +86-754-88900301, Fax: +86-754-88557562, E-mail:
| |
Collapse
|
3
|
Alvarez CS, Hernández E, Escobar K, Villagrán CI, Kroker-Lobos MF, Rivera-Andrade A, Smith JW, Egner PA, Lazo M, Freedman ND, Guallar E, Dean M, Graubard BI, Groopman JD, Ramírez-Zea M, McGlynn KA. Aflatoxin B 1 exposure and liver cirrhosis in Guatemala: a case-control study. BMJ Open Gastroenterol 2021; 7:bmjgast-2020-000380. [PMID: 32641287 PMCID: PMC7342465 DOI: 10.1136/bmjgast-2020-000380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Objective In Guatemala, cirrhosis is among the 10 leading causes of death, and mortality rates have increased lately. The reasons for this heavy burden of disease are not clear as the prevalence of prominent risk factors, such as hepatitis B virus, hepatitis C virus and heavy alcohol consumption, appears to be low. Aflatoxin B1 (AFB1) exposure, however, appears to be high, and thus could be associated with the high burden of cirrhosis. Whether AFB1 increases the risk of cirrhosis in the absence of viral infection, however, is not clear. Design Cirrhosis cases (n=100) from two major referral hospitals in Guatemala City were compared with controls (n=200) from a cross-sectional study. Logistic regression was used to estimate the ORs and 95% CIs of cirrhosis and quintiles of AFB1 in crude and adjusted models. A sex-stratified analysis was also conducted. Results The median AFB1 level was significantly higher among the cases (11.4 pg/mg) than controls (5.11 pg/mg). In logistic regression analyses, higher levels of AFB1 was associated with cirrhosis (quintile 5 vs quintile 1, OR: 11.55; 95% CI 4.05 to 32.89). No attenuation was observed with adjustment by sex, ethnicity, hepatitis B virus status, and heavy alcohol consumption. A significantly increasing trend in association was observed in both models (p trend <0.01). Additionally, the cirrhosis–AFB1 association was more prominent among men. Conclusions The current study found a significant positive association between AFB1 exposure and cirrhosis. Mitigation of AFB1 exposure and a better understanding of additional risk factors may be important to reduce the burden of cirrhosis in Guatemala.
Collapse
Affiliation(s)
- Christian S Alvarez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Elisa Hernández
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, Guatemala, Guatemala
| | - Kira Escobar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, Guatemala, Guatemala
| | - Carmen I Villagrán
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Universidad de San Carlos de Guatemala, Guatemala, Guatemala
| | - María F Kroker-Lobos
- INCAP Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala, Guatemala
| | - Alvaro Rivera-Andrade
- INCAP Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala, Guatemala
| | - Joshua W Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patricia A Egner
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mariana Lazo
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Eliseo Guallar
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - John D Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manuel Ramírez-Zea
- INCAP Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala, Guatemala
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
4
|
Curcumin Treatment Identifies Therapeutic Targets within Biomarkers of Liver Colonization by Highly Invasive Mesothelioma Cells-Potential Links with Sarcomas. Cancers (Basel) 2020; 12:cancers12113384. [PMID: 33207594 PMCID: PMC7696465 DOI: 10.3390/cancers12113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Aggressive sarcomatoid tumors designed in inbred strains of immunocompetent rats represent useful tools for both the identification of biomarkers of invasiveness and evaluation of innovative therapies. Our aim was to investigate the molecular determinants of liver colonization and potential common biomarkers of sarcomas and sarcomatoid tumors, using the most invasive (M5-T1) of our four experimental models of peritoneal sarcomatoid malignant mesothelioma in the F344 rat. Using an advanced and robust technique of quantitative proteomics and a bank of paraffin-embedded tumor and tissue samples, we analyzed changes in the proteotype patterns of the liver from normal rats, adjacent non-tumorous liver from untreated tumor-bearing rats, and liver from tumor-bearing rats positively responding to repeated administrations of curcumin given intraperitoneally. The identification of proteome alterations accounting for the antitumor effects of curcumin and changes in the liver microenvironment, which favored the induction of an immune response, could be useful to the research community. Abstract Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
Collapse
|
5
|
Wright WC, Chenge J, Wang J, Girvan HM, Yang L, Chai SC, Huber AD, Wu J, Oladimeji PO, Munro AW, Chen T. Clobetasol Propionate Is a Heme-Mediated Selective Inhibitor of Human Cytochrome P450 3A5. J Med Chem 2020; 63:1415-1433. [PMID: 31965799 PMCID: PMC7087482 DOI: 10.1021/acs.jmedchem.9b02067] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5 metabolize most drugs and have high similarities in their structure and substrate preference. Whereas CYP3A4 is predominantly expressed in the liver, CYP3A5 is upregulated in cancer, contributing to drug resistance. Selective inhibitors of CYP3A5 are, therefore, critical to validating it as a therapeutic target. Here we report clobetasol propionate (clobetasol) as a potent and selective CYP3A5 inhibitor identified by high-throughput screening using enzymatic and cell-based assays. Molecular dynamics simulations suggest a close proximity of clobetasol to the heme in CYP3A5 but not in CYP3A4. UV-visible spectroscopy and electron paramagnetic resonance analyses confirmed the formation of an inhibitory type I heme-clobetasol complex in CYP3A5 but not in CYP3A4, thus explaining the CYP3A5 selectivity of clobetasol. Our results provide a structural basis for selective CYP3A5 inhibition, along with mechanistic insights, and highlight clobetasol as an important chemical tool for target validation.
Collapse
Affiliation(s)
- William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
- Integrated Biomedical Sciences Program, University of
Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jude Chenge
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Hazel M. Girvan
- Manchester Institute of Biotechnology, School of Natural
Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN,
UK
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Sergio C. Chai
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Peter O. Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Natural
Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN,
UK
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude
Children’s Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
6
|
Xu SF, Hu AL, Xie L, Liu JJ, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ 2019; 7:e7429. [PMID: 31396457 PMCID: PMC6681801 DOI: 10.7717/peerj.7429] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450s (CYPs) are phase-I metabolic enzymes playing important roles in drug metabolism, dietary chemicals and endogenous molecules. Age is a key factor influencing P450s expression. Thus, age-related changes of CYP 1–4 families and bile acid homeostasis-related CYPs, the corresponding nuclear receptors and a few phase-II genes were examined. Livers from male Sprague-Dawley rats at fetus (−2 d), neonates (1, 7, and 14 d), weanling (21 d), puberty (28 and 35 d), adulthood (60 and 180 d), and aging (540 and 800 d) were collected and subjected to qPCR analysis. Liver proteins from 14, 28, 60, 180, 540 and 800 days of age were also extracted for selected protein analysis by western blot. In general, there were three patterns of their expression: Some of the drug-metabolizing enzymes and related nuclear receptors were low in fetal and neonatal stage, increased with liver maturation and decreased quickly at aging (AhR, Cyp1a1, Cyp2b1, Cyp2b2, Cyp3a1, Cyp3a2, Ugt1a2); the majority of P450s (Cyp1a2, Cyp2c6, Cyp2c11, Cyp2d2, Cyp2e1, CAR, PXR, FXR, Cyp7a1, Cyp7b1. Cyp8b1, Cyp27a1, Ugt1a1, Sult1a1, Sult1a2) maintained relatively high levels throughout the adulthood, and decreased at 800 days of age; and some had an early peak between 7 and 14 days (CAR, PXR, PPARα, Cyp4a1, Ugt1a2). The protein expression of CYP1A2, CYP2B1, CYP2E1, CYP3A1, CYP4A1, and CYP7A1 corresponded the trend of mRNA changes. In summary, this study characterized three expression patterns of 16 CYPs, five nuclear receptors, and four phase-II genes during development and aging in rat liver, adding to our understanding of age-related CYP expression changes and age-related disorders.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - An-Ling Hu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lu Xie
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Ashare RL, Thompson M, Leone F, Metzger D, Gross R, Mounzer K, Tyndale RF, Lerman C, Mahoney MC, Cinciripini P, George TP, Collman RG, Schnoll R. Differences in the rate of nicotine metabolism among smokers with and without HIV. AIDS 2019; 33:1083-1088. [PMID: 30946162 DOI: 10.1097/qad.0000000000002127] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE HIV-infected smokers lose more life years to tobacco use than to HIV infection. The nicotine metabolite ratio (NMR), a biomarker of CYP2A6, represents individual variation in the rate at which nicotine is metabolized and is associated with response to smoking cessation treatments. We evaluated whether HIV-infected smokers metabolize nicotine faster than HIV-uninfected smokers, which may contribute to the disproportionate smoking burden and may have important treatment implications. DESIGN We analysed baseline data from two clinical trials (NCT01710137; NCT01314001) to compare the NMR in HIV-infected smokers (N = 131) to HIV-uninfected smokers (N = 199). METHODS Propensity scores were used to match the groups 2 : 1 on characteristics that influence NMR: sex, race, BMI and smoking rate. Nicotine metabolites were assessed via liquid chromatography-tandem mass spectrometry methods and the ratio of 3-hydroxycotinine:cotinine was used to compute the NMR. RESULTS HIV-infected smokers had significantly higher NMR (mean = 0.47, SEM = 0.02) and were more likely to be in the highest NMR quartile compared with HIV-uninfected smokers (mean = 0.34, SEM = 0.02; Ps < 0.001). CONCLUSION The higher NMR observed among HIV-infected smokers may partially explain higher smoking rates and lower response to transdermal nicotine therapy. Understanding the mechanisms by which HIV and/or ART contribute to faster nicotine metabolism may guide the use of the NMR to personalize tobacco cessation strategies in this underserved population.
Collapse
|
8
|
Zhan T, Pan L, Liu Z, Chen J, Ge Z, Lu L, Zhang X, Cui S, Zhang C, Liu W, Zhuang S. Metabolic Susceptibility of 2-Chlorothioxanthone and Its Toxic Effects on mRNA and Protein Expression and Activities of Human CYP1A2 and CYP3A4 Enzymes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11904-11912. [PMID: 30234976 DOI: 10.1021/acs.est.8b04643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thioxanthones (TXs) are photoinitiators widely used in UV curable resins and food packaging, and their residues have been frequently detected in human bodies. Our current understanding of the susceptibility of residual TXs to metabolism and their effects on human health is very limited. The in vitro metabolism of TXs and its toxic effects on cytochrome P450 (CYP) (the key xenobiotic metabolizing enzymes) were examined in this study. 2-Chlorothioxanthone (2-Cl-TX) significantly inhibited the enzymatic activities of CYP1A2 and CYP3A4 with IC50 of 8.36 and 0.86 μM, respectively. The exposure to 2-Cl-TX at 2.5 μM up-regulated the mRNA expression of CYP1A2 and CYP3A4 in human hepatocellular carcinoma cells to 3.03-fold and 2.02-fold, respectively. 2-Cl-TX at 2.5 μM caused 2.19-fold and 1.98-fold overexpression of CYP1A2 and CYP3A4, respectively. In vitro studies revealed that 2-Cl-TX was biotransformed into two metabolites through the sulfoxidation of the sulfur atom, or via the hydroxylation of aromatic carbon. Results from this study, including the metabolic susceptibility of residual 2-Cl-TX, the proposed metabolites and the significant toxic effect on the activities, mRNA, and protein expression of CYP1A2 and CYP3A4, are vital to the human health and safety risk assessment from this ubiquitous xenobiotic.
Collapse
Affiliation(s)
- Tingjie Zhan
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Liumeng Pan
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Zhenfeng Liu
- The First Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou 310003 , P. R. China
| | - Jiayan Chen
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Liping Lu
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Xiaofang Zhang
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Shixuan Cui
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Chunlong Zhang
- Department of Biological and Environmental Sciences , University of Houston-Clear Lake , 2700 Bay Area Boulevard , Houston , Texas 77058 , United States
| | - Weiping Liu
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| |
Collapse
|
9
|
Stavropoulou E, Pircalabioru GG, Bezirtzoglou E. The Role of Cytochromes P450 in Infection. Front Immunol 2018; 9:89. [PMID: 29445375 PMCID: PMC5797775 DOI: 10.3389/fimmu.2018.00089] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/11/2018] [Indexed: 11/27/2022] Open
Abstract
Cytochromes are expressed in many different tissues of the human body. They are found mostly in intestinal and hepatic tissues. Cytochromes P450 (CYPs) are enzymes that oxidize substances using iron and are able to metabolize a large variety of xenobiotic substances. CYP enzymes are linked to a wide array of reactions including and O-dealkylation, S-oxidation, epoxidation, and hydroxylation. The activity of the typical P450 cytochrome is influenced by a variety of factors, such as genus, environment, disease state, herbicide, alcohol, and herbal medications. However, diet seems to play a major role. The mechanisms of action of dietary chemicals, macro- and micronutrients on specific CYP isoenzymes have been extensively studied. Dietary modulation has effects upon the metabolism of xenobiotics. Cytochromes harbor intra- or interindividual and intra- or interethnic genetic polymorphisms. Bacteria were shown to express CYP-like genes. The tremendous metabolic activity of the microbiota is associated to its abundant pool of CYP enzymes, which catalyze phase I and II reactions in drug metabolism. Disease states, intestinal disturbances, aging, environmental toxic effects, chemical exposures or nutrition modulate the microbial metabolism of a drug before absorption. A plethora of effects exhibited by most of CYP enzymes can resemble those of proinflammatory cytokines and IFNs. Moreover, they are involved in the initiation and persistence of pathologic pain by directly activating sensory neurons and inflammatory cytokines.
Collapse
Affiliation(s)
| | | | - Eugenia Bezirtzoglou
- Department of Food Science and Technology, Faculty of Agricultural Development, Democritus University of Thrace, Laboratory of Microbiology, Biotechnology and Hygiene, Orestiada, Greece
| |
Collapse
|
10
|
Moustafa GG, Hussein MM. New insight on using aged garlic extract against toxic impacts of titanium dioxide bulk salt triggers inflammatory and fibrotic cascades in male rats. Biomed Pharmacother 2016; 84:687-697. [DOI: 10.1016/j.biopha.2016.09.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023] Open
|
11
|
Jackson JP, Li L, Chamberlain ED, Wang H, Ferguson SS. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures. Drug Metab Dispos 2016; 44:1463-79. [PMID: 27338863 PMCID: PMC4998578 DOI: 10.1124/dmd.116.069831] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023] Open
Abstract
Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.
Collapse
Affiliation(s)
- Jonathan P Jackson
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Linhou Li
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Erica D Chamberlain
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Hongbing Wang
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| | - Stephen S Ferguson
- Life Technologies, Cell System Division, ADME/Tox, Durham, North Carolina (J.P.J., E.D., S.S.F.); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (L.L., H.W.)
| |
Collapse
|
12
|
Hayward KL, Powell EE, Irvine KM, Martin JH. Can paracetamol (acetaminophen) be administered to patients with liver impairment? Br J Clin Pharmacol 2016; 81:210-22. [PMID: 26460177 PMCID: PMC4833155 DOI: 10.1111/bcp.12802] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
Although 60 years have passed since it became widely available on the therapeutic market, paracetamol dosage in patients with liver disease remains a controversial subject. Fulminant hepatic failure has been a well documented consequence of paracetamol overdose since its introduction, while short and long term use have both been associated with elevation of liver transaminases, a surrogate marker for acute liver injury. From these reports it has been assumed that paracetamol use should be restricted or the dosage reduced in patients with chronic liver disease. We review the factors that have been purported to increase risk of hepatocellular injury from paracetamol and the pharmacokinetic alterations in different pathologies of chronic liver disease which may affect this risk. We postulate that inadvertent under-dosing may result in concentrations too low to enable efficacy. Specific research to improve the evidence base for prescribing paracetamol in patients with different aetiologies of chronic liver disease is needed.
Collapse
Affiliation(s)
- Kelly L. Hayward
- Pharmacy DepartmentPrincess Alexandra HospitalQueensland
- Centre for Liver Disease ResearchThe University of QueenslandQueensland
| | - Elizabeth E. Powell
- Centre for Liver Disease ResearchThe University of QueenslandQueensland
- Department of Gastroenterology and HepatologyPrincess Alexandra HospitalQueensland
| | | | - Jennifer H. Martin
- School of Medicine and Public HealthUniversity of NewcastleNew South Wales
- The University of Queensland Diamantina InstituteQueenslandAustralia
| |
Collapse
|
13
|
Gervasoni C, Cattaneo D, Micheli V, Cristo VD, Milazzo L. Effect of hepatitis B and C clearance on atazanavir exposure. Eur J Clin Pharmacol 2015; 71:1409-11. [DOI: 10.1007/s00228-015-1926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/16/2015] [Indexed: 12/09/2022]
|
14
|
Hu H, Yu T, Arpiainen S, Lang MA, Hakkola J, Abu-Bakar A. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6. Toxicol Appl Pharmacol 2015; 289:30-9. [PMID: 26343999 DOI: 10.1016/j.taap.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6.
Collapse
Affiliation(s)
- Hao Hu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Ting Yu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Satu Arpiainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Matti A Lang
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Jukka Hakkola
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - A'edah Abu-Bakar
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Dohnal V, Wu Q, Kuča K. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol 2014; 88:1635-44. [PMID: 25027283 DOI: 10.1007/s00204-014-1312-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022]
Abstract
Aflatoxins are potent hepatocarcinogen in animal models and suspected carcinogen in humans. The most important aflatoxin in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). In this review, we mainly summarized the key metabolizing enzymes of AFB1 in animals and humans. Moreover, the interindividual and the interspecies differences in AFB1 metabolism are highly concerned. In human liver, CYP3A4 plays an important role in biotransforming AFB1 to the toxic product AFB1-8,9-epoxide. In human lung, CYP2A13 has a significant activity in metabolizing AFB1 to AFB1-8,9-epoxide and AFM1-8,9-epoxide. The epoxide of AFB1-8,9-epoxide could conjugate with glutathione to reduce the toxicity by glutathione-S-transferase (GST). In poultry species, CYP2A6, CYP3A37, CYP1A5, and CYP1A1 are responsible for bioactivation of AFB1. There are interindividual variations in the rate of activation of aflatoxins in various species, and there are also differences between children and adults. The age and living regions are important factors affecting resistance of species to AFB1. The rate of AFB1-8,9-epoxide formation and its conjugation with glutathione are key parameters in interspecies and interindividual differences in sensitivity to the toxic effect of AFB1. This review provides an important information for key metabolizing enzymes and the global metabolism of aflatoxins in different species.
Collapse
Affiliation(s)
- Vlastimil Dohnal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
16
|
Cui Y, Wang Q, Li X, Zhang X. Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation. Redox Biol 2013; 1:433-40. [PMID: 24191237 PMCID: PMC3814957 DOI: 10.1016/j.redox.2013.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2+/+ and Nrf2−/− mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2−/− mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2−/− mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2. CYP2A5 up-regulation in response to NAFLD was Nrf2 dependent. NAFLD induces oxidant stress. A protective role for Nrf2 against hepatic damage by NAFLD was demonstrated. NAFLD induces translocation of Nrf2 from the cytoplasm to the nucleus. Nrf2 binding to CYP2a5 was shown.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, Heilongjiang, China ; College of Animal Sciences and Technology, Heilongjiang Bayi Agricultural University, 2# Xinyang Road, New Development District, Daqing 163319, Heilongjiang, China
| | | | | | | |
Collapse
|
17
|
Tolosa L, Donato MT, Pérez-Cataldo G, Castell JV, Gómez-Lechón MJ. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment. Toxicol In Vitro 2012; 26:1272-7. [DOI: 10.1016/j.tiv.2011.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 11/25/2022]
|
18
|
Chiang HC, Wang CK, Tsou TC. Differential distribution of CYP2A6 and CYP2A13 in the human respiratory tract. Respiration 2012; 84:319-26. [PMID: 22890016 DOI: 10.1159/000339591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human CYP2A6 and CYP2A13 play important roles in metabolic activation of many pulmonary carcinogens and thus their expression and distribution may determine the pulmonary susceptibility to metabolically activated carcinogens and the following lung cancer development. Because of the 93.5% of amino acid identity between CYP2A6 and CYP2A13, generation of antibodies specific to CYP2A6 or CYP2A13 has limited immunohistochemical (IHC) analysis of CYP2A6 and CYP2A13 levels in the respiratory tract. OBJECTIVES This study aimed to determine the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissue with IHC analysis. METHODS With computer-aided protein sequence analyses, candidate epitopes of 15 amino acids in the C-terminal domains of CYP2A6 and CYP2A13 were selected for antibody generation. Specificity of these two antibodies was confirmed with immunoblot and immunofluorescence analyses. With these two selective antibodies, the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissues, including tracheae, bronchi, bronchioles and alveoli, was determined. RESULTS IHC results showed that both CYP2A6 and CYP2A13 were markedly expressed in epithelial cells of tracheae and bronchi and that only CYP2A6 was detected in bronchiolar epithelial cells of peripheral lungs. A limitation of the present study is the cross-reactivity of our CYP2A6 antibody to the functional inactive CYP2A7. CONCLUSIONS The differential distribution patterns of CYP2A6 and CYP2A13 in the respiratory tract are of importance in considering the pulmonary susceptibility to carcinogens and the following lung cancer development.
Collapse
Affiliation(s)
- Huai-chih Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
19
|
HEV-Capsid Protein Interacts With Cytochrome P4502C8 and Retinol-Binding Protein 4. HEPATITIS MONTHLY 2011. [DOI: 10.5812/kowsar.1735143x.3754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
20
|
Nagaoka MR, Le Sueur-Maluf L, Aguiar O, Castro GM, Spadari-Bratfisch RC, Ribeiro DA. Differential response related to genotoxicity in multiple organs of cirrhotic rats. Hepatol Int 2011; 5:740-6. [PMID: 21484143 DOI: 10.1007/s12072-010-9239-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/16/2010] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this study was to use the single cell gel (comet) assay to investigate whether blood, liver, heart, kidney, and brain are particularly sensitive organs for DNA damage in cirrhotic rats to predict genetic instability induced by cirrhosis. METHODS A total of 16 male Wistar rats (negative control, n = 8; experimental, n = 8) were submitted to bile duct ligation during 28 days. RESULTS Cirrhosis was able to induce genetic damage in liver and brain cells, as depicted by the mean tail moment. No genetic damage was induced in blood, heart, or kidney cells (i.e., no significant statistically differences were noticed when compared with negative control). CONCLUSIONS In conclusion, our results suggest that cirrhosis could contribute to DNA damage in liver and brain cells.
Collapse
Affiliation(s)
- Marcia R Nagaoka
- Departamento de Biociências, Universidade Federal de Sao Paulo, UNIFESP, Santos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Lämsä V, Levonen AL, Leinonen H, Ylä-Herttuala S, Yamamoto M, Hakkola J. Cytochrome P450 2A5 constitutive expression and induction by heavy metals is dependent on redox-sensitive transcription factor Nrf2 in liver. Chem Res Toxicol 2010; 23:977-85. [PMID: 20402460 DOI: 10.1021/tx100084c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various pathophysiological liver diseases and induced by structurally variable hepatotoxic chemicals. A putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of numerous protective target genes. In the present study, we have extensively characterized the regulation of Cyp2a5 by Nrf2 and compared it to a well-characterized target gene Hmox1. The treatment of mouse primary hepatocytes with lead chloride, methylmercury chloride, or phenethyl isothiocyanate all leads to nuclear accumulation of Nrf2. Both CYP2A5 and HMOX1 were induced by all three compounds; however, HMOX1 responded more rapidly and transiently as compared to CYP2A5. Experiments in Nrf2(-/-) primary hepatocytes showed that Nrf2 is crucial for CYP2A5 induction but not for elevation of HMOX1. Both CYP2A5 and HMOX1 were upregulated by Nrf2 overexpression and downregulated by Keap1 or Bach1 overexpression. However, in all cases, CYP2A5 responded much more potently. Results in Nrf2-deficient animals showed that CYP2A5 expression is significantly attenuated in the absence of Nrf2, while expression of HMOX1 was unaffected. Therefore, Cyp2a5 joins the group of genes constitutively regulated by Nrf2. Our current results unequivocally show that expression of CYP2A5 is tightly controlled by Nrf2 in liver. Nrf2 is needed for constitutive expression of CYP2A5, and CYP2A5 is also sensitively upregulated by an increased level of Nrf2 protein. Therefore, CYP2A5 upregulation could be a useful indicator for hepatic activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Virpi Lämsä
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, Cherrington NJ. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 2009; 37:2087-94. [PMID: 19651758 PMCID: PMC2769034 DOI: 10.1124/dmd.109.027466] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 07/27/2009] [Indexed: 12/11/2022] Open
Abstract
Members of the cytochrome P450 (P450) enzyme families CYP1, CYP2, and CYP3 are responsible for the metabolism of approximately 75% of all clinically relevant drugs. With the increased prevalence of nonalcoholic fatty liver disease (NAFLD), it is likely that patients with this disease represent an emerging population at significant risk for alterations in these important drug-metabolizing enzymes. The purpose of this study was to determine whether three progressive stages of human NALFD alter hepatic P450 expression and activity. Microsomes isolated from human liver samples diagnosed as normal, n = 20; steatosis, n = 11; nonalcoholic steatohepatitis (NASH) (fatty liver), n = 10; and NASH (no longer fatty), n = 11 were analyzed for P450 mRNA, protein, and enzyme activity. Microsomal CYP1A2, CYP2D6, and CYP2E1 mRNA levels were decreased with NAFLD progression, whereas CYP2A6, CYP2B6, and CYP2C9 mRNA expression increased. Microsomal protein expression of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 tended to decrease with NAFLD progression. Likewise, functional activity assays revealed decreasing trends in CYP1A2 (p = 0.001) and CYP2C19 (p = 0.05) enzymatic activity with increasing NAFLD severity. In contrast, activity of CYP2A6 (p = 0.001) and CYP2C9 (diclofenac, p = 0.0001; tolbutamide, p = 0.004) was significantly increased with NAFLD progression. Increased expression of proinflammatory cytokines tumor necrosis factor alpha and interleukin 1beta was observed and may be responsible for observed decreases in respective P450 activity. Furthermore, elevated CYP2C9 activity during NAFLD progression correlated with elevated hypoxia-induced factor 1alpha expression in the later stages of NAFLD. These results suggest that significant and novel changes occur in hepatic P450 activity during progressive stages of NAFLD.
Collapse
Affiliation(s)
- Craig D. Fisher
- Department of Pharmacology and Toxicology (C.D.F., A.J.L., L.M.A., N.J.C.) and
| | - Andrew J. Lickteig
- Department of Pharmacology and Toxicology (C.D.F., A.J.L., L.M.A., N.J.C.) and
| | - Lisa M. Augustine
- Department of Pharmacology and Toxicology (C.D.F., A.J.L., L.M.A., N.J.C.) and
| | - James Ranger-Moore
- Division of Epidemiology and Biostatistics (J.R.-M.), University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
23
|
Onica T, Nichols K, Larin M, Ng L, Maslen A, Dvorak Z, Pascussi JM, Vilarem MJ, Maurel P, Kirby GM. Dexamethasone-mediated up-regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of hepatic nuclear factor 4 alpha to the proximal promoter. Mol Pharmacol 2008; 73:451-60. [PMID: 17978169 DOI: 10.1124/mol.107.039354] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 2A6 (CYP2A6) metabolizes various clinically relevant compounds, including nicotine- and tobacco-specific procarcinogens; however, transcriptional regulation of this gene is poorly understood. We investigated the role of the glucocorticoid receptor (GR) in transcriptional regulation of CYP2A6. Dexamethasone (DEX) increased CYP2A6 mRNA and protein levels in human hepatocytes in primary culture. This effect was attenuated by the GR receptor antagonist mifepristone (RU486; 17beta-hydroxy-11beta-[4-dimethylamino phenyl]-17alpha-[1-propynyl]estra-4,9-dien-3-one), suggesting that induction of CYP2A6 by DEX was mediated by the GR. In gene reporter assays, DEX caused dose-dependent increases in luciferase activity that was also prevented by RU486 and progressive truncations of the CYP2A6 promoter delineated DEX-responsiveness to a -95 to +12 region containing an hepatic nuclear factor 4 (HNF4) alpha response element (HNF4-RE). Mutation of the HNF4-RE abrogated HNF4alpha- and DEX-mediated transactivation of CYP2A6. In addition, overexpression of HNF4alpha increased CYP2A6 transcriptional activity by 3-fold. DEX increased HNF4alpha mRNA levels by 4-fold; however, the amount of HNF4alpha nuclear protein was unaltered. Electrophoretic mobility shift, chromatin immunoprecipitation (ChIP), and streptavidin DNA binding assays revealed that DEX increased binding of HNF4alpha to the HNF4-RE and that an interaction of GR and HNF4alpha occurred at this site. Moreover, ChIP assays indicated that histone H4 acetylation of the CYP2A6 proximal promoter chromatin was increased by DEX that may allow for increased binding of HNF4alpha to the HNF4-RE in human hepatocytes. These findings indicate that increased expression of CYP2A6 by DEX is mediated by the GR via a nonconventional transcriptional mechanism involving interaction of HNF4alpha with an HNF4-RE rather than a glucocorticoid response element.
Collapse
Affiliation(s)
- Tania Onica
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mwenifumbo JC, Sellers EM, Tyndale RF. Nicotine metabolism and CYP2A6 activity in a population of black African descent: impact of gender and light smoking. Drug Alcohol Depend 2007; 89:24-33. [PMID: 17161559 DOI: 10.1016/j.drugalcdep.2006.11.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 01/10/2023]
Abstract
Genetic variation in CYP2A6 (the main nicotine metabolizing enzyme) accounts for some, but not all, of the interindividual and interethnic variability in the rates of nicotine metabolism. We conducted a nicotine kinetic study in smokers and nonsmokers of black African descent (N=190), excluding those with common genetic variants in CYP2A6, to investigate the association of demographic variables with CYP2A6 activity (3HC/COT ratio) and nicotine disposition kinetics (estimated nicotine AUC). An additional aim was to examine whether impaired CYP2A6 activity and/or nicotine disposition kinetics were associated with lower cigarette consumption in a population of light smokers (mean<or=10 cigarettes per day). We found that smokers had decreased nicotine metabolism (p<0.05), that women had higher CYP2A6 activity (p<0.01) and that, in non-elderly adults, age did not impact CYP2A6 activity (p=0.65) or nicotine disposition kinetics (p=0.06). Our study also demonstrated that neither current alcohol use nor current marijuana use was associated with altered CYP2A6 activity (p=0.55 and 0.72, respectively) or nicotine disposition kinetics (p=0.38 and 0.91, respectively). Despite the light cigarette consumption of the smokers (N=94), higher CYP2A6 activity was associated with greater cigarette consumption (p<0.005). These findings highlight the need for smoking status and gender to be considered when interpreting studies using nicotine.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- The Centre for Addiction and Mental Health and the Department of Pharmacology, University of Toronto, Canada M5S 1A8
| | | | | |
Collapse
|
25
|
Anderson GR, Hasan A, Yin H, Qadri I, Quattrochi LC. Regulation of the CYP1A1 gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin but not by beta-naphthoflavone or 3-methylcholanthrene is altered in hepatitis C virus replicon-expressing cells. Mol Pharmacol 2006; 70:1062-1070. [PMID: 16788090 DOI: 10.1124/mol.106.024125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to hepatitis C virus (HCV) can lead to the development of cirrhosis and hepatocellular carcinoma. To examine the effects of long-term HCV infection on hepatic cytochrome P450 1A1 (CYP1A1) expression and function, we used a human hepatoma cell line expressing the HCV subgenomic replicon (Huh.8) to evaluate CYP1A1 induction by the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this study, we demonstrate that the induction of CYP1A1 expression in Huh.8 cells by TCDD but not by beta-naphthoflavone or 3-methylcholanthrene was significantly diminished. TCDD exposure of Huh.8 cells resulted in greater than 55% suppression of CYP1A1 transcription compared with the parent cell line Huh7, whereas protein levels and enzyme activities were further diminished. Suppression of CYP1A1 mRNA expression in TCDD-treated Huh.8 cells was partially reversed after pretreatment with the antioxidants N-acetylcysteine and nordihydroguaiaretic acid, suggesting a role for oxidative stress. Induced CYP1A1 message, protein, and enzyme activity were partially restored in an Huh7 cell line expressing the HCV replicon containing a deletion in the nonstructural protein NS5A. Furthermore, adenoviral expression of NS5A in Huh7 partially suppressed TCDD-induced CYP1A1 protein and enzyme activity, implicating this protein in the mechanism of suppression. These findings demonstrate that TCDD-mediated AhR signaling is impaired in hepatocytes in which HCV is present and that NS5A alone or in the presence of other nonstructural proteins of the subgenomic replicon is in part responsible.
Collapse
Affiliation(s)
- Garret R Anderson
- Department of Medicine, School of Medicine, University of Colorado at Denver and Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
26
|
Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol 2006; 1:629-40. [PMID: 16863429 DOI: 10.1517/17425255.1.4.629] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The expression and activity of cytochrome P450 (CYP) is altered during periods of infectious disease or when an inflammatory response is activated. Most of the major forms of CYP are affected in this manner and this leads to a decrease in the capacity of the liver and other organs to handle drugs, chemicals and some endogenous compounds. The loss in drug metabolism is predominantly an effect resulting from the production of cytokines and the modulation of the transcription factors that control the expression of specific CYP forms. In clinical medicine numerous examples have been reported indicating the occurrence of compromised drug clearance and changes to pharmacokinetics during disease states with an inflammatory component or during infections. For any drug that is metabolised by CYP and has a narrow therapeutic index, there is a significant risk in placing patients in a position where an infection or inflammatory response might lead to aberrant drug handling and an adverse drug response.
Collapse
Affiliation(s)
- Kenneth W Renton
- Dalhousie University, Department of Pharmacology, Faculty of Medicine, Halifax, Nova Scotia, B3H 4H7, Canada.
| |
Collapse
|
27
|
Chen X, Wang H, Xie W, Liang R, Wei Z, Zhi L, Zhang X, Hao B, Zhong S, Zhou G, Zhang L, Gao X, Zhu Y, He F. Association of CYP1A2 genetic polymorphisms with hepatocellular carcinoma susceptibility: a case-control study in a high-risk region of China. Pharmacogenet Genomics 2006; 16:219-27. [PMID: 16495781 DOI: 10.1097/01.fpc.0000194424.20393.c6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Aflatoxin B1 exposure is one of the major risk factors for hepatocellular carcinoma (HCC). CYP1A2 is a cytochrome P450 isoenzyme that plays an important role in the bioactivation of AFB1 to its carcinogenic metabolite. The study was designed to assess whether genetic polymorphisms in CYP1A2 are associated with HCC susceptibility in a high-risk region. METHODS A case-control study of 431 HCC cases and 550 cancer-free controls recruited from an HCC endemic region in China was carried out. Three single nucleotide polymorphisms, namely -3860G > A (CYP1A2*1C), -3113G > A, and 5347T > C (CYP1A2*1B) were genotyped by polymerase chain reaction-restriction fragment length polymorphism methods. RESULTS Homozygous carriers of the major haplotype -3860G/-3113G/5347C were associated with increased HCC susceptibility in the overall population (odds ratio [OR] = 1.65, 95% confidence interval [CI]: 1.11-2.46, P = 0.014), in HBsAg seronegative individuals (OR = 2.69, 95% CI: 1.43-5.06, P = 0.002), and in heavy smokers (OR = 2.14, 95% CI: 1.21-3.80, P=0.009). In addition, individuals carrying at least one CYP1A2*1C allele showed significantly decreased HCC risk (OR = 0.49, 95% CI: Q0.27-0.86, P = 0.013) in the HBsAg seronegative subpopulation. Furthermore, as compared with HBsAg seropositive patients, wild-type homozygotes of the CYP1A2*1C polymorphism were significantly over-represented in HBsAg seronegative patients (P = 0.024). No significant association between CYP1A2 genetic polymorphisms and HCC risk was observed in either HBsAg seropositive individuals or non-smokers. CONCLUSIONS CYP1A2 genetic polymorphisms are associated with HCC susceptibility in smokers and HBsAg seronegative individuals in the Fusui endemic region.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Genomics & Proteomics, Beijing Institute of Radiation Medicine, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abu-Bakar A, Moore MR, Lang MA. Evidence for induced microsomal bilirubin degradation by cytochrome P450 2A5. Biochem Pharmacol 2005; 70:1527-35. [PMID: 16183037 DOI: 10.1016/j.bcp.2005.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/15/2005] [Accepted: 08/22/2005] [Indexed: 01/09/2023]
Abstract
Oxidative metabolism of bilirubin (BR) -- a breakdown product of haem with cytoprotective and toxic properties -- is an important route of detoxification in addition to glucuronidation. The major enzyme(s) involved in this oxidative degradation are not known. In this paper, we present evidence for a major role of the hepatic cytochrome P450 2A5 (Cyp2a5) in BR degradation during cadmium intoxication, where the BR levels are elevated following induction of haem oxygenase-1 (HO-1). Treatment of DBA/2J mice with CdCl(2) induced both the Cyp2a5 and HO-1, and increased the microsomal BR degradation activity. By contrast, the total cytochrome P450 (CYP) content and the expression of Cyp1a2 were down-regulated by the treatment. The induction of the HO-1 and Cyp2a5 was substantial at the mRNA, protein and enzyme activity levels. In each case, the up-regulation of HO-1 preceded that of Cyp2a5 with a 5-10h interval. BR totally inhibited the microsomal Cyp2a5-dependent coumarin hydroxylase activity, with an IC(50) approximately equal to the substrate concentration. The 7-methoxyresorufin 7-O-demethylase (MROD) activity, catalyzed mainly by the Cyp1a2, was inhibited up to 36% by BR. The microsomal BR degradation was inhibited by coumarin and a monoclonal antibody against the Cyp2a5 by about 90%. Furthermore, 7-methoxyresorufin, a substrate for the Cyp1a2, inhibited BR degradation activity by approximately 20%. In sum, the results strongly suggest a major role for Cyp2a5 in the oxidative degradation of BR. Secondly, the coordinated up-regulation of the HO-1 and Cyp2a5 during Cd-mediated injury implicates a network of enzyme systems in the maintenance of balancing BR production and elimination.
Collapse
Affiliation(s)
- A'edah Abu-Bakar
- National Research Centre for Environmental Toxicology, University of Queensland, 39 Kessels Road, Coopers Plains, 4108 Brisbane, Qld., Australia.
| | | | | |
Collapse
|
29
|
Abstract
Nicotine is of importance as the addictive chemical in tobacco, pharmacotherapy for smoking cessation, a potential medication for several diseases, and a useful probe drug for phenotyping cytochrome P450 2A6 (CYP2A6). We review current knowledge about the metabolism and disposition kinetics of nicotine, some other naturally occurring tobacco alkaloids, and nicotine analogs that are under development as potential therapeutic agents. The focus is on studies in humans, but animal data are mentioned when relevant to the interpretation of human data. The pathways of nicotine metabolism are described in detail. Absorption, distribution, metabolism, and excretion of nicotine and related compounds are reviewed. Enzymes involved in nicotine metabolism including cytochrome P450 enzymes, aldehyde oxidase, flavin-containing monooxygenase 3, amine N-methyltransferase, and UDP-glucuronosyltransferases are represented, as well as factors affecting metabolism, such as genetic variations in metabolic enzymes, effects of diet, age, gender, pregnancy, liver and kidney diseases, and racial and ethnic differences. Also effects of smoking and various inhibitors and inducers, including oral contraceptives, on nicotine metabolism are discussed. Due to the significance of the CYP2A6 enzyme in nicotine clearance, special emphasis is given to the effects and population distributions of CYP2A6 alleles and the regulation of CYP2A6 enzyme.
Collapse
Affiliation(s)
- Janne Hukkanen
- Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco Genreral Hospital Medical Center, and the Department of Medicine, University of California, San Francisco, Box 1220, San Francisco, CA 94143-1220, USA
| | | | | |
Collapse
|
30
|
Christian K, Lang M, Maurel P, Raffalli-Mathieu F. Interaction of heterogeneous nuclear ribonucleoprotein A1 with cytochrome P450 2A6 mRNA: implications for post-transcriptional regulation of the CYP2A6 gene. Mol Pharmacol 2004; 65:1405-14. [PMID: 15155834 DOI: 10.1124/mol.65.6.1405] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human xenobiotic-metabolizing enzyme cytochrome P450, CYP2A6, catalyzes the bioactivation of a number of carcinogens and drugs and is overexpressed in cases of liver diseases, such as cirrhosis, viral hepatitis, and parasitic infestation, and in certain tumor cells. This suggests that CYP2A6 may be a major liver catalyst in pathological conditions. In the present study, we have addressed molecular mechanisms underlying the regulation of the CYP2A6 gene. We present evidence of several proteins present in human hepatocytes that interact specifically with the 3'-untranslated region (UTR) of CYP2A6 mRNA. Biochemical and immunological evidence show that the RNA-protein complex of highest intensity contains the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 or a closely related protein. Mapping of the hnRNP A1 binding site within CYP2A6 3'-UTR reveals that the smallest portion of RNA supporting significant binding consists of 111 central nucleotides of the 3'-UTR. Our studies also indicate that hnRNPA1 from HepG2 cancer cells exhibits modified binding characteristics to the CYP2A6 3'-UTR compared with primary hepatocytes. We found that the level of CYP2A6 mRNA remains high in conditions of impaired transcription in primary human hepatocytes, showing that CYP2A6 expression can be affected post-transcriptionally in conditions of cellular stress. Our results indicate that the post-transcriptional regulation involves interaction of the hnRNP A1 protein with CYP2A6 mRNA. The present data suggest that hnRNPA1 is a critical regulator of expression of the human CYP2A6 gene and support the notion that this P450 isoform may be of particular significance in stressed human liver cells.
Collapse
Affiliation(s)
- Kyle Christian
- Department of Pharmaceutical Biosciences, Division of Biochemistry, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
31
|
Salama SA, Au WW. Susceptibility and biomarker knowledge for improvement of environmental health. Int J Hyg Environ Health 2003; 206:401-12. [PMID: 12971696 DOI: 10.1078/1438-4639-00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
At the international level, environmental health problems are usually most serious in countries that have the least resources to deal with the problems. Therefore, international efforts have been initiated to achieve equitable environmental health globally. One approach is to conduct international collaborative studies. This approach has been successful in the building of scientific infrastructure in these countries so that they can address their own environmental health concerns and to sustain the environmental health programs. Using liver and oral cancers as models for discussion, examples of success in the identification of etiology and the mechanisms for the diseases are provided. For example, biomarkers are used to provide early warning signals for the disease. In addition, the application of the collected information for developing disease prevention and intervention programs is presented. Expertise in genetic susceptibility is used to provide a more precise understanding of the cancer process. With the precise knowledge, the information can potentially be used to screen for high-risk individuals and to develop "designer" intervention procedures against specific biochemical defects. Success in disease prevention is dependent upon multidisciplinary collaborations at the local and international levels.
Collapse
Affiliation(s)
- Salama A Salama
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1110, USA
| | | |
Collapse
|
32
|
Abstract
During infection or inflammation, the expression of cytochrome P450 and its dependent biotransformation pathways are modified. This results in a change in the capacity of the liver to handle drugs and in alterations in the production and elimination of endogenous substances throughout the body. The majority of the CYP isoforms are modified at pre-translational steps in protein synthesis, and, in most cases, cytokines are involved as mediators of the response. Recent information suggests that inflammatory responses that are localized to the CNS cause a loss of CYP within the brain. This is accompanied by a parallel down-regulation of CYP in peripheral organs that is mediated by a signaling pathway between the brain and periphery. This review covers the loss that occurs in the major mammalian CYP families in response to infection/inflammation and the mediator pathways that are key to this response.
Collapse
Affiliation(s)
- K W Renton
- Department of Pharmacology, Sir Charles Tupper Medical Building, Dalhousie University Halifax, Nova Scotia, Canada B3H 4H7.
| |
Collapse
|
33
|
Gilmore J, Rotondo F, Pelletier AM, LaMarre J, Alaoui-Jamali M, Kirby GM. Identification of a 43-kDa protein in human liver cytosol that binds to the 3'-untranslated region of CYP2A6 mRNA. Biochem Pharmacol 2001; 62:669-78. [PMID: 11551511 DOI: 10.1016/s0006-2952(01)00720-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatic expression of cytochrome P450 2A6 (CYP2A6) varies widely in humans and is induced during hepatitis; however, the mechanism regulating CYP2A6 has not been established. The murine orthologue Cyp2a5 is regulated post-transcriptionally by mRNA stabilization. A 43-kDa protein that binds to the 3'-untranslated region (3'-UTR) of Cyp2a5 mRNA has been identified, but its role in mRNA stabilization is unclear. We hypothesized that similar interactions occur between cytosolic proteins in human liver and CYP2A6 3'-UTR mRNA. We identified, by RNA electrophoretic mobility shift assay, an hepatic cytosolic protein that binds specifically to sequences in the 3'-UTR of CYP2A6. Complexes did not form with denatured proteins and were eliminated with proteinase K digestion. Complex formation was inhibited with a molar excess of unlabeled CYP2A6 RNA but not by non-specific competitor RNA. Protein-mRNA interactions were not affected by probe denaturation, suggesting that RNA secondary structure is not essential for binding. UV cross-linking of complexes revealed RNA-binding proteins in both human and mouse liver cytosols with molecular masses of approximately 43 kDa. Using truncated RNA probes corresponding to various lengths of CYP2A6 mRNA, the protein-binding site was localized to a 50-nucleotide region between bases 1478 and 1527 of the 3'-UTR. Complex formation with hepatic cytosolic protein from four human subjects correlated with levels of hepatic CYP2A6 microsomal protein, suggesting a possible regulatory role. Further characterization of the RNA-binding protein, the primary binding site, and the influence of this interaction on CYP2A6 mRNA stability will help to elucidate the relevance of these findings to the post-transcriptional control of CYP2A6.
Collapse
Affiliation(s)
- J Gilmore
- Department of Biomedical Sciences, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Jaitovitch-Groisman I, Fotouhi-Ardakani N, Schecter RL, Woo A, Alaoui-Jamali MA, Batist G. Modulation of glutathione S-transferase alpha by hepatitis B virus and the chemopreventive drug oltipraz. J Biol Chem 2000; 275:33395-403. [PMID: 10934196 DOI: 10.1074/jbc.m003754200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Persistent infection by hepatitis B virus (HBV) and exposure to chemical carcinogens correlates with the prevalence of hepatocellular carcinoma in endemic areas. The precise nature of the interaction between these factors is not known. Glutathione S-transferases (GST) are responsible for the cellular metabolism and detoxification of a variety of cytotoxic and carcinogenic compounds by catalysis of their conjugation with glutathione. Diminished GST activity could enhance cellular sensitivity to chemical carcinogens. We have investigated GST isozyme expression in hepatocellular HepG2 cells and in an HBV-transfected subline. Total GST activity and selenium-independent glutathione peroxidase activity are significantly decreased in HBV transfected cells. On immunoblotting, HBV transfected cells demonstrate a significant decrease in the level of GST Alpha class. Cytotoxicity assays reveal that the HBV transfected cells are more sensitive to a wide range of compounds known to be detoxified by GST Alpha conjugation. Although no significant difference in protein half-life between the two cell lines was found, semi-quantitative reverse transcription-polymerase chain reaction shows a reduced amount of GST Alpha mRNA in the transfected cells. Because the HBV x protein (HBx) seems to play a role in HBV transfection, we also demonstrated that expression of the HBx gene into HepG2 cells decreased the amount of GST Alpha protein. Transient transfection experiments using both rat and human GST Alpha (rGSTA5 and hGSTA1) promoters in HepG2 cells show a decreased CAT activity upon HBx expression, supporting a transcriptional regulation of both genes by HBx. This effect is independent of HBx interaction with Sp1. Treatment with oltipraz, an inducer of GST Alpha, partially overcomes the effect of HBx on both promoters. Promoter deletion studies indicate that oltipraz works through responsive elements distinct from AP1 or NF-kappaB transcription factors. Thus, HBV infection alters phase II metabolizing enzymes via different mechanisms than those modulated by treatment with oltipraz.
Collapse
Affiliation(s)
- I Jaitovitch-Groisman
- Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, The Center for Translational Research in Cancer, Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Kanamura S, Watanabe J. Cell biology of cytochrome P-450 in the liver. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:109-52. [PMID: 10804462 DOI: 10.1016/s0074-7696(00)98004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes P-450 (P-450) are members of a multigene superfamily of hemoproteins consisting the microsomal monooxygenase system with NADPH P-450 reductase (reductase) and/or reducing equivalents. Expression of many P-450 isoforms in hepatocytes is shown to be regulated at the level of transcription through interaction between cis-acting elements in the genes and DNA-binding (transacting) factors. Some isoforms of the CYP1A, 2B, 2E, and 3A subfamilies are regulated at the posttranscriptional level. For the topology of P-450 and reductase molecules in ER membrane of hepatocytes, models from stopped flow analysis and electron spin resonance are proposed. The densities of total P-450 and reductase molecules are revealed to be high enough to support the cluster model, suggesting that about ten P-450 molecules form an aggregate and surround one reductase molecule, and therefore the two enzymes form large micelles. ER proliferation after PB administration, which had been correlated with increase in P-450 level, is shown to be probably independent of the increase in P-450 level. There are considerable discrepancies among results reported on sublobular expression of various P-450 isoforms. Causes of the discrepancies are likely to be differences in experimental conditions of histochemical detection carried out and/or in species, strain, and/or sex.
Collapse
Affiliation(s)
- S Kanamura
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
36
|
Abstract
Coumarin 7-hydroxylation is catalysed by a high-affinity CYP2A6 enzyme in human liver microsomes. CYP2A6 is the only enzyme catalysing this reaction and consequently the formation of 7-hydroxycoumarin can be used as 'an in vitro and in vivo probe' for CYP2A6. CYP2A6 is a major contributor to the oxidative metabolism of nicotine and cotinine, and it also contributes, to a larger or smaller extent, to the metabolism of a few pharmaceuticals (e.g. fadrozole), nitrosamines, other carcinogens (e.g. aflatoxin B1) and a number of coumarin-type alkaloids. CYP2A6 may be inducible by antiepileptic drugs and it is decreased in alcohol-induced severe liver cirrhosis. Several mutated or deleted CYP2A6 alleles have been characterized. Although CYP2A6 represent up to 15% of human microsomes P450 proteins, it is still one of the less well characterised cytochrome P450 enzymes.
Collapse
Affiliation(s)
- O Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, PO Box 5000, FIN-90401, Oulu, Finland.
| | | | | | | |
Collapse
|
37
|
Posti K, Leinonen S, Tetri S, Kottari S, Viitala P, Pelkonen O, Raunio H. Modulation of murine phenobarbital-inducible CYP2A5, CYP2B10 and CYP1A enzymes by inhibitors of protein kinases and phosphatases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:19-26. [PMID: 10447669 DOI: 10.1046/j.1432-1327.1999.00539.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phenobarbital causes a multitude of effects in hepatocytes, including increased cell proliferation, inhibition of apoptosis and upregulation of xenobiotic and endobiotic metabolizing enzymes. In this study, the involvement of several protein kinase and phosphatase pathways on constitutive and phenobarbital-induced activities of CYP2A5, CYP2B10 and CYP1A1/2 in primary mouse hepatocytes was determined using well-defined chemical modulators of intracellular protein phosphorylation and desphosphorylation events. A 48-h treatment of the hepatocytes with 2-aminopurine, a nonspecific serine/threonine kinase inhibitor, elicited dose-dependent increases in both basal and phenobarbital-induced CYP2A5 catalytic activity (assayed as coumarin 7-hydroxylation), the maximal induction being 60-fold greater than the control value upon cotreatment with 1.5 mM phenobarbital and 10 mM 2-aminopurine. In contrast, phenobarbital induction of CYP2B10 (pentoxyresorufin O-deethylase) and CYP1A1/2 (ethoxyresorufin O-deethylase) activities were blocked by 2-aminopurine. Increases in CYP2A5 activity were also observed after exposure of the hepatocytes to other protein kinase inhibitors affecting the cell cycle, i.e. roscovitine, K-252a and rapamycin. Inhibitors of protein kinases A and C, as well as tyrosine kinases, did not appreciably affect CYP2A5 activity levels. The serine/threonine phosphatase inhibitors tautomycin, calyculin A and okadaic acid all reduced both basal and phenobarbital-induced CYP2A5, CYP2B10 and CYP1A1/2 activities. These results further strengthen the concept that hepatic CYP2A5 is regulated in a unique way compared with CYP2B10 and CYP1A.
Collapse
Affiliation(s)
- K Posti
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- S Ekins
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | |
Collapse
|
39
|
Kammer AR, van der Burg SH, Grabscheid B, Hunziker IP, Kwappenberg KM, Reichen J, Melief CJ, Cerny A. Molecular mimicry of human cytochrome P450 by hepatitis C virus at the level of cytotoxic T cell recognition. J Exp Med 1999; 190:169-76. [PMID: 10432280 PMCID: PMC2195568 DOI: 10.1084/jem.190.2.169] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is thought to be involved in the pathogenesis of autoimmune hepatitis (AIH) type 2, which is defined by the presence of type I antiliver kidney microsome autoantibodies directed mainly against cytochrome P450 (CYP)2D6 and by autoreactive liver infiltrating T cells. Virus-specific CD8(+) cytotoxic T lymphocytes (CTLs) that recognize infected cells and contribute to viral clearance and tissue injury during HCV infection could be involved in the induction of AIH. To explore whether the antiviral cellular immunity may turn against self-antigens, we characterized the primary CTL response against an HLA-A*0201-restricted HCV-derived epitope, i.e., HCV core 178-187, which shows sequence homology with human CYP2A6 and CYP2A7 8-17. To determine the relevance of these homologies for the pathogenesis of HCV-associated AIH, we used synthetic peptides to induce primary CTL responses in peripheral blood mononuclear cells of healthy blood donors and patients with chronic HCV infection. We found that the naive CTL repertoire of both groups contains cross-reactive CTLs inducible by the HCV peptide recognizing both CYP2A6 and CYP2A7 peptides as well as endogenously processed CYP2A6 protein. Importantly, we failed to induce CTLs with the CYP-derived peptides that showed a lower capacity to form stable complexes with the HLA-A2 molecule. These findings demonstrate the potential of HCV to induce autoreactive CD8(+) CTLs by molecular mimicry, possibly contributing to virus-associated autoimmunity.
Collapse
Affiliation(s)
- Andreas R. Kammer
- From the Department of Internal Medicine, University Hospital, Inselspital, 3010 Bern, Switzerland
| | - Sjoerd H. van der Burg
- Department of Immunohematology and Blood Bank, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Benno Grabscheid
- From the Department of Internal Medicine, University Hospital, Inselspital, 3010 Bern, Switzerland
| | - Isabelle P. Hunziker
- From the Department of Internal Medicine, University Hospital, Inselspital, 3010 Bern, Switzerland
| | - Kitty M.C. Kwappenberg
- Department of Immunohematology and Blood Bank, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jürg Reichen
- Institute of Clinical Pharmacology, University Hospital, Inselspital, 3010 Bern, Switzerland
| | - Cornelis J.M. Melief
- Department of Immunohematology and Blood Bank, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Andreas Cerny
- From the Department of Internal Medicine, University Hospital, Inselspital, 3010 Bern, Switzerland
| |
Collapse
|
40
|
Davila JC, Morris DL. Analysis of cytochrome P450 and phase II conjugating enzyme expression in adult male rat hepatocytes. In Vitro Cell Dev Biol Anim 1999; 35:120-30. [PMID: 10476907 DOI: 10.1007/s11626-999-0013-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The induction of cytochrome P450 (CYP450) and Phase II conjugating enzymes by prototypical hepatic enzyme inducers was studied in adult male rat hepatocytes. Hepatocytes were suspended and cultured in diluted Matrigel in a basal serum-free Dulbecco's modified Eagle medium and exposed to the prototypical liver enzyme inducers, 3-methylcholanthrene, phenobarbital, hydrocortisone, and clofibrate for 48 h. Total RNA and microsomes were isolated and prepared, respectively, at 72 h. The expression of CYP1A1, CYP1A2, CYP2B1, CYP2C11, CYP2E1, CYP3A1, CYP3A2, CYP4A1, fatty acyl-CoA oxidase, uridine diphosphate-glucuronosyltransferase, glutathione-S-transferase, and sulfotransferase was determined at the mRNA level with reverse transcriptase polymerase chain reaction (RT-PCR). The expression of CYP1A1, CYP2B1, CYP2C11, CYP2E1, and CYP4A1 was also measured at the apoprotein level by Western immunoblotting. Using these culture and expression analysis techniques, we have found that the expression of these metabolic enzymes can be maintained in culture for up to 7 d at the mRNA and apoprotein levels. In addition, hepatocytes were found to respond to chemical enzyme inducers with marked increases in enzyme expression at either the mRNA or protein level and in a concentration-related fashion. Cells were responsive to enzyme induction as early as 24 h after initial plating. The results obtained from this investigation indicate that the presence of diluted Matrigel (at a concentration of 0.35 mg/ml), the use of low concentrations of insulin (1 microM), hydrocortisone (0.1 microM), and serum-free culture medium can maintain the differentiated phenotype and responsiveness of cultured hepatocytes to chemical-induced metabolic enzyme expression. Under the conditions used in this study, enzyme induction in adult male rat hepatocytes shows close agreement with enzyme induction observed in the livers of rats exposed to these or similar prototypical enzyme inducers. Rat hepatocytes cultured in the presence of diluted Matrigel coupled with enzyme mRNA expression analysis with RT-PCR are proven to be a valuable and important in vitro toxicological approach to assess the chemical-induced changes in expression of liver CYP450 and Phase II conjugating enzymes.
Collapse
Affiliation(s)
- J C Davila
- Monsanto Life Sciences/Searle Pharmaceuticals, St. Louis, Missouri 63167, USA
| | | |
Collapse
|
41
|
Thulke-Gross M, Hergenhahn M, Tilloy-Ellul A, Lang M, Bartsch H. Pyrazole-inducible proteins in DBA/2 mouse liver bind with high affinity to the 3'-untranslated regions of the mRNAs of coumarin hydroxylase (CYP2A5) and c-jun. Biochem J 1998; 331 ( Pt 2):473-81. [PMID: 9531487 PMCID: PMC1219378 DOI: 10.1042/bj3310473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An important mechanism in the up-regulation of cytochrome P-450 2A5 (CYP2A5, coumarin hydroxylase, Coh) is the stabilization of the corresponding mRNA; some evidence suggests that proteins binding to CYP2A5 mRNA may be involved in this stabilization. Here we report that pyrazole, a well known inducer of CYP2A5 and stabilizer of its message, enhances the binding of a set of proteins to 32P-labelled 3'-untranslated region (3'UTR) of CYP2A5 to give 32P-labelled bands of apparent molecular mass 37/39, 45/48 and 70/72 kDa after UV cross-linking/RNase cleavage; in addition, we found different proteins binding to other parts of CYP2A5 mRNA. The 70/72 kDa bands are also formed with the 3'UTR of c-jun. The inducible proteins are found in different cellular subfractions at different concentrations, with a maximum of five-fold induction of binding activity in microsomes. When a gel-mobility-shift assay was combined with UV cross-linking to resolve different pyrazole-inducible RNA-protein complexes into single RNA-binding protein bands, the smallest complex contained a double band of 37/39 kDa, 45/48 kDa bands, 70/72 kDa bands, and additional weaker bands at higher molecular masses (around 120 kDa). This composition was found also for all other complexes detected by gel-mobility-shift assay; occasionally, bands at higher molecular masses were also observed. The proteins of the smallest complex might therefore represent a core with which other proteins interact to build up larger complexes. Binding of proteins 37/39 kDa and 70/72 kDa was located to a 20-base loop and adjacent sequences in a 70 nt AU-rich region of the 3'UTR of the CYP2A5. Based on our previous evidence, this 70-nt sequence may play an important role in the stabilization and processing of the message.
Collapse
Affiliation(s)
- M Thulke-Gross
- Division of Toxicology and Cancer Risk Factors, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Raunio H, Juvonen R, Pasanen M, Pelkonen O, Pääkkö P, Soini Y. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology 1998; 27:427-32. [PMID: 9462641 DOI: 10.1002/hep.510270217] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hepatic cytochrome P4502A6 (CYP2A6) enzyme mediates the oxidative metabolism of several procarcinogens that have liver as their primary target. Mouse models indicate that liver tumors invariably overexpress CYP2A forms, and that inflammation and cirrhosis may regulate the CYP2A expression pattern. In this study, the distribution of the CYP2A6 protein was investigated in a series of 24 human hepatocellular carcinoma (HCC) samples by immunohistochemical analysis. A polyclonal antibody was raised in chicken against CYP2A5, the mouse orthologue of CYP2A6. The antibody was characterized and found to be specific for CYP2A members. In DBA/2 mouse liver, a strong increase of CYP2A5 protein amount, localized in the perivenous region, occurred in response to treatment with pyrazole. In human HCC samples, overexpression of CYP2A6 protein was associated with the presence of chronic inflammation and cirrhosis. CYP2A6 protein was observed in 9 of 16 (56%) of samples with non-neoplastic hepatocytes and in 10 of 24 (42%) HCC samples. The staining for CYP2A6 protein was very heterogeneous in tumor cells, suggesting that increased expression of CYP2A6 occurred in a distinct subpopulation of neoplastic cells. In Kaplan-Meyer survival analysis, there was a tendency toward a more favorable prognosis in patients with CYP2A6-positive tumors in comparison with patients with CYP2A6-negative tumors. These data suggest that, in human HCC, in contrast to mouse liver tumors, CYP2A6 overexpression is not an invariable phenotype.
Collapse
Affiliation(s)
- H Raunio
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
43
|
Gemechu-Hatewu M, Platt KL, Oesch F, Hacker HJ, Bannasch P, Steinberg P. Metabolic activation of aflatoxin B1 to aflatoxin B1-8,9-epoxide in woodchucks undergoing chronic active hepatitis. Int J Cancer 1997; 73:587-91. [PMID: 9389576 DOI: 10.1002/(sici)1097-0215(19971114)73:4<587::aid-ijc21>3.0.co;2-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic hepatitis B virus infection as well as consumption of food contaminated with the mycotoxin aflatoxin B1 are considered to be 2 major risk factors for the development of primary liver cancer in humans. Furthermore, epidemiological surveys indicate that hepatitis B virus and aflatoxin B1 might act synergistically to induce primary liver cancer. In the present study, we have tested the hypothesis that the metabolic activation of aflatoxin B1 to aflatoxin B1-8,9-epoxide, the ultimate mutagenic and carcinogenic mycotoxin metabolite, is enhanced in an experimental model of chronic hepatitis using woodchucks, chronically infected with the woodchuck hepatitis virus. Woodchuck liver microsomes were incubated with radiolabeled aflatoxin B1, the resulting aflatoxin B1-8,9-epoxide was trapped as a glutathione conjugate and its formation rate was determined by a reversed-phase HPLC analysis. In woodchuck hepatitis virus-positive woodchucks, activation of aflatoxin B1 to aflatoxin B1-8,9-epoxide was reduced when compared to woodchuck hepatitis virus-free animals, and the extent of the reduction was dependent on the severity of the hepatitis. Hence, at least in woodchucks, a chronic hepadnaviral infection does not lead to an enhanced activation of aflatoxin B1.
Collapse
|