1
|
Petrovick M, Shcherbina A, Farina EK, Thompson LA, Niro PJ, McClung JP, Lieberman HR. The minor allele of the serotonin transporter gene variant rs4251417 is associated with increased resilience in soldiers experiencing acute stress during survival training: preliminary findings. ANXIETY, STRESS, AND COPING 2025; 38:161-180. [PMID: 39165169 DOI: 10.1080/10615806.2024.2388850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Variation in cognitive, emotional and physical performance in response to stress is attributable to environmental and genetic factors. Ability to adapt to stress is resilience. OBJECTIVES This study investigated genetic factors associated with resilience in soldiers exposed to severe stress due to intense physical and mental demands at Survive, Evade, Resist and Escape school, a unique environment to study acute stress and resiliency in real-world circumstances. DESIGN A preliminary correlational study was conducted to identify genetic markers for resilience to stress. METHODS Mood state, resiliency and dissociative state of 73 soldiers were assessed using: Connor-Davidson Resilience Scale (CD-RISC); Profile of Mood States (POMS); and Clinician-Administered Dissociative States Scale (CADSS). Change scores for resilience-related stress markers were computed; 116 single nucleotide polymorphisms (SNPs) associated with stress, depression, anxiety, sleep, or psychiatric disorders were assessed. RESULTS A significant association between change in CD-RISC score and SNP rs4251417, present in an intron of SLC6A4, the serotonin transporter gene, was observed. CONCLUSIONS Individuals with the minor allele of SNP rs4251417 had a greater positive change in CD-RISC, indicating increased self-assessed resilience. This study suggests the minor allele of SNP rs4251417 of SLC6A4 is associated with resilience when individuals are exposed to high stress.
Collapse
Affiliation(s)
- Martha Petrovick
- Biological & Chemical Technologies, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Anna Shcherbina
- Biological & Chemical Technologies, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Emily K Farina
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Lauren A Thompson
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Philip J Niro
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Harris R Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
2
|
Dong C, Wang L, Barulin N, Alava JJ, Liu S, Xiong D. Maternal Daphnia magna exposure to the antidepressant sertraline causes molting disorder, multi-generational reproductive and serotonergic dysfunction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107161. [PMID: 39580971 DOI: 10.1016/j.aquatox.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/17/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
Sertraline, one of the most commonly used antidepressants, has exhibited a progressively escalating trend in usage over the course of the last decades years, which have been exacerbated by the COVID-19 pandemic. Here, this study assessed the transgenerational effects of sertraline on the aquatic microcrustacean Daphnia magna, a parthenogenetic model species. The parental D. magna (G0) were exposed to environmentally relevant concentrations of sertraline (0.1 and 10 μg/L) for 21 days at individual and population level, and observed exposure triggered specific increased fecundity and desynchronized molting. These alterations were partially inherited through three subsequent non-exposed generations (G1, G2, and G3), as evidenced by increased fecundity and disordered molting in G1, reduced fecundity in G2, and reduced body size of G3-offspring. The molt-related genes neverland 1 and hormone receptor 3 were significantly different to the control group simultaneously only in the exposed generation, which may well be responsible for the molting asynchrony. Vitellogenin plays an important role in reproduction, and our results indicate that its abnormal expression persists up to G3, which was highly correlated with the expression of serotonin transporter, the drug target of sertraline. This finding suggested that sertraline possesses a sustained reproductive toxicity and disrupting potential and may be associated with serotonin dysregulation caused by compensatory feedback of serotonin transporter. In combination with male birth and upregulation of doublesex and vitellogenin, sertraline was deemed to trigger a self-defense response of D. magna, known as "abandon-ship" by increasing reproductive inputs. However, no males was found in individual reproduction test in each generation, which may suggest some interaction between sertraline and population density. Our findings emphasize that the toxic effects of sertraline can be transferred to unexposed generations, even with different adverse consequences, implying that future studies need to focus on transgenerational delayed effects and the underlying mechanisms.
Collapse
Affiliation(s)
- Chenglong Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liqiang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nikolai Barulin
- Department of Ichthyology and Pisciculture, Belarusian State Agricultural Academy, Michurina 5, Gorki, 213407, Mogilev region, Belarus; Great Lakes Center, SUNY Buffalo State University, SAMC, 1300 Elmwood Avenue, Buffalo, 14222-1095, New York, USA
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shaoquan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Ziegler GC, Groß S, Boreatti A, Heine M, McNeill RV, Kranz TM, Romanos M, Jacob CP, Reif A, Kittel-Schneider S, Lesch KP. Suicidal behavior in ADHD: the role of comorbidity, psychosocial adversity, personality and genetic factors. DISCOVER MENTAL HEALTH 2024; 4:51. [PMID: 39499453 PMCID: PMC11538115 DOI: 10.1007/s44192-024-00103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Adult ADHD is associated with increased risk for suicide attempts, as indicated by investigations of population- and community-based cohorts. However, there is little data regarding suicide attempts in a clinical setting. To address this, we used a comprehensively phenotyped clinical adult ADHD (aADHD) cohort to assess to which extent comorbidity, psychosocial adversity, personality, and ADHD symptoms contribute to suicidal behavior in ADHD. Furthermore, we investigated a triallelic variation in the serotonin transporter-linked polymorphic region (5-HTTLPR), which has previously been associated with suicidal behavior. Depression, substance use, eating, and posttraumatic stress disorders were independently associated with past suicide attempts, whereas anxiety, somatoform, and obsessive-compulsive spectrum disorders showed no association. Pulmonary diseases also showed an association with suicidal behavior. Psychosocial factors including occupational status, marital status/living situation, externalizing behavior and psychiatric family history were strongly associated with past suicide attempts. ADHD symptoms of inattention and hyperactivity/impulsivity were not associated with past suicide attempts after adjustment for psychiatric comorbidity and psychosocial adversity. However, the personality trait of neuroticism fully mediated the association between depression and suicidal behavior. 5-HTTLPR was not associated with suicidal behavior, but an interaction with ADHD symptoms and subtype was found. Our data suggest that psychiatric comorbidity and psychosocial adversity are key factors for suicidal behavior in aADHD, with neuroticism representing a critical mediator of the association between depression and suicidality. Further research, preferentially with longitudinal study designs is needed to better understand causal factors for suicidal behavior to enable effective preventive action.
Collapse
Affiliation(s)
- Georg C Ziegler
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany.
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Silke Groß
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andrea Boreatti
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Monika Heine
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Christian P Jacob
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Psychiatry and Psychotherapy, Medius Hospital of Kirchheim, Kirchheim Unter Teck, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Soveid N, Barkhidarian B, Samadi M, Hatami M, Gholami F, Yekaninejad MS, Saedisomeolia A, Karbasian M, Siadat SD, Mirzaei K. Animal and plant protein intake association with mental health, tryptophan metabolites pathways, and gut microbiota in healthy women: a cross-sectional study. BMC Microbiol 2024; 24:390. [PMID: 39375584 PMCID: PMC11457455 DOI: 10.1186/s12866-024-03534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Mental health is affected by tryptophane (TRP) metabolism regulation. Diet-influenced gut microbiome regulates TRP metabolism. Thus, the present study aimed to explore the relationship between type of dietary protein intake, gut microbiota, TRP metabolites homeostasis, and mental well-being in healthy women. 91 healthy females aged 18-50 were recruited based on the study protocol. Validate and reliable questionnaires assessed dietary intake and mental health. Biochemical tests and gut microbiota composition were analyzed following the manufacturer's instructions for each enzyme-linked immune sorbent assay (ELISA) kit and Real-time quantitative polymerase chain reaction (qPCR) methods respectively. Regression methods were used to estimate the considered associations. The results show that in the fully adjusted model, plant protein consumption was partially inversely associated with depression risk (OR = 0.27; 95% CI: 0.06, 1.09; P = 0.06). Higher dietary animal protein intake was marginally associated with psychological distress (OR = 2.59; 95% CI: 0.91, 7.34; P = 0.07). KYN to serotonin ratio was inversely associated with animal protein consumption (ß = 1.10; 95% CI: -0.13, 2.33; P = 0.07). Firmicutes/Bacteriodetes ratio (β = -1.27 × 103, SE = 5.99 × 102, P = 0.03) was lower in the top tertile of plant protein. A partially negative correlation was found between dietary animal protein and Prevotella abundance (β = -9.20 × 1018, SE = 5.04 × 1018, P = 0.06). Overall, significant inverse associations were found between a diet high in plant protein with mental disorders, KYN levels, and Firmicutes to Bacteroidetes ratio while adhering to higher animal protein could predispose women to psychological stress.
Collapse
Affiliation(s)
- Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran
| | - Bahareh Barkhidarian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran
| | - Mahsa Samadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran
| | - Mahsa Hatami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mir Saeid Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Saedisomeolia
- College of Health Sciences, Education Centre of Australia, Parramatta, NSW, 2153, Australia
- School of Human Nutrition, McGill University, Montreal, Canada
| | - Maryam Karbasian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, P.O Box 6446, Tehran, 14155, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, P.O Box 6446, Tehran, 14155, Iran.
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Sahu M, Vashishth S, Kukreti N, Gulia A, Russell A, Ambasta RK, Kumar P. Synergizing drug repurposing and target identification for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:111-169. [PMID: 38789177 DOI: 10.1016/bs.pmbts.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite dedicated research efforts, the absence of disease-curing remedies for neurodegenerative diseases (NDDs) continues to jeopardize human society and stands as a challenge. Drug repurposing is an attempt to find new functionality of existing drugs and take it as an opportunity to discourse the clinically unmet need to treat neurodegeneration. However, despite applying this approach to rediscover a drug, it can also be used to identify the target on which a drug could work. The primary objective of target identification is to unravel all the possibilities of detecting a new drug or repurposing an existing drug. Lately, scientists and researchers have been focusing on specific genes, a particular site in DNA, a protein, or a molecule that might be involved in the pathogenesis of the disease. However, the new era discusses directing the signaling mechanism involved in the disease progression, where receptors, ion channels, enzymes, and other carrier molecules play a huge role. This review aims to highlight how target identification can expedite the whole process of drug repurposing. Here, we first spot various target-identification methods and drug-repositioning studies, including drug-target and structure-based identification studies. Moreover, we emphasize various drug repurposing approaches in NDDs, namely, experimental-based, mechanism-based, and in silico approaches. Later, we draw attention to validation techniques and stress on drugs that are currently undergoing clinical trials in NDDs. Lastly, we underscore the future perspective of synergizing drug repurposing and target identification in NDDs and present an unresolved question to address the issue.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Neha Kukreti
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashima Gulia
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashish Russell
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
6
|
Paul A, Shukla D. Oligomerization of Monoamine Transporters. Subcell Biochem 2024; 104:119-137. [PMID: 38963486 DOI: 10.1007/978-3-031-58843-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.
Collapse
Affiliation(s)
- Arnav Paul
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Center for Biophysics and Quantitative Biology, Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Alyoshina NM, Tkachenko MD, Nikishina YO, Nikishin DA. Serotonin Transporter Activity in Mouse Oocytes Is a Positive Indicator of Follicular Growth and Oocyte Maturity. Int J Mol Sci 2023; 24:11247. [PMID: 37511007 PMCID: PMC10379015 DOI: 10.3390/ijms241411247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is known to be a regulator of oocyte maturation in a large number of animal species. In maturing mammalian oocytes, the accumulation of exogenous, maternal serotonin occurs due to the activity of the membrane transporter SERT. In this work, we investigated how SERT activity in oocytes correlates with indicators of follicular selection and oocyte maturity. An immunohistochemical study showed that the difference in the 5-HT intake activity in oocytes does not correlate with the marker of apoptosis in follicular cells, but positively correlates with markers of follicular growth, such as granulosa proliferation and follicle size. Functional analysis of oocytes at different stages of maturation showed that the expression and activity of SERT increases with oocyte maturation. An in vivo experiment on administration of the selective serotonin reuptake inhibitor fluoxetine (20 mg/kg) for 7 days showed a significant decrease in the content of serotonin in both growing GV-oocytes and ovulated mature MII-oocytes. The data obtained clearly indicate that the mechanism of specific membrane transport of serotonin normally ensures the accumulation of serotonin in maturing oocytes, and can be considered as a promising positive marker of their mature status.
Collapse
Affiliation(s)
- Nina M Alyoshina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Maria D Tkachenko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119991 Moscow, Russia
| | - Yulia O Nikishina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Denis A Nikishin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119991 Moscow, Russia
| |
Collapse
|
8
|
Liang SS, Shen PT, Liang YQ, Ke YW, Cheng CW, Lin YR. Assisted Reductive Amination for Quantitation of Tryptophan, 5-Hydroxytryptophan, and Serotonin by Ultraperformance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2023; 28:4580. [PMID: 37375135 DOI: 10.3390/molecules28124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Herein, we used isotopic formaldehyde and sodium cyanoborohydride via reductive amination to label two methyl groups on primary amine to arrange the standards (h2-formaldehyde-modified) and internal standards (ISs, d2-formaldehyde-modified) of tryptophan and its metabolites, such as serotonin (5-hydroxytryptamine) and 5-hydroxytryptophan. These derivatized reactions with a high yield are very satisfactory for manufacturing standards and ISs. This strategy will generate one or two methyl groups on amine to create different mass unit shifts with 14 vs. 16 or 28 vs. 32 in individual compounds for biomolecules with amine groups. In other words, multiples of two mass units shift are created using this derivatized method with isotopic formaldehyde. Serotonin, 5-hydroxytryptophan, and tryptophan were used as examples to demonstrate isotopic formaldehyde-generating standards and ISs. h2-formaldehyde-modified serotonin, 5-hydroxytryptophan, and tryptophan are standards to construct calibration curves, and d2-formaldehyde-modified analogs such as ISs spike into samples to normalize the signal of each detection. We utilized multiple reaction monitoring modes and triple quadrupole mass spectrometry to demonstrate the derivatized method suitable for these three nervous biomolecules. The derivatized method demonstrated a linearity range of the coefficient of determinations between 0.9938 to 0.9969. The limits of detection and quantification ranged from 1.39 to 15.36 ng/mL.
Collapse
Affiliation(s)
- Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Science, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Tsun Shen
- Protein Chemistry Core Laboratory, Core Instrument Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Qing Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Wen Ke
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chieh-Wen Cheng
- Bachelor Program in Industrial Technology, College of Future, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, School of Environment and Life Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| |
Collapse
|
9
|
Emons B, Arning L, Makulla VE, Suchy MT, Tsikas D, Lücke T, Epplen JT, Juckel G, Roser P. Endocannabinergic modulation of central serotonergic activity in healthy human volunteers. Ann Gen Psychiatry 2023; 22:11. [PMID: 36932421 PMCID: PMC10024405 DOI: 10.1186/s12991-023-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 02/15/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The serotonergic and the endocannabinoid system are involved in the etiology of depression. Depressive patients exhibit low serotonergic activity and decreased level of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2AG). Since the cannabinoid (CB) 1 receptor is activated by endogenous ligands such as AEA and 2AG, whose concentration are controlled by the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, respectively, we investigated the effects on serotonergic utilization. In this study, we investigated the impact of the rs1049353 single-nucleotide polymorphism (SNP) of the cannabinoid receptor 1 (CNR1) gene, which codes the endocannabinoid CB1 receptor, and the rs324420 SNP of the FAAH gene on the serotonergic and endocannabinoid system in 59 healthy volunteers. METHODS Serotonergic activity was measured by loudness dependence of auditory-evoked potentials (LDAEP). Plasma concentrations of AEA, 2AG and its inactive isomer 1AG were determined by mass spectrometry. Genotyping of two SNPs (rs1049353, rs344420) was conducted by polymerase chain reaction (PCR) and differential enzymatic analysis with the PCR restriction fragment length polymorphism method. RESULTS Genotype distributions by serotonergic activity or endocannabinoid concentration showed no differences. However, after detailed consideration of the CNR1-A-allele-carriers, a reduced AEA (A-allele-carrier M = 0.66, SD = 0.24; GG genotype M = 0.72, SD = 0.24) and 2AG (A-allele-carriers M = 0.70, SD = 0.33; GG genotype M = 1.03, SD = 0.83) plasma concentration and an association between the serotonergic activity and the concentrations of AEA and 2AG has been observed. CONCLUSIONS Our results suggest that carriers of the CNR1-A allele may be more susceptible to developing depression.
Collapse
Affiliation(s)
- Barbara Emons
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany.
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Vera-Estelle Makulla
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany
| | | | - Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hanover, Germany
| | - Thomas Lücke
- Department of Neuropediatrics, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany
| | - Patrik Roser
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1-3, 44791, Bochum, Germany
| |
Collapse
|
10
|
Sheikhi A, Siassi F, Djazayery A, Guilani B, Azadbakht L. Plant and animal protein intake and its association with depression, anxiety, and stress among Iranian women. BMC Public Health 2023; 23:161. [PMID: 36694166 PMCID: PMC9872399 DOI: 10.1186/s12889-023-15100-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mental disorders are conditions that affect the usual function of the brain, causing a huge burden on societies. The causes are often unclear, but previous research has pointed out, as is the case with many other diseases, that nutrition could have a major role in it. Amino acids, the building blocks of proteins, are the main precursor of neurotransmitters (the chemical messengers in the brain) malfunction of which is heavily associated with a wide range of brain disorders. METHODS We assumed different sources of dietary protein could have different impacts on mental well-being. Hence, we decided to collect the nutritional data (with a validated and reliable semi-quantitative food-frequency questionnaire) from a sample of 489 Iranian women and investigate the association between animal and plant protein sources and the risk of depression, anxiety, and stress. Symptoms of these mental disorders were assessed using a validated Depression, Anxiety, and Stress Scales (DASS) questionnaire with 21 items. RESULTS After multivariable adjustment, it was shown that women in the highest tertile of animal protein intake were more likely to show symptoms of depression (OR: 2.63; 95% CI: 1.45, 4.71; P = 0.001), anxiety (OR: 1.83; 95% CI: 1.04, 3.22; P = 0.03), and stress (OR: 3.66; 95% CI: 2.06, 6.50; p < 0.001). While no significant association was seen between plant protein and any of the studied mental disorders. CONCLUSION Overall, our findings suggest that a diet high in animal protein could predispose individuals to mental illnesses.
Collapse
Affiliation(s)
- Ali Sheikhi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran
| | - Fereydoun Siassi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran
| | - Abolghassem Djazayery
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran
| | - Bijan Guilani
- grid.46072.370000 0004 0612 7950Department of Clinical Psychology, University of Tehran, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran. .,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
11
|
Study on Antidepressant Emotion Regulation Based on Feedback Analysis of Music Therapy with Brain-Computer Interface. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7200678. [PMID: 36245840 PMCID: PMC9556207 DOI: 10.1155/2022/7200678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
In today's society, people with poor mental ability are prone to neuropsychiatric diseases such as anxiety, ADHD, and depression due to long-term negative emotions. Although conventional Western medicine has certain curative effect, these drugs have significant anticholinergic side effects central toxicity as well as cardiovascular and gastrointestinal side effects which limit their application in the elderly. At present, several antidepressants used in clinic have certain limitations. According to the symptoms of depression, this paper proposes a feedback emotion regulation method of brain-computer interface music therapy. This method uses special music stimulation to regulate the release of inhibiting sex hormones in the body, reduce the influence of negative emotions on the internal environment of the body, and maintain the steady state of the body. In this method, EEG is used as the emotional control signal of depressed patients, and this biological signal is transformed into music that depressed patients can understand, so as to clarify their physiological and psychological state and realize emotional self-regulation by feedback.
Collapse
|
12
|
Dunham KE, Venton BJ. SSRI antidepressants differentially modulate serotonin reuptake and release in Drosophila. J Neurochem 2022; 162:404-416. [PMID: 35736504 PMCID: PMC9427694 DOI: 10.1111/jnc.15658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are commonly prescribed treatments for depression, but their effects on serotonin reuptake and release are not well understood. Drosophila melanogaster, the fruit fly, expresses the serotonin transporter (dSERT), the major target of SSRIs, but real-time serotonin changes after SSRIs have not been characterized in this model. The goal of this study was to characterize effects of SSRIs on serotonin concentration and reuptake in Drosophila larvae. We applied various doses (0.1-100 μM) of fluoxetine (Prozac), escitalopram (Lexapro), citalopram (Celexa), and paroxetine (Paxil), to ventral nerve cord (VNC) tissue and measured optogenetically-stimulated serotonin release with fast-scan cyclic voltammetry (FSCV). Fluoxetine increased reuptake from 1 to 100 μM, but serotonin concentration only increased at 100 μM. Thus, fluoxetine occupies dSERT and slows clearance but does not affect concentration. Escitalopram and paroxetine increased serotonin concentrations at all doses, but escitalopram increased reuptake more. Citalopram showed lower concentration changes and faster reuptake profiles compared with escitalopram, so the racemic mixture of citalopram does not change reuptake as much as the S-isomer. Dose response curves were constructed to compare dSERT affinities and paroxetine showed the highest affinity and fluoxetine the lowest. These data demonstrate SSRI mechanisms are complex, with separate effects on reuptake or release. Furthermore, dynamic serotonin changes in Drosophila are similar to previous studies in mammals. This work establishes how antidepressants affect serotonin in real-time, which is useful for future studies that will investigate pharmacological effects of SSRIs with different genetic mutations in Drosophila.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Virginia, USA
| |
Collapse
|
13
|
Baldo BA. Current research in pathophysiology of opioid-induced respiratory depression, neonatal opioid withdrawal syndrome, and neonatal antidepressant exposure syndrome. Curr Res Toxicol 2022; 3:100078. [PMID: 35734228 PMCID: PMC9207297 DOI: 10.1016/j.crtox.2022.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Respiratory depression (RD) is the primary cause of death due to opioids. Opioids bind to mu (µ)-opioid receptors (MORs) encoded by the MOR gene Oprm1, widely expressed in the central and peripheral nervous systems including centers that modulate breathing. Respiratory centers are located throughout the brainstem. Experiments with Oprm1-deleted knockout (KO) mice undertaken to determine which sites are necessary for the induction of opioid-induced respiratory depression (OIRD) showed that the pre-Bötzinger complex (preBötC) and the pontine Kölliker-Fuse nucleus (KF) contribute equally to OIRD but RD was not totally eliminated. Morphine showed a differential influence on preBötC and KF neurons - low doses attenuated RD following deletion of MORs from preBötC neurons and an increase in apneas after high doses whereas deletion of MORs from KF neurons but not the preBötC attenuated RD at both high and low doses. In other KO mice studies, morphine administration after deletion of Oprm1 from both the preBötC and the KF/PBN neurons, led to the conclusion that both respiratory centres contribute to OIRD but the preBötC predominates. MOR-mediated post-synaptic activation of GIRK potassium channels has been implicated as a cause of OIRD. A complementary mechanism in the preBötC involving KCNQ potassium channels independent of MOR signaling has been described. Recent experiments in rats showing that morphine depresses normal, but not gasping breathing, cast doubt on the belief that eupnea, sighs, and gasps, are under the control of preBötC neurons. Methadone, administered to alleviate symptoms of neonatal opioid withdrawal syndrome (NOWES), desensitized rats to OIRD. Protection lost between postnatal days 1 and 2 coincides with the preBötC becoming the dominant generator of respiratory rhythm. Neonatal antidepressant exposure syndrome (NADES) and serotonin toxicity (ST) show similarities including RD. Enzyme CYP2D6 involved in opioid detoxification is polymorphic. Individuals of different CYP2D6 genotype may show increased, decreased, or no enzyme activity, contributing to the variability of patient responses to different opioids and OIRD.
Collapse
Key Words
- AAV, adeno-associated virus
- CDC, Centers for Disease control and prevention
- CTAP, MOR agonist (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2)
- DAMGO, synthetic specific MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin
- DRG, dorsal respiratory group
- FDA, Food and Drug Administration
- GIRK, G protein-gated inwardly-rectifying potassium (K+)
- GPCR, G protein-coupled receptor
- KCNQ, voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family
- KF, Kölliker-Fuse nucleus
- Kölliker-Fuse nucleus and opioid-induced respiratory depression
- MOR, mu opioid receptor
- NADES, neonatal antidepressant exposure syndrome
- NAS, neonatal abstinence syndrome
- NIH, National Institutes of Health
- NK-1R, neurokinin-1 receptor
- NOWES, neonatal opioid withdrawal syndrome
- Neonatal opioid withdrawal syndrome
- Neural mediation of opioid-induced respiratory depression
- OAD, opioid analgesic drug
- OIRD, opioid-induced respiratory depression
- PBL, lateral parabrachial
- PBN, parabrachial nucleus
- PRG, pontine respiratory group
- Pathophysiology of opioid-induced respiratory depression
- Pre-Bötzinger complex and opioid-induced respiratory depression
- RD, respiratory depression
- TACR1, tachykinin receptor 1
- VRG, ventral respiratory group
- preBötC, pre-Bötzinger complex
Collapse
Affiliation(s)
- Brian A. Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney and Department of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Witt CE, Mena S, Honan LE, Batey L, Salem V, Ou Y, Hashemi P. Low-Frequency Oscillations of In Vivo Ambient Extracellular Brain Serotonin. Cells 2022; 11:1719. [PMID: 35626755 PMCID: PMC9139485 DOI: 10.3390/cells11101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Serotonin is an important neurotransmitter that plays a major role in many aspects of neuroscience. Fast-scan cyclic voltammetry measures fast in vivo serotonin dynamics using carbon fiber microelectrodes. More recently, fast-scan controlled-adsorption voltammetry (FSCAV) has been developed to measure slower, minute-to-minute changes in ambient extracellular serotonin. We have previously demonstrated that FSCAV measurements of basal serotonin levels give critical information regarding brain physiology and disease. In this work, we revealed the presence of low-periodicity fluctuations in serotonin levels in mouse hippocampi, measured in vivo with FSCAV. Using correlation analyses, we found robust evidence of oscillations in the basal serotonin levels, which had a period of 10 min and were not present in vitro. Under control conditions, the oscillations did not differ between male and female mice, nor do they differ between mice that underwent a chronic stress paradigm and those in the control group. After the acute administration of a selective serotonin reuptake inhibitor, we observed a shift in the frequency of the oscillations, leading us to hypothesize that the newly observed fluctuations were transporter regulated. Finally, we optimized the experimental parameters of the FSCAV to measure at a higher temporal resolution and found more pronounced shifts in the oscillation frequency, along with a decreased oscillation amplitude. We postulate that this work may serve as a potential bridge for studying serotonin/endocrine interactions that occur on the same time scale.
Collapse
Affiliation(s)
- Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (C.E.W.); (L.E.H.); (Y.O.)
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (S.M.); (L.B.); (V.S.)
| | - Lauren E. Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (C.E.W.); (L.E.H.); (Y.O.)
| | - Lauren Batey
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (S.M.); (L.B.); (V.S.)
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (S.M.); (L.B.); (V.S.)
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (C.E.W.); (L.E.H.); (Y.O.)
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (C.E.W.); (L.E.H.); (Y.O.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (S.M.); (L.B.); (V.S.)
| |
Collapse
|
15
|
Salahinejad A, Attaran A, Meuthen D, Chivers DP, Niyogi S. Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150846. [PMID: 34626640 DOI: 10.1016/j.scitotenv.2021.150846] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
16
|
Suda K, Matsuda K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int J Mol Sci 2022; 23:ijms23031172. [PMID: 35163104 PMCID: PMC8835211 DOI: 10.3390/ijms23031172] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that the gut microbiome influences the brain functions and psychological state of its host via the gut-brain axis, and gut dysbiosis has been linked to several mental illnesses, including major depressive disorder (MDD). Animal experiments have shown that a depletion of the gut microbiota leads to behavioral changes, and is associated with pathological changes, including abnormal stress response and impaired adult neurogenesis. Short-chain fatty acids such as butyrate are known to contribute to the up-regulation of brain-derived neurotrophic factor (BDNF), and gut dysbiosis causes decreased levels of BDNF, which could affect neuronal development and synaptic plasticity. Increased gut permeability causes an influx of gut microbial components such as lipopolysaccharides, and the resultant systemic inflammation may lead to neuroinflammation in the central nervous system. In light of the fact that gut microbial factors contribute to the initiation and exacerbation of depressive symptoms, this review summarizes the current understanding of the molecular mechanisms involved in MDD onset, and discusses the therapeutic potential of probiotics, including butyrate-producing bacteria, which can mediate the microbiota-gut-brain axis.
Collapse
|
17
|
Tanahashi S, Tanii H, Konishi Y, Otowa T, Sasaki T, Tochigi M, Okazaki Y, Kaiya H, Okada M. Association of Serotonin Transporter Gene (5-HTTLPR/rs25531) Polymorphism with Comorbidities of Panic Disorder. Neuropsychobiology 2022; 80:333-341. [PMID: 33333511 DOI: 10.1159/000512699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Panic disorder (PD) has many comorbidities such as depression, bipolar disorder (BPD), and agoraphobia (AG). PD is a moderately heritable anxiety disorder whose pathogenesis is not well understood. Recently, a tri-allelic serotonin transporter (5-HTTLPR/rs25531) polymorphism was reported to be more sensitive to personality traits compared to the bi-allelic 5-HTTLPR polymorphism. We hypothesized that the 5-HTTLPR/rs25531 polymorphism may lead to a pathological anxious state depending on the presence or absence of a comorbidity in PD. METHODS In this study, we investigated the relationship between comorbidities in PD and tri-allelic 5-HTTLPR polymorphisms. A total of 515 patients with PD (148 males, 367 females) were genotyped, and the Revised NEO Personality Inventory as well as anxiety-related psychological tests were administered. Depression, BPD, and AG were diagnosed as comorbidities. RESULTS For the tri-allele 5-HTTLPR genotype, a significant interaction effect was found between openness to experience and comorbid depression. Examination of the interaction between AG and the tri-allelic 5-HTTLPR genotype revealed that L' allele carriers are associated with higher trait anxiety than the S'S' genotype group in PD without AG. CONCLUSION Some anxiety and personality traits can be characterized by the tri-allelic gene effect of 5-HTTLPR. These results suggest that tri-allelic 5-HTTLPR genotypes have genetic effects on the presence of comorbidities of PD.
Collapse
Affiliation(s)
- Shunsuke Tanahashi
- Division of Neuroscience, Department of Psychiatry, Graduate School of Medicine, Brain Science and Animal Model Research Center, Mie University, Tsu, Japan
| | - Hisashi Tanii
- Division of Neuroscience, Department of Psychiatry, Graduate School of Medicine, Brain Science and Animal Model Research Center, Mie University, Tsu, Japan, .,Center for Physical and Mental Health, Mie University, Tsu, Japan,
| | - Yoshiaki Konishi
- Division of Neuroscience, Department of Psychiatry, Graduate School of Medicine, Brain Science and Animal Model Research Center, Mie University, Tsu, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, NTT Medical Center Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuji Okazaki
- Department of Psychiatry, Koseikai Michinoo Hospital, Nagasaki, Japan
| | - Hisanobu Kaiya
- Panic Disorder Research Center, Warakukai Medical Corporation, Tokyo, Japan
| | - Motohiro Okada
- Division of Neuroscience, Department of Psychiatry, Graduate School of Medicine, Brain Science and Animal Model Research Center, Mie University, Tsu, Japan
| |
Collapse
|
18
|
Tanyeri MH, Buyukokuroglu ME, Tanyeri P, Mutlu O, Ozturk A, Yavuz K, Kaya RK. Effects of mirabegron on depression, anxiety, learning and memory in mice. AN ACAD BRAS CIENC 2021; 93:e20210638. [PMID: 34878051 DOI: 10.1590/0001-3765202120210638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Mirabegron is the first b3-adrenoceptor agonist to enter clinical practice and has been approved for the treatment of symptoms of OAB. The aim of this study is to investigate whether the mirabegron has an effect on depression, anxiety, learning, and memory. We investigated the effects of mirabegron on depression, anxiety, learning and memory by using forced swimming test, elevated plus maze test, passive avoidance and Morris water maze in mice. Imipramine and mirabegron (3, 6 and 9 mg/kg) significantly reduced immobility time in forced swimming test. Diazepam and mirabegron (3, 6 and 9 mg/kg) significantly increased the time spent in open arms and the number of entries to the open arms in elevated plus maze test. Furthermore, cognitive performance impaired with scopolamine has been significantly improved with 9 mg/kg mirabegron. Mirabegron (6 and 9 mg/kg) significantly increased the time spent in the target quadrant in naive mice. While scopolamine significantly increased the swimming speed, mirabegron (9 mg/kg) significantly decreased the swimming speed in scopolamine-treated mice. Mirabegron might be clinically useful for the treatment of OAB in elderly patients that should use drugs against depression and anxiety, without disrupt learning and memory.
Collapse
Affiliation(s)
- Mehmet H Tanyeri
- Yenikent Government Hospital, Department of Urology, Cahit Kirac Street, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Mehmet E Buyukokuroglu
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Pelin Tanyeri
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Oguz Mutlu
- Kocaeli University, Department of Pharmacology, Faculty of Medicine, Umuttepe street, Number 515, 41001, İzmit, 41380, Kocaeli, Turkey
| | - Aykut Ozturk
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Kubra Yavuz
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Rumeysa K Kaya
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| |
Collapse
|
19
|
Li X, Li J, Huang Y, Gong Q, Fu Y, Xu Y, Huang J, You H, Zhang D, Zhang D, Mao F, Zhu J, Wang H, Zhang H, Li J. The novel therapeutic strategy of vilazodone-donepezil chimeras as potent triple-target ligands for the potential treatment of Alzheimer's disease with comorbid depression. Eur J Med Chem 2021; 229:114045. [PMID: 34922191 DOI: 10.1016/j.ejmech.2021.114045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Depression is one of the most frequent comorbid psychiatric symptoms of Alzheimer's disease (AD), and no efficacious drugs have been approved specifically for this purpose thus far. Herein, we proposed a novel therapeutic strategy that merged the key pharmacophores of the antidepressant vilazodone (5-HT1A receptor partial agonist and serotonin transporter inhibitor) and the anti-AD drug donepezil (acetylcholinesterase inhibitor) together to develop a series of multi-target-directed ligands for potential therapy of the comorbidity of AD and depression. Accordingly, 55 vilazodone-donepezil chimeric derivatives were designed and synthesized, and their triple-target activities against acetylcholinesterase, 5-HT1A receptor, and serotonin transporter were systematically evaluated. Among them, compound 5 displayed strong triple-target bioactivities in vitro, low hERG potassium channel inhibition and acceptable brain distribution. Importantly, oral intake of 5 mg/kg of the compound 5 dihydrochloride significantly alleviated the depressive symptoms and ameliorated cognitive dysfunction in mouse models. In brief, these results highlight vilazodone-donepezil chimeras as a prospective therapeutic approach for the treatment of the comorbidity of AD and depression.
Collapse
Affiliation(s)
- Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jinwen Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yunyuan Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yan Fu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Junyang Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haolan You
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Dong Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Dan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, 5 Xue Ren Road, Dali, Yunnan, 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
20
|
Wei H, Frey AM, Jasanoff A. Molecular fMRI of neurochemical signaling. J Neurosci Methods 2021; 364:109372. [PMID: 34597714 DOI: 10.1016/j.jneumeth.2021.109372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) is the most widely applied technique for brain-wide measurement of neural function in humans and animals. In conventional functional MRI (fMRI), brain signaling is detected indirectly, via localized activity-dependent changes in regional blood flow, oxygenation, and volume, to which MRI contrast can be readily sensitized. Although such hemodynamic fMRI methods are powerful tools for analysis of brain activity, they lack specificity for the many molecules and cell types that play functionally distinct roles in neural processing. A suite of techniques collectively known to as "molecular fMRI," addresses this limitation by permitting MRI-based detection of specific molecular processes in deep brain tissue. This review discusses how molecular fMRI is coming to be used in the study of neurochemical dynamics that mediate intercellular communication in the brain. Neurochemical molecular fMRI is a potentially powerful approach for mechanistic analysis of brain-wide function, but the techniques are still in early stages of development. Here we provide an overview of the major advances and results that have been achieved to date, as well as directions for further development.
Collapse
Affiliation(s)
- He Wei
- Department of Biological Engineering, Massachusetts Institute of Technology, United States
| | - Abigail M Frey
- Department of Chemical Engineering, Massachusetts Institute of Technology, United States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, United States.
| |
Collapse
|
21
|
Dilworth MV, Findlay HE, Booth PJ. Detergent-free purification and reconstitution of functional human serotonin transporter (SERT) using diisobutylene maleic acid (DIBMA) copolymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183602. [PMID: 33744253 PMCID: PMC8111416 DOI: 10.1016/j.bbamem.2021.183602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Structure and function analysis of human membrane proteins in lipid bilayer environments is acutely lacking despite the fundame1ntal cellular importance of these proteins and their dominance of drug targets. An underlying reason is that detailed study usually requires a potentially destabilising detergent purification of the proteins from their host membranes prior to subsequent reconstitution in a membrane mimic; a situation that is exacerbated for human membrane proteins due to the inherent difficulties in overexpressing suitable quantities of the proteins. We advance the promising styrene maleic acid polymer (SMA) extraction approach to introduce a detergent-free method of obtaining stable, functional human membrane transporters in bilayer nanodiscs directly from yeast cells. We purify the human serotonin transporter (hSERT) following overexpression in Pichia pastoris using diisobutylene maleic acid (DIBMA) as a superior method to traditional detergents or the more established styrene maleic acid polymer. hSERT plays a pivotal role in neurotransmitter regulation being responsible for the transport of the neurotransmitter 5-hydroxytryptamine (5-HT or serotonin). It is representative of the neurotransmitter sodium symporter (NSS) family, whose importance is underscored by the numerous diseases attributed to their malfunction. We gain insight into hSERT activity through an in vitro transport assay and find that DIBMA extraction improves the thermostability and activity of hSERT over the conventional detergent method. The non-aromatic amphipathic polymer DIBMA can be successfully employed to purify human membrane proteins. DIBMA solubilisation of hSERT from yeast membranes and resultant nanodisc thermostability is comparable to SMA. DIBMA and SMA encapsulated hSERT lipid-nanodiscs exhibit higher binding activity than hSERT DDMCHS micelles. Proteoliposomes reconstituted with hSERT-DIBMALPs possess higher transport activity than comparable DDMCHS reconstitutions.
Collapse
Affiliation(s)
- Marvin V Dilworth
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| | - Heather E Findlay
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| | - Paula J Booth
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| |
Collapse
|
22
|
Marshe VS, Islam F, Maciukiewicz M, Bousman C, Eyre HA, Lavretsky H, Mulsant BH, Reynolds CF, Lenze EJ, Müller DJ. Pharmacogenetic Implications for Antidepressant Pharmacotherapy in Late-Life Depression: A Systematic Review of the Literature for Response, Pharmacokinetics and Adverse Drug Reactions. Am J Geriatr Psychiatry 2020; 28:609-629. [PMID: 32122803 DOI: 10.1016/j.jagp.2020.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Affecting up to 15% of older adults, late-life depression (LLD) is characterized by the occurrence of depressive symptoms after the age of 50-65 years and maybe pathophysiologically distinct from depression in younger adults. Therefore, LLD is challenging to treat, and predictive genetic testing might be essential to improve treatment in this vulnerable population. The current review aims to provide a summary of the literature exploring genetic associations with antidepressant treatment outcomes in late-life. We conducted a systematic search of three integrated electronic databases. We identified 29 articles investigating genetic associations with antidepressant treatment outcomes, pharmacokinetic parameters, and adverse drug reactions in older adults. Given the small number of investigations conducted in older adults, it is difficult to conclude the presence or absence of genetic associations with the outcomes of interest. In sum, the most substantial amount of evidence exists for the CYP2D6 metabolizer status, SLC6A4 5-HTTLPR, and BDNF rs6265. These findings are consistent in the literature when not restricting to older adults, suggesting that similar treatment recommendations may be provided for older adults regarding genetic variation, such as those outlined for CYP2D6 by the Clinical Pharmacogenetics Implementation Consortium. Nonetheless, further studies are required in well-characterized samples, including genome-wide data, to validate if similar treatment adjustments are appropriate in older adults, given that there appear to be significant effects of genetic variation on antidepressant treatment factors.
Collapse
Affiliation(s)
- Victoria S Marshe
- Institute of Medical Science, University of Toronto (VSM, BHM, DJM), Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada
| | - Farhana Islam
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada; Department of Pharmacology (FI, DJM), University of Toronto, Toronto, ON, Canada
| | - Malgorzata Maciukiewicz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology (CB), University of Calgary, Calgary, AB, Canada; Department of Psychiatry (CB), University of Melbourne, Melbourne, Victoria, Australia
| | - Harris A Eyre
- Innovation Institute, Texas Medical Center (HAE), Houston, TX; School of Medicine, IMPACT SRC, Deakin University (HAE), Geelong, Victoria, Australia; Brainstorm Lab, Department of Psychiatry and Behavioral Sciences (HAE), Stanford University, Palo Alto, CA; Discipline of Psychiatry (HAE), The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Lavretsky
- Department of Psychiatry (HL), University of California, Los Angeles, CA
| | - Benoit H Mulsant
- Institute of Medical Science, University of Toronto (VSM, BHM, DJM), Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada; Department of Psychiatry (BHM, DJM), University of Toronto, Toronto, ON, Canada
| | - Charles F Reynolds
- Department of Psychiatry (CFR), University of Pittsburgh, Pittsburgh, PA
| | - Eric J Lenze
- Healthy Mind Lab, Department of Psychiatry (EJL), Washington University, St. Louis, MO
| | - Daniel J Müller
- Institute of Medical Science, University of Toronto (VSM, BHM, DJM), Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (VSM, FI, MM, BHM, DJM), Toronto, ON, Canada; Department of Pharmacology (FI, DJM), University of Toronto, Toronto, ON, Canada; Department of Psychiatry (BHM, DJM), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Tafet GE, Nemeroff CB. Pharmacological Treatment of Anxiety Disorders: The Role of the HPA Axis. Front Psychiatry 2020; 11:443. [PMID: 32499732 PMCID: PMC7243209 DOI: 10.3389/fpsyt.2020.00443] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Stress in general, and early life stress in particular, has been associated with the development of anxiety and mood disorders. The molecular, biological and psychological links between stress exposure and the pathogenesis of anxiety and mood disorders have been extensively studied, resulting in the search of novel psychopharmacological strategies aimed at targets of the hypothalamic-pituitary-adrenal (HPA) axis. Hyperactivity of the HPA axis has been observed in certain subgroups of patients with anxiety and mood disorders. In addition, the effects of different anti-anxiety agents on various components of the HPA axis has been investigated, including benzodiazepines, tricyclic antidepressants (TCAs), and selective serotonin reuptake inhibitors (SSRIs). For example, benzodiazepines, including clonazepam and alprazolam, have been demonstrated to reduce the activity of corticotrophin releasing factor (CRF) neurons in the hypothalamus. TCAs and SSRIs are also effective anti-anxiety agents and these may act, in part, by modulating the HPA axis. In this regard, the SSRI escitalopram inhibits CRF release in the central nucleus of the amygdala, while increasing glucocorticoid receptor (GRs) density in the hippocampus and hypothalamus. The molecular effects of these anti-anxiety agents in the regulation of the HPA axis, taken together with their clinical efficacy, may provide further understanding about the role of the HPA axis in the pathophysiology of mood and anxiety disorders, paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo E. Tafet
- Department of Psychiatry and Neurosciences, Maimónides University, Buenos Aires, Argentina
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
24
|
The anaesthetist, opioid analgesic drugs, and serotonin toxicity: a mechanistic and clinical review. Br J Anaesth 2019; 124:44-62. [PMID: 31653394 DOI: 10.1016/j.bja.2019.08.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Most cases of serotonin toxicity are provoked by therapeutic doses of a combination of two or more serotonergic drugs, defined as drugs affecting the serotonin neurotransmitter system. Common serotonergic drugs include many antidepressants, antipsychotics, and opioid analgesics, particularly fentanyl, tramadol, meperidine (pethidine), and methadone, but rarely morphine and other related phenanthrenes. Symptoms of serotonin toxicity are attributable to an effect on monoaminergic transmission caused by an increased synaptic concentration of serotonin. The serotonin transporter (SERT) maintains low serotonin concentrations and is important for the reuptake of the neurotransmitter into the presynaptic nerve terminals. Some opioids inhibit the reuptake of serotonin by inhibiting SERT, thus increasing the plasma and synaptic cleft serotonin concentrations that activate the serotonin receptors. Opioids that are good inhibitors of SERT (tramadol, dextromethorphan, methadone, and meperidine) are most frequently associated with serotonin toxicity. Tramadol also has a direct serotonin-releasing action. Fentanyl produces an efflux of serotonin, and binds to 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptors, whilst methadone, meperidine, and more weakly tapentadol, bind to 5-HT2A but not 5-HT1A receptors. The perioperative period is a time where opioids and other serotonergic drugs are frequently administered in rapid succession, sometimes to patients with other serotonergic drugs in their system. This makes the perioperative period a relatively risky time for serotonin toxicity to occur. The intraoperative recognition of serotonin toxicity is challenging as it can mimic other serious syndromes, such as malignant hyperthermia, sepsis, thyroid storm, and neuroleptic malignant syndrome. Anaesthetists must maintain a heightened awareness of its possible occurrence and a readiness to engage in early treatment to avoid poor outcomes.
Collapse
|
25
|
Ran L, Ai M, Wang W, Chen J, Wu T, Liu W, Jin J, Wang S, Kuang L. Rare variants in SLC6A4 cause susceptibility to major depressive disorder with suicidal ideation in Han Chinese adolescents and young adults. Gene 2019; 726:144147. [PMID: 31629822 DOI: 10.1016/j.gene.2019.144147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Suicidal ideation (SI) is the most serious symptom of major depressive disorder (MDD) and considered an extreme state. The serotonin transporter gene (SLC6A4) plays a significant role in MDD and suicide pathophysiology. Previous studies have revealed an association between common variants of SLC6A4 with the risk of MDD and suicide. However, very few studies have so far focused on the degree to which rare variants of SLC6A4 are responsible for the depression observed in adolescent and young adult suicide patients. The aim of this study was to examine the impact of common and rare variants of SLC6A4 on the risk of Han Chinese adolescents and young adults suffering MDD with SI. METHODS Targeted sequencing of the SLC6A4 gene was conducted using FastTarget technology in Han Chinese adolescents and young adults, of which 74 were MDD patients with SI and 150 were healthy controls. Gene-based association analyses of rare variants were performed using enrichment analysis and a cumulative allele test. An allele association study was performed against common variants. RESULTS After sequencing and bioinformatics analysis, a total of 15 single nucleotide variants (SNVs) were detected in the targeted regions from all participants, including 9 common and 6 rare variants. Among these, 5 rare variants were identified within the study group. Enrichment analysis of rare variants demonstrated a statistical difference (p = 0.042) between the study and control groups. Using cumulative allele analysis, alternative alleles in the SLC6A4 gene exhibited an association with MDD patients with SI (cumulative allele: OR = 10.18, 95% CI = 1.18-87.32, p = 0.017). No significant association was found between the 9 common SLC6A4 variants and MDD patients with SI. CONCLUSIONS Our results suggest that rare variants of SLC6A4 may contribute to a genetic risk of adolescents and young adults suffering MDD with SI.
Collapse
Affiliation(s)
- Liuyi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Wei Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jiajia Jin
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Suya Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
26
|
Expression, purification and stabilization of human serotonin transporter from E. coli. Protein Expr Purif 2019; 164:105479. [PMID: 31442583 DOI: 10.1016/j.pep.2019.105479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022]
Abstract
The serotonin transporter belongs to the family of sodium-chloride coupled neurotransmitter transporter and is related to depression in humans. It is therefore an important drug target to support treatment of depression. Recently, structures of human serotonin transporter in complex with inhibitor molecules have been published. However, the production of large protein amounts for crystallization experiments remains a bottleneck. Here we present the possibility to obtain purified serotonin transporter from E. coli. Fos-choline 12 solubilized target protein was obtained with a purity of >95% and a yield of 1.2 mg L-1 culture in autoinduction medium. CD spectroscopic analysis of protein stability allowed identifying CHS and POPX as stabilizing components, which increased hSERT thermostability by 7 °C. The kinetic dissociation constant KD of 2.8 μM (±0.05) for of the inhibitor Desipramine was determined with a ka of 10,848 M - 1 s-1 (±220) and a kd of 0.03 s-1 (±4.7 × 10-5).
Collapse
|
27
|
Tuszynski J, Tilli TM, Levin M. Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Curr Pharm Des 2019; 23:4827-4841. [PMID: 28554310 PMCID: PMC6340161 DOI: 10.2174/1381612823666170530105837] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022]
Abstract
The activities of individual cells must be tightly coordinated in order to build and maintain complex 3-dimensional body structures during embryogenesis and regeneration. Thus, one way to view cancer is within systems biology as a network disorder affecting the ability of cells to properly interact with a morphodynamic field of instructive signals that keeps proliferation and migration orchestrated toward the anatomical needs of the host or-ganism. One layer of this set of instructive microenvironmental cues is bioelectrical. Voltage gradients among all somatic cells (not just excitable nerve and muscle) control cell behavior, and the ionic coupling of cells into networks via electrochemical synapses allows them to implement tissue-level patterning decisions. These gradients have been increasingly impli-cated in the induction and suppression of tumorigenesis and metastasis, in the emerging links between developmental bioelectricity to the cancer problem. Consistent with the well-known role of neurotransmitter molecules in transducing electrical activity to downstream cascades in the brain, serotonergic signaling has likewise been implicated in cancer. Here, we review these recent data and propose new approaches for manipulating bioelectric and neurotransmitter pathways in cancer biology based on a bioelectric view of cancer. To sup-port this methodology, we present new data on the effects of the SSRI Prozac and its analog (ZINC ID = ZINC06811610) on survival of both cancer (MCF7) and normal (MCF10A) breast cells exposed to these compounds. We found an IC50 concentration (25 μM for Pro-zac and 100 μM for the Prozac analog) at which these compounds inhibited tumor cell sur-vival and proliferation. Additionally, at these concentrations, we did not observe alterations in a non-tumoral cell line. This constitutes a proof-of-concept demonstration for our hy-pothesis that the use of both existing and novel drugs as electroceuticals could serve as an alternative to highly toxic chemotherapy strategies replacing or augmenting them with less toxic alternatives. We believe this new approach forms an exciting roadmap for future bio-medical advances.
Collapse
Affiliation(s)
- Jack Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta. Canada
| | - Tatiana M Tilli
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro. Brazil
| | - Michael Levin
- Biology Department, and Allen Discovery Center, Tufts University, Medford, MA, 02155. United States
| |
Collapse
|
28
|
PET imaging of the mouse brain reveals a dynamic regulation of SERT density in a chronic stress model. Transl Psychiatry 2019; 9:80. [PMID: 30745564 PMCID: PMC6370816 DOI: 10.1038/s41398-019-0416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023] Open
Abstract
The serotonin transporter (SERT, Slc6a4) plays an important role in the regulation of serotonergic neurotransmission and its aberrant expression has been linked to several psychiatric conditions. While SERT density has been proven to be amenable to in vivo quantitative evaluation by positron emission tomography (PET) in humans, this approach is in its infancy for rodents. Here we set out to evaluate the feasibility of using small-animal PET employing [11C]DASB ([11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile) as a radiotracer to measure SERT density in designated areas of the mouse brain. Using Slc6a4+/+, Slc6a4+/-, and Slc6a4-/- mice as a genetic model of different SERT expression levels, we showed the feasibility of SERT imaging in the mouse brain with [11C]DASB-PET. The PET analysis was complemented by an evaluation of SERT protein expression using western blot, which revealed a highly significant correlation between in vivo and ex vivo measurements. [11C]DASB-PET was then applied to the examination of dynamic changes of SERT levels in different brain areas in the chronic corticosterone mouse model of chronic stress. The observed significant reduction in SERT density in corticosterone-treated mice was independently validated by and correlated with western blot analysis. This is the first demonstration of a quantitative in vivo evaluation of SERT density in subregions of the mouse brain using [11C]DASB-PET. The evidenced decrease in SERT density in response to chronic corticosterone treatment adds a new dimension to the complex involvement of SERT in the pathophysiology of stress-induced mental illnesses.
Collapse
|
29
|
Reisinger SN, Kong E, Molz B, Humberg T, Sideromenos S, Cicvaric A, Steinkellner T, Yang J, Cabatic M, Monje FJ, Sitte HH, Nichols BJ, Pollak DD. Flotillin-1 interacts with the serotonin transporter and modulates chronic corticosterone response. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12482. [PMID: 29667320 PMCID: PMC6392109 DOI: 10.1111/gbb.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023]
Abstract
Aberrant serotonergic neurotransmission in the brain is considered at the core of the pathophysiological mechanisms involved in neuropsychiatric disorders. Gene by environment interactions contribute to the development of depression and involve modulation of the availability and functional activity of the serotonin transporter (SERT). Using behavioral and in vivo electrophysiological approaches together with biochemical, molecular-biological and molecular imaging tools we establish Flotillin-1 (Flot1) as a novel protein interacting with SERT and demonstrate its involvement in the response to chronic corticosterone (CORT) treatment. We show that genetic Flot1 depletion augments chronic CORT-induced behavioral despair and describe concomitant alterations in the expression of SERT, activity of serotonergic neurons and alterations of the glucocorticoid receptor transport machinery. Hence, we propose a role for Flot1 as modulatory factor for the depressogenic consequences of chronic CORT exposure and suggest Flotillin-1-dependent regulation of SERT expression and activity of serotonergic neurotransmission at the core of the molecular mechanisms involved.
Collapse
Affiliation(s)
- S. N. Reisinger
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - E. Kong
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - B. Molz
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - T. Humberg
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - S. Sideromenos
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - A. Cicvaric
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - T. Steinkellner
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - J.‐W. Yang
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - M. Cabatic
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - F. J. Monje
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - H. H. Sitte
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | | | - D. D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
30
|
Sørensen LK, Johannsen M. Sensitive determination of monoamine neurotransmitters, their main metabolites and precursor amino acids in different mouse brain components by liquid chromatography-electrospray tandem mass spectrometry after selective sample clean-up. Biomed Chromatogr 2019; 33:e4479. [PMID: 30597586 DOI: 10.1002/bmc.4479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
For the assessment of diets and supplements formulated for the treatment of phenylketonuria, a highly sensitive and selective method was developed and validated for the quantification of dopamine (DA), serotonin (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), phenylalanine, tyrosine and tryptophan in mouse cerebellum, brain stem, hypothalamus, parietal cortex, anterior piriform cortex and bulbus olfactorius. Samples were extracted by deproteinization with acetonitrile, and the extracts were cleaned up by strong anion exchange and weak cation exchange applied sequentially. The substances were detected by rapid liquid chromatography tandem mass spectrometry. Matrix components were largely removed by the clean-up, resulting in low matrix effects. The lower limits of quantification for an extracted tissue mass of 100 mg were 0.3, 0.3, 0.2 and 2 ng/g for DA, 5-HT, 5-HIAA and DOPAC, respectively. The mean true extraction recoveries were 80-102%. The relative intra-laboratory reproducibility standard deviations were generally <11% at concentrations of 20-1000 ng/g for DA, 5-HT, 5-HIAA and DOPAC and 7% at concentrations of 5-50 μg/g for the amino acids. This method was successfully used in a phenylketonuria mice study including nearly 300 brain tissue samples and for small sample masses (for example, 2 mg of bulbus olfactorius).
Collapse
Affiliation(s)
- Lambert K Sørensen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Mogens Johannsen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
31
|
Opioid analgesic drugs and serotonin toxicity (syndrome): mechanisms, animal models, and links to clinical effects. Arch Toxicol 2018; 92:2457-2473. [DOI: 10.1007/s00204-018-2244-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
|
32
|
Knyazev GG, Bazovkina DV, Savostyanov AN, Naumenko VS, Kuznetsova VB, Proshina EA. Suppression mediates the effect of 5-HTTLPR by stress interaction on depression. Scand J Psychol 2018; 58:373-378. [PMID: 28901577 DOI: 10.1111/sjop.12389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
A number of studies have shown that the presence of short (S), as opposed to long (L), allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with a higher risk for depression following exposure to stressful life events. However, many other studies failed to confirm this association. One reason for this inconsistency might be the fact that the interaction of the 5-HTTLPR polymorphism with stress may relate not to depression per se, but rather to adaptive or maladaptive emotion regulation strategies. Here we show that individuals homozygous for the long allele respond to stressful events by reappraising their emotional meaning, which may hamper the harmful effect of stress on mental health. In S genotype carriers, on the other hand, stress triggers the appearance of intrusive thoughts and vain attempts to suppress them, which in this group acts as a mediator between stress and depressive symptoms. These findings are in line with neuroimaging studies showing that 5-HTTLPR polymorphism has an effect on the connectivity among key areas involved in emotion regulation.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia
| | - Daria V Bazovkina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Russia
| | - Alexander N Savostyanov
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia.,Novosibirsk State University, Russia
| | | | - Valeriya B Kuznetsova
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia
| | - Ekaterina A Proshina
- Institute of Physiology and Fundamental Medicine, Russian Academy of Sciences, Russia
| |
Collapse
|
33
|
Error-related Brain Activity as a Treatment Moderator and Index of Symptom Change during Cognitive-Behavioral Therapy or Selective Serotonin Reuptake Inhibitors. Neuropsychopharmacology 2018; 43:1355-1363. [PMID: 29182160 PMCID: PMC5916360 DOI: 10.1038/npp.2017.289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 01/04/2023]
Abstract
Increased neural error monitoring, as measured by the error-related negativity (ERN), is a transdiagnostic neurobiological marker of anxiety. To date, little is known about whether the ERN can inform the choice between first-line anxiety disorder treatments and whether the ERN changes following treatment completion. The aim of the study was to therefore assess whether the ERN is a treatment moderator and index of symptom change during cognitive-behavioral therapy (CBT) or selective serotonin reuptake inhibitors (SSRIs). Participants included adult volunteers (M age=25.8±8.5; 67% female) with principal anxiety disorders (n=60) or no lifetime history of Axis I psychopathology (ie, healthy controls; n=26). A flanker task was used to elicit the ERN at baseline and 12 weeks later, following either CBT or SSRIs in the patient sample. Results indicated that baseline ERN was a significant treatment moderator such that a more enhanced baseline ERN was associated with greater reduction in anxiety symptoms within individuals who received CBT but not SSRIs. Results also revealed that the ERN increased pre- to post-treatment among patients randomized to SSRIs, but remained stable among patients randomized to CBT and healthy controls. Together, these novel findings highlight that ERN may help guide treatment decisions regarding engagement in CBT or SSRIs, especially among individuals with an enhanced ERN. The findings also suggest that SSRIs have the capacity to alter individual differences in the ERN, providing evidence that the ERN is not entirely static in patients with anxiety disorders.
Collapse
|
34
|
Ryu Y, Ogata T, Nagao M, Sawada Y, Nishimura R, Fujita N. Effects of Treadmill Training Combined with Serotonergic Interventions on Spasticity after Contusive Spinal Cord Injury. J Neurotrauma 2018; 35:1358-1366. [PMID: 29336209 DOI: 10.1089/neu.2017.5400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spasticity usually emerges during the course of recovery from spinal cord injury (SCI). While medications and physical rehabilitation are prescribed to alleviate spastic symptoms, the insufficiency of their effects remains an important problem to be addressed. Given the challenges associated with increasing the dose of medication, we hypothesized that a combination therapy with medication and physical rehabilitation can be effective. Therefore, we examined the effects of treadmill training (TMT) along with serotonergic medication using a spastic rat model after contusive injury. Spasticity-strong SCI rats were selected 4 weeks after SCI and received one of the following interventions for 2 weeks: only TMT, TMT with fluoxetine (a selective serotonin re-uptake inhibitor), TMT with cyproheptadine (a 5-HT2 receptor antagonist), only fluoxetine, or only cyproheptadine. We performed the swimming test to quantify the frequency of spastic behaviors. We also evaluated hindlimb locomotor functions every week. At the end of the intervention, we examined the Hoffman reflex from the plantar muscle and the immunoreactivity of the 5-HT2A receptor in spinal cord tissues. While the TMT group and cyproheptadine-treated groups showed decreased spastic behaviors and reduction in spinal hyperreflexia, the fluoxetine-treated group showed the opposite effect, even with TMT. Moreover, TMT suppressed the expression of the 5-HT2A receptor in the lumbar spinal motor neurons, while cyproheptadine treatment did not change it. We did not observe any differences in locomotor functions between the groups. Taken together, our findings indicate that TMT and cyproheptadine significantly alleviated spastic symptoms, but did not show synergistic or additive effects.
Collapse
Affiliation(s)
- Youngjae Ryu
- 1 Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan .,2 Department of Rehabilitation for the Movement Functions, Research Institute , National Rehabilitation Center, Saitama, Japan
| | - Toru Ogata
- 2 Department of Rehabilitation for the Movement Functions, Research Institute , National Rehabilitation Center, Saitama, Japan
| | - Motoshi Nagao
- 2 Department of Rehabilitation for the Movement Functions, Research Institute , National Rehabilitation Center, Saitama, Japan
| | - Yasuhiro Sawada
- 2 Department of Rehabilitation for the Movement Functions, Research Institute , National Rehabilitation Center, Saitama, Japan
| | - Ryohei Nishimura
- 1 Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Naoki Fujita
- 1 Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
35
|
Volle J, Bregman T, Scott B, Diwan M, Raymond R, Fletcher PJ, Nobrega JN, Hamani C. Deep brain stimulation and fluoxetine exert different long-term changes in the serotonergic system. Neuropharmacology 2018; 135:63-72. [PMID: 29505786 DOI: 10.1016/j.neuropharm.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 01/19/2023]
Abstract
Both selective serotonin reuptake inhibitors (SSRIs) and ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) modulate serotonergic activity. We compared the acute (1 day) and long-term (12 days) effects of vmPFC stimulation and fluoxetine on serotonin (5-HT) release and receptor expression in rats. Samples to measure serotonin levels were collected from the hippocampus using microdialysis. Serotonin transporter (SERT), 5-HT1A and 5-HT1B mRNA were measured using in situ hybridization. [3H]8-OH-DPAT and [125I]cyanopindolol autoradiography were used to measure 5-HT1A and 5-HT1B binding. Our results show that after fluoxetine injections serotonin levels were approximately 150% higher than at baseline. Twelve days later, pre-injection 5-HT extracellular concentration was substantially higher than on day 1. In contrast, serotonin levels following DBS were only 50% higher than at baseline. While pre-stimulation 5-HT on day 12 was significantly higher than on treatment day 1, no stimulation-induced 5-HT peak was recorded. SERT expression in the dorsal raphe was increased after acute fluoxetine and decreased following a single day of DBS. Neither fluoxetine nor DBS administered acutely substantially changed 5-HT1A or 5-HT1B binding. Chronic fluoxetine treatment, however, was associated with a decrease in [3H]8-OH-DPAT prefrontal cortex and hippocampus expression. In contrast, chronic DBS induced a significant increase in [125I]cyanopindolol binding in the prefrontal cortex, globus pallidus, substantia nigra and raphe nuclei. mRNA expression of 5-HT1A and 5-HT1B in raphe nuclei was not altered by either treatment. These results suggest that fluoxetine and DBS modulate activity of the serotonergic system but likely exert their effects through different mechanisms.
Collapse
Affiliation(s)
- Julien Volle
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Tatiana Bregman
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Brian Scott
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Mustansir Diwan
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Biopsychology Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement Hamani
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Harqauil Neuromodulation Centre, Hurvitz Brain Science Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
36
|
Rossi R, Lessi M, Manzini C, Bellina F. Synthesis and Biological Profiles of 4,5-, 1,5-, and 1,2-Diaryl-1 H -imidazoles. VICINAL DIARYL SUBSTITUTED HETEROCYCLES 2018:83-160. [DOI: 10.1016/b978-0-08-102237-5.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Li X, Wang H, Xu Y, Liu W, Gong Q, Wang W, Qiu X, Zhu J, Mao F, Zhang H, Li J. Novel Vilazodone-Tacrine Hybrids as Potential Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease Accompanied with Depression: Design, Synthesis, and Biological Evaluation. ACS Chem Neurosci 2017; 8:2708-2721. [PMID: 28872831 DOI: 10.1021/acschemneuro.7b00259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Depression is one of the most frequent psychiatric complications of Alzheimer's disease (AD), affecting up to 50% of the patients. A novel series of hybrid molecules were designed and synthesized by combining the pharmacophoric features of vilazodone and tacrine as potential multitarget-directed ligands for the treatment of AD with depression. In vitro biological assays were conducted to evaluate the compounds; among the 30 hybrids, compound 1e showed relatively balanced profiles between acetylcholinesterase inhibition (IC50 = 3.319 ± 0.708 μM), 5-HT1A agonist (EC50 = 107 ± 37 nM), and 5-HT reuptake inhibition (IC50 = 76.3 ± 33 nM). Compound 1e displayed tolerable hepatotoxicity and moderate hERG inhibition activity, and could penetrate the blood-brain barrier in vivo. Furthermore, an oral intake of 30 mg/kg 1e·HCl could significantly improve the cognitive function of scopolamine-induced amnesia mice and alleviate the depressive symptom in tail suspension test. The effectivity of 1e validates the rationality of our design strategy.
Collapse
Affiliation(s)
- Xiaokang Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Huan Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
| | - Yixiang Xu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Wenwen Liu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Qi Gong
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaoxia Qiu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jin Zhu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Fei Mao
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Haiyan Zhang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
38
|
Resting State Networks Mediate the Effect of Genotype by Environment Interaction on Mental Health. Neuroscience 2017; 369:139-151. [PMID: 29129791 DOI: 10.1016/j.neuroscience.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/21/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
A number of studies have shown that the presence of short (S) allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with a higher risk for depression following exposure to stressful life events. These findings are in line with neuroimaging studies showing that 5-HTTLPR polymorphism has an effect on the connectivity among key areas involved in emotion regulation. Here using mediated moderation analysis, we show that electrophysiological manifestations of resting state networks in the alpha frequency band mediate the effect of 5-HTTLPR by stress interaction on depression/anxiety symptoms in a nonclinical sample. Specifically, at the brain level, both L-allele homozygotes and S-allele carriers are similarly responsive to stress exposure. However, these brain responses seem to act as triggers of psychopathological symptoms in S-allele carriers, but as suppressors in L-allele homozygotes. This finding implies that the interpretation of the effect of gene by environment interaction on psychopathology seems more complicated than behavioral results alone would imply. It is not just differential sensitivity to stress, but rather different ways of coping with stress, which distinguish S-allele carriers and L-allele homozygotes.
Collapse
|
39
|
Study on the effect of EMD386088, a 5-HT 6 receptor partial agonist, in enhancing the anti-immobility action of some antidepressants in rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:37-49. [PMID: 29079874 PMCID: PMC5748433 DOI: 10.1007/s00210-017-1431-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
The effect of some antidepressants co-administered with EMD386088 in the modified forced swim test in rats was investigated. Additionally, the pharmacokinetics, metabolic stability, and the effect of EMD386088 on P450 cytochromes were determined. Intraperitoneal (i.p.) coadministration of EMD386088 (2.5 mg/kg) and imipramine (15 mg/kg), reboxetine (5 mg/kg), moclobemide (10 mg/kg), or bupropion (10 mg/kg) evoked significant antidepressant-like activity, whereas no effect was observed after joint administration of EMD386088 with s-citalopram (10 mg/kg). Pharmacokinetic in vivo investigation showed a rapid absorption of EMD386088 (2.5 and 5 mg/kg) with t1/2 = 67 min (tmax = 5 min). Large volume of distribution (Vd/F = 102 L/kg) indicated its penetration into peripheral compartments. The most active coadministration of EMD386088 (2.5 mg/kg) with imipramine (15 mg/kg) resulted in slower absorption of the compound (Cmax = 60 min) and decrease in the volume of distribution (Vd/F = 32.2 L/kg). EMD386088 penetrates the blood–brain barrier with a high brain/plasma ratio of about 19 (2.5 mg/kg) and 7.5 for coadministration with imipramine. The in silico and in vitro studies on EMD386088 metabolic stability showed the dehydrogenation of tetrahydropyridine moiety as its main metabolic pathway. EMD386088 did not influence on CYP3A4 activity, and it has been classified as a very weak CYP2D6 inhibitor (IC50 = 2.25 μM). The results obtained from the forced swim test in rats indicate that an activation of 5HT6 receptor may facilitate antidepressant-like activity of some antidepressants. The pharmacokinetic results suggest that the interaction between EMD386088 and imipramine could not have been pharmacokinetic in nature.
Collapse
|
40
|
Riad M, Kobert A, Descarries L, Boye S, Rompré PP, Lacaille JC. Chronic fluoxetine rescues changes in plasma membrane density of 5-HT1A autoreceptors and serotonin transporters in the olfactory bulbectomy rodent model of depression. Neuroscience 2017; 356:78-88. [DOI: 10.1016/j.neuroscience.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022]
|
41
|
Afzal M, Kazmi I, Khan R, Rana P, Kumar V, Al-Abbasi FA, Zamzami MA, Anwar F. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Arch Biochem Biophys 2017; 623-624:58-63. [DOI: 10.1016/j.abb.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
|
42
|
A comparative QSAR analysis and molecular docking studies of phenyl piperidine derivatives as potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Comput Biol Chem 2017; 67:22-37. [DOI: 10.1016/j.compbiolchem.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 11/24/2022]
|
43
|
Uddin R, Rafi S. Structural and functional characterization of a unique hypothetical protein (WP_003901628.1) of Mycobacterium tuberculosis: a computational approach. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1822-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Tatham EL, Hall GBC, Clark D, Foster J, Ramasubbu R. The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression. Eur Arch Psychiatry Clin Neurosci 2017; 267:135-147. [PMID: 27277475 DOI: 10.1007/s00406-016-0702-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022]
Abstract
Symptom improvement in depression due to antidepressant treatment is highly variable and clinically unpredictable. Linking neuronal connectivity and genetic risk factors in predicting antidepressant response has clinical implications. Our investigation assessed whether indices of white matter integrity, serotonin transporter-linked polymorphism (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) val66met polymorphism predicted magnitude of depression symptom change following antidepressant treatment. Fractional anisotropy (FA) was used as an indicator of white matter integrity and was assessed in the uncinate fasciculus and superior longitudinal fasciculus using tract-based spatial statistics (TBSS) and probabilistic tractography. Forty-six medication-free patients with major depressive disorder participated in a diffusion tensor imaging scan prior to completing an 8-week treatment regime with citalopram or quetiapine XR. Indexed improvements in Hamilton Depression Rating Scale score from baseline to 8-week endpoint were used as an indicator of depression improvement. Carriers of the BDNF met allele exhibited lower FA values in the left uncinate fasciculus relative to val/val individuals [F(1, 40) = 7.314, p = 0.009]. Probabilistic tractography identified that higher FA in the left uncinate fasciculus predicted percent change in depression severity, with BDNF moderating this association [F(3, 30) = 3.923, p = 0.018]. An interaction between FA in the right uncinate fasciculus and 5-HTTLPR also predicted percent change in depression severity [F(5, 25) = 5.315, p = 0.002]. Uncorrected TBSS results revealed significantly higher FA in hippocampal portions of the cingulum bundle in responders compared to non-responders (p = 0.016). The predictive value of prefrontal and amygdala/hippocampal WM connectivity on antidepressant treatment response may be influenced by 5-HTTLPR and BDNF polymorphisms in MDD.
Collapse
Affiliation(s)
- Erica L Tatham
- McMaster Integrative Neuroscience Discovery and Study, McMaster University, Hamilton, ON, Canada
| | - Geoff B C Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Darren Clark
- Department of Psychiatry and Clinical Neurosciences, Mathison Centre for Mental Health Research and Education, University of Calgary, TRW Building, Room 4D64, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada
| | - Jane Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Rajamannar Ramasubbu
- Department of Psychiatry and Clinical Neurosciences, Mathison Centre for Mental Health Research and Education, University of Calgary, TRW Building, Room 4D64, 3280 Hospital Drive NW, Calgary, AB, T2N4Z6, Canada.
| |
Collapse
|
45
|
Anderluh A, Hofmaier T, Klotzsch E, Kudlacek O, Stockner T, Sitte HH, Schütz GJ. Direct PIP 2 binding mediates stable oligomer formation of the serotonin transporter. Nat Commun 2017; 8:14089. [PMID: 28102201 PMCID: PMC5253637 DOI: 10.1038/ncomms14089] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
The human serotonin transporter (hSERT) mediates uptake of serotonin from the synaptic cleft and thereby terminates serotonergic signalling. We have previously found by single-molecule microscopy that SERT forms stable higher-order oligomers of differing stoichiometry at the plasma membrane of living cells. Here, we report that SERT oligomer assembly at the endoplasmic reticulum (ER) membrane follows a dynamic equilibration process, characterized by rapid exchange of subunits between different oligomers, and by a concentration dependence of the degree of oligomerization. After trafficking to the plasma membrane, however, the SERT stoichiometry is fixed. Stabilization of the oligomeric SERT complexes is mediated by the direct binding to phosphoinositide phosphatidylinositol-4,5-biphosphate (PIP2). The observed spatial decoupling of oligomer formation from the site of oligomer operation provides cells with the ability to define protein quaternary structures independent of protein density at the cell surface.
Collapse
Affiliation(s)
- Andreas Anderluh
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Tina Hofmaier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| |
Collapse
|
46
|
Abstract
Products containing psychoactive synthetic cathinones, such as mephedrone and 3,4-methylenedioxypyrovalerone (MDPV) are prevalent in our society. Synthetic cathinones are structurally similar to methamphetamine, and numerous synthetics have biological activity at dopamine, serotonin, and norepinephrine transporters. Importantly, monoamine transporters co-transport sodium ions along with their substrate, and movement of substrates and ions through the transporter can generate measurable ionic currents. Here we review how electrophysiological information has enabled us to determine how synthetic cathinones affect transporter-mediated currents in cells that express these transporters. Specifically, drugs that act as transporter substrates induce inward depolarizing currents when cells are held near their resting membrane potential, whereas drugs that act as transporter blockers induce apparent outward currents by blocking an inherent inward leak current. We have employed the two-electrode voltage-clamp technique in Xenopus laevis oocytes overexpressing monoamine transporters to determine whether synthetic cathinones found in the so-called bath salts products behave as blockers or substrates. We also examined the structure-activity relationships for synthetic cathinone analogs related to the widely abused compound MDPV, a common constituent in "bath salts" possessing potent actions at the dopamine transporter.
Collapse
Affiliation(s)
- Ernesto Solis
- In Vivo Electrophysiology Unit, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Triad Technology Center, 333 Cassell Drive, Suite 2200, Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Benmansour S, Arroyo LD, Frazer A. Comparison of the Antidepressant-Like Effects of Estradiol and That of Selective Serotonin Reuptake Inhibitors in Middle-Aged Ovariectomized Rats. Front Aging Neurosci 2016; 8:311. [PMID: 28066235 PMCID: PMC5174113 DOI: 10.3389/fnagi.2016.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/06/2016] [Indexed: 01/04/2023] Open
Abstract
This study investigated the effect of age and that of the post-ovariectomy (OVX) time interval on the antidepressant (AD)-like effects of estradiol (E2) and selective serotonin reuptake inhibitors (SSRIs) in middle-aged (10 month) OVX rats (10m-OVX). Acute or chronic effects of these treatments in 10m-OVX were compared with those (1) in young adult (4-month) OVX rats (4m-OVX) or with older (14-month) OVX rats (14m-OVX), at a short time: 2 weeks post-OVX (+2w) and (2) in 10m-OVX rats after a longer times: 4 or 8 months post-OVX (+4m or +8m). Using in vivo chronoamperometry in the CA3 region of the hippocampus, E2 at 20 pmol, a dose shown previously to inhibit the serotonin transporter (SERT) in 4m-OVX, had no effect in 10m-OVX+2w. A higher dose of E2 (40 pmol) increased T80 value, a measure of serotonin or 5-hydroxytryptamine (5-HT) clearance, and also blocked the ability of fluvoxamine to increase T80. By contrast, estradiol had no effects on SERT function in 10m-OVX+4m, even at a higher dose than 40 pmol. Fluvoxamine slowed 5-HT clearance in 10m-OVX at +2w, +4m and +8m post-OVX as it did in the 4m-OVX. Using the forced swim test, 2 weeks treatment with E2 (5 μg/day), a dose shown previously to induce AD-like effects in 4m-OVX, had no effect in 10m-OVX+2w. However, a higher dose (10 μg/day) of E2 induced an AD-like effect as demonstrated by significantly increased swimming behavior and decreased immobility. This effect was not seen in 10m-OVX+4m. By contrast, significant AD-like effects were obtained in 14m-OVX+2w, thereby demonstrating that the lack of an AD effect of E2 is due to the 4-month hormone withdrawal and not to an age effect. After 2 weeks treatment with the SSRI sertraline, similar AD-like effects were obtained in 10m-OVX tested at +2w, +4m or +8m post-OVX as those found in 4m-OVX. Thus, the potency of estradiol to produce effects consistent with inhibition of the SERT was not only decreased in older rats but its effects were markedly diminished the longer hormonal depletion occurred. By contrast, the ability of SSRIs to inhibit the SERT was not affected either by age or the length of hormonal depletion.
Collapse
Affiliation(s)
- Saloua Benmansour
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Luis D Arroyo
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio TX, USA
| | - Alan Frazer
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San AntonioTX, USA; South Texas Veterans Health Care System, San AntonioTX, USA
| |
Collapse
|
48
|
Matthäus F, Haddjeri N, Sánchez C, Martí Y, Bahri S, Rovera R, Schloss P, Lau T. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons. Eur Neuropsychopharmacol 2016; 26:1806-1817. [PMID: 27665061 DOI: 10.1016/j.euroneuro.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/10/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site.
Collapse
Affiliation(s)
- Friederike Matthäus
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Connie Sánchez
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - Yasmina Martí
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Senda Bahri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Patrick Schloss
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Thorsten Lau
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany.
| |
Collapse
|
49
|
Danielewicz J, Trenk A, Hess G. Imipramine ameliorates early life stress-induced alterations in synaptic plasticity in the rat lateral amygdala. Behav Brain Res 2016; 317:319-326. [PMID: 27693266 DOI: 10.1016/j.bbr.2016.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two opposite forms of synaptic plasticity at the cortical and thalamic inputs to the lateral amygdala (LA). It has been demonstrated that maternal separation (MS) of rat pups results in alterations in the potential for both pathways to undergo LTP and LTD in adolescence. Imipramine, a prototypic tricyclic antidepressant, has been shown to counteract some detrimental effects of MS on rat behavior, however it is not known whether MS-induced alterations in the potential for bidirectional synaptic plasticity in the LA could be reversed by imipramine treatment. To this end, rat pups were subjected to MS (3h/day) on postnatal days (PNDs) 1-21. On each of PNDs 29-42, male rats previously subjected to MS were injected subcutaneously with imipramine (10mg/kg). Field potentials were recorded ex vivo from slices containing the LA and saturating levels of LTP and LTD were induced. At the thalamic input to the LA, both the maximum LTP and the maximum LTD were reduced in rats subjected to MS when compared to control animals, confirming earlier results. However, these effects were no longer present in rats subjected to MS and later treated with imipramine. At the cortical input in slices prepared from MS-subjected rats, an impairment of the maximum LTP and an enhancement of the maximum LTD were observed. At the cortical input in rats subjected to MS and receiving imipramine treatment, the level of LTD was comparable to control but imipramine did not restore the potential for LTP at this input. These results demonstrate that imipramine fully reverses the effects of MS in the thalamo-amygdalar pathway, however, in the cortico-amygdalar pathway the reversal of the effects of MS by imipramine is partial.
Collapse
Affiliation(s)
| | | | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Smetna street 12, Poland.
| |
Collapse
|
50
|
Alghadir AH, Gabr SA, Al-Eisa E. Effects of Physical Activity on Trace Elements and Depression Related Biomarkers in Children and Adolescents. Biol Trace Elem Res 2016; 172:299-306. [PMID: 26701336 DOI: 10.1007/s12011-015-0601-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Not much is known about the role of physical activity (PA), obesity related variables, and trace elements as potential risk factors affecting neurotransmitters in schoolchildren with depression. Our objective was to investigate the effect of physical activity (PA) on depressive symptoms in children and adolescents. Also, we aimed to study the association of demographic variables, serum levels of Copper (Cu), Zinc (Zn), serotonin, and salivary cortisol with depression in this population. One hundred and fifty school children (90 boys and 60 girls) aged 7-18 years were recruited for this study. All participants were evaluated for depression using CDI-score analysis. Their physical activity levels were checked using pre-validated questionnaires. The serum levels of Copper (Cu), Zinc (Zn), cortisol, and serotonin were estimated using atomic absorption, and immunoassay techniques. About 48.7 % of the study population had depressive symptoms (CDI-score; ≥13), and were classified into mild, moderate, and severe categories. Older children, especially girls, had higher levels of depression. Participants with moderate and severe depression had significantly lower physical activity, serotonin, and zinc levels, Zn/Cu ratios, and significantly higher copper and cortisol levels. Physically active boys showed significantly lower depressive CDI-scores and improvement in cortisol, serotonin, Cu, and Zn concentrations compared to girls of sedentary life style. CDI- scores correlated positively with BMI, cortisol and Cu, and negatively with PA, serotonin and Zn concentrations. BMI, cortisol, serotonin, Cu and Zn, could explain about 59.3-79 % of the depressive symptoms among schoolchildren, according to stepwise regression analysis. This was especially true in especially older girls. PA and an adequate balance in Zn and Cu levels, plays a positive role in improving CDI-depressive score, BMI, serotonin and cortisol levels among schoolchildren.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Kingdom of Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Kingdom of Saudi Arabia.
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Einas Al-Eisa
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Kingdom of Saudi Arabia
| |
Collapse
|