1
|
Wang D, Irewole EA, Bays LD, Smith MD, Schreurs BG. A long-term mild high-fat diet facilitates rabbit discrimination learning and alters glycerophospholipid metabolism. Neurobiol Learn Mem 2025; 219:108053. [PMID: 40228735 DOI: 10.1016/j.nlm.2025.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Previous reports have shown an association between a Western high-fat diet (HFD) and poor cognitive performance. So far, there are no reports of whether a mild HFD can affect rabbit learning and hippocampal metabolic profile. This study was designed to explore whether feeding a mild HFD (5 % lard and 5 % soy oil) for 20 weeks affected eyeblink discrimination and discrimination reversal learning and hippocampal metabolic profiles. After 20 weeks on the HFD or a normal control diet, all rabbits received one day of adaptation, 20 daily sessions of two-tone discrimination (1-kHz CS + followed by air puff and 8-kHz CS- not followed by air puff), a rest day, and then 40 daily sessions of discrimination reversal (8-kHz CS + and 1-kHz CS-). Compared to rabbits fed a regular chow diet, rabbits fed a mild HFD showed better discrimination evidenced by higher responding to CS+, lower responding to CS-, and a larger discrimination index (CS+ - CS-). Widely targeted metabolomics analysis identified 1805 metabolites in the hippocampus, and significant HFD-induced changes in 162 and 165 differential metabolites in males and females, respectively. These included glycerophospholipids and fatty acyls. KEGG enrichment analysis showed glycerophospholipid metabolism (ko00564) was significantly enriched in the HFD group notably lysophosphatidylethanolamine and lysophosphatidylcholine. In summary, our data show a long-term mild HFD facilitated discrimination learning in rabbits without inducing a metabolic syndrome, and altered the hippocampal metabolic profile, which may affect neuronal cell membrane lipids and behavioral performance.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - Ezekiel A Irewole
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Logan D Bays
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - MacKinzie D Smith
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
2
|
Ahn SJ, Goya B, Bertomo C, Sciortino R, Racchumi G, Bonilla LG, Anrather J, Iadecola C, Faraco G. Neutrophil stalling does not mediate the increase in tau phosphorylation and the cognitive impairment associated with high salt diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640593. [PMID: 40093148 PMCID: PMC11908121 DOI: 10.1101/2025.02.27.640593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
High dietary salt intake has powerful effects on cerebral blood vessels and has emerged as a risk factor for stroke and cognitive impairment. In mice, high salt diet (HSD) leads to reduced cerebral blood flow (CBF), tau hyperphosphorylation and cognitive dysfunction. However, it is still unclear whether the reduced CBF is responsible for the effects of HSD on tau and cognition. Capillary stalling has emerged as a cause of CBF reduction and cognitive impairment in models of Alzheimer's disease and diabetes. Therefore, we tested the hypothesis that capillary stalling also contributes to the CBF reduction and cognitive impairment in HSD. Using two-photon imaging, we found that HSD increased stalling of neutrophils in brain capillaries and decreased CBF. Neutrophil depletion reduced the number of stalled capillaries and restored resting CBF but did not prevent tau phosphorylation or cognitive impairment. These novel findings show that, capillary stalling contribute to CBF reduction in HSD, but not to tau phosphorylation and cognitive deficits. Therefore, the hypoperfusion caused by capillary stalling is not the main driver of the tau phosphorylation and cognitive impairment.
Collapse
|
3
|
González-Velázquez G, Aguirre-Garrido JF, Oros-Pantoja R, Salinas-Velarde ID, Contreras I, Estrada JA, Soto-Piña AE. Supplementation with inulin reverses cognitive flexibility alterations and modulates the gut microbiota in high-fat-fed mice. Front Behav Neurosci 2024; 18:1445154. [PMID: 39568732 PMCID: PMC11577567 DOI: 10.3389/fnbeh.2024.1445154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Alterations in cognitive performance are associated with inadequate nutritional states and diet composition. Prebiotics, such as inulin, are substances that can modulate the gut microbiome and, consequently, brain function by producing metabolites such as short-chain fatty acids (SCFAs). This study aimed to evaluate the effect of supplementation with inulin on cognitive flexibility, body composition, and gut microbiota in a murine model exposed to a high-fat (HF) diet. Methods CD1 mice were divided into five groups: control fed a standard diet (C), high-fat diet (HF), inulin (I), high-fat diet with inulin (HFI), and manipulation control (M). Dietary supplementation was administered for 6 weeks. Cognitive flexibility was assessed using the Attentional Set-Shifting Test (AST). In addition, body composition was measured via electrical bioimpedance and adipose tissue compartments of each mouse were removed and weighed. Finally, gut microbiota metataxonomic was analyzed through metataxonomic bacterial 16S rRNA sequencing. Results We observed that HF group required more AST trials than the C, HFI, and I groups in the compound discrimination (CD) and extra-dimensional (ED) stages. Notably, the HFI group required fewer trials than the HF group in the ED stage (p = 0.0187). No significant differences in overall body composition were observed between the groups. However, the percentage of gonadal and peritoneal adipose tissue was significantly higher in the HF and I groups compared to the C group. Statistically significant differences in alpha diversity for gut microbiota were observed using the Shannon, Simpson, and Chao1 indices. The I group showed a decrease in bacterial diversity compared to the HF group. While no differences were observed between groups in the phyla Bacillota and Bacteroidotes, Clostridium bacteria represented a lower proportion of sequences in the I group compared to the C group. Additionally, Lactobacillus represented a lower proportion of sequences in the HF group compared to the C and I groups. Discussion These findings suggest that supplementation with inulin could be a useful approach to mitigate the negative effects of an HF diet on cognitive flexibility and modulate gut microbiota composition.
Collapse
Affiliation(s)
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | - Irazú Contreras
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José Antonio Estrada
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | |
Collapse
|
4
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
5
|
Bah TM, Davis CM, Allen EM, Borkar RN, Perez R, Grafe MR, Raber J, Pike MM, Alkayed NJ. Soluble epoxide hydrolase inhibition reverses cognitive dysfunction in a mouse model of metabolic syndrome by modulating inflammation. Prostaglandins Other Lipid Mediat 2024; 173:106850. [PMID: 38735559 PMCID: PMC11218661 DOI: 10.1016/j.prostaglandins.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Elyse M Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rohan N Borkar
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
7
|
Lippi SLP, Barkey RE, Rodriguez MN. High-fat diet negatively affects brain markers, cognitive behaviors, and noncognitive behaviors in the rTg4510 tau mouse model. Physiol Behav 2023; 271:114316. [PMID: 37543107 DOI: 10.1016/j.physbeh.2023.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) drastically impacts cognitive and noncognitive behaviors in both humans and animal models. Two hallmark proteins in AD, amyloid-β plaques and tau neurofibrillary tangles, accumulate in regions of the brain critical for learning and memory, including the hippocampus. Poor dietary choices have been shown to exacerbate cognitive deficits seen in AD. In this study, we assessed the effects of a high-fat diet (HFD - 60 kcal% fat) on cognitive & noncognitive behaviors as well as on brain markers in the rTg4510 tau mouse model. While all mice learned the Morris Water Maze (MWM) task, it was noted that on the last day of acquisition female tau mice had a significantly higher latency to find the platform than male tau mice (p < 0.01). Mice given the HFD spent significantly less time in the target quadrant than those given a control diet (CD) (p < 0.05). Tau mice showed impaired burrowing (p < 0.05) and nesting behaviors (p < 0.001) compared to WT mice and HFD administration worsened burrowing in tau mice. Tau mice exhibited greater levels of glial fibrillary acidic protein (GFAP) (p < 0.05) and significantly less hippocampal cell density than WT mice (p < 0.001). We observed trends of HFD mice having greater levels of GFAP and greater average tangle size than CD mice. These results highlight the importance of dietary choices, especially in older populations more susceptible to AD and its effects.
Collapse
Affiliation(s)
- Stephen L P Lippi
- University of Texas at San Antonio, Dept. Psychology, San Antonio, TX 78249, United States.
| | - Rachel E Barkey
- Pennsylvania State University College of Medicine, Dept. Neural and Behavioral Sciences, 700 HMC Crescent Road, Hershey, PA 17033, United States
| | - Mya N Rodriguez
- MD Anderson UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, United States
| |
Collapse
|
8
|
Zhao N, Zhu X, Xie L, Guan X, Tang L, Jiang G, Pang T. The Combination of Citicoline and Nicotinamide Mononucleotide Induces Neurite Outgrowth and Mitigates Vascular Cognitive Impairment via SIRT1/CREB Pathway. Cell Mol Neurobiol 2023; 43:4261-4277. [PMID: 37812361 PMCID: PMC11407720 DOI: 10.1007/s10571-023-01416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Vascular dementia (VD) is characterized with vascular cognitive impairment (VCI), which currently has few effective therapies in clinic. Neuronal damage and white matter injury are involved in the pathogenesis of VCI. Citicoline has been demonstrated to exhibit neuroprotection and neurorepair to improve cognition in cerebrovascular diseases. Nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin (SIRT) signaling pathway constitutes a strong intrinsic defense system against various stresses including neuroinflammation in VCI. Our hypothesis is that the combined use of citicoline and the precursor of NAD+, nicotinamide mononucleotide (NMN), could enhance action on cognitive function in VCI. We investigated the synergistic effect of these two drugs in the rat model of VCI by bilateral common carotid artery occlusion (BCCAO). Citicoline significantly enhanced neurite outgrowth in Neuro-2a cells, and the combination of citicoline and NMN remarkably induced neurite outgrowth in Neuro-2a cells and primary cortical neuronal cells with an optimal proportion of 4:1. In the rat model of BCCAO, when two drugs in combination of 160 mg/kg citicoline and 40 mg/kg NMN, this combination administrated at 7 days post-BCCAO significantly improved the cognitive impairment in BCCAO rats compared with vehicle group by the analysis of the Morris water maze and the novel object recognition test. This combination also decreased microglial activation and neuroinflammation, and protected white matter integrity indicated by the increased myelin basic protein (MBP) expression through activation of SIRT1/TORC1/CREB signaling pathway. Our results suggest that the combination of citicoline and NMN has a synergistic effect for the treatment of VD associated with VCI.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xiaofeng Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Xu L, Ma Y, Ji Y, Ma Y, Wang Y, Zhao X, Ge S. Obesity exacerbates postoperative cognitive dysfunction by activating the PARP1/NAD +/SIRT1 axis through oxidative stress. Exp Gerontol 2023; 183:112320. [PMID: 39492487 DOI: 10.1016/j.exger.2023.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The purposes of this study were to explore the impact of obesity on postoperative cognitive dysfunction (POCD) and to investigate the underlying mechanism by which obesity exacerbates POCD. In this study, fifteen-month-old male C57BL/6 J mice were fed a High-fat diet for three months to establish obesity models. Internal fixation of tibial fractures under isoflurane inhalation was performed to construct a POCD animal model. Three days after surgery, mice were subjected to the Morris water maze (MWM) experiment to evaluate their learning and memory abilities. The findings from the MWM experiment revealed that in comparison to the Ad Libitum Surgical group (ALS), mice in the High-fat Surgical group (HFS) exhibited prolonged escape latencies and reduced platform crossings. These outcomes suggest the potential exacerbating role of obesity in cognitive impairment within the POCD mouse models. Immunofluorescence (IF) findings demonstrate that obesity intensifies anesthesia and surgery-induced oxidative stress levels within the hippocampus. Compared to the Ad Libitum Control group (ALC), an elevation in PARP1 expression and a reduction in the NAD+/NADH ratio and SIRT1 expression were observed in the hippocampus of mice from the ALS. Moreover, when contrasting the HFS group with the ALS group, increased PARP1 expression along with decreased NAD+/NADH ratio and SIRT1 expression were evident. In vitro studies found that compared with the Control group (CON), oil red staining and BODIPY probe staining showed significant lipid droplet aggregation in the palmitic acid (PA) group. IF results demonstrated that HT22 cells in the PA group experienced oxidative stress and activation of the PARP1/NAD+/SIRT1 axis in contrast to the CON group. Moreover, manipulation of PARP1 expression in HT22 cells through PARP1 lentivirus-based silencing or overexpression revealed a converse relationship between PARP1 expression levels and the NAD+/NADH ratio as well as SIRT1 expression levels. This study concludes that obesity may exacerbate POCD by triggering activation of the oxidative stress-induced PARP1/NAD+/SIRT1 axis.
Collapse
Affiliation(s)
- Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
10
|
Bordet S, Luaces JP, Herrera MI, Gonzalez LM, Kobiec T, Perez-Lloret S, Otero-Losada M, Capani F. Neuroprotection from protein misfolding in cerebral hypoperfusion concurrent with metabolic syndrome. A translational perspective. Front Neurosci 2023; 17:1215041. [PMID: 37650104 PMCID: PMC10463751 DOI: 10.3389/fnins.2023.1215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Based on clinical and experimental evidence, metabolic syndrome (MetS) and type 2 diabetes (T2D) are considered risk factors for chronic cerebral hypoperfusion (CCH) and neurodegeneration. Scientific evidence suggests that protein misfolding is a potential mechanism that explains how CCH can lead to either Alzheimer's disease (AD) or vascular cognitive impairment and dementia (VCID). Over the last decade, there has been a significant increase in the number of experimental studies regarding this issue. Using several animal paradigms and different markers of CCH, scientists have discussed the extent to which MetSor T2D causes a decrease in cerebral blood flow (CBF). In addition, different models of CCH have explored how long-term reductions in oxygen and energy supply can trigger AD or VCID via protein misfolding and aggregation. Research that combines two or three animal models could broaden knowledge of the links between these pathological conditions. Recent experimental studies suggest novel neuroprotective properties of protein-remodeling factors. In this review, we present a summarized updated revision of preclinical findings, discussing clinical implications and proposing new experimental approaches from a translational perspective. We are confident that research studies, both clinical and experimental, may find new diagnostic and therapeutic tools to prevent neurodegeneration associated with MetS, diabetes, and any other chronic non-communicable disease (NCD) associated with diet and lifestyle risk factors.
Collapse
Affiliation(s)
- Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Juan Pablo Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Maria Ines Herrera
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Liliana Mirta Gonzalez
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Santiago Perez-Lloret
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Observatorio de Salud Pública, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
11
|
Debler RA, Madison CA, Hillbrick L, Gallegos P, Safe S, Chapkin RS, Eitan S. Selective aryl hydrocarbon receptor modulators can act as antidepressants in obese female mice. J Affect Disord 2023; 333:409-419. [PMID: 37084978 PMCID: PMC10561895 DOI: 10.1016/j.jad.2023.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Obese females are more likely to suffer from depression and are also more likely to be resistant to current medications. This study examined the potential antidepressant-like effects of 1,4-dihydroxy-2-napthoic acid (DHNA), a selective aryl hydrocarbon receptor modulator (SAhRM), in obese female mice. METHODS Obesity was established by feeding C57BL/6N female mice a high fat diet (HFD) for 9-10 weeks. Subsequently, mice were subjected to unpredictable chronic mild stress (UCMS) or remained unstressed. Daily administration of vehicle or 20 mg/kg DHNA began three weeks prior or on the third week of UCMS. Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash and tape groom tests), anxiety (open-field test, light/dark test, novelty-induced hypophagia), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS UCMS did not alter, and DHNA slightly increased, weight gain in HFD-fed females. HFD decreased sucrose preference, increased FST immobility time, but did not alter splash and tape tests' grooming time. UCMS did not have additional effects on sucrose preference. UCMS further increased FST immobility time and decreased splash and tape tests' grooming time; these effects were prevented and reversed by DHNA treatment. HFD did not affect behaviors in the cognitive tests. UCMS impaired spatial learning; this effect was not prevented nor reversed by DHNA. CONCLUSIONS DHNA protected against UCMS-induced depression-like behaviors in HFD-fed female mice. DHNA neither improved nor worsened UCMS-induced impairment of spatial learning. Our findings indicate that DHNA has high potential to act as an antidepressant in obese females.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paula Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
12
|
Andrews R, Shpitser I, Didelez V, Chaves P, Lopez O, Carlson M. Examining the Causal Mediating Role of Cardiovascular Disease on the Effect of Subclinical Cardiovascular Disease on Cognitive Impairment via Separable Effects. J Gerontol A Biol Sci Med Sci 2023; 78:1172-1178. [PMID: 36869806 PMCID: PMC10329225 DOI: 10.1093/gerona/glad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND An important epidemiological question is understanding how vascular risk factors contribute to cognitive impairment. Using data from the Cardiovascular Health Cognition Study, we investigated how subclinical cardiovascular disease (sCVD) relates to cognitive impairment risk and the extent to which the hypothesized risk is mediated by the incidence of clinically manifested cardiovascular disease (CVD), both overall and within apolipoprotein E-4 (APOE-4) subgroups. METHODS We adopted a novel "separable effects" causal mediation framework that assumes that sCVD has separably intervenable atherosclerosis-related components. We then ran several mediation models, adjusting for key covariates. RESULTS We found that sCVD increased overall risk of cognitive impairment (risk ratio [RR] = 1.21, 95% confidence interval [CI]: 1.03, 1.44); however, there was little or no mediation by incident clinically manifested CVD (indirect effect RR = 1.02, 95% CI: 1.00, 1.03). We also found attenuated effects among APOE-4 carriers (total effect RR = 1.09, 95% CI: 0.81, 1.47; indirect effect RR = 0.99, 95% CI: 0.96, 1.01) and stronger findings among noncarriers (total effect RR = 1.29, 95% CI: 1.05, 1.60; indirect effect RR = 1.02, 95% CI: 1.00, 1.05). In secondary analyses restricting cognitive impairment to only incident dementia cases, we found similar effect patterns. CONCLUSIONS We found that the effect of sCVD on cognitive impairment does not seem to be mediated by CVD, both overall and within APOE-4 subgroups. Our results were critically assessed via sensitivity analyses, and they were found to be robust. Future work is needed to fully understand the relationship between sCVD, CVD, and cognitive impairment.
Collapse
Affiliation(s)
- Ryan M Andrews
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Biometry and Data Science, Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Ilya Shpitser
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vanessa Didelez
- Department of Biometry and Data Science, Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
- Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Paulo H M Chaves
- Department of Translational Medicine, Division of Internal Medicine, Florida International University, Miami, Florida, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle C Carlson
- Department of Mental Health, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Gannon OJ, Naik JS, Riccio D, Mansour FM, Abi-Ghanem C, Salinero AE, Kelly RD, Brooks HL, Zuloaga KL. Menopause causes metabolic and cognitive impairments in a chronic cerebral hypoperfusion model of vascular contributions to cognitive impairment and dementia. Biol Sex Differ 2023; 14:34. [PMID: 37221553 DOI: 10.1186/s13293-023-00518-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The vast majority of women with dementia are post-menopausal. Despite clinical relevance, menopause is underrepresented in rodent models of dementia. Before menopause, women are less likely than men to experience strokes, obesity, and diabetes-known risk factors for vascular contributions to cognitive impairment and dementia (VCID). During menopause, ovarian estrogen production stops and the risk of developing these dementia risk factors spikes. Here, we aimed to determine if menopause worsens cognitive impairment in VCID. We hypothesized that menopause would cause metabolic dysfunction and increase cognitive impairment in a mouse model of VCID. METHODS We performed a unilateral common carotid artery occlusion surgery to produce chronic cerebral hypoperfusion and model VCID in mice. We used 4-vinylcyclohexene diepoxide to induce accelerated ovarian failure and model menopause. We evaluated cognitive impairment using behavioral tests including novel object recognition, Barnes maze, and nest building. To assess metabolic changes, we measured weight, adiposity, and glucose tolerance. We explored multiple aspects of brain pathology including cerebral hypoperfusion and white matter changes (commonly observed in VCID) as well as changes to estrogen receptor expression (which may mediate altered sensitivity to VCID pathology post-menopause). RESULTS Menopause increased weight gain, glucose intolerance, and visceral adiposity. VCID caused deficits in spatial memory regardless of menopausal status. Post-menopausal VCID specifically led to additional deficits in episodic-like memory and activities of daily living. Menopause did not alter resting cerebral blood flow on the cortical surface (assessed by laser speckle contrast imaging). In the white matter, menopause decreased myelin basic protein gene expression in the corpus callosum but did not lead to overt white matter damage (assessed by Luxol fast blue). Menopause did not significantly alter estrogen receptor expression (ERα, ERβ, or GPER1) in the cortex or hippocampus. CONCLUSIONS Overall, we have found that the accelerated ovarian failure model of menopause caused metabolic impairment and cognitive deficits in a mouse model of VCID. Further studies are needed to identify the underlying mechanism. Importantly, the post-menopausal brain still expressed estrogen receptors at normal (pre-menopausal) levels. This is encouraging for any future studies attempting to reverse the effects of estrogen loss by activating brain estrogen receptors.
Collapse
Affiliation(s)
- Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Janvie S Naik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
14
|
Abi-Ghanem C, Salinero AE, Kordit D, Mansour FM, Kelly RD, Venkataganesh H, Kyaw NR, Gannon OJ, Riccio D, Fredman G, Poitelon Y, Belin S, Kopec AM, Robison LS, Zuloaga KL. Sex differences in the effects of high fat diet on underlying neuropathology in a mouse model of VCID. Biol Sex Differ 2023; 14:31. [PMID: 37208759 PMCID: PMC10199629 DOI: 10.1186/s13293-023-00513-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias). METHODS We compared the effects of mid-life metabolic disease between males and females in a chronic cerebral hypoperfusion mouse model of VCID. C57BL/6J mice were fed a control or high fat (HF) diet starting at ~ 8.5 months of age. Three months after diet initiation, sham or unilateral carotid artery occlusion surgery (VCID model) was performed. Three months later, mice underwent behavior testing and brains were collected to assess pathology. RESULTS We have previously shown that in this VCID model, HF diet causes greater metabolic impairment and a wider array of cognitive deficits in females compared to males. Here, we report on sex differences in the underlying neuropathology, specifically white matter changes and neuroinflammation in several areas of the brain. White matter was negatively impacted by VCID in males and HF diet in females, with greater metabolic impairment correlating with less myelin markers in females only. High fat diet led to an increase in microglia activation in males but not in females. Further, HF diet led to a decrease in proinflammatory cytokines and pro-resolving mediator mRNA expression in females but not males. CONCLUSIONS The current study adds to our understanding of sex differences in underlying neuropathology of VCID in the presence of a common risk factor (obesity/prediabetes). This information is crucial for the development of effective, sex-specific therapeutic interventions for VCID.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Harini Venkataganesh
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Gabrielle Fredman
- Department Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Yannick Poitelon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Sophie Belin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Ashley M Kopec
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Lisa S Robison
- Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL, 33314, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
15
|
Huang D, Guo Y, Guan X, Pan L, Zhu Z, Chen Z, Dijkhuizen RM, Duering M, Yu F, Boltze J, Li P. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment. J Cereb Blood Flow Metab 2023; 43:173-184. [PMID: 36284489 PMCID: PMC9903225 DOI: 10.1177/0271678x221135353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment (CI) is a major health concern in aging populations. It impairs patients' independent life and may progress to dementia. Vascular cognitive impairment (VCI) encompasses all cerebrovascular pathologies that contribute to cognitive impairment (CI). Moreover, the majority of CI subtypes involve various aspects of vascular dysfunction. Recent research highlights the critical role of reduced cerebral blood flow (CBF) in the progress of VCI, and the detection of altered CBF may help to detect or even predict the onset of VCI. Arterial spin labeling (ASL) is a non-invasive, non-ionizing perfusion MRI technique for assessing CBF qualitatively and quantitatively. Recent methodological advances enabling improved signal-to-noise ratio (SNR) and data acquisition have led to an increase in the use of ASL to assess CBF in VCI patients. Combined with other imaging modalities and biomarkers, ASL has great potential for identifying early VCI and guiding prediction and prevention strategies. This review focuses on recent advances in ASL-based perfusion MRI for identifying patients at high risk of VCI.
Collapse
Affiliation(s)
- Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Guan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeng’ai Chen
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Fang Yu
- Department of Anesthesiology, Westchester Medical Center, New York Medical College, NY, USA
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Lee D, Le TT, Im GH, Kim SG. Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia. J Cereb Blood Flow Metab 2022; 42:2270-2286. [PMID: 35903000 PMCID: PMC9670005 DOI: 10.1177/0271678x221117008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-invasive mapping of cerebral perfusion is critical for understanding neurovascular and neurodegenerative diseases. However, perfusion MRI methods cannot be easily implemented for whole-brain studies in mice because of their small size. To overcome this issue, a transient hypoxia stimulus was applied to induce a bolus of deoxyhemoglobins as an endogenous paramagnetic contrast in blood oxygenation level-dependent (BOLD) MRI. Based on stimulus-duration-dependent studies, 5 s anoxic stimulus was chosen, which induced a decrease in arterial oxygenation to 59%. Dynamic susceptibility changes were acquired with whole-brain BOLD MRI using both all-vessel-sensitive gradient-echo and microvascular-sensitive spin-echo readouts. Cerebral blood flow (CBF) and cerebral blood volume (CBV) were quantified by modeling BOLD dynamics using a partial-volume-corrected arterial input function. In the mouse under ketamine/xylazine anesthesia, total CBF and CBV were 112.0 ± 15.0 ml/100 g/min and 3.39 ± 0.59 ml/100 g (n = 15 mice), respectively, whereas microvascular CBF and CBV were 85.8 ± 6.9 ml/100 g/min and 2.23 ± 0.27 ml/100 g (n = 7 mice), respectively. Regional total vs. microvascular perfusion metrics were highly correlated but a slight mismatch was observed in the large-vessel areas and cortical depth profiles. Overall, this non-invasive, repeatable, simple hypoxia BOLD-MRI approach is viable for perfusion mapping of rodents.
Collapse
Affiliation(s)
- DongKyu Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Thuy Thi Le
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
18
|
Bah TM, Allen EM, Garcia-Jaramillo M, Perez R, Zarnegarnia Y, Davis CM, Bloom MB, Magana AA, Choi J, Bobe G, Pike MM, Raber J, Maier CS, Alkayed NJ. GPR39 Deficiency Impairs Memory and Alters Oxylipins and Inflammatory Cytokines Without Affecting Cerebral Blood Flow in a High-Fat Diet Mouse Model of Cognitive Impairment. Front Cell Neurosci 2022; 16:893030. [PMID: 35875352 PMCID: PMC9298837 DOI: 10.3389/fncel.2022.893030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of dementia. There is no treatment for VCI, in part due to a lack of understanding of the underlying mechanisms. The G-protein coupled receptor 39 (GPR39) is regulated by arachidonic acid (AA)-derived oxylipins that have been implicated in VCI. Furthermore, GPR39 is increased in microglia of post mortem human brains with VCI. Carriers of homozygous GPR39 SNPs have a higher burden of white matter hyperintensity, an MRI marker of VCI. We tested the hypothesis that GPR39 plays a protective role against high-fat diet (HFD)-induced cognitive impairment, in part mediated via oxylipins actions on cerebral blood flow (CBF) and neuroinflammation. Homozygous (KO) and heterozygous (Het) GPR39 knockout mice and wild-type (WT) littermates with and without HFD for 8 months were tested for cognitive performance using the novel object recognition (NOR) and the Morris water maze (MWM) tests, followed by CBF measurements using MRI. Brain tissue and plasma oxylipins were quantified with high-performance liquid chromatography coupled to mass spectrometry. Cytokines and chemokines were measured using a multiplex assay. KO mice, regardless of diet, swam further away from platform location in the MWM compared to WT and Het mice. In the NOR test, there were no effects of genotype or diet. Brain and plasma AA-derived oxylipins formed by 11- and 15-lipoxygenase (LOX), cyclooxygenase (COX) and non-enzymatically were increased by HFD and GPR39 deletion. Interleukin-10 (IL-10) was lower in KO mice on HFD than standard diet (STD), whereas IL-4, interferon γ-induced protein-10 (IP-10) and monocyte chemotactic protein-3 (MCP-3) were altered by diet in both WT and KO, but were not affected by genotype. Resting CBF was reduced in WT and KO mice on HFD, with no change in vasoreactivity. The deletion of GPR39 did not change CBF compared to WT mice on either STD or HFD. We conclude that GPR39 plays a role in spatial memory retention and protects against HFD-induced cognitive impairment in part by modulating inflammation and AA-derived oxylipins. The results indicate that GPR39 and oxylipin pathways play a role and may serve as therapeutic targets in VCI.
Collapse
Affiliation(s)
- Thierno M. Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Elyse M. Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Manuel Garcia-Jaramillo
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Yalda Zarnegarnia
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Catherine M. Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Madeline B. Bloom
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Armando A. Magana
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Martin M. Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, Radiation Medicine, and Psychiatry, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
19
|
Davis CM, Zhang WH, Bah TM, Roese NE, Allen EM, Leung P, Boutros SJ, Marzulla T, Patel E, Nie X, Alkayed FN, Huang JH, Jensen MA, Raber J, Pike MM, Alkayed NJ. Age-dependent cognitive impairment, hydrocephalus and leukocyte infiltration in transgenic mice with endothelial expression of human EPHX2. NPJ AGING 2022; 8:9. [PMID: 35927273 PMCID: PMC9256583 DOI: 10.1038/s41514-022-00090-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
Soluble epoxide hydrolase (sEH) is upregulated in microvascular endothelium of human brain with vascular cognitive impairment (VCI). Transgenic endothelial expression of human sEH in mice (Tie2hsEH) induces endothelial dysfunction (ED), a pathogenetic mechanism of VCI. We sought to determine if endothelial upregulation of sEH is sufficient to cause cognitive impairment, and if cognitive impairment due to chronic hypoperfusion induced by unilateral common carotid artery occlusion (CCAO) is exacerbated in Tie2hsEH mice. Behavioral performance was assessed by the open field, rotarod, novel object, Morris water maze and fear conditioning tests. Cerebral blood flow and brain morphology were evaluated by MRI, and inflammatory changes investigated using immunohistochemistry and flow cytometry. We demonstrate that transgenic endothelial expression of sEH is sufficient to induce cognitive impairment, associated with leukocyte infiltration, brain atrophy and accelerated, age-dependent ventriculomegaly, identifying ED and sEH upregulation as potential underlying mechanisms and therapeutic targets for VCI.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wenri H Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Thierno M Bah
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Natalie E Roese
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elyse M Allen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Philberta Leung
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sydney J Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Esha Patel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xiao Nie
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Farah N Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Justin H Huang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Michael A Jensen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
Fabianová K, Babeľová J, Fabian D, Popovičová A, Martončíková M, Raček A, Račeková E. Maternal High-Energy Diet during Pregnancy and Lactation Impairs Neurogenesis and Alters the Behavior of Adult Offspring in a Phenotype-Dependent Manner. Int J Mol Sci 2022; 23:ijms23105564. [PMID: 35628378 PMCID: PMC9146615 DOI: 10.3390/ijms23105564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.
Collapse
Affiliation(s)
- Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
- Correspondence:
| | - Janka Babeľová
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Dušan Fabian
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| |
Collapse
|
21
|
Gannon OJ, Robison LS, Salinero AE, Abi-Ghanem C, Mansour FM, Kelly RD, Tyagi A, Brawley RR, Ogg JD, Zuloaga KL. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer's disease and mixed dementia in a sex-dependent manner. J Neuroinflammation 2022; 19:110. [PMID: 35568928 PMCID: PMC9107741 DOI: 10.1186/s12974-022-02466-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Approximately 70% of Alzheimer's disease (AD) patients have co-morbid vascular contributions to cognitive impairment and dementia (VCID); this highly prevalent overlap of dementia subtypes is known as mixed dementia (MxD). AD is more prevalent in women, while VCID is slightly more prevalent in men. Sex differences in risk factors may contribute to sex differences in dementia subtypes. Unlike metabolically healthy women, diabetic women are more likely to develop VCID than diabetic men. Prediabetes is 3× more prevalent than diabetes and is linked to earlier onset of dementia in women, but not men. How prediabetes influences underlying pathology and cognitive outcomes across different dementia subtypes is unknown. To fill this gap in knowledge, we investigated the impact of diet-induced prediabetes and biological sex on cognitive function and neuropathology in mouse models of AD and MxD. METHODS Male and female 3xTg-AD mice received a sham (AD model) or unilateral common carotid artery occlusion surgery to induce chronic cerebral hypoperfusion (MxD model). Mice were fed a control or high fat (HF; 60% fat) diet from 3 to 7 months of age. In both sexes, HF diet elicited a prediabetic phenotype (impaired glucose tolerance) and weight gain. RESULTS In females, but not males, metabolic consequences of a HF diet were more severe in AD or MxD mice compared to WT. In both sexes, HF-fed AD or MxD mice displayed deficits in spatial memory in the Morris water maze (MWM). In females, but not males, HF-fed AD and MxD mice also displayed impaired spatial learning in the MWM. In females, but not males, AD or MxD caused deficits in activities of daily living, regardless of diet. Astrogliosis was more severe in AD and MxD females compared to males. Further, AD/MxD females had more amyloid beta plaques and hippocampal levels of insoluble amyloid beta 40 and 42 than AD/MxD males. In females, but not males, more severe glucose intolerance (prediabetes) was correlated with increased hippocampal microgliosis. CONCLUSIONS High-fat diet had a wider array of metabolic, cognitive, and neuropathological consequences in AD and MxD females compared to males. These findings shed light on potential underlying mechanisms by which prediabetes may lead to earlier dementia onset in women.
Collapse
Affiliation(s)
- Olivia J. Gannon
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Lisa S. Robison
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA ,grid.261241.20000 0001 2168 8324Department of Psychology & Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314 USA ,grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Abigail E. Salinero
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Charly Abi-Ghanem
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Febronia M. Mansour
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Richard D. Kelly
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Alvira Tyagi
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| | - Rebekah R. Brawley
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Jordan D. Ogg
- grid.264307.40000 0000 9688 1551Department of Psychology, Stetson University, 421 N Woodland Blvd, DeLand, FL 32723 USA
| | - Kristen L. Zuloaga
- grid.413558.e0000 0001 0427 8745Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208 USA
| |
Collapse
|
22
|
Ren G, Hwang PTJ, Millican R, Shin J, Brott BC, van Groen T, Powell CM, Bhatnagar S, Young ME, Jun HW, Kim JA. Subcutaneous Administration of a Nitric Oxide-Releasing Nanomatrix Gel Ameliorates Obesity and Insulin Resistance in High-Fat Diet-Induced Obese Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19104-19115. [PMID: 35467831 PMCID: PMC9233978 DOI: 10.1021/acsami.1c24113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and rodents. NO stimulates the metabolic rate by increasing the mitochondrial biogenesis and brown fat activation. Therefore, we propose a novel technology of providing exogenous NO to improve the metabolic rate and cognitive function by promoting the development of brown adipose tissue. In the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix gel (PANO gel) on high-fat diet-induced obesity, insulin resistance, and cognitive functions. Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the PANO gel or vehicle (PA gel) every 2 weeks for 12 weeks. The PANO gel-injected mice gained less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin levels compared with the PA gel-injected mice. Insulin signaling in the muscle, liver, and epididymal white adipose tissue was improved by the PANO gel injection. The PANO gel reduced inflammation, increased lipolysis in the epididymal white adipose tissue, and decreased serum lipids and liver triglycerides. Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and beige fat tissues. Furthermore, the PANO gel increased the cerebral blood flow and improved learning and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a novel technology to treat metabolic disorders and cognitive dysfunctions.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | - Juhee Shin
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brigitta C. Brott
- Endomimetics, LLC, Birmingham, AL 35242
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas van Groen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Martin E. Young
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, AL 35242
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeong-a Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
23
|
Hu Y, Zhou Y, Yang Y, Tang H, Si Y, Chen Z, Shi Y, Fang H. Metformin Protects Against Diabetes-Induced Cognitive Dysfunction by Inhibiting Mitochondrial Fission Protein DRP1. Front Pharmacol 2022; 13:832707. [PMID: 35392573 PMCID: PMC8981993 DOI: 10.3389/fphar.2022.832707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Objectives: Diabetes is an independent risk factor for dementia. Mitochondrial dysfunction is a critical player in diabetes and diabetic complications. The present study aimed to investigate the role of mitochondrial dynamic changes in diabetes-associated cognitive impairment. Methods: Cognitive functions were examined by novel object recognition and T-maze tests. Mice hippocampi were collected for electron microscopy and immunofluorescence examination. Neuron cell line HT22 and primary hippocampal neurons were challenged with high glucose in vitro. Mitotracker-Red CM-H2X ROS was used to detect mitochondrial-derived free radicals. Results: Diabetic mice exhibited memory loss and spatial disorientation. Electron microscopy revealed that diabetic mice had larger synaptic gaps, attenuated postsynaptic density and fewer dendritic spines in the hippocampus. More round-shape mitochondria were observed in hippocampal neurons in diabetic mice than those in control mice. In cultured neurons, high glucose induced a high phosphorylated level of dynamin-related protein 1 (DRP1) and increased oxidative stress, resulting in cell apoptosis. Inhibition of mitochondrial fission by Mdivi-1 and metformin significantly decreased oxidative stress and prevented cell apoptosis in cultured cells. Treatment of Mdivi-1 and metformin restored cognitive function in diabetic mice. Conclusion: Metformin restores cognitive function by inhibiting mitochondrial fission, reducing mitochondrial-derived oxidative stress, and mitigating neuron loss in hippocampi of diabetic mice. The protective effects of metformin shed light on the therapeutic strategy of cognitive impairment.
Collapse
Affiliation(s)
- Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yile Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yajie Yang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Haihong Tang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuan Si
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
25
|
Kuo YM, Lee YH. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. CHINESE J PHYSIOL 2022; 65:1-11. [PMID: 35229747 DOI: 10.4103/cjp.cjp_80_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are fatty acid signaling molecules synthesized by cytochrome P450 epoxygenases from arachidonic acid. The biological activity of EETs is terminated when being metabolized by soluble epoxide hydrolase (sEH), a process that serves as a key regulator of tissue EETs levels. EETs act through several signaling pathways to mediate various beneficial effects, including anti-inflammation, anti-apoptosis, and anti-oxidation with relieve of endoplasmic reticulum stress, thereby sEH has become a potential therapeutic target in cardiovascular disease and cancer therapy. Enzymes for EET biosynthesis and metabolism are both widely detected in both neuron and glial cells in the central nervous system (CNS). Recent studies discovered that astrocyte-derived EETs not only mediate neurovascular coupling and neuronal excitability by maintaining glutamate homeostasis but also glia-dependent neuroprotection. Genetic ablation as well as pharmacologic inhibition of sEH has greatly helped to elucidate the physiologic actions of EETs, and maintaining or elevating brain EETs level has been demonstrated beneficial effects in CNS disease models. Here, we review the literature regarding the studies on the bioactivity of EETs and their metabolic enzyme sEH with special attention paid to their action mechanisms in the CNS, including their modulation of neuronal activity, attenuation of neuroinflammation, regulation of cerebral blood flow, and improvement of neuronal and glial cells survival. We further reviewed the recent advance on the potential application of sEH inhibition for treating cerebrovascular disease, epilepsy, and pain disorder.
Collapse
Affiliation(s)
- Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital; Department of Anesthesiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
26
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
27
|
Treatment with Autophagy Inducer Trehalose Alleviates Memory and Behavioral Impairments and Neuroinflammatory Brain Processes in db/db Mice. Cells 2021; 10:cells10102557. [PMID: 34685538 PMCID: PMC8533743 DOI: 10.3390/cells10102557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy attenuation has been found in neurodegenerative diseases, aging, diabetes mellitus, and atherosclerosis. In experimental models of neurodegenerative diseases, the correction of autophagy in the brain reverses neuronal and behavioral deficits and hence seems to be a promising therapy for neuropathologies. Our aim was to study the effect of an autophagy inducer, trehalose, on brain autophagy and behavior in a genetic model of diabetes with signs of neuronal damage (db/db mice). A 2% trehalose solution was administered as drinking water during 24 days of the experiment. Expressions of markers of autophagy (LC3-II), neuroinflammation (IBA1), redox state (NOS), and neuronal density (NeuN) in the brain were assessed by immunohistochemical analysis. For behavioral phenotyping, the open field, elevated plus-maze, tail suspension, pre-pulse inhibition, and passive avoidance tests were used. Trehalose caused a slight reduction in increased blood glucose concentration, considerable autophagy activation, and a decrease in the neuroinflammatory response in the brain along with improvements of exploration, locomotor activity, anxiety, depressive-like behavior, and fear learning and memory in db/db mice. Trehalose exerted some beneficial peripheral and systemic effects and partially reversed behavioral alterations in db/db mice. Thus, trehalose as an inducer of mTOR-independent autophagy is effective at alleviating neuronal and behavioral disturbances accompanying experimental diabetes.
Collapse
|
28
|
Rhea EM, Hansen K, Pemberton S, Torres ERS, Holden S, Raber J, Banks WA. Effects of apolipoprotein E isoform, sex, and diet on insulin BBB pharmacokinetics in mice. Sci Rep 2021; 11:18636. [PMID: 34545146 PMCID: PMC8452709 DOI: 10.1038/s41598-021-98061-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022] Open
Abstract
Age, apolipoprotein E (apoE) isoform, sex, and diet can independently affect the risk for the development of Alzheimer’s disease (AD). Additionally, synergy between some of these risk factors have been observed. However, the relation between the latter three risk factors has not been investigated. Central nervous system (CNS) insulin resistance is commonly involved in each of these risk factors. CNS insulin is primarily derived from the periphery in which insulin must be transported across the blood–brain barrier (BBB). Additionally, insulin can bind the brain endothelial cell to affect intracellular signaling. Therefore, we hypothesized CNS access to insulin could be affected by the combination of apoE isoform, sex, and diet. We analyzed insulin BBB pharmacokinetics in aged apoE targeted replacement (E3 and E4) male and female mice on a low-fat and high-fat diet. There were differences within males and females due to apoE genotype and diet in insulin interactions at the BBB. These sex-, diet-, and apoE isoform-dependent differences could contribute to the cognitive changes observed due to altered CNS insulin signaling.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98195, USA. .,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.
| | - Kim Hansen
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Sarah Pemberton
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.,Division of Neuroscience, Departments of Neurology and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98195, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| |
Collapse
|
29
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
30
|
Li Y, Huang Y, Cheng X, He Y, Hu X. Whole body hypoxic preconditioning-mediated multiorgan protection in db/db mice via nitric oxide-BDNF-GSK-3β-Nrf2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:281-296. [PMID: 34187947 PMCID: PMC8255126 DOI: 10.4196/kjpp.2021.25.4.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/15/2022]
Abstract
The beneficial effects of hypoxic preconditioning are abolished in the diabetes. The present study was designed to investigate the protective effects and mechanisms of repeated episodes of whole body hypoxic preconditioning (WBHP) in db/db mice. The protective effects of preconditioning were explored on diabetesinduced vascular dysfunction, cognitive impairment and ischemia-reperfusion (IR)-induced increase in myocardial injury. Sixteen-week old db/db (diabetic) and C57BL/6 (non-diabetic) mice were employed. There was a significant impairment in cognitive function (Morris Water Maze test), endothelial function (acetylcholineinduced relaxation in aortic rings) and a significant increase in IR-induced heart injury (Langendorff apparatus) in db/db mice. WBHP stimulus was given by exposing mice to four alternate cycles of low (8%) and normal air O2 for 10 min each. A single episode of WBHP failed to produce protection; however, two and three episodes of WBHP significantly produced beneficial effects on the heart, brain and blood vessels. There was a significant increase in the levels of brain-derived neurotrophic factor (BDNF) and nitric oxide (NO) in response to 3 episodes of WBHP. Moreover, pretreatment with the BDNF receptor, TrkB antagonist (ANA-12) and NO synthase inhibitor (LNAME) attenuated the protective effects imparted by three episodes of WBHP. These pharmacological agents abolished WBHP-induced restoration of p-GSK-3β/GSK-3β ratio and Nrf2 levels in IR-subjected hearts. It is concluded that repeated episodes of WHBP attenuate cognitive impairment, vascular dysfunction and enhancement in IRinduced myocardial injury in diabetic mice be due to increase in NO and BDNF levels that may eventually activate GSK-3β and Nrf2 signaling pathway to confer protection.
Collapse
Affiliation(s)
- Yuefang Li
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Yan Huang
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xi Cheng
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Youjun He
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Xin Hu
- Cadre Ward the No.901 Hospital of the Joint Logistics Support Unit of the Chinese People's Liberation Army, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
31
|
Zimmerman B, Kundu P, Rooney WD, Raber J. The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules 2021; 26:3406. [PMID: 34199898 PMCID: PMC8200075 DOI: 10.3390/molecules26113406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
| | - William D. Rooney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
32
|
Soluble Epoxide Hydrolase Blockade after Stroke Onset Protects Normal but Not Diabetic Mice. Int J Mol Sci 2021; 22:ijms22115419. [PMID: 34063817 PMCID: PMC8196561 DOI: 10.3390/ijms22115419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Soluble epoxide hydrolase (sEH) is abundant in the brain, is upregulated in type 2 diabetes mellitus (DM2), and is possible mediator of ischemic injury via the breakdown of neuroprotective epoxyeicosatrienoic acids (EETs). Prophylactic, pre-ischemic sEH blockade with 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (tAUCB) reduces stroke-induced infarct in normal and diabetic mice, with larger neuroprotection in DM2. The present study tested whether benefit occurs in normal and DM2 mice if tAUCB is administered after stroke onset. We performed 60 min middle cerebral artery occlusion in young adult male C57BL mice divided into four groups: normal or DM2, with t-AUCB 2 mg/kg or vehicle 30 min before reperfusion. Endpoints were (1) cerebral blood flow (CBF) by laser Doppler, and (2) brain infarct at 24 h. In nondiabetic mice, t-AUCB reduced infarct size by 30% compared to vehicle-treated mice in the cortex (31.4 ± 4 vs. 43.8 ± 3 (SEM)%, respectively) and 26% in the whole hemisphere (26.3 ± 3 vs. 35.2 ± 2%, both p < 0.05). In contrast, in DM2 mice, tAUCB failed to ameliorate either cortical or hemispheric injury. No differences were seen in CBF. We conclude that tAUCB administered after ischemic stroke onset exerts brain protection in nondiabetic but not DM2 mice, that the neuroprotection appears independent of changes in gross CBF, and that DM2-induced hyperglycemia abolishes t-AUCB-mediated neuroprotection after stroke onset.
Collapse
|
33
|
Quintana D, Ren X, Hu H, Corbin D, Engler-Chiurazzi E, Alvi M, Simpkins J. IL-1β Antibody Protects Brain from Neuropathology of Hypoperfusion. Cells 2021; 10:855. [PMID: 33918659 PMCID: PMC8069995 DOI: 10.3390/cells10040855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic brain hypoperfusion is the primary cause of vascular dementia and has been implicated in the development of white matter disease and lacunar infarcts. Cerebral hypoperfusion leads to a chronic state of brain inflammation with immune cell activation and production of pro-inflammatory cytokines, including IL-1β. In the present study, we induced chronic, progressive brain hypoperfusion in mice using ameroid constrictor, arterial stenosis (ACAS) surgery and tested the efficacy of an IL-1β antibody on the resulting brain damage. We observed that ACAS surgery causes a reduction in cerebral blood flow (CBF) of about 30% and grey and white matter damage in and around the hippocampus. The IL-1β antibody treatment did not significantly affect CBF but largely eliminated grey matter damage and reduced white matter damage caused by ACAS surgery. Over the course of hypoperfusion/injury, grip strength, coordination, and memory-related behavior were not significantly affected by ACAS surgery or antibody treatment. We conclude that antibody neutralization of IL-1β is protective from the brain damage caused by chronic, progressive brain hypoperfusion.
Collapse
Affiliation(s)
- Dominic Quintana
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Xuefang Ren
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Heng Hu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Deborah Corbin
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Elizabeth Engler-Chiurazzi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Muhammad Alvi
- Center for Basic and Translational Stroke Research, Department of Neurology, Rockefeller Neuroscience Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - James Simpkins
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
- Center for Basic and Translational Stroke Research, Department of Neurology, Rockefeller Neuroscience Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
34
|
Andika FR, Yoon JH, Kim GS, Jeong Y. Intermittent Fasting Alleviates Cognitive Impairments and Hippocampal Neuronal Loss but Enhances Astrocytosis in Mice with Subcortical Vascular Dementia. J Nutr 2021; 151:722-730. [PMID: 33484139 DOI: 10.1093/jn/nxaa384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intermittent fasting (IF) is found to exhibit neuroprotection against various insults, including ischemia; however, IF has been mainly applied before disease onset. It remains unknown whether IF implementation alleviates the long-term detrimental effects of a disease after its establishment. OBJECTIVES To investigate the IF effects on cognitive impairments and cerebrovascular pathologies in a subcortical vascular dementia (SVaD) mouse model. METHODS The SVaD model was developed by inducing hypoperfusion and hyperlipidemia in apoE-deficient (apoE-/-) mice. We subjected 10-week-old apoE-/- mice to bilateral common carotid artery stenosis using micro-coils after they were fed a high-fat diet (HFD; 45% energy) for 6 weeks to induce hyperlipidemia. Age-matched wild-type C57BL/6J mice received sham surgery after undergoing an identical HFD treatment. Both the SVaD model and wild-type mice either started a 1-month IF regimen (time-restricted feeding for 6 hours per day) or continued the standard diet ad libitum (6.2% fat energy) at 8 weeks post-surgery. We assessed mice weight, food intake, and outcomes in a behavioral test battery before, during, and after the IF regimen, prior to histopathological analyses (microvessel density, neuronal density, white matter damage, astrocytosis) of their brains. RESULTS SVaD model mice on the IF regimen (SVaD-IF) exhibited higher mean recognition and spatial working memory performance compared to SVaD mice fed ad libitum (SVaD-AL; P < 0.01). Additionally, SVaD-IF mice had ∼5% higher hippocampal neuronal density in the dentate gyrus (DG) and cornu ammonis 1 regions than SVaD-AL mice (P < 0.001), which paralleled their post-IF cognitive enhancements. However, SVaD-IF mice showed an ∼50% increase in hippocampal DG astrocytosis compared to SVaD-AL mice (P < 0.05), with no significant differences in microvessel densities among the 2 groups. CONCLUSIONS The improvements in SVaD-IF mice suggest that IF could be a potential nonpharmacological remedy for SVaD. This finding could stimulate future investigations on IF's neuroprotective potential across many neurovascular diseases.
Collapse
Affiliation(s)
- Faris Rizky Andika
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin-Hui Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Gaon Sandy Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
35
|
Chronic Mild Unpredictable Stress and High-Fat Diet Given during Adolescence Impact Both Cognitive and Noncognitive Behaviors in Young Adult Mice. Brain Sci 2021; 11:brainsci11020260. [PMID: 33669543 PMCID: PMC7923206 DOI: 10.3390/brainsci11020260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stress and diet are intricately linked, and they often interact in a negative fashion. Increases in stress can lead to poor food choices; adolescence is a period that is often accompanied by increased levels of stress. Stress and poor dietary choices can affect learning and memory; it is important to understand their combined effects when occurring during crucial developmental periods. Here, we present evidence that chronic mild unpredictable stress (CMUS) and high-fat diet (HFD) impact both cognitive and noncognitive behaviors when assessed after four weeks of manipulation in four-week old mice. CMUS mice had increased anxiety in the open field test (OFT) (p = 0.01) and spent more time in the open arms of the elevated zero maze (EZM) (p < 0.01). HFD administration was shown to interact with CMUS to impair spatial memory in the Morris Water Maze (MWM) (p < 0.05). Stress and diet also led to disturbances in non-cognitive behaviors: CMUS led to significantly more burrowing (p < 0.05) and HFD administration led to the poorer nest construction (p < 0.05). These findings allow for researchers to assess how modifying lifestyle factors (including diet and stress) during adolescence can serve as a potential strategy to improve cognition in young adulthood.
Collapse
|
36
|
Xia W, Cui J, Luo Y, Xu JJ, Chen H, Yin X, Ma J, Wu Y. Glucose Control Has an Impact on Cerebral Blood Flow Alterations in Chronic Tinnitus Patients. Front Neurosci 2021; 14:623520. [PMID: 33633528 PMCID: PMC7902065 DOI: 10.3389/fnins.2020.623520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Both tinnitus and type 2 diabetes mellitus (T2DM) are linked with cognitive decline and brain dysfunction. This study used arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to examine the abnormal cerebral blood flow (CBF) patterns existed in tinnitus patients and potential relationships between the abnormal CBF and cognitive performance. The impact of T2DM on CBF alterations in tinnitus patients was further explored. METHODS Sixty tinnitus patients and 40 non-tinnitus subjects were recruited. CBF images were collected and analyzed using ASL perfusion fMRI. Brain regions with CBF alterations between tinnitus patients and non-tinnitus controls were identified by one-way analysis of variance. Interaction effects between tinnitus and T2DM for CBF changes were also selected. Then, correlation analyses were calculated to specify the link between CBF changes and cognitive performance and between CBF changes and diabetic characteristics. RESULTS Tinnitus patients showed decreased CBF, primarily in the auditory area and default mode network (DMN), compared with non-tinnitus controls. Decreased CBF in these regions was correlated with executive function and attention. The interaction effect between tinnitus and T2DM was significant in the right medial prefrontal gyrus. Additionally, CBF in the right medial prefrontal gyrus was correlated with tinnitus distress and cognitive performance. In tinnitus patients, Hemoglobin A1c was associated with CBF in the right medial prefrontal gyrus. CONCLUSION Tinnitus affects brain perfusion in the auditory area and DMN. T2DM and uncontrolled glucose levels may aggravate a CBF decrease in tinnitus patients. These new findings implied that tinnitus patients may benefit from blood glucose control in terms of their cognitive function and tinnitus distress.
Collapse
Affiliation(s)
- Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinluan Cui
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Luo
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Naneix F, Bakoyiannis I, Santoyo-Zedillo M, Bosch-Bouju C, Pacheco-Lopez G, Coutureau E, Ferreira G. Chemogenetic silencing of hippocampus and amygdala reveals a double dissociation in periadolescent obesogenic diet-induced memory alterations. Neurobiol Learn Mem 2020; 178:107354. [PMID: 33276069 DOI: 10.1016/j.nlm.2020.107354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
In addition to numerous metabolic comorbidities, obesity is associated with several adverse neurobiological outcomes, especially learning and memory alterations. Obesity prevalence is rising dramatically in youth and is persisting in adulthood. This is especially worrying since adolescence is a crucial period for the maturation of certain brain regions playing a central role in memory processes such as the hippocampus and the amygdala. We previously showed that periadolescent, but not adult, exposure to obesogenic high-fat diet (HFD) had opposite effects on hippocampus- and amygdala-dependent memory, impairing the former and enhancing the latter. However, the causal role of these two brain regions in periadolescent HFD-induced memory alterations remains unclear. Here, we first showed that periadolescent HFD induced long-term, but not short-term, object recognition memory deficits, specifically when rats were exposed to a novel context. Using chemogenetic approaches to inhibit targeted brain regions, we then demonstrated that recognition memory deficits are dependent on the activity of the ventral hippocampus, but not the basolateral amygdala. On the contrary, the HFD- induced enhancement of conditioned odor aversion specifically requires amygdala activity. Taken together, these findings suggest that HFD consumption throughout adolescence impairs long-term object recognition memory through alterations of ventral hippocampal activity during memory acquisition. Moreover, these results further highlight the bidirectional effects of adolescent HFD on hippocampal and amygdala functions.
Collapse
Affiliation(s)
- Fabien Naneix
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France; Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33077 Bordeaux, France
| | - Ioannis Bakoyiannis
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France
| | - Marianela Santoyo-Zedillo
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France; Department of Health Sciences, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | | | - Gustavo Pacheco-Lopez
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | | | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077, Bordeaux, France.
| | | |
Collapse
|
38
|
Fung ITH, Sankar P, Zhang Y, Robison LS, Zhao X, D'Souza SS, Salinero AE, Wang Y, Qian J, Kuentzel ML, Chittur SV, Temple S, Zuloaga KL, Yang Q. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J Exp Med 2020; 217:133697. [PMID: 32022838 PMCID: PMC7144523 DOI: 10.1084/jem.20190915] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence has challenged the traditional view about the immune privilege of the brain, but the precise roles of immune cells in regulating brain physiology and function remain poorly understood. Here, we report that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the choroid plexus of aged brains. ILC2 in the aged brain are long-lived, are relatively resistant to cellular senescence and exhaustion, and are capable of switching between cell cycle dormancy and proliferation. They are functionally quiescent at homeostasis but can be activated by IL-33 to produce large amounts of type 2 cytokines and other effector molecules in vitro and in vivo. Intracerebroventricular transfer of activated ILC2 revitalized the aged brain and enhanced the cognitive function of aged mice. Administration of IL-5, a major ILC2 product, was sufficient to repress aging-associated neuroinflammation and alleviate aging-associated cognitive decline. Targeting ILC2 in the aged brain may provide new avenues to combat aging-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ivan Ting Hin Fung
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Yuanyue Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Xiuli Zhao
- Neural Stem Cell Institute, Rensselaer, NY
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Yue Wang
- Neural Stem Cell Institute, Rensselaer, NY
| | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, NY
| | - Marcy L Kuentzel
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY.,Department of Medicine, Albany Medical College, Albany, NY
| |
Collapse
|
39
|
Andrews RM, Shpitser I, Lopez O, Longstreth WT, Chaves PHM, Kuller L, Carlson MC. Examining the causal mediating role of brain pathology on the relationship between diabetes and cognitive impairment: the Cardiovascular Health Study. JOURNAL OF THE ROYAL STATISTICAL SOCIETY. SERIES A, (STATISTICS IN SOCIETY) 2020; 183:1705-1726. [PMID: 34321718 PMCID: PMC8314961 DOI: 10.1111/rssa.12570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The paper examines whether diabetes mellitus leads to incident mild cognitive impairment and dementia through brain hypoperfusion and white matter disease. We performed inverse odds ratio weighted causal mediation analyses to decompose the effect of diabetes on cognitive impairment into direct and indirect effects, and we found that approximately a third of the total effect of diabetes is mediated through vascular-related brain pathology. Our findings lend support for a common aetiological hypothesis regarding incident cognitive impairment, which is that diabetes increases the risk of clinical cognitive impairment in part by impacting the vasculature of the brain.
Collapse
Affiliation(s)
- Ryan M Andrews
- Johns Hopkins University, Baltimore, USA, and Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
| | | | - Oscar Lopez
- University of Pittsburgh School of Medicine, USA
| | | | | | | | - Michelle C Carlson
- Johns Hopkins University, Baltimore, and Johns Hopkins Center on Aging and Health, Baltimore, USA
| |
Collapse
|
40
|
Salinero AE, Robison LS, Gannon OJ, Riccio D, Mansour F, Abi-Ghanem C, Zuloaga KL. Sex-specific effects of high-fat diet on cognitive impairment in a mouse model of VCID. FASEB J 2020; 34:15108-15122. [PMID: 32939871 DOI: 10.1096/fj.202000085r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Mid-life metabolic disease (ie, obesity, diabetes, and prediabetes) causes vascular dysfunction and is a risk factor for vascular contributions to cognitive impairment and dementia (VCID), particularly in women. Using middle-aged mice, we modeled metabolic disease (obesity/prediabetes) via chronic high-fat (HF) diet and modeled VCID via unilateral common carotid artery occlusion. VCID impaired spatial memory in both sexes, but episodic-like memory in females only. HF diet caused greater weight gain and glucose intolerance in middle-aged females than males. HF diet alone impaired episodic-like memory in both sexes, but spatial memory in females only. Finally, the combination of HF diet and VCID elicited cognitive impairments in all tests, in both sexes. Sex-specific correlations were found between metabolic outcomes and memory. Notably, both visceral fat and the pro-inflammatory cytokine tumor necrosis factor alpha correlated with spatial memory deficits in middle-aged females, but not males. Overall, our data show that HF diet causes greater metabolic impairment and a wider array of cognitive deficits in middle-aged females than males. The combination of HF diet with VCID elicits deficits across multiple cognitive domains in both sexes. Our data are in line with clinical data, which shows that mid-life metabolic disease increases VCID risk, particularly in females.
Collapse
Affiliation(s)
- Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Lisa S Robison
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Febronia Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
41
|
Zhou J, Zhang Z, Zhou H, Qian G. Diabetic Cognitive Dysfunction: From Bench to Clinic. Curr Med Chem 2020; 27:3151-3167. [PMID: 30727866 DOI: 10.2174/1871530319666190206225635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/30/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes increases the risk of developing cognitive dysfunction in the elderly in the form of short-term memory and executive function impairment. Genetic and diet-induced models of type 2 diabetes further support this link, displaying deficits in working memory, learning, and memory performance. The risk factors for diabetic cognitive dysfunction include vascular disease, hypoglycaemia, hyperlipidaemia, adiposity, insulin resistance, lifestyle factors, and genetic factors. Using neuronal imaging technologies, diabetic patients with cognitive dysfunction show atrophy of the whole brain, particularly the grey matter, hippocampus and amygdala; increased volume of the ventricular and white matter; brain infarcts; impaired network integrity; abnormal microstructure; and reduced cerebral blood flow and amplitude of low-frequency fluctuations. The pathogenesis of type 2 diabetes with cognitive dysfunction involves hyperglycaemia, macrovascular and microvascular diseases, insulin resistance, inflammation, apoptosis, and disorders of neurotransmitters. Large clinical trials may offer further proof of biomarkers and risk factors for diabetic cognitive dysfunction. Advanced neuronal imaging technologies and novel disease animal models will assist in elucidating the precise pathogenesis and to provide better therapeutic interventions and treatment.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Guisheng Qian
- Institute of Respiratory Diseases, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
42
|
Almeida JFQ, Shults N, de Souza AMA, Ji H, Wu X, Woods J, Sandberg K. Short-term very low caloric intake causes endothelial dysfunction and increased susceptibility to cardiac arrhythmias and pathology in male rats. Exp Physiol 2020; 105:1172-1184. [PMID: 32410300 PMCID: PMC7496402 DOI: 10.1113/ep088434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023]
Abstract
New Findings What is the central question of this study? What are the effects of a 2 week period of severe food restriction on vascular reactivity of resistance arteries and on cardiac structure and function? What is the main finding and its importance? This study showed, for the first time, that a 2 week period of severe food restriction in adult male Fischer rats caused endothelial dysfunction in mesenteric arteries and increased the susceptibility to ischaemia–reperfusion‐induced arrhythmias and cardiac pathology. Our findings might have ramifications for cardiovascular risk in people who experience periods of inadequate caloric intake.
Abstract Severe food restriction (sFR) is a common dieting strategy for rapid weight loss. Male Fischer rats were maintained on a control (CT) or sFR (40% of CT food intake) diet for 14 days to mimic low‐calorie crash diets. The sFR diet reduced body weight by 16%. Haematocrits were elevated by 10% in the sFR rats, which was consistent with the reduced plasma volume. Mesenteric arteries from sFR rats had increased sensitivity to vasoconstrictors, including angiotensin II [maximum (%): CT, 1.30 ± 0.46 versus sFR, 11.5 ± 1.6; P < 0.0001; n = 7] and phenylephrine [maximum (%): CT, 78.5 ± 2.8 versus sFR, 94.5 ± 1.7; P < 0.001; n = 7] and reduced sensitivity to the vasodilator acetylcholine [EC50 (nm): CT, 49.2 ± 5.2 versus sFR, 71.6 ± 6.8; P < 0.05; n = 7]. Isolated hearts from sFR rats had a 1.7‐fold increase in the rate of cardiac arrhythmias in response to ischaemia–reperfusion and more cardiac pathology, including myofibrillar disarray with contractions and cardiomyocyte lysis, than hearts from CT rats. The sFR dietary regimen is similar to very low‐calorie commercial and self‐help weight‐loss programmes, which provide ∼800–1000 kcal day−1. Therefore, these findings in rats warrant the study of cardiovascular function in individuals who engage in extreme dieting or are subjected to bouts of very low caloric intake for other reasons, such as socioeconomic factors and natural disasters.
Collapse
Affiliation(s)
| | - Nataliia Shults
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| | | | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - James Woods
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC, USA
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
43
|
Zhang Y, Fung ITH, Sankar P, Chen X, Robison LS, Ye L, D'Souza SS, Salinero AE, Kuentzel ML, Chittur SV, Zhang W, Zuloaga KL, Yang Q. Depletion of NK Cells Improves Cognitive Function in the Alzheimer Disease Mouse Model. THE JOURNAL OF IMMUNOLOGY 2020; 205:502-510. [PMID: 32503894 DOI: 10.4049/jimmunol.2000037] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Despite mounting evidence suggesting the involvement of the immune system in regulating brain function, the specific role of immune and inflammatory cells in neurodegenerative diseases remain poorly understood. In this study, we report that depletion of NK cells, a type of innate lymphocytes, alleviates neuroinflammation, stimulates neurogenesis, and improves cognitive function in a triple-transgenic Alzheimer disease (AD) mouse model. NK cells in the brains of triple-transgenic AD mouse model (3xTg-AD) mice exhibited an enhanced proinflammatory profile. Depletion of NK cells by anti-NK1.1 Abs drastically improved cognitive function of 3xTg-AD mice. NK cell depletion did not affect amyloid β concentrations but enhanced neurogenesis and reduced neuroinflammation. Notably, in 3xTg-AD mice depleted of NK cells, microglia demonstrated a homeostatic-like morphology, decreased proliferative response and reduced expression of neurodestructive proinflammatory cytokines. Together, our results suggest a proinflammatory role for NK cells in 3xTg-AD mice and indicate that targeting NK cells might unlock novel strategies to combat AD.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ivan Ting Hin Fung
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Xiangyu Chen
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
| | - Longyun Ye
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Shanti S D'Souza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
| | - Marcy L Kuentzel
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY 12144; and
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-SUNY, Rensselaer, NY 12144; and
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208;
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
44
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Livingston JM, McDonald MW, Gagnon T, Jeffers MS, Gomez-Smith M, Antonescu S, Cron GO, Boisvert C, Lacoste B, Corbett D. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis 2020; 137:104756. [PMID: 31978604 DOI: 10.1016/j.nbd.2020.104756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular cognitive impairment (VCI) is associated with chronic cerebral hypoperfusion (CCH) and memory deficits, and often occurs concurrently with metabolic syndrome (MetS). Despite their common occurrence, it is unknown whether CCH and MetS act synergistically to exacerbate VCI-associated pathology. Here, using male Sprague-Dawley rats, we examined the effects of a clinically relevant model of adolescent-onset MetS and adult-onset CCH on neuro-vascular outcomes, combining a cafeteria diet with a 2-vessel occlusion (2VO) model. Using longitudinal imaging, histology, and behavioural assessments, we identified several features of MetS and CCH including reduced cerebral blood volume, white matter atrophy, alterations in hippocampal cell density, and memory impairment. Furthermore, we identified a number of significant associations, potentially predictive of MetS and pathophysiological outcomes. White matter volume was positively correlated to HDL cholesterol; hippocampal cell density was negatively correlated to fasted blood glucose; cerebral blood flow and volume was negatively predicted by the combination of 2VO surgery and increased fasted blood glucose. These results emphasize the importance of including comorbid conditions when modeling VCI, and they outline a highly translational preclinical model that could be used to investigate potential interventions to mitigate VCI-associated pathology and cognitive decline.
Collapse
Affiliation(s)
- Jessica M Livingston
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W McDonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Therese Gagnon
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Mariana Gomez-Smith
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sabina Antonescu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Greg O Cron
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada; Department of Radiology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carlie Boisvert
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada; Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
46
|
High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. eNeuro 2020; 7:ENEURO.0391-19.2019. [PMID: 31871124 PMCID: PMC6946541 DOI: 10.1523/eneuro.0391-19.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is suppressed by high-fat (HF) diet and metabolic disease, including obesity and type 2 diabetes. Deficits in AHN may contribute to cognitive decline and increased risk of dementia and mood disorders, which have higher prevalence in women. However, sex differences in the effects of HF diet/metabolic disease on AHN have yet to be thoroughly investigated. Herein, male and female C57BL/6J mice were fed an HF or control (CON) diet from ∼2 to 6 months of age. After 3 months on the diet, mice were injected with 5-ethynyl-2′-deoxyuridine (EdU) then killed 4 weeks later. Cell proliferation, differentiation/maturation, and survival of new neurons in the dentate gyrus were assessed with immunofluorescence for EdU, Ki67, doublecortin (DCX), and NeuN. CON females had more proliferating cells (Ki67+) and neuroblasts/immature neurons (DCX+) compared with CON males; however, HF diet reduced these cells in females to the levels of males. Diet did not affect neurogenesis in males. Further, the numbers of proliferating cells and immature neurons were inversely correlated with both weight gain and glucose intolerance in females only. These effects were robust in the dorsal hippocampus, which supports cognitive processes. Assessment of microglia in the dentate gyrus using immunofluorescence for Iba1 and CD68 uncovered sex-specific effects of diet, which may contribute to observed differences in neurogenesis. These findings demonstrate sex-specific effects of HF diet/metabolic disease on AHN, and highlight the potential for targeting neurogenic deficits to treat cognitive decline and reduce the risk of dementia associated with these conditions, particularly in females.
Collapse
|
47
|
Zhang J, Liu Y, Zheng Y, Luo Y, Du Y, Zhao Y, Guan J, Zhang X, Fu J. TREM-2-p38 MAPK signaling regulates neuroinflammation during chronic cerebral hypoperfusion combined with diabetes mellitus. J Neuroinflammation 2020; 17:2. [PMID: 31900229 PMCID: PMC6942413 DOI: 10.1186/s12974-019-1688-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus (DM) and chronic cerebral hypoperfusion(CCH)are both risk factors for cognitive impairment. However, whether DM and CCH can synergistically promote cognitive impairment and the related pathological mechanisms remain unknown. Methods To investigate the effect of DM and CCH on cognitive function, rats fed with high-fat diet (HFD) and injected with low-dose streptozotocin (STZ) followed by bilateral common carotid artery occlusion (BCCAO) were induced to mimic DM and CCH in vivo and mouse BV2 microglial cells were exposed to hypoxia and/or high glucose to mimic CCH complicated with DM pathologies in vitro. To further explore the underlying mechanism, TREM-2-specific small interfering RNA and TREM-2 overexpression lentivirus were used to knock out and overexpress TREM-2, respectively. Results Cognitive deficits, neuronal cell death, neuroinflammation with microglial activation, and TREM-2-MAPK signaling were enhanced when DM was superimposed on CCH both in vivo and in vitro. Manipulating TREM-2 expression levels markedly regulated the p38 MAPK signaling and the inflammatory response in vitro. TREM-2 knockout intensified while TREM-2 overexpression suppressed the p38 MAPK signaling and subsequent pro-inflammatory mediator production under high glucose and hypoxia condition. Conclusions These results suggest that TREM-2 negatively regulates p38 MAPK-mediated inflammatory response when DM was synergistically superimposed on CCH and highlight the importance of TREM-2 as a potential target of immune regulation in DM and CCH.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Liu
- Department of Medicine, Shanghai Eighth People's Hospital, Shanghai, 200235, People's Republic of China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yan Luo
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yu Du
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jian Guan
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
48
|
Pierre A, Regin Y, Van Schuerbeek A, Fritz EM, Muylle K, Beckers T, Smolders IJ, Singewald N, De Bundel D. Effects of disrupted ghrelin receptor function on fear processing, anxiety and saccharin preference in mice. Psychoneuroendocrinology 2019; 110:104430. [PMID: 31542636 DOI: 10.1016/j.psyneuen.2019.104430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is a risk factor for stress-related mental disorders such as post-traumatic stress disorder. The underlying mechanism through which obesity affects mental health remains poorly understood but dysregulation of the ghrelin system may be involved. Stress increases plasma ghrelin levels, which stimulates food intake as a potential stress-coping mechanism. However, diet-induced obesity induces ghrelin resistance which in turn may have deleterious effects on stress-coping. In our study, we explored whether disruption of ghrelin receptor function though high-fat diet or genetic ablation affects fear processing, anxiety-like behavior and saccharin preference in mice. METHODS Adult male C57BL6/J mice were placed on a standard diet or high-fat diet for a total period of 8 weeks. We first established that high-fat diet exposure for 4 weeks elicits ghrelin resistance, evidenced by a blunted hyperphagic response following administration of a ghrelin receptor agonist. We then carried out an experiment in which we subjected mice to auditory fear conditioning after 4 weeks of diet exposure and evaluated effects on fear extinction, anxiety-like behavior and saccharin preference. To explore whether fear conditioning as such may influence the effect of diet exposure, we also subjected mice to auditory fear conditioning prior to diet onset and 4 weeks later we investigated auditory fear extinction, anxiety-like behavior and saccharin preference. In a final experiment, we further assessed lack of ghrelin receptor function by investigating auditory fear processing, anxiety-like behavior and saccharin preference in ghrelin receptor knockout mice and their wild-type littermates. RESULTS High-fat diet exposure had no significant effect on auditory fear conditioning and its subsequent extinction or on anxiety-like behavior but significantly lowered saccharin preference. Similarly, ghrelin receptor knockout mice did not differ significantly from their wild-type littermates for auditory fear processing or anxiety-like behavior but showed significantly lower saccharin preference compared to wild-type littermates. CONCLUSION Taken together, our data suggest that disruption of ghrelin receptor function per se does not affect fear or anxiety-like behavior but may decrease saccharin preference in mice.
Collapse
Affiliation(s)
- A Pierre
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Regin
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - A Van Schuerbeek
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E M Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - K Muylle
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - T Beckers
- Departement of Psychology and Leuven Brain Institute, KU Leuven, Tiensestraat 102 box 3712, 3000, Leuven, Belgium
| | - I J Smolders
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - D De Bundel
- Department of Pharmaceutical Sciences, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
49
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
50
|
Wang LY, Tao Z, Zhao HP, Wang RL, Li LZ, Luo YM, Chen ZG. Huoluo Yinao decoction mitigates cognitive impairments after chronic cerebral hypoperfusion in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111846. [PMID: 30954615 DOI: 10.1016/j.jep.2019.111846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huoluo Yinao decoction (HLYND) has been used to ameliorate cognitive impairment induced by chronic cerebral hypoperfusion in clinical for years. However, the exact mechanisms remain unknown. AIM OF THE STUDY To investigate the effects and mechanisms underlying HLYND-mediated improvement in cognitive deficits associated with chronic cerebral hypoperfusion. MATERIALS AND METHODS Thirty-six Sprague-Dawley rats were randomly allocated to three groups: sham, model, and HLYND. Daily administration of HLYND or volume-matched vehicle by gavage was initiated 1 day after bilateral carotid artery stenosis (BCAS) and continued for 42 days. The Morris water maze (MWM) test was used to assess cognitive functions from days 36-42. Via western blot and immunofluorescent staining, restoration of neuronal plasticity and remyelination of white matter were evaluated by analyzing the expression profiles of MAP-2, synaptophysin and MBP. In addition, macrophage/microglial activation was assessed by quantifying changes in Iba1, and macrophage/microglial polarization was assessed by changes in iNOS and CD16 (M1 markers), as well as Arg1 and CD206 (M2 markers). RESULTS In the MWM test, BCAS rats showed significantly extended escape latency and reduced platform crossing times, while those in the HLYND group had shortened escape latency and increased frequency of platform crossing. In addition, rats in the model group showed decreased levels and abnormal morphological changes of MAP-2, synaptophysin and MBP, whereas HLYND administration reversed these effects. As expected, Iba1 levels were elevated in both the model and HLYND groups but rats in the model group showed increased levels of the M1 markers, iNOS and CD16, and a correspondent decrease in the M2 marker, Arg1. In contrast, in the HLYND group, iNOS and CD16 levels were suppressed, while Arg1 levels were elevated. CONCLUSIONS Our findings demonstrate that HLYND mitigates cognitive impairment after chronic cerebral hypoperfusion in rats through mechanisms involving increased neuronal plasticity and white matter remyelination, with a subtile modulation of macrophage/microglial polarization toward the M2 phenotype.
Collapse
Affiliation(s)
- Li-Ye Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hai-Ping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rong-Liang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ling-Zhi Li
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-Min Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
| | - Zhi-Gang Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|