1
|
Li N, Wang H, Hu C, Qie S, Liu Z. Regulatory T Cells for Stroke Recovery: A Promising Immune Therapeutic Strategy. CNS Neurosci Ther 2025; 31:e70248. [PMID: 39878387 PMCID: PMC11775944 DOI: 10.1111/cns.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Stroke remains a leading cause of mortality and disability among adults. Given the restricted therapeutic window for intravascular interventions and neuroprotection during the acute phase, there has been a growing focus on tissue repair and functional recovery in the subacute and chronic phases after stroke. The pro-inflammatory microglial polarization occurs in subacute and chronic phases after stroke and may represent therapeutic targets for stroke recovery. CD4+ regulatory T cells (Tregs), a subtype of T cells with immunosuppressive effects, have been shown to be important in stroke. Tregs infiltrate into the brain primarily during the subacute and chronic phases following a stroke. Infiltrating Tregs play a critical role in mitigating pro-inflammatory microglial responses, modulating the immune microenvironment, and promoting the functional restoration of the damaged brain following a stroke. METHODS A systematic literature search was conducted in PubMed, Scopus, and Web of Science and then conduct a comprehensive analysis of the searched literature. RESULTS This review provides a comprehensive summary of recent preclinical research advances on the role of Tregs in stroke, with a particular focus on their reparative functions during the subacute and chronic phases. It discusses changes in peripheral and brain infiltrating Tregs post-stroke, their functions and underlying mechanisms, and therapeutic strategies involving Tregs. Additionally, this review explores the potential and challenges associated with the clinical application of Tregs in ischemic stroke. CONCLUSION Treg cell-related therapy represents a promising immune-therapeutic strategy for stroke recovery. However, there are several critical issues that must be resolved before its advancement to clinical application.
Collapse
Affiliation(s)
- Ning Li
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Hujun Wang
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Changbin Hu
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Zongjian Liu
- Department of Research, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Liu K, Wang L, Pang T. Research progress of small-molecule natural medicines for the treatment of ischemic stroke. Chin J Nat Med 2025; 23:21-30. [PMID: 39855828 DOI: 10.1016/s1875-5364(25)60801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 01/27/2025]
Abstract
Stroke is the second leading cause of disability and mortality worldwide, imposing a substantial socioeconomic burden on individuals and healthcare systems. Annually, approximately 14 million people experience stroke, with ischemic stroke comprising nearly 85% of cases, of which 10% to 20% involve large vessel occlusions. Currently, recombinant tissue plasminogen activator (tPA) remains the only approved pharmacological intervention. However, its utility is limited due to a narrow therapeutic window and low recanalization rates, making it applicable to only a minority of patients. Therefore, there is an urgent need for novel therapeutic strategies, including pharmacological advancements and combinatory treatments. Small-molecule natural medicines, particularly those derived from traditional Chinese herbs, have demonstrated significant therapeutic potential in ischemic stroke management. These compounds exert multiple neuroprotective effects, such as antioxidation, anti-inflammatory action, and inhibition of apoptosis, all of which are critical in mitigating stroke-induced cerebral damage. This review comprehensively examines the pathophysiology of acute ischemic stroke (AIS) and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Lv Y. The effects of immunomodulatory drugs on cerebral small vessel disease: A mediation Mendelian randomization analysis. Int Immunopharmacol 2024; 140:112786. [PMID: 39121606 DOI: 10.1016/j.intimp.2024.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND There are only a few recognized drug targets for cerebral small vessel disease (CSVD). Though inflammation is increasingly implicated in the development of CSVD, it remains unclear whether immunomodulation could become a therapeutic target. Accordingly, the Mendelian randomization (MR) method was used to assess the genetically proxied impacts of IL6 receptor (IL6R) inhibitor, IL1β inhibitor, Tumor necrosis factor (TNF) inhibitor and β-tubulin inhibitor on CSVD through. METHODS Single nucleotide polymorphisms (SNPs) near the IL6R, IL1β, TNFRSF1A and β-tubulin genes were identified as genetic proxies for immunomodulatory drugs. These SNPs exhibited significant associations with serum C-reactive protein (CRP) levels in a large European genome-wide association study. The causal effects of immunomodulatory drugs on CSVD manifestations and the mediation influence of 731 peripheral blood immune phenotypes linking these drugs to CSVD manifestations were examined using a two-sample two-step MR approach. RESULTS A total of 9, 18, 4 and 1 SNP were identified to proxy the effects of IL1β inhibitor, IL6R inhibitor, TNF inhibitor and β-tubulin inhibitor, respectively. MR analysis showed a significant causal relationship between IL1β inhibition and reduced volume of periventricular white matter hyperintensity (PWMH). IL6R inhibition was associated with a reduced risk of small vessel stroke, decreased axial diffusivity and mean diffusivity. Genetically proxied TNF inhibition may decrease the occurrence of cerebral microbleeds (CMBs) and severe enlarged perivascular spaces located at white matter (WM-EPVS). It could also protect WM integrity, as evidenced by the reduced volumes of PWMH and deep white matter hyperintensity (DWMH). Various peripheral blood immune phenotypes exhibited significant associations with immunomodulatory drugs. Notably, the median fluorescence intensity (MFI) of CD45 on CD8br cells partially mediated the effects of IL1β inhibitor on PWMH volume. Indirect effects of TNF inhibition on PWMH and DWMH volume through the MFI of CD127 on CD28- CD8br cells were observed. The effects of TNF inhibition on the occurrence of any CMBs were partially mediated by the MFI of CD45 on natural killer T cells, and the effects of TNF inhibition on the occurrence of lobar CMBs were partially mediated by the MFI of HLA DR on CD33- HLA DR+ cells. Furthermore, the MFI of HLA DR on CD33- HLA DR+ cells partially mediated the effects of TNF inhibition on WM-EPVS. CONCLUSIONS IL1β inhibitor, IL6R inhibitor and TNF inhibitor were associated with lower burden of CSVD while the activation of certain immune cells such as Tregs and myeloid cells partially mediated their protective effects.
Collapse
Affiliation(s)
- Yanchen Lv
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Ardic AF, Ardic N. Role of Neutrophils as Therapeutic Targets in Intracerebral Hemorrhage. Ther Innov Regul Sci 2024; 58:807-816. [PMID: 38753134 DOI: 10.1007/s43441-024-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 08/22/2024]
Abstract
Intracerebral hemorrhage (ICH) is a major health problem. It is one of the most common types of stroke and results in mortality in approximately half of patients. More than half of the fatalities occur in the first 2 days. In addition to the mass effect after ICH hemorrhage, complex pathophysiological mechanisms such as intracranial vessel vasospasm, microthrombosis, and inflammatory immune reaction also increase brain damage. Both resident (including microglia and astrocytes) and circulating immune cells (including neutrophils, macrophages, and lymphocytes) involved in the inflammatory process. The inflammatory response is especially harmful in the acute phase due to harmful substances secreted by infiltrating immune cells. The inflammatory response also has beneficial effects, especially in the later stages. Their role in pathophysiology makes immune cells important therapeutic targets. General immunosuppressive approaches and depleting cell groups such as neutrophils or keeping them away from the lesion site may not be sufficient to prevent poor outcomes after ICH. This is most likely because they suppress anti-inflammatory activities and pro-inflammatory effects. Instead, directing immune cells to the beneficial subpopulation seems like a more rational solution. The pro-inflammatory N1 subpopulation of neutrophils damages the tissue surrounding ICH. In contrast, the N2 subpopulation is associated with anti-inflammatory reactions and tissue repair. Studies show that when neutrophils are polarized toward the N2 subpopulation, clinical outcomes improve and the volume of the infarct decreases. However, more research is still needed. This study aims to evaluate the role of neutrophils as immunotherapeutic targets in ICH in light of current knowledge.
Collapse
Affiliation(s)
- Alper Fatih Ardic
- Asklepios Kliniken Schildautal Seesen, Neurology Clinic, Lower Saxony, Germany
| | - Nurittin Ardic
- Med-International UK Health Agency Ltd, Leicestershire, UK.
| |
Collapse
|
5
|
Zhang J, Gu Y, Sun W, Yu L, Li T. Tetrahydrocurcumin Protects Against GSK3β/PTEN/PI3K/Akt-Mediated Neuroinflammatory Responses and Microglial Polarization Following Traumatic Brain Injury. Mol Neurobiol 2024; 61:7026-7036. [PMID: 38368289 DOI: 10.1007/s12035-024-04034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Tetrahydrocurcumin (THC) and microglial polarization play crucial roles in neuroprotection during traumatic brain injury (TBI). However, whether THC regulates microglial polarization in TBI is unknown. Thus, we intended to analyze the functions and mechanism of THC in nerve injury after TBI via the regulation of microglial polarization. A TBI rat model was established, and modified neurological function score (mNSS), brain water content, Nissl staining, and Fluoro-Jade B (FJB) staining were used to evaluate neurological function. The expression of the M1-linked markers CD16 and CD86, as well as the M2-associated markers CD206 and YM-1, was analyzed via qRT-PCR, western blotting, and immunofluorescence. The levels of inflammatory cytokines were assessed via ELISA. Primary microglia were isolated from the brain and treated with lipopolysaccharide (LPS) to induce injury. TUNEL staining was used to measure primary microglial apoptosis. The expression of GSK3β, PTEN, and PI3K/Akt pathway proteins was detected via western blotting. TBI induced nerve injury, while THC improved neurological function recovery after TBI. Further analysis indicated that THC enhanced M2 microglial polarization and attenuated the inflammatory reaction mediated by microglia both in vitro and in vivo. Moreover, we found that THC promoted the M2 microglial phenotype through upregulating GSK3β expression. Additionally, we proved that GSK3β activated the PI3K/Akt pathway by phosphorylating PTEN. In conclusion, we demonstrated that THC protected against nerve injury after TBI via microglial polarization via the GSK3B/PTEN/PI3K/Akt signaling axis, suggesting the potential of THC for TBI treatment by promoting microglial M2 polarization.
Collapse
Affiliation(s)
- Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wenxue Sun
- Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Lisha Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214013, People's Republic of China.
| |
Collapse
|
6
|
Bai C, Liu X, Wang F, Sun Y, Wang J, Liu J, Hao X, Zhou L, Yuan Y, Liu J. Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning. Front Immunol 2024; 15:1421942. [PMID: 39281688 PMCID: PMC11392791 DOI: 10.3389/fimmu.2024.1421942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH pathogenesis and identify potential diagnostic biomarkers. Methods We collected 233 individual blood samples from two independent cohorts, including 64 patients with ICH, 59 patients with ischemic stroke (IS), 60 patients with hypertension (HTN) and 50 healthy controls (CTRL) for RNA sequencing. Differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were performed to identify ICH-specific modules. The immune cell composition was evaluated with ImmuneCellAI. Multiple machine learning algorithms to select potential biomarkers for ICH diagnosis, and further validated by quantitative real-time polymerase chain reaction (RT-PCR). Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were performed to evaluate the diagnostic value of the signature for ICH. Finally, we generated M1 and M2 macrophages to investigate the expression of candidate genes. Results In both cohorts, 519 mRNAs and 131 lncRNAs were consistently significantly differentially expressed between ICH patients and HTN controls. Gene function analysis suggested that immune system processes may be involved in ICH pathology. ImmuneCellAI analysis revealed that the abundances of 11 immune cell types were altered after ICH in both cohorts. WGCNA and GSEA identified 18 immune-related DEGs. Multiple algorithms identified an RNA panel (CKAP4, BCL6, TLR8) with high diagnostic value for discriminating ICH patients from HTN controls, CTRLs and IS patients (AUCs: 0.93, 0.95 and 0.82; sensitivities: 81.3%, 84.4% and 75%; specificities: 100%, 96% and 79.7%, respectively). Additionally, CKAP4 and TLR8 mRNA and protein levels decreased in RAW264.7 M1 macrophages and increased in RAW264.7 M2 macrophages, while BCL6 expression increased in M1 macrophages but not in M2 macrophages, which may provide potential therapeutic targets for ICH. Conclusions This study demonstrated that the expression levels of lncRNAs and mRNAs are associated with ICH, and an RNA panel (CKAP4, BCL6, TLR8) was developed as a potential diagnostic tool for distinguishing ICH from IS and controls, which could provide useful insight into ICH diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinran Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Ujas TA, Anderson KL, Lutshumba J, Hart SN, Turchan-Cholewo J, Hatton KW, Bachstetter AD, Nikolajczyk BS, Stowe AM. Temporal Immune Profiling in the CSF and Blood of Patients with Aneurysmal Subarachnoid Hemorrhage. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312086. [PMID: 39228728 PMCID: PMC11370545 DOI: 10.1101/2024.08.16.24312086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Delayed cerebral ischemia (DCI) is a significant complication of aneurysmal subarachnoid hemorrhage (aSAH). This study profiled immune responses after aSAH and evaluated their association with DCI onset. Methods Twelve aSAH patients were enrolled. Leukocyte populations and cytokine levels were analyzed in cerebrospinal fluid (CSF) and peripheral blood (PB) on days 3, 5, 7, 10, and 14 post-aSAH. Peripheral blood mononuclear cells (PBMCs) were collected and their cytokine production quantified following stimulation. Results Mixed-effects models revealed distinct immune cell dynamics in CSF compared to blood. Natural killer T cell frequency increased over time in CSF only, while monocyte/macrophage numbers increased in both CSF and PBMCs. CD4+ HLA II+ T cells increased in circulation. Unstimulated PBMCs showed increased IL-1β, IL-6, and TNFα production, peaking at 7 days post-aSAH, coinciding with typical DCI onset. Ex vivo stimulation of PBMCs showed that only IL-6 significantly changed over time. In CSF, cytokines peaked 5 days post-injury, preceding immune cell profile alterations. Conclusions Our findings reveal a time-dependent immune response following aSAH, with distinct within-patient patterns in CSF and PB. The early CSF cytokine peak preceding immune cell changes suggests a potential mechanistic link and identifies the cytokine response as a promising therapeutic target. This cytokine surge may drive immune cell expansion and prime PBMCs for increased inflammatory activity, potentially contributing to DCI risk. Future studies should explore the importance and sources of specific cytokines in driving immune activation. These insights may inform the development of targeted immunomodulatory strategies for preventing or managing DCI in aSAH patients.
Collapse
Affiliation(s)
- TA Ujas
- Department of Neuroscience, University of Kentucky, Lexington, USA
| | - KL Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Lexington, Kentucky, USA
| | - J Lutshumba
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Lexington, Kentucky, USA
| | - SN Hart
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Lexington, Kentucky, USA
- Barnstable Brown Diabetes Center, University of Kentucky Lexington, Kentucky, USA
| | | | - KW Hatton
- Department of Anesthesiology, University of Kentucky, Lexington, USA
| | - AD Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, USA
- Univ Kentucky, Spinal Cord & Brain Injury Res Ctr, 741 S Limestone St, Lexington, KY 40536 USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - BS Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Lexington, Kentucky, USA
- Barnstable Brown Diabetes Center, University of Kentucky Lexington, Kentucky, USA
| | - AM Stowe
- Department of Neuroscience, University of Kentucky, Lexington, USA
- Department of Neurology, University of Kentucky, Lexington, USA
| |
Collapse
|
8
|
Viswanath V, Mistry S, Cabrera-Ghayouri S, Leang R, Frail D, Donello J, Gil D. Sustained Alleviation of Autoimmunity by Activating α2B-adrenergic Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:435-441. [PMID: 38940628 DOI: 10.4049/jimmunol.2300893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Catecholamines binding to α- and β-adrenergic receptors on immune cells have recently been shown to play an important role in regulating immune responses. Although α2-adrenergic receptors are known to modulate the immune response in different ways, the therapeutic exploration of their utility has been limited by the lack of agonists selective for the three α2-adrenergic subtypes. We report in this study the identification of the agonist AGN-762, which activates α2B- and α2C-adrenergic subtypes, but not the α2A subtype. We show that AGN-762 reduced clinical disease in an experimental autoimmune encephalitis model of autoimmune disease via direct or indirect effects on T regulatory cells. The activity of AGN-762 was abrogated by depletion of T regulatory cells, which express the α2B-adrenergic receptor. Furthermore, a drug-induced shift to an anti-inflammatory phenotype was demonstrated in immune cells in the spleen of drug-treated experimental autoimmune encephalitis mice. AGN-762 does not display sedative and cardiovascular side effects associated with α2A subtype agonists. Immune modulation by selective α2-adrenergic agonists represents a novel, to our knowledge, approach for treating autoimmune disease.
Collapse
MESH Headings
- Animals
- Mice
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/immunology
- Autoimmunity/immunology
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Adrenergic alpha-2 Receptor Agonists/therapeutic use
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Humans
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
| | - Shruti Mistry
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA
| | | | - Ronika Leang
- Ophthalmology Discovery Research, AbbVie Inc., Irvine, CA
| | - Don Frail
- Alceptor Therapeutics, Newport Beach, CA
| | | | - Daniel Gil
- Alceptor Therapeutics, Newport Beach, CA
| |
Collapse
|
9
|
Luo Z, Tong C, Cong P, Mao S, Xu Y, Hou M, Liu Y. Silencing CD28 attenuated chest blast exposure-induced traumatic brain injury through the PI3K/AKT/NF-κB signaling pathway in male mice. Brain Res Bull 2024; 214:110987. [PMID: 38830487 DOI: 10.1016/j.brainresbull.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
In modern war or daily life, blast-induced traumatic brain injury (bTBI) is a growing health concern. Our previous studies demonstrated that inflammation was one of the main features of bTBI, and CD28-activated T cells play a central role in inflammation. However, the mechanism of CD28 in bTBI remains to be elucidated. In this study, traumatic brain injury model induced by chest blast exposure in male mice was established, and the mechanism of CD28 in bTBI was studied by elisa, immunofluorescence staining, flow cytometry analysis and western blot. After exposure to chest shock wave, the inflammatory factors IL-4, IL-6 and HMGB1 in serum were increased, and CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung were activated. In addition, chest blast exposure resulted in impaired spatial learning and memory ability, disruption of the blood-brain barrier (BBB), and the expression of Tau, p-tau, S100β and choline acetyltransferase were increased. The results indicated that genetic knockdown of CD28 could inhibit inflammatory cell infiltration, as well as the activation of CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung, improve spatial learning and memory ability, and ameliorate BBB disruption and hippocampal neuron damage. Moreover, genetic knockdown of CD28 could reduce the expression of p-PI3K, p-AKT and NF-κB. In conclusion, chest blast exposure could lead to bTBI, and attenuate bTBI via the PI3K/AKT/NF-κB signaling pathway in male mice. This study provides new targets for the prevention and treatment of veterans with bTBI.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Changci Tong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Peifang Cong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Shun Mao
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ying Xu
- Department of Tumor Radiotherapy, the General Hospital of Northern Theater Command, No. 83 Road, Shenhe District, Shenyang l10016, China.
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China.
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
10
|
Wu X, Chen Z, Chen Q, Lin C, Zheng X, Yuan B. Nrdp1-mediated Macrophage Phenotypic Regulation Promotes Functional Recovery in Mice with Mild Neurological Impairment after Intracerebral Hemorrhage. Neuroscience 2024; 545:16-30. [PMID: 38431041 DOI: 10.1016/j.neuroscience.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Neuregulin receptor degradation protein 1 (Nrdp1) is a ring finger E3 ubiquitin ligase involved in some inflammation through ubiquitination, including macrophage polarization following cerebral hemorrhage. However, there is limited understanding regarding the mechanisms through which Nrdp1 modulates macrophage polarization and the potential impact of this modulation on neurological function. Using stereotactic injection and adenoviral transfection techniques, the corresponding animal models were constructed through injecting adenovirus, saline, or blood into the mouse striatum at different periods of time in this research. The alteration in the ratio of various M1/M2 phenotype-associated markers (e.g., CD86, CD206, IL-6, IL-10, etc.) was evaluated through immunohistochemistry, immunofluorescence, western blotting, and elisa assays. Additionally, neurological function scores and behavioral tests were utilized to evaluate changes in neurological function in mice after cerebral hemorrhage. Our results show that overexpression of Nrdp1 promotes the expression of a variety of M2 macrophage-associated markers and enhance transcriptional activity of arginase-1 (Arg1) protein through ubiquitination for early regulation M2 macrophage polarization. Additionally, Nrdp1 promotes hematoma absorption, increases IL-10 expression, inhibits inducible nitric oxide synthase (iNOS), IL-6, and TNF-α production, alleviates neurological impairment and brain edema, and accelerates functional recovery. These findings suggest that modulating macrophage polarization through Nrdp1 could be a therapeutic strategy for neurofunctional impairment in cerebral hemorrhage.
Collapse
Affiliation(s)
- Xiyao Wu
- Department of Neurosurgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian 350000, China
| | - Zhiling Chen
- Department of Neurosurgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian 350000, China
| | - Qiuming Chen
- Department of Neurosurgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian 350000, China
| | - Chuangan Lin
- Department of Neurosurgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian 350000, China
| | - Xiangrong Zheng
- Department of Ophthalmology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian 350000, China
| | - Bangqing Yuan
- Department of Neurosurgery, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian 350000, China; Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, Fujian 350000, China.
| |
Collapse
|
11
|
Park SY, Cha N, Kim S, Chae S, Lee WJ, Jung H, Bae H. Blocking Microglial Proliferation by CSF-1R Inhibitor Does Not Alter the Neuroprotective Effects of Adoptive Regulatory T Cells in 3xTg Alzheimer's Disease Mice. Curr Issues Mol Biol 2024; 46:2871-2883. [PMID: 38666910 PMCID: PMC11049167 DOI: 10.3390/cimb46040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes cognitive impairment. Neuroinflammation induced by activated microglia exacerbates AD. Regulatory T cells (Tregs) play roles in limiting neuroinflammation by converting microglial polarization. Therefore, adoptive Treg therapy is considered an attractive option for neurodegenerative disorders. However, the mechanism underlying Treg therapy via microglial modulation is not fully understood. In this study, we sought to determine whether adoptively transferred Tregs were effective when microglia proliferation was inhibited by using GW2580, which is an inhibitor of CSF1R. We found that inhibition of microglial proliferation during Treg transfer did not alter the therapeutic effects of Tregs on cognitive deficits and the accumulation of Aβ and pTAU in 3xTg-AD mice. The expression of pro- and anti-inflammatory markers in the hippocampus of 3xTg mice showed that GW2580 did not affect the inhibition of neuroinflammation by Treg transfer. Additionally, adoptively transferred Tregs were commonly detected in the brain on day 7 after transfer and their levels decreased slowly over 100 days. Our findings suggest that adoptively transferred Tregs can survive longer than 100 days in the brain, suppressing microglial activation and thus alleviating AD pathology. The present study provides valuable evidence to support the prolonged efficacy of adoptive Treg therapy in AD.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nari Cha
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soyoung Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songah Chae
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won-Jun Lee
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjae Jung
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Liu M, Wang D, Xu L, Pan Y, Huang H, Li M, Liu Q. Group 2 innate lymphoid cells suppress neuroinflammation and brain injury following intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:355-366. [PMID: 37933727 PMCID: PMC10870958 DOI: 10.1177/0271678x231208168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Intracerebral hemorrhage (ICH) mobilizes circulating leukocytes that contribute to neuroinflammation and neural injury. However, little is known about the endogenous regulatory immune mechanisms to restrict neuroinflammation following ICH. We examined the role of group 2 innate lymphoid cells (ILC2) that are a specialized subset of innate immune modulators in a mouse model of ICH. We found accumulation of ILC2 in the brain following acute ICH and a concomitant increase of ILC2 within the peripheral lymph nodes. Depletion of ILC2 exacerbated neurodeficits and brain edema after ICH in male and female mice. This aggravated ICH injury was accompanied by augmented microglia activity and leukocyte infiltration. In contrast, expansion of ILC2 using IL-33 led to reduced ICH injury, microglia activity and leukocyte infiltration. Notably, elimination of microglia using a colony stimulating factor 1 receptor inhibitor diminished the exacerbation of ICH injury induced by depletion of ILC2. Brain-infiltrating ILC2 had upregulation of IL-13 after ICH. Results from in vitro assays revealed that ILC2 suppressed thrombin-induced inflammatory activity in microglia-like BV2 cells. Thus, our findings demonstrate that ILC2 suppress neuroinflammation and acute ICH injury.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Lin Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Pan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Zhou J, Jiang T, Wang J, Wu W, Duan X, Jiang H, Jiao Z, Wang X. Multimodal investigation reveals the neuroprotective mechanism of Angong Niuhuang pill for intracerebral hemorrhage: Converging bioinformatics, network pharmacology, and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117045. [PMID: 37633621 DOI: 10.1016/j.jep.2023.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angong Niuhuang Pill (ANP) is a traditional Chinese medicine formula that has been used clinically for many years in the treatment of cerebral hemorrhage. It is composed of ingredients such as calculus bovis, moschus, and others. Ancient texts have documented that ANP's multiple components possess properties such as heat-clearing, detoxification, and sedation, which can be effective in treating conditions such as coma and stroke. However, the underlying mechanisms of ANP's potential actions are still under investigation. AIM OF THE STUDY ANP is a Chinese medicine widely utilized for the treatment of intracerebral hemorrhage (ICH). However, the precise mechanism underlying the therapeutic effects remains largely elusive. The present study aims to unravel the effects and pharmacological molecular mechanisms of ANP in combatting ICH, employing a comprehensive network pharmacology approach and experimental validation. MATERIALS AND METHODS The molecular targets of ANP and ICH were obtained from various databases, followed by the construction of protein-protein interaction (PPI) networks using the STRING database. Further, gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) analyses were conducted using the Metascape database and Cytoscape, respectively. Finally, molecular docking was performed. We performed a series of behavioral tests, immunohistochemical staining, TUNEL staining, and Western Blot to verify the effects of ANP. RESULTS IL-6, JUN, MMP9, IL-1β, VEGFA were the main candidate targets and were associated with fluid shear stress and atherosclerosis, TNF signaling pathway, etc. It is suggested that the potential mechanism of ANP against ICH may be mainly related to pyroptosis, inflammation. In vivo validation showed that ANP treatment significantly reduced the number of TUNEL-positive cells and ANP inhibited the activation of Iba-1 positive neurons, and suppressed the expression of inflammatory factors and pyroptosis indicators. In addition, ANP improved the cognitive level and motor ability of ICH mice. CONCLUSION The results of the study combined with virtual screening and experimental validation showed that ANP has an important contribution in protecting the brain from neuronal damage by regulating the pathways of inflammation and pyroptosis, laying the foundation and innovative ideas for future studies.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China.
| | - Tianlin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahua Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
| | - Weilan Wu
- Maternal and Child Health Hospital, Children's Hospital and Birth Defect Prevention Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| | - Xiaochun Duan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Huiyun Jiang
- Maternal and Child Health Hospital, Children's Hospital and Birth Defect Prevention Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| | - Zhiyun Jiao
- Department of Radiology, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China.
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Cui J, Wang H, Liu S, Zhao Y. New Insights into Roles of IL-7R Gene as a Therapeutic Target Following Intracerebral Hemorrhage. J Inflamm Res 2024; 17:399-415. [PMID: 38260810 PMCID: PMC10802176 DOI: 10.2147/jir.s438205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke leading to high rates of morbidity and mortality in adults. Recent studies showed that immune and inflammatory responses might play essential roles in secondary brain injury. The purpose of this article was to provide a reference for further therapeutic strategies for ICH patients. Methods GSE206971 and GSE216607 datasets from the gene expression omnibus (GEO) database were used to screen the highly immune-related differentally expressed genes (IRDEGs). We used the CIBERSORT algorithm to assess the level of immune signatures infiltration and got the possible function of IRDEGs which was analyzed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) networks and six hub genes were identified in the Cytoscape plug-in. GSVA algorithm was performed to evaluate the potential pathways of six hub genes in ICH samples. The expression level of IL-7R chosen from six hub genes was further validated by Western blotting. The cell models of ICH were established for the research of IL-7/IL-7R signaling way. Results A total of six hub genes (ITGAX, ITGAM, CCR2, CD28, SELL, and IL-7R) were identified. IL-7R was highly expressed in the mice ICH group, as shown by immunoblotting. Next, we constructed ICH cell models in RAW264.7 cells and BV2 cells. After treatment with IL-7, iNOS expression (M1 marker) was greatly inhibited while Arg-1(M2 marker) was enhanced, and it might function via the JAK3/STAT5 signaling pathway. Conclusion The hypothesis is proposed that the IL-7/IL-7R signaling pathway might regulate the inflammatory process following ICH by regulating microglia polarization. Our study is limited and requires more in-depth experimental confirmation.
Collapse
Affiliation(s)
- Jie Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Hongbin Wang
- Department of Emergency, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, 214400, People’s Republic of China
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| | - Shiyao Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| |
Collapse
|
15
|
Zayats R, Mou Z, Yazdanpanah A, Gupta G, Lopez P, Nayar D, Koh WH, Uzonna JE, Murooka TT. Antigen recognition reinforces regulatory T cell mediated Leishmania major persistence. Nat Commun 2023; 14:8449. [PMID: 38114497 PMCID: PMC10730873 DOI: 10.1038/s41467-023-44297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Cutaneous Leishmania major infection elicits a rapid T cell response that is insufficient to clear residually infected cells, possibly due to the accumulation of regulatory T cells in healed skin. Here, we used Leishmania-specific TCR transgenic mice as a sensitive tool to characterize parasite-specific effector and immunosuppressive responses in vivo using two-photon microscopy. We show that Leishmania-specific Tregs displayed higher suppressive activity compared to polyclonal Tregs, that was mediated through IL-10 and not through disrupting cell-cell contacts or antigen presentation. In vivo expansion of endogenous Leishmania-specific Tregs resulted in disease reactivation that was also IL-10 dependent. Interestingly, lack of Treg expansion that recognized the immunodominant Leishmania peptide PEPCK was sufficient to restore robust effector Th1 responses and resulted in parasite control exclusively in male hosts. Our data suggest a stochastic model of Leishmania major persistence in skin, where cellular factors that control parasite numbers are counterbalanced by Leishmania-specific Tregs that facilitate parasite persistence.
Collapse
Affiliation(s)
- Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Atta Yazdanpanah
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Gaurav Gupta
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Lopez
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Deesha Nayar
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Wan H Koh
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Thomas T Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Park SY, Yang H, Kim S, Yang J, Go H, Bae H. Alpha-Synuclein-Specific Regulatory T Cells Ameliorate Parkinson's Disease Progression in Mice. Int J Mol Sci 2023; 24:15237. [PMID: 37894917 PMCID: PMC10607030 DOI: 10.3390/ijms242015237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a long-term neurodegenerative disease characterized by dopaminergic neuronal loss and the aggregation of alpha-synuclein (α-syn) in the brain. Cell therapy using regulatory T cells (Tregs) has therapeutic potential on PD progression in a mouse model; however, several challenges were associated with its applications. Here, we propose a strategy for α-syn specific Treg expansion (α-syn Treg). We presented α-syn to T cells via dendritic cells. This method increased the mobility of Tregs towards the site of abundant α-syn in vitro (p < 0.01; α-syn Tregs versus polyclonal Tregs (poly Tregs)) and in vivo. Consequently, α-syn Tregs showed noteworthy neuroprotective effects against motor function deficits (p < 0.05, p < 0.01; α-syn Tregs versus poly Tregs), dopaminergic neuronal loss (p < 0.001; α-syn Tregs versus poly Tregs), and α-syn accumulation (p < 0.05; α-syn Tregs versus poly Tregs) in MPTP-induced PD mice. Furthermore, the adoptive transfer of α-syn Tregs exerted immunosuppressive effects on activated microglia, especially pro-inflammatory microglia, in PD mice. Our findings suggest that α-syn presentation may provide a significant improvement in neuroprotective activities of Tregs and suggest the effective clinical application of Treg therapy in PD.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.); (S.K.)
| | - HyeJin Yang
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.); (S.K.)
| | - Soyoung Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.); (S.K.)
| | - Juwon Yang
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.Y.); (H.G.)
| | - Hyemin Go
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.Y.); (H.G.)
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.); (S.K.)
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.Y.); (H.G.)
| |
Collapse
|
17
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
18
|
Lv M, Zhang Z, Cui Y. Unconventional T cells in brain homeostasis, injury and neurodegeneration. Front Immunol 2023; 14:1273459. [PMID: 37854609 PMCID: PMC10579804 DOI: 10.3389/fimmu.2023.1273459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between peripheral immune cells and the brain is an important component of the neuroimmune axis. Unconventional T cells, which include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and other poorly defined subsets, are a special group of T lymphocytes that recognize a wide range of nonpolymorphic ligands and are the connection between adaptive and innate immunity. Recently, an increasing number of complex functions of these unconventional T cells in brain homeostasis and various brain disorders have been revealed. In this review, we describe the classification and effector function of unconventional T cells, review the evidence for the involvement of unconventional T cells in the regulation of brain homeostasis, summarize the roles and mechanisms of unconventional T cells in the regulation of brain injury and neurodegeneration, and discuss immunotherapeutic potential as well as future research goals. Insight of these processes can shed light on the regulation of T cell immunity on brain homeostasis and diseases and provide new clues for therapeutic approaches targeting brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Han R, Lan X, Han Z, Ren H, Aafreen S, Wang W, Hou Z, Zhu T, Qian A, Han X, Koehler RC, Liu G. Improving outcomes in intracerebral hemorrhage through microglia/macrophage-targeted IL-10 delivery with phosphatidylserine liposomes. Biomaterials 2023; 301:122277. [PMID: 37597297 PMCID: PMC12049124 DOI: 10.1016/j.biomaterials.2023.122277] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Intracerebral hemorrhage (ICH) remains the most lethal type of stroke, and effective clinical therapies that can speed up hematoma resolution after ICH are still lacking. While the beneficial effects of IL-10 on ICH recovery have been demonstrated, the clinical translation of IL-10 requires effective delivery methods by which sufficient IL-10 can be delivered to ICH-affected regions in the brain. Here we report the use of a phosphatidylserine (PS) liposome (PSL)-based nanoparticle system for microglia/macrophage-targeted delivery of IL-10 in ICH. We first prepared IL-10-conjugated PSL (PSL-IL10) and characterized their immunomodulating effects in vitro. Then we evaluated the therapeutic effects, including hematoma absorption, short-term outcomes, and neuroinflammation, of intranasally administered PSL-IL10 (3 μg IL-10 per mouse, 2 h post-ICH) in a collagenase-induced ICH mouse model. We also isolated microglia/macrophages from the mouse brains with ICH to analyze their morphology, phagocytosis ability, and polarization. Our study reveals that, 1) PSL-IL10 treatment resulted in significantly improved outcomes and accelerated hematoma resolution in the acute phase of ICH; 2) PSL-IL10 inhibited glial activation and down-regulated pro-inflammatory cytokine production; 3) PSL-IL10 induced Iba1+ cells with a stronger phagocytosis ability; 4) PSL-IL10 activated STAT3 and upregulated CD36 expression in microglia/macrophage. These findings collectively show that PSL-IL10 is a promising nanotherapeutic for effectively ameliorating ICH.
Collapse
Affiliation(s)
- Ranran Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zheng Han
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA; Center for Health Systems Innovation, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Safiya Aafreen
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Wenshen Wang
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Zhipeng Hou
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tianyue Zhu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Qian
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
20
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
21
|
Liu J, Cao C, Jin Y, Wang Y, Ma X, Li J, Guo S, Yang J, Niu J, Liang X. Induced neural stem cells suppressed neuroinflammation by inhibiting the microglial pyroptotic pathway in intracerebral hemorrhage rats. iScience 2023; 26:107022. [PMID: 37360683 PMCID: PMC10285565 DOI: 10.1016/j.isci.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Intracerebral hemorrhage usually manifests as strong neuroinflammation and neurological deficits. There is an urgent need to explore effective methods for the treatment of intracerebral hemorrhage. The therapeutic effect and the possible mechanism of induced neural stem cell transplantation in an intracerebral hemorrhage rat model are still unclear. Our results showed that transplantation of induced neural stem cells could improve neurological deficits by inhibiting inflammation in an intracerebral hemorrhage rat model. Additionally, induced neural stem cell treatment could effectively suppress microglial pyroptosis, which might occur through inhibiting the NF-κB signaling pathway. Induced neural stem cells could also regulate the polarization of microglia and promote the transition of microglia from pro-inflammatory phenotypes to anti-inflammatory phenotypes to exert their anti-inflammatory effects. Overall, induced neural stem cells may be a promising tool for the treatment of intracerebral hemorrhage and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jiaxin Liu
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Chuanshang Cao
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Yiran Jin
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Yan Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Xiaona Ma
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Jiahui Li
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Songlin Guo
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Jiancheng Yang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 750004 Yinchuan, China
| | - Xueyun Liang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| |
Collapse
|
22
|
Lemaitre P, Tareen SHK, Pasciuto E, Mascali L, Martirosyan A, Callaerts‐Vegh Z, Poovathingal S, Dooley J, Holt MG, Yshii L, Liston A. Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. EMBO Mol Med 2023; 15:e16805. [PMID: 36975362 PMCID: PMC10165365 DOI: 10.15252/emmm.202216805] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive decline is a common pathological outcome during aging, with an ill-defined molecular and cellular basis. In recent years, the concept of inflammaging, defined as a low-grade inflammation increasing with age, has emerged. Infiltrating T cells accumulate in the brain with age and may contribute to the amplification of inflammatory cascades and disruptions to the neurogenic niche observed with age. Recently, a small resident population of regulatory T cells has been identified in the brain, and the capacity of IL2-mediated expansion of this population to counter neuroinflammatory disease has been demonstrated. Here, we test a brain-specific IL2 delivery system for the prevention of neurological decline in aging mice. We identify the molecular hallmarks of aging in the brain glial compartments and identify partial restoration of this signature through IL2 treatment. At a behavioral level, brain IL2 delivery prevented the age-induced defect in spatial learning, without improving the general decline in motor skill or arousal. These results identify immune modulation as a potential path to preserving cognitive function for healthy aging.
Collapse
Affiliation(s)
- Pierre Lemaitre
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | | | - Emanuela Pasciuto
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Loriana Mascali
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
| | - Araks Martirosyan
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | | | | | - James Dooley
- Immunology ProgrammeThe Babraham InstituteBabrahamUK
- Department of PathologyThe University of CambridgeCambridgeUK
| | - Matthew G Holt
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S)University of PortoPortoPortugal
| | - Lidia Yshii
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Adrian Liston
- VIB Center for Brain and Disease ResearchLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Immunology ProgrammeThe Babraham InstituteBabrahamUK
- Department of PathologyThe University of CambridgeCambridgeUK
| |
Collapse
|
23
|
Stephens R, Grainger JR, Smith CJ, Allan SM. Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Semin Immunopathol 2023; 45:281-294. [PMID: 36346451 PMCID: PMC9641697 DOI: 10.1007/s00281-022-00968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.
Collapse
Affiliation(s)
- Ruth Stephens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Fan Q, Liu Y, Sheng L, Lv S, Yang L, Zhang Z, Guo J, Fan Y, Hu D. Chaihu-Shugan-San inhibits neuroinflammation in the treatment of post-stroke depression through the JAK/STAT3-GSK3β/PTEN/Akt pathway. Biomed Pharmacother 2023; 160:114385. [PMID: 36774722 DOI: 10.1016/j.biopha.2023.114385] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Post-stroke depression (PSD) is one of the most common neuropsychiatric consequence of stroke, affecting cognitive function, recovery of somatic function, and patient survival. The aim of this study was to evaluate whether Chaihu-Shugan-San, a traditional Chinese medicine formula used clinically to treat depression, could improve symptoms in a rat model for PSD, to investigate the potential mechanisms, and to validate the findings in an in vitro oxygen and glucose deprivation (OGD) model. Male rats were subjected to middle cerebral artery occlusion (MCAO) and to chronic unpredictable mild stress (CUMS). The rats were then allocated to experimental groups (n = 15) that were treated with Chaihu-Shugan-San, a JAK-STAT3 inhibitor, a GSK3β overexpressing virus, or an empty virus (control). The subjects allocated to each group, as well as those that received no treatment and rats that did not undergo MCAO/CUMS, were then subjected to forced swimming, tail suspension, and sugar water preference tests, and their neurological deficit score was determined. Inflammatory factor levels and the expression of proteins related to the JAK/STAT3-GSK3β/PTEN/Akt pathway were measured, and the synaptic ultrastructure was observed using transmission electron microscopy. Flow cytometry showed microglia polarization towards the M1 phenotype in an in vitro PSD model, which was reversed after treatment with a GSK3β overexpression virus, Chaihu-Shugan-San, or a JAK-STAT3 inhibitor. The results showed that Chaihu-Shugan-San has a therapeutic effect on an in vivo model for PSD and can regulate microglia polarization through the activation of the JAK/STAT3-GSK3β/PTEN/Akt pathway, suggesting that it exerts its effect via the inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Qiqi Fan
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Lei Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Shuang Lv
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Li Yang
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Zhaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Jiaping Guo
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Yafei Fan
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China
| | - Dan Hu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210017, China; School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
25
|
Liu R, Li Y, Wang Z, Chen P, Xie Y, Qu W, Wang M, Yu Z, Luo X. Regulatory T cells promote functional recovery after spinal cord injury by alleviating microglia inflammation via STAT3 inhibition. CNS Neurosci Ther 2023. [PMID: 36914969 DOI: 10.1111/cns.14161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immediately after spinal trauma, immune cells, and proinflammatory cytokines infiltrate the spinal cord and disrupt the focal microenvironment, which impedes axon regeneration and functional recovery. Previous studies have reported that regulatory T cells (Tregs) enter the central nervous system and exert immunosuppressive effects on microglia during multiple sclerosis and stroke. However, whether and how Tregs interact with microglia and modulate injured microenvironments after spinal cord injury (SCI) remains unknown. METHOD Regulatory T cells spatiotemporal characteristics were analyzed in a mouse contusion SCI model. Microglia activation status was evaluated by immunostaining and RNA sequencing. Cytokine production in injured spinal cord was examined using Luminex. The role of STAT3 in Treg-microglia crosstalk was investigated in a transwell system with isolated Tregs and primary microglia. RESULTS Regulatory T cells infiltration of the spinal cord peaked on day 7 after SCI. Treg depletion promoted microglia switch to a proinflammatory phenotype. Inflammation-related genes, such as ApoD, as well as downstream cytokines IL-6 and TNF-α were upregulated in microglia in Treg-depleted mice. STAT3 inhibition was involved in Treg-microglia crosstalk, and STAT3 chemical blockade improved function recovery in Treg-depleted mice. CONCLUSION Our results suggest that Tregs promote functional recovery after SCI by alleviating microglia inflammatory reaction via STAT3.
Collapse
Affiliation(s)
- Rui Liu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyue Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Qu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Wang Y, Sadike D, Huang B, Li P, Wu Q, Jiang N, Fang Y, Song G, Xu L, Wang W, Xie M. Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination. J Neuroinflammation 2023; 20:41. [PMID: 36803990 PMCID: PMC9938996 DOI: 10.1186/s12974-023-02721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/05/2023] [Indexed: 02/20/2023] Open
Abstract
Demyelination occurs in multiple central nervous system (CNS) disorders and is tightly associated with neuroinflammation. Pyroptosis is a form of pro-inflammatory and lytic cell death which has been observed in CNS diseases recently. Regulatory T cells (Tregs) have exhibited immunoregulatory and protective effects in CNS diseases. However, the roles of Tregs in pyroptosis and their involvement in LPC-induced demyelination have not been explicated. In our study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) or PBS were subjected to two-site lysophosphatidylcholine (LPC) injection. Immunofluorescence, western blot, Luxol fast blue (LFB) staining, quantitative real-time PCR (qRT-PCR) and neurobehavior assessments were performed to evaluate the severity of demyelination, neuroinflammation and pyroptosis. Pyroptosis inhibitor was further used to investigate the role of pyroptosis in LPC-induced demyelination. RNA-sequencing was applied to explore the potential regulatory mechanism underlying the involvement of Tregs in LPC-induced demyelination and pyroptosis. Our results showed that depletion of Tregs aggravated microgliosis, inflammatory responses, immune cells infiltration and led to exacerbated myelin injury as well as cognitive defects in LPC-induced demyelination. Microglial pyroptosis was observed after LPC-induced demyelination, which was aggravated by Tregs depletion. Inhibition of pyroptosis by VX765 reversed myelin injury and cognitive function exacerbated by Tregs depletion. RNA-sequencing showed TLR4/myeloid differentiation marker 88 (MyD88) as the central molecules in Tregs-pyroptosis pathway, and refraining TLR4/MyD88/NF-κB pathway alleviated the aggravated pyroptosis induced by Tregs depletion. In conclusion, our findings for the first time indicate that Tregs alleviate myelin loss and improve cognitive function by inhibiting pyroptosis in microglia via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination.
Collapse
Affiliation(s)
- Yao Wang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Dilinuer Sadike
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Bo Huang
- grid.412793.a0000 0004 1799 5032Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Ping Li
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Qiao Wu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Na Jiang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Yongkang Fang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Guini Song
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Li Xu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
27
|
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ, Sansing LH. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023; 54:605-619. [PMID: 36601948 DOI: 10.1161/strokeaha.122.037155] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells. These responses are complex and can contribute to both tissue recovery and tissue injury. Despite the interconnectedness of these major subtypes of hemorrhagic stroke, few reviews have discussed them collectively. The present review provides an update on inflammatory processes that occur in response to intracerebral hemorrhage and subarachnoid hemorrhage, and the role of inflammation in the pathophysiology of cerebral amyloid angiopathy-related hemorrhage. The goal is to highlight inflammatory processes that underlie disease pathology and recovery. We aim to discuss recent advances in our understanding of these conditions and identify gaps in knowledge with the potential to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Sarah N Ohashi
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Jonathan H DeLong
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Mariel G Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - David J Mazur-Hart
- Department of Neurological Surgery (D.J.M.-H.), Oregon Health and Science University (OHSU), Portland
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute (N.J.A.), Oregon Health and Science University (OHSU), Portland
| | - Lauren H Sansing
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
28
|
Abstract
Stroke is a sudden and rapidly progressing ischemic or hemorrhagic cerebrovascular disease. When stroke damages the brain, the immune system becomes hyperactive, leading to systemic inflammatory response and immunomodulatory disorders, which could significantly impact brain damage, recovery, and prognosis of stroke. Emerging researches suggest that ischemic stroke-induced spleen contraction could activate a peripheral immune response, which may further aggravate brain injury. This review focuses on hemorrhagic strokes including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) and discusses the central nervous system-peripheral immune interactions after hemorrhagic stroke induction. First, inflammatory progression after ICH and SAH is investigated. As a part of this review, we summarize the various kinds of inflammatory cell infiltration to aggravate brain injury after blood-brain barrier interruption induced by hemorrhagic stroke. Then, we explore hemorrhagic stroke-induced systemic inflammatory response syndrome (SIRS) and discuss the interactions of CNS and peripheral inflammatory response. In addition, potential targets related to inflammatory response for ICH and SAH are discussed in this review, which may lead to novel therapeutic strategies for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Guan T, Zhou X, Zhou W, Lin H. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Dis 2023; 9:9. [PMID: 36646692 PMCID: PMC9841501 DOI: 10.1038/s41420-023-01310-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors. Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2 infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of Tregs and macrophages will provide the potential targets for treating ALI.
Collapse
Affiliation(s)
- Tianshu Guan
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Xv Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Wenwen Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| | - Hui Lin
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| |
Collapse
|
30
|
Fan YH, He ZY, Zheng WX, Hu LT, Wang BY. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res 2023; 18:560-567. [DOI: 10.4103/1673-5374.346551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Yang Y, Huang T, Zhang H, Li X, Shi S, Tian X, Huang Z, Zhang R, Liu Z, Cheng Y. Formononetin improves cardiac function and depressive behaviours in myocardial infarction with depression by targeting GSK-3β to regulate macrophage/microglial polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154602. [PMID: 36610138 DOI: 10.1016/j.phymed.2022.154602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is a common complication after myocardial infarction (MI) that can seriously affect the prognosis of MI. PURPOSE To investigate whether formononetin could ameliorate MI injury and depressive behaviours in a mouse model of MI with depression and elucidate its underlying molecular mechanisms. METHODS Haemodynamic measurements (systolic blood pressure (SYS), the maximum rate of rise of LV pressure (± dp/dtmax)) and behavior tests (tail suspension test, sucrose preference test, forced swimming test) were used to evaluate the effects of formononetin on male C57BL/6N mice after left anterior descending (LAD) coronary artery ligation and chronic unpredictable stress. RT-qPCR, immunohistochemistry, immunofluorescence analysis, western blotting, molecular docking technology, surface plasmon resonance and gene-directed mutagenesis were used to clarify the underlying mechanism. RESULTS Formononetin significantly suppressed the depressive behaviours and improved cardiac dysfunction in MI with depression mice model. Formononetin inhibited M1 polarization in macrophages/microglia, while promoting M2 polarization. Importantly, elevated serum IL-6 and IL-17A levels were found in patient with MI, and the patient serum induced M1 microglial polarization; however, formononetin reversed the polarization. Further mechanistic studies showed that formononetin inhibited GSK-3β activity and downstream Notch1 and C/EBPα signaling pathways. Covalent molecular docking showed that formononetin bound to Cys199 of GSK-3β and it has a high affinity for GSK-3β. When Cys199 was mutation, the inhibitory effect of formononetin on GSK-3β activity and M1 polarization in macrophages/microglia were also partly blocked. CONCLUSIONS Our results firstly uncovered that formononetin improved cardiac function and suppressed depressive behaviours in mice after MI with depression by targeting GSK-3β to regulate macrophage/microglial polarization. More importantly, IL-6 and IL-17A produced after MI may cause neuroinflammation, which might be the key factors for depression. Formononetin may be a potential drug for treating MI with depression.
Collapse
Affiliation(s)
- Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ting Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hongli Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xuping Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shuotao Shi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoyu Tian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ziwei Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528333, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528333, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong 510006, China
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528333, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
32
|
Savitz SI, Cox CS. Cell-based therapies for neurological disorders - the bioreactor hypothesis. Nat Rev Neurol 2023; 19:9-18. [PMID: 36396913 DOI: 10.1038/s41582-022-00736-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Cell-based therapies are an emerging biopharmaceutical paradigm under investigation for the treatment of a range of neurological disorders. Accumulating evidence is demonstrating that cell-based therapies might be effective, but the mechanism of action remains unclear. In this Review, we synthesize results from over 20 years of animal studies that illustrate how transdifferentiation, cell replacement and restoration of damaged tissues in the CNS are highly unlikely mechanisms. We consider the evidence for an alternative model that we refer to as the bioreactor hypothesis, in which exogenous cells migrate to peripheral organs and modulate and reprogramme host immune cells to generate an anti-inflammatory, regenerative environment. The results of clinical trials clearly demonstrate a role for immunomodulation in the effects of cell-based therapies. Greater understanding of these mechanisms could facilitate the optimization of cell-based therapies for a variety of neurological disorders.
Collapse
Affiliation(s)
- Sean I Savitz
- Institute for Stroke and Cerebrovascular Disease, University of Texas Health Science Center, Houston, TX, USA. .,Department of Neurology, University of Texas Health Science Center, Houston, TX, USA.
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
33
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
34
|
Xiao L, Wang M, Shi Y, Xu Y, Gao Y, Zhang W, Wu Y, Deng H, Pan W, Wang W, Sun H. Secondary White Matter Injury Mediated by Neuroinflammation after Intracerebral Hemorrhage and Promising Therapeutic Strategies of Targeting the NLRP3 Inflammasome. Curr Neuropharmacol 2023; 21:669-686. [PMID: 36043798 PMCID: PMC10207923 DOI: 10.2174/1570159x20666220830115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a neurological disease with high mortality and disability. Recent studies showed that white matter injury (WMI) plays an important role in motor dysfunction after ICH. WMI includes WMI proximal to the lesion and WMI distal to the lesion, such as corticospinal tract injury located at the cervical enlargement of the spinal cord after ICH. Previous studies have tended to focus only on gray matter (GM) injury after ICH, and fewer studies have paid attention to WMI, which may be one of the reasons for the poor outcome of previous drug treatments. Microglia and astrocyte-mediated neuroinflammation are significant mechanisms responsible for secondary WMI following ICH. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, has been shown to exacerbate neuroinflammation and brain injury after ICH. Moreover, NLRP3 inflammasome is activated in microglia and astrocytes and exerts a vital role in microglia and astrocytes-mediated neuroinflammation. We speculate that NLRP3 inflammasome activation is closely related to the polarization of microglia and astrocytes and that NLRP3 inflammasome activation may exacerbate WMI by polarizing microglia and astrocytes to the pro-inflammatory phenotype after ICH, while NLRP3 inflammasome inhibition may attenuate WMI by polarizing microglia and astrocytes to the anti-inflammatory phenotype following ICH. Therefore, NLRP3 inflammasome may act as leveraged regulatory fulcrums for microglia and astrocytes polarization to modulate WMI and WM repair after ICH. This review summarized the possible mechanisms by which neuroinflammation mediated by NLRP3 inflammasome exacerbates secondary WMI after ICH and discussed the potential therapeutic targets.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Haitao Sun
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
35
|
Lai WD, Wang S, You WT, Chen SJ, Wen JJ, Yuan CR, Zheng MJ, Jin Y, Yu J, Wen CP. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front Cell Dev Biol 2022; 10:1041006. [PMID: 36619869 PMCID: PMC9813792 DOI: 10.3389/fcell.2022.1041006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is a disease of long-lasting pain with unpleasant feelings mediated by central and (or) peripheral sensitization, its duration usually lasts more than 3 months or longer than the expected recovery time. The patients with chronic pain are manifested with enhanced sensitivity to noxious and non-noxious stimuli. Due to an incomplete understanding of the mechanisms, patients are commonly insensitive to the treatment of first line analgesic medicine in clinic. Thus, the exploration of non-opioid-dependent analgesia are needed. Recent studies have shown that "sinomenine," the main active ingredient in the natural plant "sinomenium acutum (Thunb.) Rehd. Et Wils," has a powerful inhibitory effect on chronic pain, but its underlying mechanism still needs to be further elucidated. A growing number of studies have shown that various immune cells such as T cells, B cells, macrophages, astrocytes and microglia, accompanied with the relative inflammatory factors and neuropeptides, are involved in the pathogenesis of chronic pain. Notably, the interaction of the immune system and sensory neurons is essential for the development of central and (or) peripheral sensitization, as well as the progression and maintenance of chronic pain. Based on the effects of sinomenine on immune cells and their subsets, this review mainly focused on describing the potential analgesic effects of sinomenine, with rationality of regulating the neuroimmune interaction.
Collapse
Affiliation(s)
- Wei-Dong Lai
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Si-Jia Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Jun Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cun-Rui Yuan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Jia Zheng
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| | - Cheng-Ping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| |
Collapse
|
36
|
Depletion of regulatory T cells exacerbates inflammatory responses after chronic cerebral hypoperfusion in mice. Mol Cell Neurosci 2022; 123:103788. [PMID: 36302461 DOI: 10.1016/j.mcn.2022.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vascular cognitive impairment is the second most common cause of dementia which can be induced by chronic cerebral hypoperfusion. Regulatory T cells (Tregs) have been proven to provide beneficial effects in several central nervous system (CNS) diseases, but the roles of Tregs in chronic cerebral hypoperfusion-induced white matter damage have not been explored. In this study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) and wild type C57BL/6 mice treated with anti-CD25 antibody were subjected to bilateral carotid artery stenosis (BCAS). Flow cytometry analysis showed Tregs were widely distributed in spleen whereas barely distributed in brain under normal conditions. The distribution of lymphocytes and Tregs did not change significantly in spleen and brain after BCAS. Depletion of Tregs decreased the numbers of mature oligodendrocytes and anti-inflammatory microglia at 14 days and 28 days following BCAS. And pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interferon-γ (IFN-γ) showed higher expression after Tregs depletion. In contrast, Tregs depletion did not change the overall severity of white matter injury as shown by the expression of myelin-associated glycoprotein (MAG), myelin basic protein (MBP), luxol fast blue (LFB) staining and electron microscopy assay. Moreover, Tregs depletion had marginal effect on cognition defects after BCAS revealed by Morris water maze and novel object recognition examination at 28 days after BCAS. In summary, our results suggest an anti-inflammatory role of Tregs with marginal effects on white matter damage in mice after BCAS-induced chronic cerebral hypoperfusion.
Collapse
|
37
|
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci 2022; 15:1013706. [PMID: 36304999 PMCID: PMC9592761 DOI: 10.3389/fnmol.2022.1013706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in neurological diseases, including intracerebral hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory mediators produced by microglia at the early stages serve as a crucial character in neuroinflammation. Conversely, switching the microglial shift to an anti-inflammatory phenotype could alleviate inflammatory response and incite recovery. This review will elucidate the dynamic profiles of microglia phenotypes and their available shift following ICH. This study can facilitate an understanding of the self-regulatory functions of the immune system involving the shift of microglia phenotypes in ICH. Moreover, suggestions for future preclinical and clinical research and potential intervention strategies are discussed.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Wubin Guo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Li Wang Nathupakorn Dechsupa
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Li Wang Nathupakorn Dechsupa
| |
Collapse
|
38
|
Wu F, Liu Z, Zhou L, Ye D, Zhu Y, Huang K, Weng Y, Xiong X, Zhan R, Shen J. Systemic immune responses after ischemic stroke: From the center to the periphery. Front Immunol 2022; 13:911661. [PMID: 36211352 PMCID: PMC9533176 DOI: 10.3389/fimmu.2022.911661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic stroke is a leading cause of disability and death. It imposes a heavy economic burden on individuals, families and society. The mortality rate of ischemic stroke has decreased with the help of thrombolytic drug therapy and intravascular intervention. However, the nerve damage caused by ischemia-reperfusion is long-lasting and followed by multiple organ dysfunction. In this process, the immune responses manifested by systemic inflammatory responses play an important role. It begins with neuroinflammation following ischemic stroke. The large number of inflammatory cells released after activation of immune cells in the lesion area, along with the deactivated neuroendocrine and autonomic nervous systems, link the center with the periphery. With the activation of systemic immunity and the emergence of immunosuppression, peripheral organs become the second “battlefield” of the immune response after ischemic stroke and gradually become dysfunctional and lead to an adverse prognosis. The purpose of this review was to describe the systemic immune responses after ischemic stroke. We hope to provide new ideas for future research and clinical treatments to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Fan Wu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Di Ye
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxiang Weng
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Clinical Laboratory, Renmin Hospital, Faculty of Medical Sciences, Wuhan University, Wuhan, China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| |
Collapse
|
39
|
Wang Z, Wang X, Liao Y, Chen G, Xu K. Immune response treated with bone marrow mesenchymal stromal cells after stroke. Front Neurol 2022; 13:991379. [PMID: 36203971 PMCID: PMC9530191 DOI: 10.3389/fneur.2022.991379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke. However, only a small part of patients could benefit from it. Therefore, finding a new treatment is necessary. Bone marrow mesenchymal stromal cells (BMSCs) provide a novel strategy for stroke patients. Now, many patients take stem cells to treat stroke. However, the researches of the precise inflammatory mechanism of cell replacement treatment are still rare. In this review, we summarize the immune response of BMSCs treated to stroke and may provide a new perspective for stem cell therapy.
Collapse
Affiliation(s)
- Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xudong Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yidong Liao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Kaya Xu
| |
Collapse
|
40
|
Long-term microglial phase-specific dynamics during single vessel occlusion and recanalization. Commun Biol 2022; 5:841. [PMID: 35986097 PMCID: PMC9391347 DOI: 10.1038/s42003-022-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular occlusion leading to brain dysfunctions is usually considered evoking microglia-induced inflammation response. However, it remains unclear how microglia interact with blood vessels in the development of vascular occlusion-related brain disorders. Here, we illuminate long-term spatiotemporal dynamics of microglia during single vessel occlusion and recanalization. Microglia display remarkable response characteristics in different phases, including acute reaction, rapid diffusion, transition and chronic effect. Fibrinogen-induced microglial cluster promotes major histocompatibility complex II (MHCII) expression. Microglial soma represents a unique filament-shape migration and has slower motility compared to the immediate reaction of processes to occlusion. We capture proliferative microglia redistribute territory. Microglial cluster resolves gradually and microglia recover to resting state both in the morphology and function in the chronic effect phase. Therefore, our study offers a comprehensive analysis of spatiotemporal dynamics of microglia and potential mechanisms to both vessel occlusion and recanalization. Microglial phase-specific response suggests the morphological feature-oriented phased intervention would be an attractive option for vascular occlusion-related diseases treatments. The spatiotemporal dynamics of the microglial inflammatory response to single vessel occlusion and recanalization are analysed, revealing four different response phases.
Collapse
|
41
|
Negative effects of brain regulatory T cells depletion on epilepsy. Prog Neurobiol 2022; 217:102335. [PMID: 35931355 DOI: 10.1016/j.pneurobio.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.
Collapse
|
42
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Chen Z, Wu H, Fan W, Zhang J, Yao Y, Su W, Wang Y, Li P. Naringenin suppresses BEAS-2B-derived extracellular vesicular cargoes disorder caused by cigarette smoke extract thereby inhibiting M1 macrophage polarization. Front Immunol 2022; 13:930476. [PMID: 35924248 PMCID: PMC9342665 DOI: 10.3389/fimmu.2022.930476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs)-mediated epithelium-macrophage crosstalk has been proved to maintain lung homeostasis in cigarette smoke-induced lung diseases such as chronic obstructive pulmonary disease (COPD). In our previous study, we found that EVs derived from cigarette smoke extract (CSE) treated BEAS-2B promoted M1 macrophage polarization, which probably accelerated the development of inflammatory responses. Naringenin has been proved to suppress M1 macrophage polarization, but whether naringenin regulates macrophage polarization mediated by EVs has not been reported. In this study, we firstly found that EVs derived from naringenin and CSE co-treated BEAS-2B significantly inhibited the expression of CD86 and CD80 and the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS), and IL-12 in macrophage induced by EVs derived from CSE-treated BEAS-2B. Further research revealed that naringenin downregulated BEAS-2B-derived EVs miR-21-3p which targeted phosphatase and tensin homolog deleted on chromosome ten/protein kinase B (PTEN/AKT) cascade in macrophages and then suppressed M1 macrophage polarization. Subsequent proteomics suggested that naringenin decreased BEAS-2B-derived EVs poly ADP-ribose polymerase (PARP)1 expression thereby suppressing M1 macrophage polarization probably. Our study provides novel pharmacological references for the mechanism of naringenin in the treatment of cigarette smoke-induced lung inflammatory diseases.
Collapse
|
44
|
Tang X, Li Q, Huang T, Zhang H, Chen X, Ling J, Yang Y. Regenerative Role of T Cells in Nerve Repair and Functional Recovery. Front Immunol 2022; 13:923152. [PMID: 35865551 PMCID: PMC9294345 DOI: 10.3389/fimmu.2022.923152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immune system is essential in the process of nerve repair after injury. Successful modulation of the immune response is regarded as an effective approach to improving treatment outcomes. T cells play an important role in the immune response of the nervous system, and their beneficial roles in promoting regeneration have been increasingly recognized. However, the diversity of T-cell subsets also delivers both neuroprotective and neurodegenerative functions. Therefore, this review mainly discusses the beneficial impact of T-cell subsets in the repair of both peripheral nervous system and central nervous system injuries and introduces studies on various therapies based on T-cell regulation. Further discoveries in T-cell mechanisms and multifunctional biomaterials will provide novel strategies for nerve regeneration.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tingting Huang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Han Zhang
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaoli Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| |
Collapse
|
45
|
Chen S, Li L, Peng C, Bian C, Ocak PE, Zhang JH, Yang Y, Zhou D, Chen G, Luo Y. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:115-134. [PMID: 35383484 DOI: 10.1089/ars.2021.0072] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Blood-brain barrier (BBB) disruption is a major pathological change after intracerebral hemorrhage (ICH) and is both the cause and result of oxidative stress and of the immune response post-ICH. These processes contribute to ICH-induced brain injury. Recent Advances: After the breakdown of cerebral vessels, blood components, including erythrocytes and their metabolites, thrombin, and fibrinogen, can access the cerebral parenchyma through the compromised BBB, triggering oxidative stress and inflammatory cascades. These aggravate BBB disruption and contribute to further infiltration of blood components, resulting in a vicious cycle that exacerbates brain edema and neurological injury after ICH. Experimental and clinical studies have highlighted the role of BBB disruption in ICH-induced brain injury. Critical Issues: In this review, we focus on the strategies to protect the BBB in ICH. Specifically, we summarize the evidence and the underlying mechanisms, including the ICH-induced process of oxidative stress and inflammatory response, and we highlight the potential therapeutic targets to protect BBB integrity after ICH. Future Directions: Future studies should probe the mechanism of ferroptosis as well as oxidative stress-inflammation coupling in BBB disruption after ICH and investigate the effects of antioxidants and immunomodulatory agents in more ICH clinical trials. Antioxid. Redox Signal. 37, 115-134.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Peng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pinar Eser Ocak
- Department of Neurosurgery, Uludag University School of Medicine, Bursa, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
46
|
Choi J, Kim BR, Akuzum B, Chang L, Lee JY, Kwon HK. TREGking From Gut to Brain: The Control of Regulatory T Cells Along the Gut-Brain Axis. Front Immunol 2022; 13:916066. [PMID: 35844606 PMCID: PMC9279871 DOI: 10.3389/fimmu.2022.916066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract has an enormous and diverse microbial community, termed microbiota, that is necessary for the development of the immune system and tissue homeostasis. In contrast, microbial dysbiosis is associated with various inflammatory and autoimmune diseases as well as neurological disorders in humans by affecting not only the immune system in the gastrointestinal tract but also other distal organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that function as a gatekeeper for immune activation and are essential for peripheral autoimmunity prevention. Tregs are crucial to the maintenance of immunological homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and distinct function. The gut microbiota has an impact on Tregs development, accumulation, and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed towards gut microbes, which supports the host–microbiota symbiotic interaction in the gut. Recent studies have indicated that Tregs interact with a variety of resident cells in central nervous system (CNS) to limit the progression of neurological illnesses such as ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract and CNS are functionally connected, and current findings provide insights that Tregs function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells. The purpose of this study is to explain our current knowledge of the biological role of tissue-resident Tregs, as well as the interaction along the gut-brain axis.
Collapse
Affiliation(s)
- Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Leechung Chang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| |
Collapse
|
47
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
48
|
Exosomes derived from regulatory T cells attenuates MPP+-induced inflammatory response and oxidative stress in BV-2 cells by inhibiting the TLR4/NF-κB signaling. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Park SY, Yang H, Ye M, Liu X, Shim I, Chang YT, Bae H. Neuroprotective effects of ex vivo-expanded regulatory T cells on trimethyltin-induced neurodegeneration in mice. J Neuroinflammation 2022; 19:143. [PMID: 35690816 PMCID: PMC9188044 DOI: 10.1186/s12974-022-02512-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. Methods CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20. Results Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system. Conclusions These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - HyeJin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - Minsook Ye
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02453, South Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.,Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02453, South Korea.
| |
Collapse
|
50
|
Cui Y, Wang XH, Zhao Y, Chen SY, Sheng BY, Wang LH, Chen HS. Change of Serum Biomarkers to Post-Thrombolytic Symptomatic Intracranial Hemorrhage in Stroke. Front Neurol 2022; 13:889746. [PMID: 35720096 PMCID: PMC9202348 DOI: 10.3389/fneur.2022.889746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Symptomatic intracranial hemorrhage (sICH) is a terrible complication after intravenous alteplase in stroke, and numerous biomarkers have been investigated. However, the change of biomarkers to sICH has not been well determined. Aim To investigate the association between the change of biomarkers and sICH. Methods This is a prospective cohort study, and patients with sICH within 24 h after thrombolysis were enrolled, while patients without sICH were matched by propensity score matching with a ratio of 1:1. The blood samples were collected before and 24 h after intravenous thrombolysis (IVT), and preset 49 serum biomarkers were measured by microarray analysis. Protein function enrichment analyses were performed to detect the association between the change of biomarkers and sICH. Results Of consecutive 358 patients, 7 patients with sICH in 24 h were assigned to the sICH group, while 7 matched patients without any ICH were assigned to the non-sICH group. A total of 9 biomarkers were found to significantly change before vs. after thrombolysis between groups, including increased biomarkers, such as brain-derived neurotrophic factor, C-C motif chemokine ligand (CCL)-24, interleukin (IL)-6, IL-10, IL-18, and vascular endothelial growth factor, and decreased biomarkers, such as CCL-11, intercellular adhesion molecule-1, and IL-7. Conclusions This is the first study to identify changes in serum biomarkers in patients with sICH after IVT, and found that 6 neuroinflammatory and 3 neuroprotective biomarkers may be associated with brain injury following post-thrombolytic sICH. Clinical Trial Registration https://www.clinicaltrials.gov, identifier: NCT02854592.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Xin-Hong Wang
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People's Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
- *Correspondence: Hui-Sheng Chen
| |
Collapse
|