1
|
Shiga T, Kakinuma Y, Takada M, Imai R, Aoki T, Ishida H, Kasahara-Kamiie M, Aihara N, Kamiie J. Chronic bronchitis and bronchiolitis with prominent globule leukocyte infiltration in a cat with Filobacterium felis. Vet Pathol 2025:3009858251324646. [PMID: 40088090 DOI: 10.1177/03009858251324646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
A 7-year-old mixed-breed cat presented with intermittent dry cough for 2 years. Histological examination of the lung biopsy revealed hyperplasia of bronchial and bronchiolar epithelium, and intraepithelial infiltration of globule leukocytes in many bronchi, bronchioles, and terminal bronchioles. Lymphoid aggregates cuffed airways, respiratory bronchioles, and alveolar ducts. Terminal airway inflammation was associated with type II pneumocyte hyperplasia within adjacent alveoli. Warthin-Starry stain revealed numerous argyrophilic and filamentous bacilli that were interspersed or clustered with cilia of the respiratory epithelium. The morphology, distribution, and gram (negative) and ultrastructural characteristics were consistent with cilia-associated respiratory (CAR) bacillus. Real-time polymerase chain reaction assays using paraffin-embedded lung tissue confirmed the presence of Filobacterium felis. Chronic bronchitis and bronchiolitis in a cat with F. felis share characteristics of diseases caused by species specific CAR bacilli in many species, but uniquely in this case, globule leukocytes were a prominent feature of the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Rie Imai
- Arts Ningyocho Animal Hospital, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
2
|
Abdali SS, Yokoyama T, Yamamoto Y, Narita K, Hirakawa M, Saino T. Immunohistochemical analysis and distribution of epithelial mast cells in the rat larynx and trachea. Histochem Cell Biol 2024; 162:287-297. [PMID: 39031197 DOI: 10.1007/s00418-024-02309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Mast cells (MCs) in rat airways have been classified into two subtypes: epithelial MCs and connective tissue MCs (CTMCs). However, the immunohistochemical characteristics, cellular morphology, and distribution of epithelial MCs in the upper airways remain unclear. The present study investigated the morphological characteristics and distribution of epithelial MCs using 5-hydroxytryptamine (5-HT) and other immunohistochemical markers in sectioned or whole-mount preparations of the rat larynx and trachea. A double immunofluorescence analysis revealed the colocalization of 5-HT immunoreactivity with c-kit, a stem cell factor receptor commonly used as a MC marker, in both epithelial MCs and CTMCs. Dopa decarboxylase, an enzyme involved in 5-HT synthesis, was detected in both subtypes, suggesting their ability to synthesize and release 5-HT. Tryptase and histidine decarboxylase (a biosynthetic enzyme of histamine), which are well-known mediators of MCs, were exclusive to CTMCs. Epithelial MCs were pleomorphic with long cytoplasmic processes, whereas CTMCs were round and lacked cytoplasmic processes. The density of epithelial MCs was significantly higher in the glottis and cranial part of the trachea than in the epiglottis and other parts of the trachea. The present results showed that the morphology and immunohistochemical characteristics of epithelial MCs were different from those of CTMCs in the rat larynx and trachea, and variform epithelial MCs were predominantly located at the entrance of the upper airways. Epithelial MCs may release 5-HT to regulate innate immune responses by modulating epithelial cell functions at the entrance gate of the upper airways.
Collapse
Affiliation(s)
- Sayed Sharif Abdali
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Keishi Narita
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Masato Hirakawa
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| |
Collapse
|
3
|
Leyva-Castillo JM, Strakosha M, Smith SEM, Vega-Mendoza D, Elkins M, Chou J, Vogel P, Boulanger N. Ixodes ricinus bites promote allergic skin inflammation and intestinal tuft and mast cell expansion in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.600632. [PMID: 39005263 PMCID: PMC11245008 DOI: 10.1101/2024.07.02.600632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Tick bites often promote local allergic reactions in the skin and predispose to red meat allergy. The mechanisms involved in these processes are not fully understood. Here we investigated the local changes to the skin and intestine induced by tick bites. Methods C3H/HEN or Balb/c mice were subjected to either tick bites by Ixodes ricinus ( I. ricinus ) or mechanical skin injury. Skin or intestine was analyzed a different time point by transcriptomic and histological techniques. Results Our results indicate that I. ricinus bites promote epidermal hyperplasia, spongiosis and an accumulation of eosinophils and mast cells in the bitten skin. In addition, I. ricinus bites promote the expression of genes and activate pathways also induced by mechanical skin injury elicited by tape stripping. Remarkably, similar to tape stripping, I. ricinus bites promote an increase in total serum IgE, and intestinal tuft cell and mast cell expansion. Conclusion I. ricinus bites in mice promote cutaneous inflammation that resembles allergic skin inflammation, as well as intestinal changes that could play a role in the predisposition to red meat allergy.
Collapse
|
4
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
5
|
Guo Y, Wang B, Gao H, He C, Xin S, Hua R, Liu X, Zhang S, Xu J. Insights into the Characteristics and Functions of Mast Cells in the Gut. GASTROENTEROLOGY INSIGHTS 2023; 14:637-652. [DOI: 10.3390/gastroent14040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Mast cells have vital functions in allergic responses and parasite ejection, while the underlying mechanisms remain unclear. Meanwhile, MCs are essential for the maintenance of GI barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various gastrointestinal (GI) disorders. An increasing number of investigations are being disclosed, with a lack of inner connections among them. This review aims to highlight their properties and categorization and further delve into their participation in GI diseases via interplay with neurons and immune cells. We also discuss their roles in diseases like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Based on the evidence, we advocated for their potential application in clinical practices and advocated future research prospects.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing 100049, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sitian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Cruz Otero JD, Jager M, Armien AG, Miller A, Stokol T. Granular variant of a histiocytic tumor on the toe of a cat: Case report and literature review. Vet Clin Pathol 2023; 52:102-107. [PMID: 35751153 DOI: 10.1111/vcp.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
A 16-year-old female spayed domestic shorthaired cat was examined for lameness and a mass on the fourth digit of the right hindlimb. Cytologic examination of an aspirate of the mass revealed large discrete cells admixed with low numbers of well-granulated mast cells. The discrete cells contained single to many variably sized light pink to purple granules in their cytoplasm and had pleomorphic nuclei, with intranuclear cytoplasmic inclusions. Karyomegalic, binucleated and multinucleated cells were seen. Histologic examination of formalin-fixed sections of the excised mass showed a mildly infiltrative, unencapsulated, multinodular dermal mass that extended into the subcutis and consisted of similar discrete cells. On immunohistochemical staining, the tumor cells expressed ionized calcium-binding adapter molecule 1 (Iba1) and CD18. The tumor cells did not express CD3, CD20, CD117, pancytokeratin (AE1/AE3), melanoma antigen (Melan-A), multiple myeloma oncogene-1 (MUM1), melanoma-associated antigen (PNL-2), and S-100. Low numbers of tumor cells expressed CD204 and protein gene product 9.5 (PGP9.5). Granules were variably positive for Periodic-acid Schiff (PAS) and Alcian blue. On transmission electron microscopy, the cells contained filopodia, abundant endoplasmic reticulum, and moderate numbers of low-density membrane-bound granules. This case documents a previously undescribed granular variant of a histiocytic tumor in a cat.
Collapse
Affiliation(s)
- José D Cruz Otero
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mason Jager
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anibal G Armien
- California Animal Health and Food Safety Laboratory System (CAHFS), School of Veterinary Medicine, University of California, Davis, California, USA
| | - Andrew Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
8
|
Groll T, Silva M, Sarker RSJ, Tschurtschenthaler M, Schnalzger T, Mogler C, Denk D, Schölch S, Schraml BU, Ruland J, Rad R, Saur D, Weichert W, Jesinghaus M, Matiasek K, Steiger K. Comparative Study of the Role of Interepithelial Mucosal Mast Cells in the Context of Intestinal Adenoma-Carcinoma Progression. Cancers (Basel) 2022; 14:cancers14092248. [PMID: 35565377 PMCID: PMC9105816 DOI: 10.3390/cancers14092248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mast cells (MCs) are crucial players in the relationship between the tumor microenvironment (TME) and cancer cells and have been shown to influence angiogenesis and progression of human colorectal cancer (CRC). However, the role of MCs in the TME is controversially discussed as either pro- or anti-tumorigenic. Genetically engineered mouse models (GEMMs) are the most frequently used in vivo models for human CRC research. In the murine intestine there are at least three different MC subtypes: interepithelial mucosal mast cells (ieMMCs), lamina proprial mucosal mast cells (lpMMCs) and connective tissue mast cells (CTMCs). Interepithelial mucosal mast cells (ieMMCs) in (pre-)neoplastic intestinal formalin-fixed paraffin-embedded (FFPE) specimens of mouse models (total lesions n = 274) and human patients (n = 104) were immunohistochemically identified and semiquantitatively scored. Scores were analyzed along the adenoma-carcinoma sequence in humans and 12 GEMMs of small and large intestinal cancer. The presence of ieMMCs was a common finding in intestinal adenomas and carcinomas in mice and humans. The number of ieMMCs decreased in the course of colonic adenoma-carcinoma sequence in both species (p < 0.001). However, this dynamic cellular state was not observed for small intestinal murine tumors. Furthermore, ieMMC scores were higher in GEMMs with altered Wnt signaling (active β-catenin) than in GEMMs with altered MAPK signaling and wildtypes (WT). In conclusion, we hypothesize that, besides stromal MCs (lpMMCs/CTMCs), particularly the ieMMC subset is important for onset and progression of intestinal neoplasia and may interact with the adjacent neoplastic epithelial cells in dependence on the molecular environment. Moreover, our study indicates the need for adequate GEMMs for the investigation of the intestinal immunologic TME.
Collapse
Affiliation(s)
- Tanja Groll
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Miguel Silva
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
| | - Rim Sabrina Jahan Sarker
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Markus Tschurtschenthaler
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Theresa Schnalzger
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Daniela Denk
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, 68167 Mannheim, Germany
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Barbara U. Schraml
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, 82152 Planegg-Martinsried, Germany;
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
| | - Moritz Jesinghaus
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Institute of Pathology, University Hospital Marburg, 35043 Marburg, Germany
| | - Kaspar Matiasek
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-4865
| |
Collapse
|
9
|
Nakano N, Kitaura J. Mucosal Mast Cells as Key Effector Cells in Food Allergies. Cells 2022; 11:cells11030329. [PMID: 35159139 PMCID: PMC8834119 DOI: 10.3390/cells11030329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Mucosal mast cells (MMCs) localized in the intestinal mucosa play a key role in the development of IgE-mediated food allergies. Recent advances have revealed that MMCs are a distinctly different population from connective tissue mast cells localized in skin and other connective tissues. MMCs are inducible and transient cells that arise from bone marrow-derived mast cell progenitors, and their numbers increase rapidly during mucosal allergic inflammation. However, the mechanism of the dramatic expansion of MMCs and their cell functions are not well understood. Here, we review recent findings on the mechanisms of MMC differentiation and expansion, and we discuss the potential for the inducers of differentiation and expansion to serve as targets for food allergy therapy. In addition, we also discuss the mechanism by which oral immunotherapy, a promising treatment for food allergy patients, induces unresponsiveness to food allergens and the roles of MMCs in this process. Research focusing on MMCs should provide useful information for understanding the underlying mechanisms of food allergies in order to further advance the treatment of food allergies.
Collapse
|
10
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Foster BM, Langsten KL, Mansour A, Shi L, Kerr BA. Tissue distribution of stem cell factor in adults. Exp Mol Pathol 2021; 122:104678. [PMID: 34450114 PMCID: PMC8516741 DOI: 10.1016/j.yexmp.2021.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kendall L Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Ammar Mansour
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
12
|
Lucyshyn DR, Vernau W, Maggs DJ, Murphy CJ, Leonard BC. Correlations between clinical signs and corneal cytology in feline eosinophilic keratoconjunctivitis. Vet Ophthalmol 2021; 24:620-626. [PMID: 34184388 PMCID: PMC9291071 DOI: 10.1111/vop.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
Objective To assess correlations between clinical and cytological features of feline eosinophilic keratoconjunctivitis at the time of cytological diagnosis. Animals Studied Fifteen client‐owned, domestic breed cats (18 eyes) examined between 2007 and 2019. Procedures An electronic search and medical record review of cats diagnosed with feline eosinophilic keratitis or keratoconjunctivitis (FEK) based on clinical examination findings and eosinophils detected on corneal cytology were conducted. Clinical severity was graded using a modified version of a previously validated semiquantitative preclinical ocular toxicology scoring (SPOTS) system. Clinical grades were assigned following review of clinical images and medical record descriptions, and cytological grades were assigned following review of archived corneal cytology slides. Correlations were analyzed for significance using Spearman's rank correlation coefficient. Results Higher total corneal scores correlated with higher total conjunctival scores, but not with total fluorescein scores. Small lymphocyte scores correlated negatively with scores for collagen degeneration or mineralization. Globule leukocytes, a unique cell type not previously described in ocular cytology, were identified in 4 of 18 cytological samples. Higher globule leukocyte scores were correlated with higher scores for mast cells or plasma cells. Specimens with lower eosinophil scores had higher globule leukocyte scores. Conclusions Large variability was detected in the cytological characteristics and clinical features of FEK‐affected cats. This is the first report of globule leukocytes being identified in ocular cytology from any species. The role of globule leukocytes in the etiopathogenesis and progression of FEK remains unknown and warrants further investigation.
Collapse
Affiliation(s)
- Danica R Lucyshyn
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA
| | - William Vernau
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - David J Maggs
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA, USA
| |
Collapse
|
13
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
14
|
Pitel MO, Heller MC, Roberson JR, McKenzie EC, Sinnott DM, Affolter VK. Lymphoplasmacytic and eosinophilic enteritis with or without globule leukocyte hyperplasia in 4 goats. J Vet Intern Med 2021; 35:1620-1625. [PMID: 33934407 PMCID: PMC8163118 DOI: 10.1111/jvim.16110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Four, mature, client-owned goats were presented to referral hospitals for recurrent diarrhea despite treatment for intestinal parasitism. Common clinical findings included diarrhea, poor condition, neutrophilia, and hypoalbuminemia. Testing for common infectious causes of diarrhea in goats was negative. Ultrasonography and computed tomography in 2 cases was suggestive of enteritis, including thickened intestinal walls and fluid filled, dilated small intestines, respectively. Lymphoplasmacytic and eosinophilic enteritis (LEE) was ultimately diagnosed on intestinal biopsy histopathology based on the presence of small intestinal villous blunting and increased numbers of lymphocytes and eosinophils predominantly within the lamina propria. Numerous globule leukocytes were also noted on histopathology in 3 cases. All goats responded favorably to corticosteroid treatment with weight gain and resolution of diarrhea and clinicopathologic abnormalities. Relapses occurred, and complete cure was difficult to achieve. Reported in other species, this series describes the clinical presentation, diagnosis, and treatment of LEE in adult goats.
Collapse
Affiliation(s)
- Mariya O Pitel
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Meera C Heller
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Jerry R Roberson
- Lincoln Memorial University-College of Veterinary Medicine, Ewing, Virginia, USA
| | - Erica C McKenzie
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Devinn M Sinnott
- William R Pritchard Veterinary Medical Teaching Hospital, University of California Davis, Davis, California, USA
| | - Verena K Affolter
- Department of Pathology, Microbiology and Immunology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
15
|
Martin AM, Jones LA, Jessup CF, Sun EW, Keating DJ. Diet differentially regulates enterochromaffin cell serotonin content, density and nutrient sensitivity in the mouse small and large intestine. Neurogastroenterol Motil 2020; 32:e13869. [PMID: 32378785 DOI: 10.1111/nmo.13869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enterochromaffin (EC) cells are specialized enteroendocrine cells lining the gastrointestinal (GI) tract and the source of almost all serotonin (5-hydroxytryptamine; 5-HT) in the body. Gut-derived 5-HT has a plethora of physiological roles, including regulation of gastrointestinal motility, and has been implicated as a driver of obesity and metabolic disease. This is due to 5-HT influencing key metabolic processes, such as hepatic gluconeogenesis, adipose tissue lipolysis and hindering thermogenic capacity. Increased circulating 5-HT occurs in humans with obesity and type 2 diabetes. However, despite the known metabolic roles of gut-derived 5-HT, the mechanisms underlying the cellular-level change in EC cells under obesogenic conditions remains unknown. METHODS We use a mouse model of diet-induced obesity (DIO) to identify the regional changes that occur in primary EC cells from the duodenum and colon. Transcriptional changes in the nutrient sensing profile of primary EC cells were assessed, and responses to nutrient stimuli in culture were determined by 5-HT ELISA. KEY RESULTS We find that obesogenic conditions affect EC cells in a region-dependent manner. Duodenal EC cells from DIO mice have impaired sugar sensing even in the presence of increased 5-HT content per cell, while colonic EC cell numbers are significantly increased, but have unaltered nutrient sensing capacity. CONCLUSIONS & INFERENCES Our findings from this study add novel insights into the mechanisms by which functional changes to EC cells occur at a cellular level, which may contribute to the altered circulating 5-HT seen with obesity and metabolic disease, and associated gastrointestinal disorders.
Collapse
Affiliation(s)
- Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Claire F Jessup
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
16
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
17
|
The Chymase Mouse Mast Cell Protease-4 Regulates Intestinal Cytokine Expression in Mature Adult Mice Infected with Giardia intestinalis. Cells 2020; 9:cells9040925. [PMID: 32283818 PMCID: PMC7226739 DOI: 10.3390/cells9040925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Mast cells have been shown to affect the control of infections with the protozoan parasite Giardia intestinalis. Recently, we demonstrated that Giardia excretory-secretory proteins inhibited the activity of the connective tissue mast cell-specific protease chymase. To study the potential role of the chymase mouse mast cell protease (mMCP)-4 during infections with Giardia, mMCP-4+/+ and mMCP-4−/− littermate mice were gavage-infected with G. intestinalis trophozoites of the human assemblage B isolate GS. No significant changes in weight gain was observed in infected young (≈10 weeks old) mMCP-4−/− and mMCP-4+/+ littermate mice. In contrast, infections of mature adult mice (>18 weeks old) caused significant weight loss as compared to uninfected control mice. We detected a more rapid weight loss in mMCP-4−/− mice as compared to littermate mMCP-4+/+ mice. Submucosal mast cell and granulocyte counts in jejunum increased in the infected adult mMCP-4−/− and mMCP-4+/+ mice. This increase was correlated with an augmented intestinal trypsin-like and chymotrypsin-like activity, but the myeloperoxidase activity was constant. Infected mice showed a significantly lower intestinal neutrophil elastase (NE) activity, and in vitro, soluble Giardia proteins inhibited human recombinant NE. Serum levels of IL-6 were significantly increased eight and 13 days post infection (dpi), while intestinal IL-6 levels showed a trend to significant increase 8 dpi. Strikingly, the lack of mMCP-4 resulted in significantly less intestinal transcriptional upregulation of IL-6, TNF-α, IL-25, CXCL2, IL-2, IL-4, IL-5, and IL-10 in the Giardia-infected mature adult mice, suggesting that chymase may play a regulatory role in intestinal cytokine responses.
Collapse
|
18
|
Ohfuji S. Retrospective analysis of globule leukocytes in parasite-free rumens of cattle: a histopathological research with literature review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s00580-020-03101-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Willard-Mack CL, Elmore SA, Hall WC, Harleman J, Kuper CF, Losco P, Rehg JE, Rühl-Fehlert C, Ward JM, Weinstock D, Bradley A, Hosokawa S, Pearse G, Mahler BW, Herbert RA, Keenan CM. Nonproliferative and Proliferative Lesions of the Rat and Mouse Hematolymphoid System. Toxicol Pathol 2020; 47:665-783. [PMID: 31526133 DOI: 10.1177/0192623319867053] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Thymus subgroup lead.,National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Johannes Harleman
- Lymph node subgroup lead.,Neoplasm subgroup leads.,Independent Consultant, Darmstadt, Germany
| | - C Frieke Kuper
- Associated lymphoid organs subgroup lead.,Independent Consultant, Utrecht, the Netherlands
| | - Patricia Losco
- General hematolymphoid subgroup lead.,Independent Consultant, West Chester, PA, USA
| | - Jerold E Rehg
- Spleen subgroup leads.,Neoplasm subgroup leads.,Saint Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jerrold M Ward
- Spleen subgroup leads.,Neoplasm subgroup leads.,Global VetPathology, Montgomery Village, MD, USA
| | | | - Alys Bradley
- Charles River Laboratories, Tranent, Scotland, United Kingdom
| | - Satoru Hosokawa
- Eisai Co, Ltd, Drug Safety Research Laboratories, Ibaraki, Japan
| | | | - Beth W Mahler
- Experimental Pathology Laboratories, Research Triangle Park, NC, USA
| | - Ronald A Herbert
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
20
|
Sato J, Tomonari Y, Doi T, Tsuchitani M. Spontaneous globule leukocyte tumor accompanied by inflammatory cells in a Wistar Hannover rat. J Toxicol Pathol 2019; 32:189-195. [PMID: 31404352 PMCID: PMC6682559 DOI: 10.1293/tox.2018-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022] Open
Abstract
We encountered hematolymphoid neoplastic lesions in the form of many nodules in the
spleen and liver in a 110-week-old male Wistar Hannover rat (Crl:WI (Han)). The lesions
contained atypical proliferative cells, eosinophils, lymphocytes, and macrophages. The
proliferative cells comprised various atypical cell types with or without cytoplasmic
eosinophilic granules. The granules were positively stained using periodic acid-Schiff and
elastase stains, were bluish purple using phosphotungstic acid and hematoxylin, and showed
no metachromasia using toluidine blue. In immunohistochemical staining, the proliferative
cells with or without granules were positive for granzyme B, rat mast cell protease II,
and Ki67. Electron microscopic examination revealed that single to multiple high-density
granules of variable size were covered by a membrane. These findings led to a diagnosis of
globule leukocyte tumor. The accompaniment of this tumor by inflammatory cells is likely
evoked by mast cell-like active mediators contained in the granules of the globule
leukocytes.
Collapse
Affiliation(s)
- Junko Sato
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| | - Yuki Tomonari
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| | - Takuya Doi
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| | - Minoru Tsuchitani
- Pathology Department, Kashima Laboratory, Nonclinical Research Center, LSI Medience Corporation, 14-1 Sunayama, Kamisu, Ibaraki 314-0255, Japan
| |
Collapse
|
21
|
Diehl L, Meyerholz DK, Day MJ, Affolter VK. Pathology and Pathogenesis of Immune-Mediated Diseases of Animals. Vet Pathol 2018; 55:5-7. [PMID: 29254471 DOI: 10.1177/0300985817739091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - David K Meyerholz
- 2 Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Verena K Affolter
- 4 UC Davis School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
22
|
Chapman NM, Zeng H, Nguyen TLM, Wang Y, Vogel P, Dhungana Y, Liu X, Neale G, Locasale JW, Chi H. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated T reg subsets to protect tissue homeostasis. Nat Commun 2018; 9:2095. [PMID: 29844370 PMCID: PMC5974344 DOI: 10.1038/s41467-018-04392-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Regulatory T (Treg) cells derived from the thymus (tTreg) and periphery (pTreg) have central and distinct functions in immunosuppression, but mechanisms for the generation and activation of Treg subsets in vivo are unclear. Here, we show that mechanistic target of rapamycin (mTOR) unexpectedly supports the homeostasis and functional activation of tTreg and pTreg cells. mTOR signaling is crucial for programming activated Treg-cell function to protect immune tolerance and tissue homeostasis. Treg-specific deletion of mTOR drives spontaneous effector T-cell activation and inflammation in barrier tissues and is associated with reduction in both thymic-derived effector Treg (eTreg) and pTreg cells. Mechanistically, mTOR functions downstream of antigenic signals to drive IRF4 expression and mitochondrial metabolism, and accordingly, deletion of mitochondrial transcription factor A (Tfam) severely impairs Treg-cell suppressive function and eTreg-cell generation. Collectively, our results show that mTOR coordinates transcriptional and metabolic programs in activated Treg subsets to mediate tissue homeostasis.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 351, Memphis, TN, 38105, USA
| | - Hu Zeng
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 351, Memphis, TN, 38105, USA
| | - Thanh-Long M Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 351, Memphis, TN, 38105, USA
| | - Yanyan Wang
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 351, Memphis, TN, 38105, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 250, Memphis, TN, 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 351, Memphis, TN, 38105, USA
| | - Xiaojing Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Levine Science Research Center C266, Box 3813, Durham, NC, 27710, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 312, Memphis, TN, 38105, USA
| | - Jason W Locasale
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Levine Science Research Center C266, Box 3813, Durham, NC, 27710, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 351, Memphis, TN, 38105, USA.
| |
Collapse
|