1
|
De Stefano M, Singh K, Raina A, Mohan S, Ul Haq MI, Ruggiero A. Tribocorrosion of 3D printed dental implants: An overview. J Taibah Univ Med Sci 2024; 19:644-663. [PMID: 38807965 PMCID: PMC11131088 DOI: 10.1016/j.jtumed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
With the advancements in dental science and the growing need for improved dental health, it has become imperative to develop new implant materials which possess better geometrical, mechanical, and physical properties. The oral environment is a corrosive environment and the relative motion between the teeth also makes the environment more hostile. Therefore, the combined corrosion and tribology commonly known as tribocorrosion of implants needs to be studied. The complex shapes of the dental implants and the high-performance requirements of these implants make manufacturing difficult by conventional manufacturing processes. With the advent of additive manufacturing or 3D-printing, the development of implants has become easy. However, the various requirements such as surface roughness, mechanical strength, and corrosion resistance further make the manufacturing of implants difficult. The current paper reviews the various studies related to3D-printed implants. Also, the paper tries to highlight the role of 3D-Printing can play in the area of dental implants. Further studies both experimental and numerical are needed to devise optimized conditions for 3D-printing implants to develop implants with improved mechanical, corrosion, and biological properties.
Collapse
Affiliation(s)
- Marco De Stefano
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Khushneet Singh
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Sanjay Mohan
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Alessandro Ruggiero
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
2
|
Shan J, Kong Z, Wang X. Formation of Stable Vascular Networks by 3D Coaxial Printing and Schiff-Based Reaction. Gels 2024; 10:366. [PMID: 38920913 PMCID: PMC11203009 DOI: 10.3390/gels10060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascularized organs hold potential for various applications, such as organ transplantation, drug screening, and pathological model establishment. Nevertheless, the in vitro construction of such organs encounters many challenges, including the incorporation of intricate vascular networks, the regulation of blood vessel connectivity, and the degree of endothelialization within the inner cavities. Natural polymeric hydrogels, such as gelatin and alginate, have been widely used in three-dimensional (3D) bioprinting since 2005. However, a significant disparity exists between the mechanical properties of the hydrogel materials and those of human soft tissues, necessitating the enhancement of their mechanical properties through modifications or crosslinking. In this study, we aim to enhance the structural stability of gelatin-alginate hydrogels by crosslinking gelatin molecules with oxidized pullulan (i.e., a polysaccharide) and alginate molecules with calcium chloride (CaCl2). A continuous small-diameter vascular network with an average outer diameter of 1 mm and an endothelialized inner surface is constructed by printing the cell-laden hydrogels as bioinks using a coaxial 3D bioprinter. The findings demonstrate that the single oxidized pullulan crosslinked gelatin and oxidized pullulan/CaCl2 double-crosslinked gelatin-alginate hydrogels both exhibit a superior structural stability compared to their origins and CaCl2 solely crosslinked gelatin-alginate hydrogels. Moreover, the innovative gelatin and gelatin-alginate hydrogels, which have excellent biocompatibilities and very low prices compared with other hydrogels, can be used directly for tissue/organ construction, tissue/organ repairment, and cell/drug transportation.
Collapse
Affiliation(s)
- Jingxin Shan
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (J.S.); (Z.K.)
- Department of Biomedical Engineering, He University, Shenyang 110163, China
| | - Zhiyuan Kong
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (J.S.); (Z.K.)
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (J.S.); (Z.K.)
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
4
|
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. Polymers (Basel) 2023; 15:polym15071643. [PMID: 37050256 PMCID: PMC10097359 DOI: 10.3390/polym15071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.
Collapse
|
5
|
Kong Z, Wang X. Bioprinting Technologies and Bioinks for Vascular Model Establishment. Int J Mol Sci 2023; 24:891. [PMID: 36614332 PMCID: PMC9821327 DOI: 10.3390/ijms24010891] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, large diameter artery defects (diameter larger than 6 mm) can be substituted by unbiodegradable polymers, such as polytetrafluoroethylene. There are many problems in the construction of small diameter blood vessels (diameter between 1 and 3 mm) and microvessels (diameter less than 1 mm), especially in the establishment of complex vascular models with multi-scale branched networks. Throughout history, the vascularization strategies have been divided into three major groups, including self-generated capillaries from implantation, pre-constructed vascular channels, and three-dimensional (3D) printed cell-laden hydrogels. The first group is based on the spontaneous angiogenesis behaviour of cells in the host tissues, which also lays the foundation of capillary angiogenesis in tissue engineering scaffolds. The second group is to vascularize the polymeric vessels (or scaffolds) with endothelial cells. It is hoped that the pre-constructed vessels can be connected with the vascular networks of host tissues with rapid blood perfusion. With the development of bioprinting technologies, various fabrication methods have been achieved to build hierarchical vascular networks with high-precision 3D control. In this review, the latest advances in 3D bioprinting of vascularized tissues/organs are discussed, including new printing techniques and researches on bioinks for promoting angiogenesis, especially coaxial printing, freeform reversible embedded in suspended hydrogel printing, and acoustic assisted printing technologies, and freeform reversible embedded in suspended hydrogel (flash) technology.
Collapse
Affiliation(s)
- Zhiyuan Kong
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Xu Y, Song D, Wang X. 3D Bioprinting for Pancreas Engineering/Manufacturing. Polymers (Basel) 2022; 14:polym14235143. [PMID: 36501537 PMCID: PMC9741443 DOI: 10.3390/polym14235143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is the most common chronic disease in the world, and it brings a heavy burden to people's health. Against this background, diabetic research, including islet functionalization has become a hot topic in medical institutions all over the world. Especially with the rapid development of microencapsulation and three-dimensional (3D) bioprinting technologies, organ engineering and manufacturing have become the main trends for disease modeling and drug screening. Especially the advanced 3D models of pancreatic islets have shown better physiological functions than monolayer cultures, suggesting their potential in elucidating the behaviors of cells under different growth environments. This review mainly summarizes the latest progress of islet capsules and 3D printed pancreatic organs and introduces the activities of islet cells in the constructs with different encapsulation technologies and polymeric materials, as well as the vascularization and blood glucose control capabilities of these constructs after implantation. The challenges and perspectives of the pancreatic organ engineering/manufacturing technologies have also been demonstrated.
Collapse
|
7
|
Gao Y, Wei C, Zhao S, Gao W, Li Z, Li H, Luo J, Song X. Conductive
double‐network
hydrogel for a highly conductive
anti‐fatigue
flexible sensor. J Appl Polym Sci 2022. [DOI: 10.1002/app.53327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi Gao
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Cuilian Wei
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Shuangliang Zhao
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Guangxi University Nanning China
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Wei Gao
- School of Resources, Environment and Materials Guangxi University Nanning China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes Guangxi University Nanning China
| | - Zequan Li
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Hong Li
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Jianju Luo
- School of Resources, Environment and Materials Guangxi University Nanning China
| | - Xianyu Song
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering Chongqing Three Gorges University Chongqing China
| |
Collapse
|
8
|
Sachdev A, Acharya S, Gadodia T, Shukla S, J H, Akre C, Khare M, Huse S. A Review on Techniques and Biomaterials Used in 3D Bioprinting. Cureus 2022; 14:e28463. [PMID: 36176831 PMCID: PMC9511817 DOI: 10.7759/cureus.28463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional (3D) bioprinting is a cutting-edge technology that has come to light recently and shows a promising potential whose progress will change the face of medicine. This article reviews the most commonly used techniques and biomaterials for 3D bioprinting. We will also look at the advantages and limitations of various techniques and biomaterials and get a comparative idea about them. In addition, we will also look at the recent applications of these techniques in different industries. This article aims to get a basic idea of the techniques and biomaterials used in 3D bioprinting, their advantages and limitations, and their recent applications in various fields.
Collapse
|
9
|
Jiao W, Li X, Shan J, Wang X. Study of Several Alginate-Based Hydrogels for In Vitro 3D Cell Cultures. Gels 2022; 8:147. [PMID: 35323260 PMCID: PMC8950797 DOI: 10.3390/gels8030147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogel, a special system of polymer solutions, can be obtained through the physical/chemical/enzymic crosslinking of polymer chains in a water-based dispersion medium. Different compositions and crosslinking methods endow hydrogel with diverse physicochemical properties. Those hydrogels with suitable physicochemical properties hold manifold functions in biomedical fields, such as cell transplantation, tissue engineering, organ manufacturing, drug releasing and pathological model analysis. In this study, several alginate-based composite hydrogels, including gelatin/alginate (G-A), gelatin/alginate/agarose (G-A-A), fibrinogen/alginate (F-A), fibrinogen/alginate/agarose (F-A-A) and control alginate (A) and alginate/agarose (A-A), were constructed. We researched the advantages and disadvantages of these hydrogels in terms of their microscopic structure (cell living space), water holding capacity, swelling rate, swelling-erosion ratio, mechanical properties and biocompatibility. Briefly, alginate-based hydrogels can be used for three-dimensional (3D) cell culture alone. However, when mixed with other natural polymers in different proportions, a relatively stable network with a good cytocompatibility, mechanical strength and water holding capacity can be formed. The physical and chemical properties of the hydrogels can be adjusted by changing the composition, proportion and cross-linking methods of the polymers. Conclusively, the G-A-A and F-A-A hydrogels are the best hydrogels for the in vitro 3D cell cultures and pathological model construction.
Collapse
Affiliation(s)
- Weijie Jiao
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
| | - Xiaohong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
| | - Jingxin Shan
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
- Department of Biomedical Engineering, HE University, Shenyang 110163, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), Shenyang 110122, China; (W.J.); (X.L.); (J.S.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Samanipour R, Tahmooressi H, Rezaei Nejad H, Hirano M, Shin SR, Hoorfar M. A review on 3D printing functional brain model. BIOMICROFLUIDICS 2022; 16:011501. [PMID: 35145569 PMCID: PMC8816519 DOI: 10.1063/5.0074631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/31/2021] [Indexed: 05/08/2023]
Abstract
Modern neuroscience increasingly relies on 3D models to study neural circuitry, nerve regeneration, and neural disease. Several different biofabrication approaches have been explored to create 3D neural tissue model structures. Among them, 3D bioprinting has shown to have great potential to emerge as a high-throughput/high precision biofabrication strategy that can address the growing need for 3D neural models. Here, we have reviewed the design principles for neural tissue engineering. The main challenge to adapt printing technologies for biofabrication of neural tissue models is the development of neural bioink, i.e., a biomaterial with printability and gelation properties and also suitable for neural tissue culture. This review shines light on a vast range of biomaterials as well as the fundamentals of 3D neural tissue printing. Also, advances in 3D bioprinting technologies are reviewed especially for bioprinted neural models. Finally, the techniques used to evaluate the fabricated 2D and 3D neural models are discussed and compared in terms of feasibility and functionality.
Collapse
Affiliation(s)
| | - Hamed Tahmooressi
- Department of Mechanical Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Hojatollah Rezaei Nejad
- Department of Electrical and Computer Engineering, Tufts University, 161 College Avenue, Medford, Massachusetts 02155, USA
| | | | - Su-Royn Shin
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
- Authors to whom correspondence should be addressed: and
| | - Mina Hoorfar
- Faculty of Engineering, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
11
|
The Effect of Agarose on 3D Bioprinting. Polymers (Basel) 2021; 13:polym13224028. [PMID: 34833327 PMCID: PMC8620953 DOI: 10.3390/polym13224028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023] Open
Abstract
In three-dimensional (3D) bioprinting, the accuracy, stability, and mechanical properties of the formed structure are very important to the overall composition and internal structure of the complex organ. In traditional 3D bioprinting, low-temperature gelatinization of gelatin is often used to construct complex tissues and organs. However, the hydrosol relies too much on the concentration of gelatin and has limited formation accuracy and stability. In this study, we take advantage of the physical crosslinking of agarose at 35–40 °C to replace the single pregelatinization effect of gelatin in 3D bioprinting, and printing composite gelatin/alginate/agarose hydrogels at two temperatures, i.e., 10 °C and 24 °C, respectively. After in-depth research, we find that the structures manufactured by the pregelatinization method of agarose are significantly more accurate, more stable, and harder than those pregelatined by gelatin. We believe that this research holds the potential to be widely used in the future organ manufacturing fields with high structural accuracy and stability.
Collapse
|
12
|
Song D, Xu Y, Liu S, Wen L, Wang X. Progress of 3D Bioprinting in Organ Manufacturing. Polymers (Basel) 2021; 13:3178. [PMID: 34578079 PMCID: PMC8468820 DOI: 10.3390/polym13183178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of rapid prototyping technologies, which assemble biomaterials, including cells and bioactive agents, under the control of a computer-aided design model in a layer-by-layer fashion. It has great potential in organ manufacturing areas with the combination of biology, polymers, chemistry, engineering, medicine, and mechanics. At present, 3D bioprinting technologies can be used to successfully print living tissues and organs, including blood vessels, skin, bones, cartilage, kidney, heart, and liver. The unique advantages of 3D bioprinting technologies for organ manufacturing have improved the traditional medical level significantly. In this article, we summarize the latest research progress of polymers in bioartificial organ 3D printing areas. The important characteristics of the printable polymers and the typical 3D bioprinting technologies for several complex bioartificial organs, such as the heart, liver, nerve, and skin, are introduced.
Collapse
Affiliation(s)
- Dabin Song
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Yukun Xu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Liang Wen
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
- Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Ministry of Education & Center of Organ Manufacturing, Beijing 100084, China
| |
Collapse
|
13
|
Ye J, Yang G, Zhang J, Xiao Z, He L, Zhang H, Liu Q. Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. PeerJ 2021; 9:e11022. [PMID: 33777525 PMCID: PMC7971083 DOI: 10.7717/peerj.11022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023] Open
Abstract
Background Tissue engineering, which involves the selection of scaffold materials, presents a new therapeutic strategy for damaged tissues or organs. Scaffold design based on blends of proteins and polysaccharides, as mimicry of the native extracellular matrix, has recently become a valuable strategy for tissue engineering. Objective This study aimed to construct composite hydrogels based on natural polymers for tissue engineering. Methods Composite hydrogels based on blends of gelatin with a polysaccharide component (chitosan or alginate) were produced and subsequently enzyme crosslinked. The other three hydrogels, chitosan hydrogel, sodium alginate hydrogel, and microbial transglutaminase-crosslinked gelatin (mTG/GA) hydrogel were also prepared. All hydrogels were evaluated for in vitro degradation property, swelling capacity, and mechanical property. Rat adipose-derived stromal stem cells (ADSCs) were isolated and seeded on (or embedded into) the above-mentioned hydrogels. The morphological features of ADSCs were observed and recorded. The effects of the hydrogels on ADSC survival and adhesion were investigated by immunofluorescence staining. Cell proliferation was tested by thiazolyl blue tetrazolium bromide (MTT) assay. Results Cell viability assay results showed that the five hydrogels are not cytotoxic. The mTG/GA and its composite hydrogels showed higher compressive moduli than the single-component chitosan and alginate hydrogels. MTT assay results showed that ADSCs proliferated better on the composite hydrogels than on the chitosan and alginate hydrogels. Light microscope observation and cell cytoskeleton staining showed that hydrogel strength had obvious effects on cell growth and adhesion. The ADSCs seeded on chitosan and alginate hydrogels plunged into the hydrogels and could not stretch out due to the low strength of the hydrogel, whereas cells seeded on composite hydrogels with higher elastic modulus, could spread out, and grew in size. Conclusion The gelatin-polysaccharide composite hydrogels could serve as attractive biomaterials for tissue engineering due to their easy preparation and favorable biophysical properties.
Collapse
Affiliation(s)
- Jing Ye
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Gang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ling He
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Han Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Qi Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Chen Q, Tian X, Fan J, Tong H, Ao Q, Wang X. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Molecules 2020; 25:molecules25030756. [PMID: 32050529 PMCID: PMC7036974 DOI: 10.3390/molecules25030756] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Crosslinking is an effective way to improve the physiochemical and biochemical properties of hydrogels. In this study, we describe an interpenetrating polymer network (IPN) of alginate/gelatin hydrogels (i.e., A-G-IPN) in which cells can be encapsulated for in vitro three-dimensional (3D) cultures and organ bioprinting. A double crosslinking model, i.e., using Ca2+ to crosslink alginate molecules and transglutaminase (TG) to crosslink gelatin molecules, is exploited to improve the physiochemical, such as water holding capacity, hardness and structural integrity, and biochemical properties, such as cytocompatibility, of the alginate/gelatin hydrogels. For the sake of convenience, the individual ionic (i.e., only treatment with Ca2+) or enzymatic (i.e., only treatment with TG) crosslinked alginate/gelatin hydrogels are referred as alginate-semi-IPN (i.e., A-semi-IPN) or gelatin-semi-IPN (i.e., G-semi-IPN), respectively. Tunable physiochemical and biochemical properties of the hydrogels have been obtained by changing the crosslinking sequences and polymer concentrations. Cytocompatibilities of the obtained hydrogels are evaluated through in vitro 3D cell cultures and bioprinting. The double crosslinked A-G-IPN hydrogel is a promising candidate for a wide range of biomedical applications, including bioartificial organ manufacturing, high-throughput drug screening, and pathological mechanism analyses.
Collapse
Affiliation(s)
- Qiuhong Chen
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Tian
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Jun Fan
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Hao Tong
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Qiang Ao
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (Q.C.); (X.T.); (J.F.); (H.T.); (Q.A.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: or ; Tel./Fax: +86-24-3190-0983
| |
Collapse
|
16
|
Kumar P, Ciftci S, Barthes J, Knopf‐Marques H, Muller CB, Debry C, Vrana NE, Ghaemmaghami AM. A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell‐derived epithelial tissue patches. J Tissue Eng Regen Med 2019; 14:45-57. [DOI: 10.1002/term.2962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/29/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Pramod Kumar
- Immunology and Tissue Modelling Group, School of Life Science, Faculty of Medicine and Health SciencesUniversity of Nottingham Nottingham UK
| | - Sait Ciftci
- INSERM UMR 1121 Strasbourg France
- Service Oto‐Rhino‐LaryngologieHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Julien Barthes
- INSERM UMR 1121 Strasbourg France
- Protip Medical Strasbourg France
| | - Helena Knopf‐Marques
- INSERM UMR 1121 Strasbourg France
- Faculté de Chirurgie DentaireUniversité de Strasbourg Strasbourg France
| | | | - Christian Debry
- INSERM UMR 1121 Strasbourg France
- Service Oto‐Rhino‐LaryngologieHôpitaux Universitaires de Strasbourg Strasbourg France
| | - Nihal E. Vrana
- INSERM UMR 1121 Strasbourg France
- Protip Medical Strasbourg France
| | - Amir M. Ghaemmaghami
- Immunology and Tissue Modelling Group, School of Life Science, Faculty of Medicine and Health SciencesUniversity of Nottingham Nottingham UK
| |
Collapse
|
17
|
Li S, Tian X, Fan J, Tong H, Ao Q, Wang X. Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. MICROMACHINES 2019; 10:E765. [PMID: 31717955 PMCID: PMC6915415 DOI: 10.3390/mi10110765] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Chitosan is a unique natural resourced polysaccharide derived from chitin with special biocompatibility, biodegradability, and antimicrobial activity. During the past three decades, chitosan has gradually become an excellent candidate for various biomedical applications with prominent characteristics. Chitosan molecules can be chemically modified, adapting to all kinds of cells in the body, and endowed with specific biochemical and physiological functions. In this review, the intrinsic/extrinsic properties of chitosan molecules in skin, bone, cartilage, liver tissue repair, and organ three-dimensional (3D) bioprinting have been outlined. Several successful models for large scale-up vascularized and innervated organ 3D bioprinting have been demonstrated. Challenges and perspectives in future complex organ 3D bioprinting areas have been analyzed.
Collapse
Affiliation(s)
- Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Tian
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Jun Fan
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Hao Tong
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Qiang Ao
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (X.T.); (J.F.); (H.T.); (Q.A.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Optimization of 3D bioprinting of periodontal ligament cells. Dent Mater 2019; 35:1683-1694. [PMID: 31601443 DOI: 10.1016/j.dental.2019.08.114] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 08/31/2019] [Indexed: 11/22/2022]
Abstract
Three-dimensional (3D) bioprinting of cells is an emerging area of research but has been not explored yet in the context of periodontal tissue engineering. OBJECTIVE This study reports on the optimisation of the 3D bioprinting of periodontal ligament cells for potential application in periodontal regeneration. METHODS We systematically investigated the printability of various concentrations of gelatin methacryloyl (GelMA) hydrogel precursor using a microextrusion based three-dimensional (3D) printer. The influence of different printing parameters such as photoinitiator concentration, UV exposure, pressure and dispensing needle diameter on the viability of periodontal ligament cells encapsulated within the 3D bioprinted construct were subsequently assessed. RESULTS This systematic evaluation enabled the selection of the most suited printing conditions for achieving high printing resolution, dimensional stability and cell viability for 3D bioprinting of periodontal ligament cells. SIGNIFICANCE The optimised bioprinting system is the first step towards to the reproducible manufacturing of cell laden, space maintaining scaffolds for the treatment of periodontal lesions.
Collapse
|
19
|
Zhang Y, Zhou D, Chen J, Zhang X, Li X, Zhao W, Xu T. Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Mar Drugs 2019; 17:E555. [PMID: 31569366 PMCID: PMC6835706 DOI: 10.3390/md17100555] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) bioprinting has become a flexible tool in regenerative medicine with potential for various applications. Further development of the new 3D bioprinting field lies in suitable bioink materials with satisfied printability, mechanical integrity, and biocompatibility. Natural polymers from marine resources have been attracting increasing attention in recent years, as they are biologically active and abundant when comparing to polymers from other resources. This review focuses on research and applications of marine biomaterials for 3D bioprinting. Special attention is paid to the mechanisms, material requirements, and applications of commonly used 3D bioprinting technologies based on marine-derived resources. Commonly used marine materials for 3D bioprinting including alginate, carrageenan, chitosan, hyaluronic acid, collagen, and gelatin are also discussed, especially in regards to their advantages and applications.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Dezhi Zhou
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Jianwei Chen
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Xiuxiu Zhang
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Wenxiang Zhao
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| | - Tao Xu
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Bociaga D, Bartniak M, Grabarczyk J, Przybyszewska K. Sodium Alginate/Gelatine Hydrogels for Direct Bioprinting-The Effect of Composition Selection and Applied Solvents on the Bioink Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2669. [PMID: 31443354 PMCID: PMC6747833 DOI: 10.3390/ma12172669] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Hydrogels tested and evaluated in this study were developed for the possibility of their use as the bioinks for 3D direct bioprinting. Procedures for preparation and sterilization of hydrogels and the speed of the bioprinting were developed. Sodium alginate gelatine hydrogels were characterized in terms of printability, mechanical, and biological properties (viability, proliferation ability, biocompatibility). A hydrogel with the best properties was selected to carry out direct bioprinting tests in order to determine the parameters of the bioink, adapted to print with use of the designed and constructed bioprinter and provide the best conditions for cell growth. The obtained results showed the ability to control mechanical properties, biological response, and degradation rate of hydrogels through the use of various solvents. The use of a dedicated culture medium as a solvent for the preparation of a bioink, containing the predicted cell line, increases the proliferation of these cells. Modification of the percentage of individual components of the hydrogel gives the possibility of a controlled degradation process, which, in the case of printing of temporary medical devices, is a very important parameter for the hydrogels' usage possibility-both in terms of tissue engineering and printing of tissue elements replacement, implants, and organs.
Collapse
Affiliation(s)
- Dorota Bociaga
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.
| | - Mateusz Bartniak
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Jacek Grabarczyk
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Karolina Przybyszewska
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| |
Collapse
|
21
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
22
|
|
23
|
Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, Tong H, Wang X. Natural Polymers for Organ 3D Bioprinting. Polymers (Basel) 2018; 10:E1278. [PMID: 30961203 PMCID: PMC6401941 DOI: 10.3390/polym10111278] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/25/2023] Open
Abstract
Three-dimensional (3D) bioprinting, known as a promising technology for bioartificial organ manufacturing, has provided unprecedented versatility to manipulate cells and other biomaterials with precise control their locations in space. Over the last decade, a number of 3D bioprinting technologies have been explored. Natural polymers have played a central role in supporting the cellular and biomolecular activities before, during and after the 3D bioprinting processes. These polymers have been widely used as effective cell-loading hydrogels for homogeneous/heterogeneous tissue/organ formation, hierarchical vascular/neural/lymphatic network construction, as well as multiple biological/biochemial/physiological/biomedical/pathological functionality realization. This review aims to cover recent progress in natural polymers for bioartificial organ 3D bioprinting. It is structured as introducing the important properties of 3D printable natural polymers, successful models of 3D tissue/organ construction and typical technologies for bioartificial organ 3D bioprinting.
Collapse
Affiliation(s)
- Fan Liu
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Department of Orthodontics, School of Stomatology, China Medical University, No.117 North Nanjing Street, Shenyang 110003, China.
| | - Qiuhong Chen
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Chen Liu
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
25
|
Lee SJ, Lee JB, Park YW, Lee DY. 3D Bioprinting for Artificial Pancreas Organ. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:355-374. [PMID: 30471043 DOI: 10.1007/978-981-13-0445-3_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) results from an autoimmune destruction of insulin-producing beta cells in the islet of the endocrine pancreas. Although islet transplantation has been regarded as an ideal strategy for T1D, transplanted islets are rejected from host immune system. To immunologically protect them, islet encapsulation technology with biocompatible materials is emerged as an immuno-barrier. However, this technology has been limited for clinical trial such as hypoxia in the central core of islet bead, impurity of islet bead and retrievability from the body. Recently, 3D bioprinting has been emerged as an alternative approach to make the artificial pancreas. It can be used to position live cells in a desired location with real scale of human organ. Furthermore, constructing a vascularization of the artificial pancreas is actualized with 3D bioprinting. Therefore, it is possible to create real pancreas-mimic artificial organ for clinical application. In conclusion, 3D bioprinting can become a new leader in the development of the artificial pancreas to overcome the existed islet.
Collapse
Affiliation(s)
- Seon Jae Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea
| | - Jae Bin Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea
| | - Young-Woo Park
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea. .,Institute of Nano Science & Technology (INST), Hanyang University, Seoul, South Korea.
| |
Collapse
|
26
|
Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol Commun 2017; 2:131-141. [PMID: 29404520 PMCID: PMC5796330 DOI: 10.1002/hep4.1136] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
The term “liver tissue engineering” summarizes one of the ultimate goals of modern biotechnology: the possibility of reproducing in total or in part the functions of the liver in order to treat acute or chronic liver disorders and, ultimately, create a fully functional organ to be transplanted or used as an extracorporeal device. All the technical approaches in the area of liver tissue engineering are based on allocating adult hepatocytes or stem cell‐derived hepatocyte‐like cells within a three‐dimensional structure able to ensure their survival and to maintain their functional phenotype. The hosting structure can be a construct in which hepatocytes are embedded in alginate and/or gelatin or are seeded in a pre‐arranged scaffold made with different types of biomaterials. According to a more advanced methodology termed three‐dimensional bioprinting, hepatocytes are mixed with a bio‐ink and the mixture is printed in different forms, such as tissue‐like layers or spheroids. In the last decade, efforts to engineer a cell microenvironment recapitulating the dynamic native extracellular matrix have become increasingly successful, leading to the hope of satisfying the clinical demand for tissue (or organ) repair and replacement within a reasonable timeframe. Indeed, the preclinical work performed in recent years has shown promising results, and the advancement in the biotechnology of bioreactors, ex vivo perfusion machines, and cell expansion systems associated with a better understanding of liver development and the extracellular matrix microenvironment will facilitate and expedite the translation to technical applications. (Hepatology Communications 2018;2:131–141)
Collapse
Affiliation(s)
- Giuseppe Mazza
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Walid Al-Akkad
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Krista Rombouts
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Massimo Pinzani
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| |
Collapse
|
27
|
Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S. Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers (Basel) 2017; 9:E401. [PMID: 30965706 PMCID: PMC6418925 DOI: 10.3390/polym9090401] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs) with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
28
|
Yeo MG, Kim GH. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Biofabrication 2017; 9:025004. [PMID: 28402968 DOI: 10.1088/1758-5090/aa6997] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the cell-printing process, bioink has been considered as an extremely important component for successful fabrication of macroscale cell-laden structures. Bioink should be non-toxic, biocompatible, and printable. To date, alginate has been widely used as a whole or partial component of bioink because it is non-toxic to embedded cells and even it can provide good printability with rapid gelation under calcium ions. However, alginate bioinks do not possess cell-activating ability. To overcome the shortcomings of alginate-based bioinks, a new collagen bioink, which was mixed with human adipose stem cells (hASCs) and crosslinked with a polyphenol (tannic acid), was proposed. The feasibility of the bioink was demonstrated using several in vitro assessments for comparison of the macroscale porous cell-laden collagen/polyphenol structure containing the hASCs with the conventional alginate-based cell-laden structure. The levels of the metabolic activity, including the cell viability and cell proliferation, of the cell-laden collagen structure were significantly higher than those of the control (alginate-based cell-laden structure). The results show that the newly designed bioink and cell-laden structure are potentially new outstanding components for regeneration of various tissues.
Collapse
Affiliation(s)
- Myung Gu Yeo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | | |
Collapse
|
29
|
Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering. Carbohydr Polym 2017; 157:1714-1722. [DOI: 10.1016/j.carbpol.2016.11.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 11/23/2022]
|
30
|
|
31
|
Park JH, Jang J, Lee JS, Cho DW. Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 2016; 13:612-621. [PMID: 30603443 PMCID: PMC6170865 DOI: 10.1007/s13770-016-8111-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023] Open
Abstract
Three-dimensional (3D) tissue/organ printing is a major aspect of recent innovation in the field of tissue engineering and regenerative medicine. 3D tissue/organ printing aims to create 3D living tissue/organ analogues, and have evolved along with advances in 3D printing techniques. A diverse range of computer-aided 3D printing techniques have been applied to dispose living cells together with biomaterials and supporting biochemical factors within pre-designed 3D tissue/organ analogues. Recent developments in printable biomaterials, such as decellularized extracellular matrix bio-inks have enabled improvements in the functionality of the resulting 3D tissue/organ analogues. Here, we provide an overview of the 3D printing techniques and biomaterials that have been used, including the development of 3D tissue/organ analogues. In addition, in vitro models are described, and future perspectives in 3D tissue/organ printing are identified.
Collapse
Affiliation(s)
- Jeong Hun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jung-Seob Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673 Korea
| |
Collapse
|
32
|
Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E802. [PMID: 28773924 PMCID: PMC5456640 DOI: 10.3390/ma9100802] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Department of Mechanical Engineering, Tsinghua University, Center of Organ Manufacturing, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yujun Wei
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
33
|
Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D, Chiellini F. Microstructured chitosan/poly(γ-glutamic acid) polyelectrolyte complex hydrogels by computer-aided wet-spinning for biomedical three-dimensional scaffolds. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516631355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of additive manufacturing principles to hydrogel processing represents a powerful route to develop porous three-dimensional constructs with a variety of potential biomedical applications, such as scaffolds for tissue engineering and three-dimensional in vitro tissue models. The aim of this study was to develop novel porous hydrogels based on a microstructured polyelectrolyte complex between chitosan and poly(γ-glutamic acid) by applying a computer-aided wet-spinning technique. The developed fabrication process was used to build up three-dimensional porous hydrogels by collecting microstructured layers made of chitosan/poly(γ-glutamic acid) on top of the other. Microstructured polyelectrolyte complex hydrogels were characterized and compared to chitosan/poly(γ-glutamic acid) porous hydrogels with similar composition prepared by conventional freeze-drying technique. Fourier transform infrared analysis confirmed the formation of an electrostatic interaction between the two processed polymers in all the developed chitosan/poly(γ-glutamic acid) hydrogels. The composition of the porous constructs as well as the employed processing techniques had a significant influence on the resulting swelling, thermal, and mechanical properties. In particular, the combination of the ionic interaction between chitosan/poly(γ-glutamic acid) and the defined internal microarchitecture of microstructured polyelectrolyte complex hydrogels provided a significant improvement of the compressive mechanical properties. Preliminary in vitro biological investigations revealed that microstructured polyelectrolyte complex hydrogels were suitable for the adhesion and proliferation of Balb/3T3 clone A31 mouse embryo fibroblasts. The encouraging results in terms of cytocompatibility and stability of the microstructure in aqueous solutions due to the ionic crosslinking suggest the investigation of the developed microstructured polyelectrolyte complex hydrogels as suitable scaffolds for three-dimensional cells’ culture.
Collapse
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Chiara Migone
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Andrea Morelli
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Cristina Bartoli
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Matteo Gazzarri
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Federica Chiellini
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Hu K, Lv Q, Cui F, Xu L, Jiao Y, Wang Y, Feng Q, Wang H, Huang L. A Novel Poly(L-lactide) (PLLA)/Fibroin Hybrid Scaffold to Promote Hepatocyte Viability and Decrease Macrophage Responses. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507079893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to evaluate the hepatocellular compatibility and assess the inflammatory response of a novel hybrid scaffold of poly(L-lactide) (PLLA) and fibroin. The hybrid scaffold was obtained by freezing and lyophilizing a blend of fibroin microspheres and PLLA solution. FTIR and scanning electron microscopy (SEM) analysis indicated that fibroin microspheres were on the surface of the hybrid scaffold. Compared to the PLLA scaffold, SEM and laser scanning confocal microscope (LSCM) analyses showed that the human hepatocellular carcinoma HepG2 cells had spread and proliferated much more in the hybrid scaffold. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays indicated a greater number of cells in this hybrid scaffold. Furthermore, a mouse RAW264.7 macrophages cell line was utilized to characterize and compare the mRNA profiles of TNF-alpha using real time-polymerase chain reaction (RT-PCR). The inflammatory response of the macrophages grown in the PLLA/fibroin scaffold rapidly declined compared to those in the PLLA scaffold and reached the level of cells grown in Dulbecco's Modified Eagle Medium (DMEM). The hepatocellular compatibility and lower level of inflammatory response makes the PLLA/fibroin scaffold a promising candidate for hepatic tissue engineering.
Collapse
Affiliation(s)
- K. Hu
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Q. Lv
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - F.Z. Cui
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China,
| | - L. Xu
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Y.P. Jiao
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Y. Wang
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Q.L. Feng
- Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - H.L. Wang
- Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China
| | - L.Y. Huang
- Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China
| |
Collapse
|
35
|
Zhang T, Yan Y, Wang X, Xiong Z, Lin F, Wu R, Zhang R. Three-dimensional Gelatin and Gelatin/Hyaluronan Hydrogel Structures for Traumatic Brain Injury. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506074025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brain tissue engineering has now emerged as one of the most promising treatments for the traumatic brain injury. In this article, two groups of three-dimensional (3D) hydrogel structures composed of gelatin and gelatin/hyaluronan have been formed using our 3D cell assembly technique for in vivo study in rats, in order to investigate their effects in reparation of injury in the central nervous system (CNS). The structures were implanted into cortical defects created in rat brains, and their abilities to improve the brain tissue reconstruction were then evaluated. After 4, 8, 10, and 13 weeks of implantation, sections of brains were processed with NISSL staining for observing the immigration of host neural cells into the implanted materials and the degradation property of the materials. The results showed that simplex gelatin and gelatin/hyaluronan (20:1) with 3D structures both have good biocompatibility with brain tissue while gelatin/hyaluronan has a better contiguity with the surrounding tissue. Through our primary study, it seems that 3D gelatin/hyaluronan structures may be useful in brain tissue repair.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Yongnian Yan
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaohong Wang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China,
| | - Zhuo Xiong
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Feng Lin
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Rendong Wu
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Renji Zhang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China and Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
36
|
Zhao D, Wang Y, Xu R, Wu G, Zhang L, Yu D, Cui F, Chen D, Tian W. Composition-graded Films of Fluoroapatite/PHB Fabricated via Electrospinning for Tissue Engineering. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507079802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Composition-graded films (CGF) of fluoroapatite (FAP) and poly(3-hydroxybutyrate- co-4-hydroxybutyrate) (PHB) were prepared via electrospinning solutions of FAP and PHB using a gradient composition of CGF. Thermal properties, mechanical properties and surface morphology of the films were investigated. Designed thermal and mechanical properties obtained by precise control of the composition gradient of the FAP/PHB CGF. The introduction of FAP in pure PHB film significantly changed the mechanical properties, such as tensile strength and extension rate of the pure PHB. Mouse fibroblast cells (L-929) were cultured on FAP/PHB uniform-films; the MTT test and cell morphology analysis indicate good biocompatibility of the modified CGF. This new method of processing makes CGF a potential candidate as an electrospinning scaffold material for tissue engineering.
Collapse
Affiliation(s)
- D.M. Zhao
- The Key laboratory of Beijing City on Preparation and Processing of Novel Polymer, BeijingUniversity of Chemical Technology, Beijing 100029, China
| | - Y.X. Wang
- The Key laboratory of Beijing City on Preparation and Processing of Novel Polymer, BeijingUniversity of Chemical Technology, Beijing 100029, China
| | - R.W. Xu
- The Key laboratory of Beijing City on Preparation and Processing of Novel Polymer, BeijingUniversity of Chemical Technology, Beijing 100029, China
| | - G. Wu
- The Key laboratory of Beijing City on Preparation and Processing of Novel Polymer, BeijingUniversity of Chemical Technology, Beijing 100029, China
| | - L.Q. Zhang
- The Key laboratory of Beijing City on Preparation and Processing of Novel Polymer, BeijingUniversity of Chemical Technology, Beijing 100029, China
| | - D.S. Yu
- The Key laboratory of Beijing City on Preparation and Processing of Novel Polymer, BeijingUniversity of Chemical Technology, Beijing 100029, China,
| | - F.Z. Cui
- Biomaterials Laboratory, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China
| | - D.F. Chen
- Laboratory of Tissue Engineering of Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China,
| | - W. Tian
- Laboratory of Tissue Engineering of Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| |
Collapse
|
37
|
Wei Xu, Xiaohong Wang, Yongnian Yan, Wei Zheng, Zhuo Xiong, Feng Lin, Rendong Wu, Renji Zhang. Rapid Prototyping Three-Dimensional Cell/Gelatin/Fibrinogen Constructs for Medical Regeneration. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911507079451] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a need for rapid fabrication of tissue or organs with well-defined structures and functions in regenerative medicine. Two patterns of cell/matrix constructs containing hepatic cells, gelatin and fibrinogen were successfully created by automated rapid prototyping techniques and stabilized with thrombin. No apparent cell damage was found during the process. Mechanical characterization demonstrated that a 1:1 ratio gelatin/fibrin mixture had the greatest elasticity modulus and compressive strength. Microscopic and histological observations showed that hepatic cells were embedded in the gelatin/fibrinogen matrix and were proliferating. Immunostaining and biochemical analysis indicated that the embedded hepatocytes secreted albumin. Fibrin appears to be a favorable component for a gelatin based cell assembly matrix in that it is bioresorbable, easily manipulated, and supports in vitro cell functions.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China, wangxiaohong @tsinghua.edu.cn
| | - Xiaohong Wang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Yongnian Yan
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Wei Zheng
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Zhuo Xiong
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Feng Lin
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Rendong Wu
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Renji Zhang
- Key Laboratory for Advanced Manufacturing by Materials Processing Technology & Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science & Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
38
|
He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep 2016; 6:29977. [PMID: 27436509 PMCID: PMC4951698 DOI: 10.1038/srep29977] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.
Collapse
Affiliation(s)
- Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054, Xi’an China
| | - FeiFei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - HaiMing Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Xia
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - JianZhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 2016; 6:24474. [PMID: 27091175 PMCID: PMC4835808 DOI: 10.1038/srep24474] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/30/2016] [Indexed: 12/24/2022] Open
Abstract
Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.
Collapse
|
40
|
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| |
Collapse
|
41
|
Pati F, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models. Angew Chem Int Ed Engl 2016; 55:4650-65. [PMID: 26895542 DOI: 10.1002/anie.201505062] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/17/2022]
Abstract
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.
Collapse
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
42
|
Lewis PL, Shah RN. 3D Printing for Liver Tissue Engineering: Current Approaches and Future Challenges. CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0084-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Hsieh FY, Lin HH, Hsu SH. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015; 71:48-57. [DOI: 10.1016/j.biomaterials.2015.08.028] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/14/2023]
|
44
|
Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, Chun W, Kim GH. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv Healthc Mater 2015; 4:1359-68. [PMID: 25874573 DOI: 10.1002/adhm.201500193] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 03/23/2015] [Indexed: 12/20/2022]
Abstract
Cell-printing methods have been used widely in tissue regeneration because they enable fabricating biomimetic 3D structures laden with various cells. To achieve a cell-matrix block, various natural hydrogels that are nontoxic, biocompatible, and printable have been combined to obtain "bioinks." Unfortunately, most bioinks, including those with alginates, show low cell-activating properties. Here, a strategy for obtaining highly bioactive ink, which consisted of collagen/extracellular matrix (ECM) and alginate, for printing 3D porous cell blocks is developed. An in vitro assessment of the 3D porous structures laden with preosteoblasts and human adipose stem cells (hASCs) demonstrates that the cells in the bioinks are viable. Osteogenic activities with the designed bioinks show much higher levels than with the "conventional" alginate-based bioink. Furthermore, the hepatogenic differentiation ability of hASCs with the bioink is evaluated using the liver-specific genes, albumin, and TDO2, under hepatogenic differentiation conditions. The genes are activated within the 3D cell block fabricated using the new bioink. These results demonstrate that the 3D cell-laden structure fabricated using collagen/ECM-based bioinks can provide a novel platform for various tissue engineering applications.
Collapse
Affiliation(s)
- Hyeong Jin Lee
- Department of Biomechatronic Engineering; College of Biotechnology and Bioengineering; Sungkyunkwan University (SKKU); Suwon South Korea
| | - Yong Bok Kim
- Department of Biomechatronic Engineering; College of Biotechnology and Bioengineering; Sungkyunkwan University (SKKU); Suwon South Korea
| | - Seung Hyun Ahn
- Department of Biomechatronic Engineering; College of Biotechnology and Bioengineering; Sungkyunkwan University (SKKU); Suwon South Korea
| | - Ji-Seon Lee
- Department of Surgery; Hangang Sacred Heart Hospital; College of Medicine; Hallym University; Seoul South Korea
| | - Chul Ho Jang
- Department of Otolaryngology; Chonnam National University Medical School; Gwangju South Korea
| | - Hyeon Yoon
- Department of Surgery; Hangang Sacred Heart Hospital; College of Medicine; Hallym University; Seoul South Korea
| | - Wook Chun
- Department of Surgery; Hangang Sacred Heart Hospital; College of Medicine; Hallym University; Seoul South Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering; College of Biotechnology and Bioengineering; Sungkyunkwan University (SKKU); Suwon South Korea
| |
Collapse
|
45
|
Wang X, Huang Y, Liu C. A combined rotational mold for manufacturing a functional liver system. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515578872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A combined rotational mold system for liver manufacturing was prepared. The combined rotational mold system was composed of a branched internal mold, a basement mold, and a series of external molds with increasing diameters. Semi-spindle constructs, consisting of multiple cell types, such as adipose-derived stem cells and hepatocytes encapsulated in a fibrin hydrogel, were created by sequentially sandwiching cell-laden fibrin hydrogels between the combined rotational mold system based on the Weissenberg effect of non-Newtonian fluid. A spindle liver lobe precursor was constructed, with a multi-scale vascular network including arteries, veins, and capillaries, by integrating the two semi-spindle constructs together and coating the spindle construct with a layer of poly(DL-lactide-co-glycolide acid) solution. The spindle liver lobe precursor was characterized by a series of in vivo experiments. This first report is the preparation of a functioning complex organ, such as the liver, that was produced using an inexpensive, simple, and effective method.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuanwen Huang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
| | - Chang Liu
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China
| |
Collapse
|
46
|
Zehnder T, Sarker B, Boccaccini AR, Detsch R. Evaluation of an alginate–gelatine crosslinked hydrogel for bioplotting. Biofabrication 2015; 7:025001. [DOI: 10.1088/1758-5090/7/2/025001] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Xu Y, Wang X. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel. Biotechnol Bioeng 2015; 112:1683-95. [PMID: 25727058 DOI: 10.1002/bit.25579] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques.
Collapse
Affiliation(s)
- Yufan Xu
- Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Tsinghua University, Beijing, 100084, P.R. China
| | - Xiaohong Wang
- Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education & Center of Organ Manufacturing, Tsinghua University, Beijing, 100084, P.R. China. .,State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
48
|
Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 2015; 11:233-46. [PMID: 25242654 DOI: 10.1016/j.actbio.2014.09.023] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 02/08/2023]
Abstract
Bioprinting has exciting prospects for printing three-dimensional (3-D) tissue constructs by delivering living cells with appropriate matrix materials. However, progress in this field is currently extremely slow due to limited choices of bioink for cell encapsulation and cytocompatible gelation mechanisms. Here we report the development of clinically relevant sized tissue analogs by 3-D bioprinting, delivering human nasal inferior turbinate tissue-derived mesenchymal progenitor cells encapsulated in silk fibroin-gelatin (SF-G) bioink. Gelation in this bioink was induced via in situ cytocompatible gelation mechanisms, namely enzymatic crosslinking by mushroom tyrosinase and physical crosslinking via sonication. Mechanistically, tyrosinases oxidize the accessible tyrosine residues of silk and/or gelatin into reactive o-quinone moieties that can either condense with each other or undergo nonenzymatic reactions with available amines of both silk and gelatin. Sonication alters the hydrophobic interaction and accelerates self-assembly of silk fibroin macromolecules to form β-sheet crystals, which physically crosslink the hydrogel. However, sonication has no effect on the conformation of gelatin. The effect of optimized rheology, secondary conformations of silk-gelatin bioink, temporally controllable gelation strategies and printing parameters were assessed to achieve maximum cell viability and multilineage differentiation of the encapsulated human nasal inferior turbinate tissue-derived mesenchymal progenitor cells. This strategy offers a unique path forward in the direction of direct printing of spatially customized anatomical architecture in a patient-specific manner.
Collapse
|
49
|
Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. Eur J Cardiothorac Surg 2014; 46:342-8. [DOI: 10.1093/ejcts/ezu148] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014; 5:3935. [PMID: 24887553 PMCID: PMC4059935 DOI: 10.1038/ncomms4935] [Citation(s) in RCA: 1188] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.
Collapse
Affiliation(s)
- Falguni Pati
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
- These authors contributed equally to this work
| | - Jinah Jang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
- Department of Bioengineering, University of Washington, Seattle, Waltham 98195, USA
- These authors contributed equally to this work
| | - Dong-Heon Ha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-710, South Korea
- Department of Biomedical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, 2121 Jeongwang-dong, Siheungsi, Gyeonggi-do 429-793, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Waltham 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, Waltham 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| |
Collapse
|