1
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
2
|
Liao Z, Zhao T, Wang N, Chen J, Sun W, Wu J. Transcriptome Analysis of Monocytes and Fibroblasts Provides Insights Into the Molecular Features of Periodontal Ehlers-Danlos Syndrome. Front Genet 2022; 13:834928. [PMID: 35571048 PMCID: PMC9095904 DOI: 10.3389/fgene.2022.834928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontal Ehlers–Danlos syndrome (pEDS) is a rare hereditary disorder characterized by severe early-onset periodontitis with premature tooth loss, pretibial hyperpigmentation, and skin fragility. It is caused by mutant variants in the C1R and C1S genes that result in C4 cleavage and local complement cascade activation, as well as other possible consequences. However, the exact functional consequences of this activation remain unclear. To shed light on molecular mechanisms underlying pEDS and to identify novel molecular targets that may expand treatment strategies, we performed transcriptome profiling by RNA sequencing of monocytes and gingival fibroblasts from two patients with pEDS. Compared to normal controls, differential expression of genes was found only in monocytes but not gingival fibroblasts. Most of the significant genes were enriched in biological processes such as neutrophil-mediated immunity, response to bacterium, TNF-α and IL-17 pathway which are related to inflammation response and immune response. In disease ontology enrichment analysis, genes related to periodontal host defense, inflammatory response, skin disease, and vascular development, including MMP9, VEGFA, IL10, IL1A, IL1B, IL2RA, and IL6, were significantly enriched and also validated by qPCR and ELISA. Overall, the present study provides the transcriptomic data of pEDS for the first time and the distinct molecular features in monocytes of pEDS might serve as a tool to better understand the disease.
Collapse
Affiliation(s)
- Zhuoyi Liao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ningxiang Wang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Stomatology, Nanjing Hospital of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jiaqi Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Grande MA, Belstrøm D, Damgaard C, Holmstrup P, Thangaraj SS, Nielsen CH, Palarasah Y. Complement split product C3c in saliva as biomarker for periodontitis and response to periodontal treatment. J Periodontal Res 2020; 56:27-33. [PMID: 32681659 PMCID: PMC7891408 DOI: 10.1111/jre.12788] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022]
Abstract
Background and Objective The complement system is engaged in inflammatory reactions both in the periodontal pockets and in the periodontium itself, where it can mediate tissue destruction. The aim of this study was, first, to compare salivary levels of the total complement system protein C3 and its split product, fluid‐phase C3c in patients with periodontitis and periodontally healthy controls. Next, to determine if C3 and C3c levels had biomarker potential in diagnosing and monitoring periodontitis and its treatment. We hypothesized that salivary levels of total C3 and the split product C3c associated with the severity of periodontitis and reflected decreased inflammatory activity after periodontal treatment. Methods At baseline, stimulated saliva samples were collected from patients with periodontitis (n = 18) and periodontally healthy controls (n = 15). Subsequently, non‐surgical periodontal treatment was performed in the patients, and saliva sampling from patients was repeated two‐, six‐, and twelve weeks post‐treatment (NCT02913248 at clinicaltrials.gov). The patients were grouped as good and poor responders to treatment according to the achieved reduction in bleeding on probing (BOP). Salivary levels of C3 and C3c were quantified using sandwich ELISA. Results Patients with periodontitis had higher baseline levels of both total C3 and the split product C3c in saliva than did periodontally healthy controls (P < .0001). Receiver operating curve (ROC) analyses discriminated patients with periodontitis from controls based on both C3 (AUC (area under curve) = 0.91, P < .001) and C3c levels (AUC = 0.84, P < .001) in saliva. Periodontal treatment improved all clinical parameters (P < .01). Good responders (n = 10) had lower baseline levels of C3c than poor responders (n = 8), (P < .05), and baseline levels of C3c discriminated between good and poor responders (AUC = 0.80, P < .05). Conclusion In conclusion, patients with periodontitis had higher salivary levels of C3c, and the C3c levels were predictive of reductions in BOP, that is, the poor responders. This suggests that salivary C3c levels possess potential to serve as a biomarker predicting the clinical response to non‐surgical periodontal treatment.
Collapse
Affiliation(s)
- Maria Anastasia Grande
- Section Clinical Oral Microbiology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Section Clinical Oral Microbiology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Oral Biology and Immunopathology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Palle Holmstrup
- Section for Oral Biology and Immunopathology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Sai Sindhu Thangaraj
- Faculty of Health and Medical Sciences, Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology, Periodontology, Faculty of Health and Medical Sciences, Department of Odontology, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Yaseelan Palarasah
- Faculty of Health and Medical Sciences, Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Hajishengallis G, Kajikawa T, Hajishengallis E, Maekawa T, Reis ES, Mastellos DC, Yancopoulou D, Hasturk H, Lambris JD. Complement-Dependent Mechanisms and Interventions in Periodontal Disease. Front Immunol 2019; 10:406. [PMID: 30915073 PMCID: PMC6422998 DOI: 10.3389/fimmu.2019.00406] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is a prevalent inflammatory disease that leads to the destruction of the tooth-supporting tissues. Current therapies are not effective for all patients and this oral disease continues to be a significant public health and economic burden. Central to periodontal disease pathogenesis is a reciprocally reinforced interplay between microbial dysbiosis and destructive inflammation, suggesting the potential relevance of host-modulation therapies. This review summarizes and discusses clinical observations and pre-clinical intervention studies that collectively suggest that complement is hyperactivated in periodontitis and that its inhibition provides a therapeutic benefit. Specifically, interception of the complement cascade at its central component, C3, using a locally administered small peptidic compound (Cp40/AMY-101) protected non-human primates from induced or naturally occurring periodontitis. These studies indicate that C3-targeted intervention merits investigation as an adjunctive treatment of periodontal disease in humans.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tetsuhiro Kajikawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Evlambia Hajishengallis
- Division of Pediatric Dentistry, Department of Preventive and Restorative Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tomoki Maekawa
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Hatice Hasturk
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Gjoseva S, Geskovski N, Sazdovska SD, Popeski-Dimovski R, Petruševski G, Mladenovska K, Goracinova K. Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym 2018; 186:260-272. [PMID: 29455987 DOI: 10.1016/j.carbpol.2018.01.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 11/29/2022]
Abstract
The aim of this study was to develop chitosan (CS) microparticulated mucoadhesive drug delivery system (DDS) with improved therapeutic performance and biological responce. Ionotropic gelation/spray drying process was used for preparation of doxycycline hyclate (DOXY) loaded low and medium molecular weight (LMw and MMw) CS/sodium tripolyphosphate microparticles (CS/TPP MPs), further coated with ethyl cellulose (EC) using coacervation/solvent displacement technique. The relevant physico-chemical and biopharmaceutical properties were optimized using experimental design approach. Both coated and uncoated CS/TPP MPs showed high mucoadhesive potential and did not affect the viability of the tested epithelial cell line. The MPs induced slow and gradual apoptotic response in murine macrophage cell line RAW 264.7 and the observed effect depended upon formulation type and MP concentration. Biological effect of the CS-based MPs observed in our experiments point to synergism of the biological response of the carrier with the anti-inflammatory effect of DOXY.
Collapse
Affiliation(s)
- Silvana Gjoseva
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Riste Popeski-Dimovski
- Institute of Physics, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | | | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia.
| |
Collapse
|
6
|
Xu Y, Yu Y, Zhang X, Huang Z, Li H, Dong S, Liu Y, Dong F, Xu Z. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus). FISH & SHELLFISH IMMUNOLOGY 2018; 72:484-493. [PMID: 29155029 DOI: 10.1016/j.fsi.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The complement component 3 (C3) is a central component of complement system. All three pathways converge at formation of C3 convertases and share the terminal pathways of membrane attack complex (MAC) formation. In this study, three isoforms of C3 were discovered in Misgurnus anguillicaudatus, named "C3-1", "C3-2" and "C3-3", respectively. The full-length of C3-1 cDNA sequence was firstly identified and analyzed from dojo loach (Misgurnus anguillicaudatus). The Ma-C3-1 cDNA sequence comprised of 4509 bp encoding 1454 amino acids with a putative signal peptide of 20 amino acid residues. The deduced amino acid sequence showed that Ma-C3-1 has conserved residues and domain, which are known to be crucial for C3 function. Interestingly, an amino acid substitution of the highly conserved GCGEQ was discovered in Ma-C3-1. Phylogenetic analysis showed that Ma-C3-1 was closely related to Cyprinidae. The mRNA expression levels of three isoforms of C3 were detected in kidney, eye, spleen, gonad, heart, fin ray, gut, muscle, brain, gill, skin, blood and liver. The expression of Ma-C3-1 and Ma-C3-3 were mainly detected in liver, followed by spleen, gonad. However, the high expression of Ma-C3-2 was found in kidney, followed by blood and gonad. The morphological changes of gill and skin, and the expression pattern of these three isoforms C3 molecular following the infection with Aeromonas hydrophila were investigated. The mRNA expression levels of three C3 isoforms were up-regulated in the gill, skin, liver and spleen after infection with A.hydrophila. Similarly, challenge experiments resulted in significant up-regulated expression of other complement-relevant genes in gill, liver and skin, such as C4, C5, C8b, especially at 24 h and 36 h. These results suggest that complement system might play an important role not only in liver, but also in the mucosal tissues as gill and skin of teleost fish.
Collapse
Affiliation(s)
- Yongsheng Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huili Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yangzhou Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
7
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
8
|
Dunn AB, Dunlop AL, Hogue CJ, Miller A, Corwin EJ. The Microbiome and Complement Activation: A Mechanistic Model for Preterm Birth. Biol Res Nurs 2017; 19:295-307. [PMID: 28073296 DOI: 10.1177/1099800416687648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB, <37 completed weeks' gestation) is one of the leading obstetrical problems in the United States, affecting approximately one of every nine births. Even more concerning are the persistent racial disparities in PTB, with particularly high rates among African Americans. There are several recognized pathophysiologic pathways to PTB, including infection and/or exaggerated systemic or local inflammation. Intrauterine infection is a causal factor linked to PTB thought to result most commonly from inflammatory processes triggered by microbial invasion of bacteria ascending from the vaginal microbiome. Trials to treat various infections have shown limited efficacy in reducing PTB risk, suggesting that other complex mechanisms, including those associated with inflammation, may be involved in the relationship between microbes, infection, and PTB. The complement system, a key mediator of the inflammatory response, is an innate defense mechanism involved in both normal physiologic processes that occur during pregnancy implantation and processes that promote the elimination of pathogenic microbes. Recent research has demonstrated an association between this system and PTB. The purpose of this article is to present a mechanistic model of inflammation-associated PTB, which hypothesizes a relationship between the microbiome and dysregulation of the complement system. Exploring the relationships between the microbial environment and complement biomarkers may elucidate a potentially modifiable biological pathway to PTB.
Collapse
Affiliation(s)
- Alexis B Dunn
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Carol J Hogue
- 2 Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew Miller
- 3 School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Elizabeth J Corwin
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola. Curr Top Microbiol Immunol 2017; 415:39-62. [PMID: 29026924 DOI: 10.1007/82_2017_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Collapse
|
10
|
Bårnes GK, Workalemahu B, Kristiansen PA, Beyene D, Merdekios B, Fissiha P, Aseffa A, Caugant DA, Næss LM. Salivary and Serum Antibody Response Against
Neisseria meningitidis
After Vaccination With Conjugate Polysaccharide Vaccines in Ethiopian Volunteers. Scand J Immunol 2016; 84:118-29. [DOI: 10.1111/sji.12451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022]
Affiliation(s)
- G. K. Bårnes
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
- Department of Community Medicine Section of International Community Health University of Oslo Oslo Norway
| | - B. Workalemahu
- Arba Minch College of Health Sciences Arba Minch Ethiopia
| | - P. A. Kristiansen
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
| | - D. Beyene
- Armauer Hansen Research Institute Addis Ababa Ethiopia
| | - B. Merdekios
- College of Medicine and Health Sciences Arba Minch University Arba Minch Ethiopia
| | - P. Fissiha
- Arba Minch General Hospital Arba Minch Ethiopia
| | - A. Aseffa
- Armauer Hansen Research Institute Addis Ababa Ethiopia
| | - D. A. Caugant
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
- Department of Community Medicine Section of International Community Health University of Oslo Oslo Norway
| | - L. M. Næss
- Department of Bacteriology and Immunology Norwegian Institute of Public Health Oslo Norway
| |
Collapse
|
11
|
Gunput STG, Wouters D, Nazmi K, Cukkemane N, Brouwer M, Veerman ECI, Ligtenberg AJM. Salivary agglutinin is the major component in human saliva that modulates the lectin pathway of the complement system. Innate Immun 2016; 22:257-65. [DOI: 10.1177/1753425916642614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Saliva interacts with blood after mucosal damage or leakage of gingival crevicular fluid. Surface-adsorbed salivary agglutinin (SAG) activates the lectin pathway (LP) of the complement system via mannose-binding lectin, while SAG in solution inhibits complement activation. In the present study we investigated if, next to SAG, whole and glandular saliva itself and other salivary glycoproteins activate or inhibit the LP. Complement activation was measured by detecting C4 deposition on microtiter plates coated with saliva or purified proteins. Complement inhibition was measured after incubating serum with saliva or proteins in microtiter plates coated with mannan, an LP activator. Adsorbed whole, sublingual and submandibular saliva showed LP-dependent complement activation. Blood group secretors, but not non-secretors, activated the LP. Saliva of both secretors and non-secretors inhibited C4 deposition on mannan. After depletion of SAG, saliva no longer inhibited the LP. Other salivary proteins, including amylase, MUC5B and histatin 2, did not activate or inhibit the LP. Surface-adsorbed whole saliva and glandular saliva samples activate the LP of complement, depending on the presence of SAG and the secretor status of the donor. In solution, saliva inhibits the LP, depending on the presence of SAG, but independent of the secretor status.
Collapse
Affiliation(s)
- Sabrina TG Gunput
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Enno CI Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Antoon JM Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Reichhardt MP, Meri S. SALSA: A Regulator of the Early Steps of Complement Activation on Mucosal Surfaces. Front Immunol 2016; 7:85. [PMID: 27014265 PMCID: PMC4781872 DOI: 10.3389/fimmu.2016.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn's disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases.
Collapse
Affiliation(s)
- Martin Parnov Reichhardt
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Seppo Meri
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| |
Collapse
|
13
|
Hussain M, Stover CM, Dupont A. P. gingivalis in Periodontal Disease and Atherosclerosis - Scenes of Action for Antimicrobial Peptides and Complement. Front Immunol 2015; 6:45. [PMID: 25713575 PMCID: PMC4322733 DOI: 10.3389/fimmu.2015.00045] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/24/2015] [Indexed: 12/17/2022] Open
Abstract
According to the NHS, it is estimated that over 50% of the adult population are, to some extent, affected by gum disease and approximately 15% of UK population have been diagnosed with severe periodontitis. Periodontitis, a chronic polymicrobial disease of the gums, causes inflammation in its milder form, whereas in its severe form affects the surrounding tissues and can result in tooth loss. During periodontitis, plaque accumulates and sits between the junctional epithelium and the tooth itself, resulting in inflammation and the formation of a periodontal pocket. An interface is formed directly between the subgingival bacteria and the junctional epithelial cells. Bacterial pathogens commonly associated with periodontal disease are, among others, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, together known as the "red complex." This review will mostly concentrate on the role of P. gingivalis, a Gram-negative anaerobic bacterium and one of the major and most studied contributors of this disease. Because periodontal disease is associated with the development of atherosclerosis, it is important to understand the local immune response to P. gingivalis. Innate immune players, in particular, complement and antimicrobial peptides and their effects with regard to P. gingivalis during periodontitis and in the development of atherosclerosis will be presented.
Collapse
Affiliation(s)
- Mehak Hussain
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Cordula M. Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Aline Dupont
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:57-74. [PMID: 26306443 DOI: 10.1007/978-3-319-18603-0_4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.
Collapse
|
15
|
Custodio W, Silva WJ, Paes Leme AF, Cury JA, Del Bel Cury AA. Plasma proteins in the acquired denture pellicle enhance substrate surface free energy and Candida albicans
phospholipase and proteinase activities. ACTA ACUST UNITED AC 2014; 6:273-81. [DOI: 10.1111/jicd.12101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- William Custodio
- Piracicaba Dental School; State University of Campinas; Piracicaba São Paulo Brazil
| | - Wander J. Silva
- Piracicaba Dental School; State University of Campinas; Piracicaba São Paulo Brazil
| | | | - Jaime A. Cury
- Piracicaba Dental School; State University of Campinas; Piracicaba São Paulo Brazil
| | | |
Collapse
|
16
|
Damgaard C, Holmstrup P, Van Dyke TE, Nielsen CH. The complement system and its role in the pathogenesis of periodontitis: current concepts. J Periodontal Res 2014; 50:283-93. [PMID: 25040158 DOI: 10.1111/jre.12209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 12/11/2022]
Abstract
Periodontitis is a highly prevalent inflammatory disease in tooth supporting tissues, induced by bacteria growing in a biofilm on tooth surfaces. Components of the complement system are present in the periodontal tissue and the system is activated in periodontitis. Continuous complement activation and modulation by bacteria within the biofilm in periodontal pockets, however, may enhance local tissue destruction, providing the biofilm with both essential nutrients and space to grow. A more profound understanding of the mechanisms involved in complement-derived tissue degradation may facilitate the development of new treatment concepts for periodontitis. Further studies on the role of complement in periodontitis pathogenesis may also contribute to the understanding of why some individuals fail to resolve periodontitis. Here, we review evidence that links complement to the pathogenesis of periodontitis with an emphasis on interaction of complement with bacteria from periodontitis-associated biofilm.
Collapse
Affiliation(s)
- C Damgaard
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases and Rheumatology, Institute for Inflammation Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
17
|
Miller DP, McDowell JV, Bell JK, Goetting-Minesky MP, Fenno JC, Marconi RT. Analysis of the complement sensitivity of oral treponemes and the potential influence of FH binding, FH cleavage and dentilisin activity on the pathogenesis of periodontal disease. Mol Oral Microbiol 2014; 29:194-207. [PMID: 24815960 DOI: 10.1111/omi.12054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 12/28/2022]
Abstract
Treponema denticola, a periopathogen, evades complement-mediated killing by binding the negative complement regulatory protein factor H (FH) to its surface via the FhbB protein. Paradoxically, bound FH is cleaved by T. denticola's dentilisin protease, a process hypothesized to trigger localized dysregulation of complement activation in periodontal pockets. The ability of other oral treponemes to evade complement-mediated killing and bind and cleave FH has not been assessed. In this report, we demonstrate that representative isolates of Treponema socranskii, Treponema medium, Treponema pectinovorum and Treponema maltophilum are also serum resistant, whereas Treponema vincentii and Treponema amylovorum are serum sensitive. Although T. denticola's ability to evade complement-mediated killing is strictly dependent on FH binding, other serum-resistant treponemal species lack FhbB and do not bind FH, indicating an FH-independent mechanism of complement evasion. To assess the influence of FhbB sequence variation on FH binding and cleavage by T. denticola, fhbB sequences were determined for 30 isolates. Three distinct phyletic types were identified. All T. denticola strains bound FH and were serum resistant, but differences in binding kinetics, dentilisin activity and FH cleavage ability were observed. Based on these analyses, we hypothesize that the composition of the T. denticola population is a determining factor that influences the progression and severity of periodontal disease.
Collapse
Affiliation(s)
- D P Miller
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Limited information is available about the effects of HIV and subsequent antiretroviral treatment on host-microbe interactions. This study aimed to determine the salivary microbial composition for 10 HIV-seropositive subjects, before and 6 months after highly active antiretroviral therapy (HAART), compared with that for 10 HIV-seronegative subjects. A conventional culture and two culture-independent analyses were used and consistently demonstrated differences in microbial composition among the three sets of samples. HIV-positive subjects had higher levels of total cultivable microbes, including oral streptococci, lactobacilli, Streptococcus mutans, and Candida, in saliva than did HIV-negative subjects. The total cultivable microbial levels were significantly correlated with CD4+ T cell counts. Denaturing gradient gel electrophoresis (DGGE), which compared the overall microbial profiles, showed distinct fingerprinting profiles for each group. The human oral microbe identification microarray (HOMIM) assay, which compared the 16S rRNA genes, showed clear separation among the three sample groups. Veillonella, Synergistetes, and Streptococcus were present in all 30 saliva samples. Only minor changes or no changes in the prevalence of Neisseria, Haemophilus, Gemella, Leptotrichia, Solobacterium, Parvimonas, and Rothia were observed. Seven genera, Capnocytophaga, Slackia, Porphyromonas, Kingella, Peptostreptococcaceae, Lactobacillus, and Atopobium, were detected only in HIV-negative samples. The prevalences of Fusobacterium, Campylobacter, Prevotella, Capnocytophaga, Selenomonas, Actinomyces, Granulicatella, and Atopobium were increased after HAART. In contrast, the prevalence of Aggregatibacter was significantly decreased after HAART. The findings of this study suggest that HIV infection and HAART can have significant effects on salivary microbial colonization and composition.
Collapse
|
19
|
Miller DP, McDowell JV, Rhodes DV, Allard A, Caimano M, Bell J, Marconi RT. Sequence divergence in the Treponema denticola FhbB protein and its impact on factor H binding. Mol Oral Microbiol 2013; 28:316-30. [PMID: 23601078 PMCID: PMC3785937 DOI: 10.1111/omi.12027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Treponema denticola is an anaerobic spirochete whose abundance in the subgingival crevice correlates with the development and severity of periodontal disease. The ability of T. denticola to survive and thrive in the hostile environment of the periodontal pocket is due, at least in part, to its ability to bind factor H (FH), a negative regulator of the alternative complement pathway. The FH binding protein of T. denticola has been identified as FhbB and its atomic structure has been determined. The interaction of FH with T. denticola is unique in that FH bound to the cell surface is cleaved by the T. denticola protease, dentilisin. It has been postulated that FH cleavage by T. denticola leads to immune dysregulation in periodontal pockets. In this study, we conduct a comparative assessment of the sequence, properties, structure and ligand binding kinetics of the FhbB proteins of strains 33521 and 35405. The biological outcome of the interaction of these strains with FH could differ significantly as 33521 lacks dentilisin activity. The data presented here offer insight into our understanding of the interactions of T. denticola with the host and its potential to influence disease progression.
Collapse
Affiliation(s)
- Daniel P. Miller
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - John V. McDowell
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - DeLacy V. Rhodes
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - Anna Allard
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Melissa Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Jessica Bell
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
- Center for the Study of Biological Complexity, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
20
|
Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol 2013; 25:65-72. [PMID: 23684627 DOI: 10.1016/j.smim.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
21
|
Chmilewsky F, Jeanneau C, Laurent P, Kirschfink M, About I. Pulp progenitor cell recruitment is selectively guided by a C5a gradient. J Dent Res 2013; 92:532-9. [PMID: 23603337 DOI: 10.1177/0022034513487377] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It recently became evident that activation of the complement system also contributes to tissue regeneration after infection/injury. The complement-derived fragment C5a induces vascular modifications and attracts cells expressing its receptor (C5aR/CD88) to the site of infection and tissue injury. Besides inflammatory cells, various tissue cells express this receptor. We hypothesized that pulp progenitor cells, being exposed to local complement activation in caries lesions, may respond to C5a via the C5aR. Our work aimed at evaluating the ability of C5a to induce pulp progenitor cell migration that may link complement activation to dentin regeneration. Immunofluorescence analysis of third molar pulp sections showed perivascular localization of the mesenchymal stem cell markers STRO-1 and C5aR. RT-PCR on STRO-1-sorted pulp progenitor cells, co-expressing both STRO-1 and C5aR, revealed high C5aR mRNA levels. Experiments with the C5aR antagonist W54011 revealed that C5a specifically bound to progenitor cells via C5aR, inducing their selective migration toward the C5a gradient. Since we could also demonstrate C5b-9 formation by immunohistochemistry in carious teeth, our findings suggest that, upon local complement activation, C5a induces pulp progenitor cell migration, which may be critical in initiating the regenerative process after dentin/pulp injury.
Collapse
Affiliation(s)
- F Chmilewsky
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | | | | | | | | |
Collapse
|
22
|
Reichhardt MP, Loimaranta V, Thiel S, Finne J, Meri S, Jarva H. The salivary scavenger and agglutinin binds MBL and regulates the lectin pathway of complement in solution and on surfaces. Front Immunol 2012; 3:205. [PMID: 22811680 PMCID: PMC3397308 DOI: 10.3389/fimmu.2012.00205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/29/2012] [Indexed: 01/04/2023] Open
Abstract
The salivary scavenger and agglutinin (SALSA), also known as gp340, salivary agglutinin and deleted in malignant brain tumor 1, is a 340-kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A, and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan-binding lectin (MBL) as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit Candida albicans-induced complement activation. Thus, SALSA has a dual complement activation modifying function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid phase. These activities are mediated via a direct interaction with MBL. This suggests that SALSA could target the innate immune responses to certain microorganisms and simultaneously limit complement activation in the fluid phase.
Collapse
Affiliation(s)
- Martin P Reichhardt
- Infection Biology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
23
|
Malm S, Jusko M, Eick S, Potempa J, Riesbeck K, Blom AM. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia. PLoS One 2012; 7:e34852. [PMID: 22514678 PMCID: PMC3325944 DOI: 10.1371/journal.pone.0034852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/09/2012] [Indexed: 01/01/2023] Open
Abstract
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Collapse
Affiliation(s)
- Sven Malm
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Monika Jusko
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Krakow, Poland
- Center of Oral Health and Systemic Diseases, University of Louisville Dental School, Louisville, Kentucky, United States of America
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
24
|
Miller DP, Bell JK, McDowell JV, Conrad DH, Burgner JW, Héroux A, Marconi RT. Structure of factor H-binding protein B (FhbB) of the periopathogen, Treponema denticola: insights into progression of periodontal disease. J Biol Chem 2012; 287:12715-22. [PMID: 22371503 DOI: 10.1074/jbc.m112.339721] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is the most common disease of microbial etiology in humans. Periopathogen survival is dependent upon evasion of complement-mediated destruction. Treponema denticola, an important contributor to periodontitis, evades killing by the alternative complement cascade by binding factor H (FH) to its surface. Bound FH is rapidly cleaved by the T. denticola protease, dentilisin. In this report, the structure of the T. denticola FH-binding protein, FhbB, was solved to 1.7 Å resolution. FhbB possesses a unique fold that imparts high thermostability. The kinetics of the FH/FhbB interaction were assessed using surface plasmon resonance. A K(D) value in the micromolar range (low affinity) was demonstrated, and rapid off kinetics were observed. Site-directed mutagenesis and sucrose octasulfate competition assays collectively indicate that the negatively charged face of FhbB binds within FH complement control protein module 7. This study provides significant new insight into the molecular basis of FH/FhbB interaction and advances our understanding of the role that T. denticola plays in the development and progression of periodontal disease.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Leito JTD, Ligtenberg AJM, van Houdt M, van den Berg TK, Wouters D. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway. Mol Immunol 2011; 49:185-90. [PMID: 21920605 DOI: 10.1016/j.molimm.2011.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/24/2023]
Abstract
Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor Cysteine Rich group B protein superfamily. SAG aggregates bacteria thus promoting their clearance from the oral cavity and activates the complement system. Complement proteins may enter the oral cavity in case of serum leakage, which occurs after mucosal damage. The purpose of this study was to investigate the mode of complement activation. We showed a dose-dependent C4 deposition on SAG-coated microplates showing that either the classical or lectin pathway of complement was activated. Antibodies against mannose binding lectin inhibited C4 deposition and SAG induced no C4 deposition in MBL deficient sera showing SAG activated complement through the MBL pathway. Periodate treatment of SAG abolished MBL pathway activation consistent with an involvement of SAG glycans in complement activation. This provides the first evidence for a role of SAG in complement activation through the MBL pathway and suggests a potential role of SAG as a complement activating factor at the mucosal epithelia.
Collapse
Affiliation(s)
- Jelani T D Leito
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
McDowell JV, Frederick J, Miller DP, Goetting-Minesky MP, Goodman H, Fenno JC, Marconi RT. Identification of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola. Mol Oral Microbiol 2010; 26:140-9. [PMID: 21375704 DOI: 10.1111/j.2041-1014.2010.00598.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola, a periodontal pathogen, binds the complement regulatory protein Factor H (FH). Factor H binding protein B (FhbB) is the sole FH binding protein produced by T. denticola. The interaction of FhbB with FH is unique in that FH is bound to the cell and then cleaved by the T. denticola protease, dentilisin. A ∼ 50-kDa product generated by dentilisin cleavage is retained at the cell surface. Until this study, a direct role for the FhbB-FH interaction in complement evasion and serum sensitivity had not been demonstrated. Here we assess the serum resistance of T. denticola strain 35405 (Td35405wt) and isogenic mutants deficient in dentilisin (Td35405-CCE) and FhbB production (Td35405ΔfhbB), respectively. Both dentilisin and FhbB have been postulated to be key virulence factors that mediate complement evasion. Consistent with conditions in the subgingival crevice, an environment with a significant concentration of complement, Td35405wt was resistant to serum concentrations as high as 25%. Deletion of fhbB (Td35405ΔfhbB), which resulted in the complete loss of FH binding ability, but not inactivation of dentilisin activity (Td35405-CCE), rendered T. denticola highly sensitive to 25% human serum with 80% of the cells being disrupted after 4 h of incubation. Heat treatment of the serum to inactivate complement confirmed that killing was mediated by complement. These results indicate that the FH-FhbB interaction is required for serum resistance whereas dentilisin is not. This report provides new insight into the novel complement evasion mechanisms of T. denticola.
Collapse
Affiliation(s)
- J V McDowell
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hajishengallis G. Complement and periodontitis. Biochem Pharmacol 2010; 80:1992-2001. [PMID: 20599785 DOI: 10.1016/j.bcp.2010.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Although the complement system is centrally involved in host defense, its overactivation or deregulation (e.g., due to inherent host genetic defects or due to pathogen subversion) may excessively amplify inflammation and contribute to immunopathology. Periodontitis is an oral infection-driven chronic inflammatory disease which exerts a systemic impact on health. This paper reviews evidence linking complement to periodontal inflammation and pathogenesis. Clinical and histological observations show a correlation between periodontal inflammatory activity and local complement activation. Certain genetic polymorphisms or deficiencies in specific complement components appear to predispose to increased susceptibility to periodontitis. Animal model studies and in vitro experiments indicate that periodontal bacteria can either inhibit or activate distinct components of the complement cascade. Porphyromonas gingivalis, a keystone species in periodontitis, subverts complement receptor 3 and C5a anaphylatoxin receptor signaling in ways that promote its adaptive fitness in the presence of non-productive inflammation. Overall, available evidence suggests that complement activation or subversion contributes to periodontal pathogenesis, although not all complement pathways or functions are necessarily destructive. Effective complement-targeted therapeutic intervention in periodontitis would require determining the precise roles of the various inductive or effector complement pathways. This information is essential as it may reveal which specific pathways need to be blocked to counteract microbial evasion and inflammatory pathology or, conversely, kept intact to promote host immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Loueisville, KY 40292, USA.
| |
Collapse
|
28
|
Analysis of a unique interaction between the complement regulatory protein factor H and the periodontal pathogen Treponema denticola. Infect Immun 2009; 77:1417-25. [PMID: 19204088 DOI: 10.1128/iai.01544-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Treponema denticola, a spirochete associated with periodontitis, is abundant at the leading edge of subgingival plaque, where it interacts with gingival epithelia. T. denticola produces a number of virulence factors, including dentilisin, a protease which is cytopathic to host cells, and FhbB, a unique T. denticola lipoprotein that binds complement regulatory proteins. Earlier analyses suggested that FhbB specifically bound to factor H (FH)-like protein 1 (FHL-1). However, by using dentilisin-deficient mutants of T. denticola, we found that T. denticola preferentially binds FH and not FHL-1, and that FH is then cleaved by dentilisin to yield an FH subfragment of approximately 50 kDa. FH bound to dentilisin-deficient mutants but was not cleaved and retained its ability to serve as a cofactor for factor I in the cleavage of C3b. To assess the molecular basis of the interaction of FhbB with FH, mutational analyses were conducted. Replacement of specific residues in widely separated domains of FhbB and disruption of a central alpha helix with coiled-coil formation probability attenuated or eliminated FH binding. The data presented here are the first to demonstrate the retention at the cell surface of a proteolytic cleavage product of FH. The precise role of this FH fragment in the host-pathogen interaction remains to be determined.
Collapse
|
29
|
Verardi S, Page RC, Ammons WF, Bordin S. Differential chemokine response of fibroblast subtypes to complement C1q. J Periodontal Res 2007; 42:62-8. [PMID: 17214641 DOI: 10.1111/j.1600-0765.2006.00916.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of periodontitis includes an inappropriate activation of the classical complement cascade (C') with accumulation of inflammatory C' products in fluids and tissues. Our hypothesis is that in vivo the C' product, C1q, may act as a regulatory component of the innate immune response of distinct matrix fibroblasts to the inflammatory environment. This study analyzed the C1q induction of pro-inflammatory cytokine secretion in fibroblast subtypes derived from distinct periodontal tissues, and identified a mechanism of the cell response. MATERIAL AND METHODS Primary human gingival fibroblast, periodontal ligament fibroblast, and granulation tissue fibroblast cultures were treated for 24 h with C1q. Protein arrays assessed the secretory profile of constitutive and C1q-inducible pro-inflammatory cytokines, and enzyme-linked immunosorbent assays were used to quantify the kinetics of each inducible cytokine. RESULTS Granulation tissue fibroblast cultures were unresponsive to C1q challenge. In contrast, periodontal ligament fibroblasts responded with a release of monocyte chemoattractant protein (MCP)-1, interleukin-6, interleukin-8, and macrophage inflammatory protein (MIP)-1beta higher than the basal level by 8.2-, 7.0-, 3.8-, and 7.2-fold, respectively. Human gingival fibroblast cultures increased secretion of these chemokines by 5.2-, 4.5-, 3.0-, and 9.8-fold, respectively. Inhibitor studies revealed that C1q-inducible release of chemokines by the human gingival fibroblast and periodontal ligament cultures was contingent upon p38 mitogen-activated protein kinase activity. CONCLUSION The ability of C1q to stimulate secretion of pro-inflammatory chemokines depends upon which specific fibroblast subtype is involved. Targeting C1q-activated intracellular signaling pathways may be an effective means to inhibit the production of chemokines that promote inflammatory cell infiltration into gingival and periodontal ligament tissues.
Collapse
Affiliation(s)
- S Verardi
- Department of Periodontics, University of Washington, Seattle, WA 98195-7444, USA
| | | | | | | |
Collapse
|
30
|
Oroszlán M, Daha MR, Cervenak L, Prohászka Z, Füst G, Roos A. MBL and C1q compete for interaction with human endothelial cells. Mol Immunol 2006; 44:1150-8. [PMID: 16911830 DOI: 10.1016/j.molimm.2006.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 11/26/2022]
Abstract
C1q, the recognition molecule of the classical pathway of complement, binds to endothelial cells, leading to cell activation. Mannose-binding lectin (MBL), a recognition molecule of the lectin pathway, is structurally and functionally related to C1q. Therefore, we investigated the interaction of MBL with human umbilical vein endothelial cells (HUVEC). C1q and MBL were purified from normal human plasma and binding to HUVEC was evaluated by flow cytometry. Cross-competition experiments were performed using MBL and C1q labeled with digoxygenin. MBL, similar to C1q, exhibited a dose-dependent binding to HUVEC under calcium-free conditions, suggesting involvement of its collagenous domains. Pre-incubation of HUVEC with MBL inhibited the binding of digoxygenin-labeled MBL at equimolar concentrations, confirming the specificity of the interaction. Pre-incubation of HUVEC with MBL inhibited the binding of C1q and vice versa. Activation of HUVEC with LPS resulted in increased C1q and MBL binding. Stimulation of HUVEC with MBL did not result in a detectable increase in cytokine production. Based on these results, we propose that MBL and C1q bind to a shared receptor on endothelial cells. Interaction of MBL and C1q with receptors on endothelial cells may be involved in inflammatory processes, and in clearance of pathogens and apoptotic cells.
Collapse
Affiliation(s)
- Melinda Oroszlán
- 3rd Department of Internal Medicine, Semmelweis University, Kútvölgyi út 4, 1125 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
31
|
Kishore U, Ghai R, Greenhough TJ, Shrive AK, Bonifati DM, Gadjeva MG, Waters P, Kojouharova MS, Chakraborty T, Agrawal A. Structural and functional anatomy of the globular domain of complement protein C1q. Immunol Lett 2005; 95:113-28. [PMID: 15388251 PMCID: PMC3818097 DOI: 10.1016/j.imlet.2004.06.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/23/2004] [Indexed: 02/06/2023]
Abstract
C1q is the first subcomponent of the classical pathway of the complement system and a major connecting link between innate and acquired immunity. As a versatile charge pattern recognition molecule, C1q is capable of engaging a broad range of ligands via its heterotrimeric globular domain (gC1q) which is composed of the C-terminal regions of its A (ghA), B (ghB) and C (ghC) chains. Recent studies using recombinant forms of ghA, ghB and ghC have suggested that the gC1q domain has a modular organization and each chain can have differential ligand specificity. The crystal structure of the gC1q, molecular modeling and protein engineering studies have combined to illustrate how modular organization, charge distribution and the spatial orientation of the heterotrimeric assembly offer versatility of ligand recognition to C1q. Although the biochemical and structural studies have provided novel insights into the structure-function relationships within the gC1q domain, they have also raised many unexpected issues for debate.
Collapse
Affiliation(s)
- Uday Kishore
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Aframian DJ, Redman RS, Yamano S, Nikolovski J, Cukierman E, Yamada KM, Kriete MF, Swaim WD, Mooney DJ, Baum BJ. Tissue compatibility of two biodegradable tubular scaffolds implanted adjacent to skin or buccal mucosa in mice. TISSUE ENGINEERING 2002; 8:649-59. [PMID: 12202004 DOI: 10.1089/107632702760240562] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Radiation therapy for cancer in the head and neck region leads to a marked loss of salivary gland parenchyma, resulting in a severe reduction of salivary secretions. Currently, there is no satisfactory treatment for these patients. To address this problem, we are using both tissue engineering and gene transfer principles to develop an orally implantable, artificial fluid-secreting device. In the present study, we examined the tissue compatibility of two biodegradable substrata potentially useful in fabricating such a device. We implanted in Balb/c mice tubular scaffolds of poly-L-lactic acid (PLLA), poly-glycolic acid coated with PLLA (PGA/PLLA), or nothing (sham-operated controls) either beneath the skin on the back, a site widely used in earlier toxicity and biocompatibility studies, or adjacent to the buccal mucosa, a site quite different functionally and immunologically. At 1, 3, 7, 14, and 28 days postimplantation, implant sites were examined histologically, and systemic responses were assessed by conventional clinical chemistry and hematology analyses. Inflammatory responses in the connective tissue were similar regardless of site or type of polymer implant used. However, inflammatory reactions were shorter and without epithelioid and giant cells in sham-operated controls. Also, biodegradation proceeded more slowly with the PLLA tubules than with the PGA/PLLA tubules. No significant changes in clinical chemistry and hematology were seen due to the implantation of tubular scaffolds. These results indicate that the tissue responses to PLLA and PGA/PLLA scaffolds are generally similar in areas subjacent to skin in the back and oral cavity. However, these studies also identified several potentially significant concerns that must be addressed prior to initiating any clinical applications of this device.
Collapse
Affiliation(s)
- D J Aframian
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Neal PV, Brown N, Munro C. Physiologic factors contributing to a transition in oral immunity among mechanically ventilated adults. Biol Res Nurs 2002; 3:132-9. [PMID: 12003441 DOI: 10.1177/1099800402003003003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ventilator-associated pneumonia (VAP), a specific type of nosocomial pneumonia, occurs in approximately 21% of patients in intensive care, and the mortality can be as high as 71%. VAP causes considerable mortality and morbidity, and it exponentially increases health care costs. The incidence of VAP is associated with oropharyngeal colonization of gram-negative bacteria. Within 48 h of hospital admission, the composition of the oropharyngeal flora of critically ill patients undergoes a change from the usual gram-positive streptococci and dental pathogens to a predominant gram-negative flora that includes more virulent organisms, which predispose patients to VAP. Identification and understanding of this oral transition from gram-positive to predominantly gram-negative flora may assist health care professionals in differentiating among oral immune markers that suggest compromised immunity. The purpose of this article is to provide a review of the literature that promotes an understanding of current knowledge about the transition of oral immunity in mechanically ventilated patients.
Collapse
Affiliation(s)
- Pamela V O'Neal
- Gordon College, University System of Georgia, Barnesville 30204, USA.
| | | | | |
Collapse
|
34
|
Boackle RJ, Dutton SL, Fei H, Vesely J, Malamud D, Furness AR. Salivary non-immunoglobulin agglutinin inhibits human leukocyte elastase digestion of acidic proline-rich salivary proteins. J Dent Res 2001; 80:1550-4. [PMID: 11499511 DOI: 10.1177/00220345010800061401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saliva contains acidic proline-rich salivary proteins that are involved in the formation of the salivary pellicle coating supragingival tooth surfaces. However, human leukocyte elastase, arriving in gingival exudates from inflamed periodontal tissues, degrades the acidic proline-rich salivary proteins, preventing binding to hydroxylapatite surfaces. Here it is reported that high-molecular-weight non-immunoglobulin salivary agglutinin inhibited the proteolytic action of human leukocyte elastase on purified acidic proline-rich salivary proteins. Inhibition was eliminated with monoclonal antibody to a protein determinant on the salivary agglutinin. The addition of antibody against salivary agglutinin blocked the inhibitory effect of parotid saliva on exogenously applied human leukocyte elastase, allowing for the elastase-mediated digestion of the salivary acidic proline-rich salivary proteins. Salivary agglutinin, therefore, is a physiologically important inhibitor of human leukocyte elastase and is able to inhibit elastase-mediated digestion of salivary acidic proline-rich proteins.
Collapse
Affiliation(s)
- R J Boackle
- Department of Stomatology, Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Bordin S, Tan X. C1q arrests the cell cycle progression of fibroblasts in G(1) phase: role of the cAMP/PKA-I pathway. Cell Signal 2001; 13:119-23. [PMID: 11257456 DOI: 10.1016/s0898-6568(00)00139-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
C1q may participate in the loss of connective tissue occurring in chronic inflammatory lesions. The hypothesis of a detrimental role of C1q on cell proliferation was tested on primary cultures of human fibroblasts (HFs). C1q suppressed the DNA synthesis of HF in response to platelet-derived growth factor (PDGF) with an IC(50) of 20 microg/ml, and blocked 78% of the cycling cells in G(1) phase. The C1q block did not involve production of inhibitory prostaglandin by the cells. Given that C1q elicits signals of the adenylyl cyclase pathway in HF, we examined cAMP-dependent mechanisms to understand how C1q inhibited the PDGF response. Whereas the C1q block was enhanced by agonist dibutyryl-adenosine 3', 5'-cyclic mono-phosphate (db-cAMP), antagonist adenosine 3', 5'-cyclic monophosphorotioate triethylammonium salt (Rp-cAMP) minimized it. C1q increased the level of cAMP-dependent protein kinase I (PKA-I) 4.5-fold, without altering the activation of the extracellular-regulated protein kinase (ERK) pathway. These results demonstrate that the interactions of C1q with HF cause growth arrest at the G(1) phase through mechanisms associated with a PKA-I dependent pathway.
Collapse
Affiliation(s)
- S Bordin
- Department of Periodontics, University of Washington, PO Box 357444, Seattle, WA 98195, USA.
| | | |
Collapse
|
36
|
Boackle RJ, Dutton SL, Robinson WL, Vesely J, Lever JK, Su HR, Chang NS. Effects of removing the negatively charged N-terminal region of the salivary acidic proline-rich proteins by human leucocyte elastase. Arch Oral Biol 1999; 44:575-85. [PMID: 10414872 DOI: 10.1016/s0003-9969(99)00032-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human leucocyte elastase from inflammatory gingival crevicular exudates (gingival crevicular fluid) contacts saliva and saliva-coated tooth surfaces coronal to the gingival margin. Major components of saliva are the salivary acidic proline-rich proteins (PRPs). These acidic PRPs, via the numerous negatively charged amino acid residues located predominantly within their amino-terminal region, bind to the hydroxyapatite mineral of the tooth surface and become part of the salivary pellicle. Thus the potential for human leucocyte elastase-mediated removal of the negatively charged amino-terminal region of acidic PRP variants (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f) was examined. It was determined that each of the acidic PRP variants was susceptible to fragmentation by human leucocyte elastase, in which the 16 amino-terminal segment was removed, leaving the respective residual fragment named as the transitional product (tr). The transitional products were termed PRP-1tr, PRP-2tr (PIF-str), PRP-3tr and PRP-4tr (PIF-ftr). Each of the residual transitional products of acidic PRP had an amino-terminal beginning with serine residue no. 17, determined by amino acid sequencing. When samples of human leucocyte elastase-treated acidic PRPs were placed on native polyacrylamide gels and electrophoresed, the respective transitional products moved more slowly than the parental acidic PRP molecules, reflecting the loss of a portion of the negatively charged section. In comparison to the acidic PRPs, the acidic PRP transitional products had markedly reduced binding to hydroxyapatite. The transitional products were resistant to further enzymatic digestion as a function of increased incubation time and appeared to exert an antihuman leucocyte elastase effect. However, when increased concentrations of human leucocyte elastase were incubated with the acidic PRP, a more extensive digestion occurred, leaving a residual peptide with an amino-terminal beginning with alanine residue no. 44. Interestingly, intact acidic PRPs if prebound to hydroxyapatite particles, resisted digestion by human leucocyte elastase. In summary, human leucocyte elastase was capable of digesting fluid-phase (unbound) acidic PRP in a manner that eliminated part of their negatively charged region, which subsequently reduced their binding to hydroxyapatite. High concentrations of human leucocyte elastase, arriving from inflammatory gingival crevicular exudates, may interrupt the normal binding of fluid-phase acidic PRPs to hydroxyapatite.
Collapse
Affiliation(s)
- R J Boackle
- Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Bordin S, Costa LG, Tan X. Fibroblast heterogeneity of signal transduction mechanisms to complement-C1q. Analyses of calcium mobilization, inositol phosphate accumulation, and protein kinases-C redistribution. J Periodontol 1998; 69:642-9. [PMID: 9660332 DOI: 10.1902/jop.1998.69.6.642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibroblasts of healthy and granulation gingiva are phenotypically heterogeneous with regard to binding C1q collagen-like (cC1qR) or C1q globular-heads (gC1qR) regions, respectively. Here, isolated fibroblast subsets, expressing either the cC1qR or the gC1qR phenotype, were stimulated with C1q, and assessed for changes in cytosolic free calcium [Ca2+]i, accumulation of inositol trisphosphate (IP3), and redistribution of Ca2+-dependent protein kinases-C (cPKCs) from cytosol to membranes. Changes in [Ca2+]i were determined using Indo-1 fluorescence in combination with adhering cell analysis and sorting (ACAS) cytometry. Accumulation of IP3 was quantified using a competitive radioreceptor binding assay. Redistribution of cPKCs was evaluated by immunoblotting with antibodies to PKCalpha/betaI-betaII/gamma. Subsets manifested different fluctuations in [Ca2+]i levels 20 seconds after C1q-stimulation in the presence of millimolar concentrations of external calcium. Whereas cC1qR fibroblasts responded with a 38% over baseline [Ca2+]i increase which was sustained for 20 to 30 minutes, gC1qR fibroblasts responded with a higher (264% over baseline) and more rapid (2 to 3 minutes) transient. Likewise, subsets exhibited different kinetics of IP3 accumulation. Whereas cC1qR fibroblasts responded with an IP3 increase of 32 +/- 3 pmol/10(4) cells over baseline after 5 seconds stimulation, gC1qR fibroblasts responded after 15 to 20 seconds with a lower increase (13 +/- 0.8 IP3 pmol/10(4) cells over baseline). Subsets differed in cPKCs redistribution which peaked in gC1qR-membranes 30 seconds after stimulation and remained sustained between 10 and 30 minutes. No cPKC redistribution was detectable in stimulated cC1qR-cells. We conclude that fibroblasts are heterogeneous in phosphoinositide-Ca2+ signaling and cPKC redistribution to C1q, and suggest that these differences may affect activities of normal and granulation gingiva.
Collapse
Affiliation(s)
- S Bordin
- Department of Periodontics, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
38
|
Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1994; 5:203-48. [PMID: 7703323 DOI: 10.1177/10454411940050030201] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Saliva is thought to have a significant impact on the colonization of microorganisms in the oral cavity. Salivary components may participate in this process by one of four general mechanisms: binding to microorganisms to facilitate their clearance from the oral cavity, serving as receptors in oral pellicles for microbial adhesion to host surfaces, inhibiting microbial growth or mediating microbial killing, and serving as microbial nutritional substrates. This article reviews information pertinent to the molecular interaction of salivary components with bacteria (primarily the oral streptococci and Actinomyces) and explores the implications of these interactions for oral bacterial colonization and dental plaque formation. Knowledge of the molecular mechanisms controlling bacterial colonization of the oral cavity may suggest methods to prevent not only dental plaque formation but also serious medical infections that may follow microbial colonization of the oral cavity.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214, USA
| |
Collapse
|
39
|
Monefeldt K, Helgeland K, Tollefsen T. In vitro activation of the classical pathway of complement by a streptococcal lipoteichoic acid. ORAL MICROBIOLOGY AND IMMUNOLOGY 1994; 9:70-6. [PMID: 8008432 DOI: 10.1111/j.1399-302x.1994.tb00037.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to find whether a glycerolphosphate-containing lipoteichoic acid prepared from Streptococcus sobrinus OMZ 176 cells would activate the classical pathway of complement while in solution. Reference activators were lipopolysaccharide from Escherichia coli 0111:B4 and heat-aggregated immunoglobulin G. Serum samples were taken from healthy students. Analysis through crossed immunoelectrophoresis showed that lipoteichoic acid caused an almost complete dissociation of the C1qrs macromolecule. All activators decreased the area of and slowed the electrophoretic mobility of the C4 protein peaks, with lipoteichoic acid causing the most pronounced alterations. Electroimmunoassays showed that lipoteichoic acid separately, yielded detectable amounts of free C1r2s2 subunits; it also generated significantly more trimer complexes between C1r, C1s and C1 inhibitor (C1INH) than did the other two activators. Lipoteichoic acid was, however, a comparatively weak inducer of tetramer C1INH-C1r-C1s-C1INH complexes. Analysis through Western blotting showed that all activators accelerated consumption of C1r, induced complex formations between C1INH and C1s and produced cleavage products of C2. Altogether, the immunochemical analysis gave clear evidence of classical pathway activation by lipoteichoic acid, but its activation profile differed from those seen with lipopolysaccharide and aggregated immunoglobulin G.
Collapse
Affiliation(s)
- K Monefeldt
- Department of Periodontology, Dental Faculty, University of Oslo, Norway
| | | | | |
Collapse
|
40
|
Boackle RJ, Connor MH, Vesely J. High molecular weight non-immunoglobulin salivary agglutinins (NIA) bind C1Q globular heads and have the potential to activate the first complement component. Mol Immunol 1993; 30:309-19. [PMID: 8433709 DOI: 10.1016/0161-5890(93)90059-k] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Non-Immunoglobulin Salivary Agglutinins (NIA) which directly bind to microbes [including HIV] were studied for their potential to activate the first complement component (C1). It was determined that NIA had the same specific activity as heat aggregated IgG in binding to C1q and in activating C1. In order to determine the region of C1q which bound to NIA, C1q globular heads and C1q stems (collagen-like regions) were prepared and separated via a Western blot procedure. NIA bound principally to the globular heads of C1q and weakly to the collagen-like stem region. NIA were also studied for their potential to activate native C1 in normal human serum. Heat-aggregated IgG and cardiolipin served as positive controls. It was observed that incubation of isolated NIA with fresh normal human serum resulted in the formation of sodium dodecyl sulfate (SDS)-irreversible complexes of activated C1r-C1 inhibitor and activated C1s-C1 inhibitor and in activated C1s mediated C4 conversion. This indicated that isolated NIA had the potential to directly and effectively mediate classical complement pathway activation. Preincubation of NIA with C1q, blocked NIA mediated C1r and C1s activation and C4 conversion. The concn of NIA required to activate C1r and C1s was similar to that of heat-aggregated human IgG. In kinetic ELISA, NIA or aggregated IgG (positive controls) were first immobilized on microtiter plates, blocked with gelatin then incubated with fresh human serum as a source of complement. Depositions of C4b, C3b and iC3b substantiated that the complement system was effectively activated by immobilized NIA. The optimal relative NaCl concn for C4b deposition was 0.11 M. While pre-incubation of NIA with C1q blocked the subsequent C1 fixing potential of NIA, pre-incubation of NIA with rgp160 [HIV-1] or fibronectin did not interfere with the potential of NIA to fix C1.
Collapse
Affiliation(s)
- R J Boackle
- Department of Stomatology, Medical University of South Carolina, Charleston 29425-2230
| | | | | |
Collapse
|
41
|
The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42697-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Su H, Boackle RJ. Interaction of the envelope glycoprotein of human immunodeficiency virus with C1q and fibronectin under conditions present in human saliva. Mol Immunol 1991; 28:811-7. [PMID: 1875953 DOI: 10.1016/0161-5890(91)90044-k] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human saliva has been shown to reduce the infectivity of human immunodeficiency virus (HIV) particles in vitro. The factors in human saliva involved in this inhibition of HIV infectivity are unknown, although the salivary sediment of normal individuals has the major HIV neutralizing activity. Interestingly, the first complement component (C1) has been detected on the surface of the salivary sediment in the whole saliva of normal individuals. At the relatively low ionic strength of saliva, we determined that purified human C1q bound with high affinity to the envelope glycoprotein of HIV. Normally, the interaction of the C1q globular heads with immune complexes causes C1 activation. However, direct interactions between C1 and rgp120 (or rgp160) did not lead to C1 fixation, as determined by hemolytic studies with rate-limiting levels of C1, nor did rgp120 cause C1 activation as determined by activated C1s-mediated C4 conversion in normal human serum. Using ELISA, it was observed that intact C1, with the C1r2C1s2 tetramer associated with the collagen-like stem of C1q, did not bind to immobilized rgp120, whereas free C1q did bind. In addition, digestion of the C1q stem portion with collagenase completely eliminated its binding to rgp120. These findings suggest that the collagen-like stem region of C1q, rather than the globular heads, may participate in the binding to the envelope glycoprotein of HIV. Fibronectin, which is present in submandibular saliva, appeared to bind to rgp120 and to enhance the interaction of C1q with rgp120. It is conceivable that C1q and fibronectin, in binding and sequestering HIV particles (i.e. to the salivary sediment), may play an important role in the reduction of HIV transmission via saliva. Further studies will be needed to test the latter speculation.
Collapse
Affiliation(s)
- H Su
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425-2230
| | | |
Collapse
|