1
|
Mansoori R, Ashrafpour M, Asghari MH, Golchoobian R, Hosseini SM, Reiter RJ, Karim B, Moghadamnia AA, Kazemi S. Protective effects of melatonin against 5-fluorouracil-induced cardiotoxicity in rats: A comprehensive evaluation of oxidative, inflammatory, and apoptotic pathways. Toxicol Appl Pharmacol 2025; 499:117343. [PMID: 40239743 DOI: 10.1016/j.taap.2025.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Cardiotoxicity is a serious adverse effect of 5-fluorouracil (5-FU) a common chemotherapeutic agent. This study aimed to evaluate the protective effects of melatonin (MLT) against 5-fluorouracil (5-FU)-induced cardiotoxicity in rats, focusing on oxidative stress, inflammatory pathways, gene expression, electrocardiographic and histopathological changes. MATERIALS AND METHODS Twenty-five male Wistar rats were divided into five groups. The animals received either MLT at doses of 2.5, 5, or 10 mg/kg/day, 5-FU at 50 mg/kg (i.p.), or a combination of both treatments. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. RESULTS 5-FU treatment significantly increased oxidative stress markers and inflammatory mediators while causing histopathological damage in heart tissues. Co-administration of MLT with 5-FU significantly mitigated these effects by reducing oxidative damage, as evidenced by lower levels of malondialdehyde (MDA), nitric oxide (NO), and myeloperoxidase (MPO). Additionally, MLT enhanced antioxidant activity, as reflected by increased levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in heart tissues. Gene expression analysis further confirmed that MLT treatment reduced the elevated levels of COX-2 and VEGF, which are critical players in the inflammatory process. Histopathological examination demonstrated that MLT preserved the structural integrity of myocardial tissues, reducing 5-FU-induced damage score in a dose-dependent manner. Furthermore, MLT co-administration significantly attenuated the rise in cardiac biomarkers, including LDH, AST, and CK-MB, associated with 5-FU-induced cardiotoxicity. CONCLUSION These findings highlight that MLT, through its antioxidant and anti-inflammatory properties, exerts a protective effect against 5-FU-induced toxicity, suggesting its therapeutic potential for improving cardiovascular health during chemotherapy.
Collapse
Affiliation(s)
- Razieh Mansoori
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Manoochehr Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossien Asghari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ravieh Golchoobian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Wang X, Ma H, Sun Q, Li J, Heianza Y, Van Dam RM, Hu FB, Rimm E, Manson JE, Qi L. Coffee drinking timing and mortality in US adults. Eur Heart J 2025; 46:749-759. [PMID: 39776171 PMCID: PMC11843000 DOI: 10.1093/eurheartj/ehae871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND AIMS To identify the patterns of coffee drinking timing in the US population and evaluate their associations with all-cause and cause-specific mortality. METHODS This study included 40 725 adults from the National Health and Nutrition Examination Survey 1999-2018 who had complete information on dietary data and 1463 adults from the Women's and Men's Lifestyle Validation Study who had complete data on 7-day dietary record. Clustering analysis was used to identify patterns of coffee drinking timing. RESULTS In this observational study, two distinct patterns of coffee drinking timing [morning type (36% of participants) and all-day-type patterns (14% of participants)] were identified in the National Health and Nutrition Examination Survey and were validated in the Women's and Men's Lifestyle Validation Study. During a median (interquartile range) follow-up of 9.8 (9.1) years, a total of 4295 all-cause deaths, 1268 cardiovascular disease deaths, and 934 cancer deaths were recorded. After adjustment for caffeinated and decaffeinated coffee intake amounts, sleep hours, and other confounders, the morning-type pattern, rather than the all-day-type pattern, was significantly associated with lower risks of all-cause (hazard ratio: .84; 95% confidential interval: .74-.95) and cardiovascular disease-specific (hazard ratio: .69; 95% confidential interval: .55-.87) mortality as compared with non-coffee drinking. Coffee drinking timing significantly modified the association between coffee intake amounts and all-cause mortality (P-interaction = .031); higher coffee intake amounts were significantly associated with a lower risk of all-cause mortality in participants with morning-type pattern but not in those with all-day-type pattern. CONCLUSIONS Drinking coffee in the morning may be more strongly associated with a lower risk of mortality than drinking coffee later in the day.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Rob M Van Dam
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Redeker NS, Conley S, Hwang Y. Sleep Deficiency: A Symptoms Perspective: Exemplars from Chronic Heart Failure, Inflammatory Bowel Disease, and Breast Cancer. Sleep Med Clin 2024; 19:537-548. [PMID: 39455175 DOI: 10.1016/j.jsmc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Sleep deficiency is associated with disabling daytime symptoms, including excessive daytime sleepiness (EDS) and fatigue. The purpose of this article is to discuss the contributions of sleep deficiency and sleep disorders to fatigue and EDS among people with chronic conditions. We use exemplars from the literature on chronic heart failure, inflammatory bowel disease, and breast cancer to (1) describe the prevalence of fatigue and EDS and their consequences; (2) examine the evidence for the contributions of sleep deficiency and sleep disorders to these symptoms; and (3) recommend implications for future research and practice.
Collapse
Affiliation(s)
- Nancy S Redeker
- UCONN School of Nursing, Yale University, University of Connecticut School of Nursing, 231 Glenbrook Road, Unit 4026, Storrs, CT 06269-4026, USA.
| | - Samantha Conley
- Nursing Research Division, Department of Nursing, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Youri Hwang
- Yale School of Nursing, PO Box 27399, West Haven, CT 06516-0972, USA
| |
Collapse
|
5
|
Saribal D, Çalis H, Ceylan Z, Depciuch J, Cebulski J, Guleken Z. Investigation of the structural changes in the hippocampus and prefrontal cortex using FTIR spectroscopy in sleep deprived mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124702. [PMID: 38917751 DOI: 10.1016/j.saa.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.
Collapse
Affiliation(s)
- Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hakan Çalis
- Department of Internal Medicine, Bağcılar State Hospital, Istanbul, Turkey
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkey
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland; Institute of Nuclear Physics, PAS, 31342 Krakow, Poland
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| |
Collapse
|
6
|
Azzeh FS, Kamfar WW, Ghaith MM, Alsafi RT, Shamlan G, Ghabashi MA, Farrash WF, Alyamani RA, Alazzeh AY, Alkholy SO, Bakr ESH, Qadhi AH, Arbaeen AF. Unlocking the health benefits of melatonin supplementation: A promising preventative and therapeutic strategy. Medicine (Baltimore) 2024; 103:e39657. [PMID: 39312371 PMCID: PMC11419438 DOI: 10.1097/md.0000000000039657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Melatonin (MLT) is crucial in controlling human sleep-wake patterns. While it has long been recognized for regulating circadian rhythms, its demonstrated efficacy in managing various diseases has recently gained considerable attention. This review discusses MLT's potential preventative and therapeutic effects on various diseases. Several studies have focused on examining the molecular mechanisms through which MLT brings about its protective or therapeutic effects on various diseases, including cancer, obesity, coronavirus, and cardiovascular diseases. Numerous preventative and therapeutic applications of MLT have been proposed, resulting from its ability to function as an antioxidant, anti-cancer, anti-inflammatory, and immune-regulating agent. There is a need for further research to determine MLT's long-term effects on antioxidant defense systems, its preventative and therapeutic benefits, and its molecular basis.
Collapse
Affiliation(s)
- Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Mazen M. Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Radi T. Alsafi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mai A. Ghabashi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Reema A. Alyamani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Awfa Y. Alazzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sarah O. Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - El-Sayed H. Bakr
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad F. Arbaeen
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Hayes AW, Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med 2024; 28:e70074. [PMID: 39333694 PMCID: PMC11436317 DOI: 10.1111/jcmm.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Mendes L, Queiroz M, Sena CM. Melatonin and Vascular Function. Antioxidants (Basel) 2024; 13:747. [PMID: 38929187 PMCID: PMC11200504 DOI: 10.3390/antiox13060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.
Collapse
Affiliation(s)
| | | | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Xie Z, Huang M, Xu W, Liu F, Huang D. USP18 Curbs the Progression of Metabolic Hypertension by Suppressing JAK/STAT Pathway. Cardiovasc Toxicol 2024; 24:576-586. [PMID: 38691302 DOI: 10.1007/s12012-024-09860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Rats
- Apoptosis/drug effects
- Blood Pressure/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/enzymology
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/pathology
- Hypertension/enzymology
- Janus Kinases/metabolism
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Metabolic Syndrome/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Signal Transduction
- STAT Transcription Factors/metabolism
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Zhihong Xie
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
| | - Mingshan Huang
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Wang Xu
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| | - Donghua Huang
- Department of Cardiology, Ganzhou People's Hospital, 16 Meiguan Dadao, Zhanggong District, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
10
|
Giri A, Mehan S, Khan Z, Das Gupta G, Narula AS, Kalfin R. Modulation of neural circuits by melatonin in neurodegenerative and neuropsychiatric disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3867-3895. [PMID: 38225412 DOI: 10.1007/s00210-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia, 1113, Bulgaria
- Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad, 2700, Bulgaria
| |
Collapse
|
11
|
Ni C, Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine (Baltimore) 2024; 103:e37421. [PMID: 38489713 PMCID: PMC10939684 DOI: 10.1097/md.0000000000037421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.
Collapse
Affiliation(s)
- Chenghong Ni
- Department of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Dingheng Li
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
12
|
El-Sayed SF, Abdelhamid AM, ZeinElabdeen SG, El-Wafaey DI, Moursi SMM. Melatonin enhances captopril mediated cardioprotective effects and improves mitochondrial dynamics in male Wistar rats with chronic heart failure. Sci Rep 2024; 14:575. [PMID: 38182706 PMCID: PMC10770053 DOI: 10.1038/s41598-023-50730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024] Open
Abstract
Mitochondrial dysfunction is a recent emerging research scope that proved to be involved in many cardiovascular diseases culminating in chronic heart failure (CHF), which remains one of the primary causes of morbidity and mortality. This study investigated the added cardio-protective effects of exogenous melatonin administration to conventional captopril therapy in isoproterenol (ISO) exposed rats with CHF. Five groups of Wistar rats were recruited; (I): Control group, (II): (ISO group), (III): (ISO + captopril group), (IV): (ISO + melatonin group) and (V): (ISO + melatonin/captopril group). Cardiac function parameters and some oxidant, inflammatory and fibrotic markers were investigated. Moreover; mRNA expression of mitochondrial mitophagy [parkin & PTEN induced kinase 1 (PINK1)], biogenesis [Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)], fusion [mitofusin 2 (Mfn2)] and fission [dynamin-related protein 1 (DRP-1)] parameters in rat's myocardium were evaluated. Rats' myocardium was histo-pathologically and immunohistochemically evaluated for Beclin1 and Sirt3 expression. The present study revealed that captopril and melatonin ameliorated cardiac injury, oxidative stress biomarkers, and pro-inflammatory cytokines in ISO-exposed rats. These protective effects could be attributed to mitochondrial dynamic proteins control (i.e. enhanced the mRNA expression of parkin, PINK1, PGC-1α and Mfn2, while reduced DRP-1 mRNA expression). Also, Beclin1 and Sirt3 cardiac immunoreactivity were improved. Combined captopril and melatonin therapy showed a better response than either agent alone. Melatonin enhanced myocardial mitochondrial dynamics and Sirt3 expression in CHF rats and may represent a promising upcoming therapy added to conventional heart failure treatment.
Collapse
Affiliation(s)
- Sherein F El-Sayed
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Iavarone S, Massoud M, Di Felice G, Pulcinelli F, Rapini N, Luciani M. Antiplatelet Effect of Melatonin through Breastfeeding: A Pediatric Case Report. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1839. [PMID: 38136041 PMCID: PMC10741506 DOI: 10.3390/children10121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
We present a pediatric case of the antiplatelet effect of melatonin taken through breast milk in an 18-month-old child. The child was referred to our hematology outpatient clinic because of bleeding episodes that she presented since birth. Blood tests excluded the presence of blood coagulation diseases. The family history was negative for bleeding disorders. The child did not consume any drugs, food supplements, herbal teas or infusions. We performed an aggregation platelet test, which showed a reduced platelet aggregation. Shortly before, the baby had been breastfed. We speculated that breast milk could interfere with the result of the test; therefore, we decided to repeat the test in a fasting state. This time the test showed a normal platelet aggregation time. We learned that the child's mother was taking a mixture of valerian and melatonin. Thus, we decided to suspend maternal intake of melatonin and perform a new platelet aggregation test after three months. The test results were negative. After the suspension of melatonin, the patient did not present further bleeding events. In this case, melatonin, through the inhibition of platelet aggregation, had an important role on the hemostatic system of the child. Melatonin is considered as a dietary supplement and is mostly available as an alternative medicine without formal prescription and dosage regulation. It is important, especially during breastfeeding, to investigate personal and medication history, including also homeopathic remedies or dietary supplements.
Collapse
Affiliation(s)
- Sonia Iavarone
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.I.); (M.M.)
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Michela Massoud
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.I.); (M.M.)
| | - Giovina Di Felice
- Clinical Laboratory Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Fabio Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Novella Rapini
- Unit of Endocrinology and Diabetes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Luciani
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.I.); (M.M.)
| |
Collapse
|
14
|
Csoma B, Bikov A. The Role of the Circadian Rhythm in Dyslipidaemia and Vascular Inflammation Leading to Atherosclerosis. Int J Mol Sci 2023; 24:14145. [PMID: 37762448 PMCID: PMC10532147 DOI: 10.3390/ijms241814145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Many lines of evidence suggest that the disturbances in circadian rhythm are responsible for the development of CVDs; however, circadian misalignment is not yet a treatable trait in clinical practice. The circadian rhythm is controlled by the central clock located in the suprachiasmatic nucleus and clock genes (molecular clock) located in all cells. Dyslipidaemia and vascular inflammation are two hallmarks of atherosclerosis and numerous experimental studies conclude that they are under direct influence by both central and molecular clocks. This review will summarise the results of experimental studies on lipid metabolism, vascular inflammation and circadian rhythm, and translate them into the pathophysiology of atherosclerosis and cardiovascular disease. We discuss the effect of time-respected administration of medications in cardiovascular medicine. We review the evidence on the effect of bright light and melatonin on cardiovascular health, lipid metabolism and vascular inflammation. Finally, we suggest an agenda for future research and recommend on clinical practice.
Collapse
Affiliation(s)
- Balazs Csoma
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
15
|
BaHammam AS, Pirzada A. Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism-A Narrative Review. Clocks Sleep 2023; 5:507-535. [PMID: 37754352 PMCID: PMC10528427 DOI: 10.3390/clockssleep5030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Achieving synchronization between the central and peripheral body clocks is essential for ensuring optimal metabolic function. Meal timing is an emerging field of research that investigates the influence of eating patterns on our circadian rhythm, metabolism, and overall health. This narrative review examines the relationship between meal timing, circadian rhythm, clock genes, circadian hormones, and metabolic function. It analyzes the existing literature and experimental data to explore the connection between mealtime, circadian rhythms, and metabolic processes. The available evidence highlights the importance of aligning mealtime with the body's natural rhythms to promote metabolic health and prevent metabolic disorders. Specifically, studies show that consuming meals later in the day is associated with an elevated prevalence of metabolic disorders, while early time-restricted eating, such as having an early breakfast and an earlier dinner, improves levels of glucose in the blood and substrate oxidation. Circadian hormones, including cortisol and melatonin, interact with mealtimes and play vital roles in regulating metabolic processes. Cortisol, aligned with dawn in diurnal mammals, activates energy reserves, stimulates appetite, influences clock gene expression, and synchronizes peripheral clocks. Consuming meals during periods of elevated melatonin levels, specifically during the circadian night, has been correlated with potential implications for glucose tolerance. Understanding the mechanisms of central and peripheral clock synchronization, including genetics, interactions with chronotype, sleep duration, and hormonal changes, provides valuable insights for optimizing dietary strategies and timing. This knowledge contributes to improved overall health and well-being by aligning mealtime with the body's natural circadian rhythm.
Collapse
Affiliation(s)
- Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia
| | - Abdulrouf Pirzada
- North Cumbria Integrated Care (NCIC), National Health Service (NHS), Carlisle CA2 7HY, UK;
| |
Collapse
|
16
|
Lei S, Liu Z, Li H. Sleep duration and age-related macular degeneration: a cross-sectional and Mendelian randomization study. Front Aging Neurosci 2023; 15:1247413. [PMID: 37674785 PMCID: PMC10477604 DOI: 10.3389/fnagi.2023.1247413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Purpose To investigate the association between sleep duration and age-related macular degeneration (AMD). Design Cross-sectional study, bidirectional two-sample Mendelian randomization (MR). For cross-sectional analysis, we used survey data of 5,481 participants aged ≥40 years from the 2005 to 2008 National Health and Nutrition Examination Survey (NHANES). For MR analysis, we used sleep- and AMD-associated genome-wide association studies (GWAS) data involving large populations. Methods The association between sleep duration and AMD was assessed using logistic regression models. For MR analysis, the primary approach for MR analysis was the inverse-variance weighted (IVW) method. Results In cross-sectional analysis, after adjusting for multiple covariates, short sleep duration (SSD) was found to be associated with increased risk of early AMD [odds ratio (OR) = 1.364, P = 0.036). MR analysis supported the results of cross-sectional analysis: SSD increases the risk of early AMD (β = 0.102, IVW-P = 0.003). Conclusion Our findings provide the evidence supporting the association between sleep deficiency and higher risk of AMD. Further studies are required to confirm our findings and elucidate the mechanisms underlying this association.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, The First Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhouyang Liu
- Department of Neurology, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Haihui Li
- Department of Ophthalmology, Yan’an People’s Hospital, Yan’an, Shaanxi, China
| |
Collapse
|
17
|
Wang L, Wang W, Han R, Liu Y, Wu B, Luo J. Protective effects of melatonin on myocardial microvascular endothelial cell injury under hypertensive state by regulating Mst1. BMC Cardiovasc Disord 2023; 23:179. [PMID: 37005605 PMCID: PMC10068162 DOI: 10.1186/s12872-023-03159-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND This study explored the protective effects of melatonin on the hypertensive model in myocardial microvascular endothelial cells. METHODS Mouse myocardial microvascular endothelial cells were intervened with angiotensin II to establish hypertensive cell model and divided into control, hypertension (HP), hypertension + adenovirus negative control (HP + Ad-NC), hypertension + adenovirus carrying Mst1 (HP + Ad-Mst1), hypertension + melatonin (HP + MT), hypertension + adenovirus negative control + melatonin (HP + Ad-NC + MT), and hypertension + adenovirus carrying Mst1 + melatonin (HP + Ad-Mst1 + MT) groups. Autophagosomes were observed by transmission electron microscope. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was detected by flow cytometry. Oxidative stress markers of MDA, SOD and GSH-PX were measured. The expression of LC3 and p62 was detected by immunofluorescence. Expression levels of Mst1, p-Mst1, Beclin1, LC3, and P62 were detected with Western blot. RESULTS Compared with the control group, the autophagosomes in HP, HP + Ad-Mst1, and HP + Ad-NC groups were significantly reduced. Compared with HP group, the autophagosomes in HP + Ad-Mst1 group were significantly reduced. The apoptosis of HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the apoptosis of HP + Ad-Mst1 + MT group was significantly reduced. The ratio of JC-1 monomer in HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the mitochondrial membrane potential of HP + Ad-Mst1 + MT group was also significantly reduced. MDA content in HP + MT group was significantly reduced, but SOD and GSH-PX activities were significantly increased. Compared with HP + Ad-Mst1 group, MDA content in HP + Ad-Mst1 + MT group was significantly reduced, whereas SOD and GSH-PX activities were increased significantly. Mst1 and p-Mst1 proteins in HP + MT group were significantly reduced. Compared with HP + Ad-Mst1 group, Mst1 and p-Mst1 in HP + Ad-Mst1 + MT group were reduced. P62 level was significantly decreased, while Beclin1 and LC3II levels were significantly increased. P62 in HP + MT group was significantly reduced, while Beclin1 and LC3II were significantly increased. Compared with HP + Ad-Mst1 group, P62 in HP + Ad-Mst1 + MT group was significantly reduced, but Beclin1 and LC3II were significantly increased. CONCLUSION Melatonin may inhibit apoptosis, increase mitochondrial membrane potential, and increase autophagy of myocardial microvascular endothelial cells under hypertensive state via inhibiting Mst1 expression, thereby exerting myocardial protective effect.
Collapse
Affiliation(s)
- Lingpeng Wang
- Department of Cardiology, the First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830000, China
| | - Wei Wang
- Department of Internal Medicine, The First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830000, China
| | - Ruimei Han
- Department of Cardiology, Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Yang Liu
- Department of Internal Medicine, The First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830000, China
| | - Bin Wu
- Department of Geriatrics, Xinjiang Military General Hospital, 359 Youhao North Street, Urumqi, Xinjiang, 830000, China.
| | - Jian Luo
- Department of Internal Medicine, The First Affiliated Hospital, Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
18
|
Tan DX, Reiter RJ, Zimmerman S, Hardeland R. Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light. BIOLOGY 2023; 12:89. [PMID: 36671781 PMCID: PMC9855654 DOI: 10.3390/biology12010089] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Throughout the history of melatonin research, almost exclusive focus has been on nocturnally-generated pineal melatonin production, which accounts for its circadian rhythm in the blood and cerebrospinal fluid; these light/dark melatonin cycles drive the daily and seasonal photoperiodic alterations in organismal physiology. Because pineal melatonin is produced and secreted primarily at night, it is referred to as the chemical expression of darkness. The importance of the other sources of melatonin has almost been ignored. Based on current evidence, there are at least four sources of melatonin in vertebrates that contribute to the whole-body melatonin pool. These include melatonin produced by (1) the pineal gland; (2) extrapineal cells, tissues, and organs; (3) the microbiota of the skin, mouth, nose, digestive tract, and vagina as well as (4) melatonin present in the diet. These multiple sources of melatonin exhibit differentially regulated mechanisms for its synthesis. Visible light striking the retina or an intense physical stimulus can suppress nocturnal pineal melatonin levels; in contrast, there are examples where extrapineal melatonin levels are increased during heavy exercise in daylight, which contains the whole range of NIR radiation. The cumulative impact of all cells producing augmented extrapineal melatonin is sufficient to elevate sweat concentrations, and potentially, if the exposure is sustained, to also increasing the circulating values. The transient increases in sweat and plasma melatonin support the premise that extrapineal melatonin has a production capacity that exceeds by far what can be produced by the pineal gland, and is used to maintain intercellular homeostasis and responds to rapid changes in ROS density. The potential regulatory mechanisms of near infrared light (NIR) on melatonin synthesis are discussed in detail herein. Combined with the discovery of high levels of melanopsin in most fat cells and their response to light further calls into question pineal centric theories. While the regulatory processes related to microbiota-derived melatonin are currently unknown, there does seem to be crosstalk between melatonin derived from the host and that originating from microbiota.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | | | - Ruediger Hardeland
- Johann Friedric Blumenbach Institute of Zoology and Anthropology, University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
19
|
Souissi A, Dergaa I, Romdhani M, Ghram A, Irandoust K, Chamari K, Ben Saad H. Can melatonin reduce the severity of post-COVID-19 syndrome? EXCLI JOURNAL 2023; 22:173-187. [PMID: 36998709 PMCID: PMC10043401 DOI: 10.17179/excli2023-5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
This short review aimed at (i) providing an update on the health benefits associated with melatonin supplementation, while (ii) considering future potential research directions concerning melatonin supplementation use relative to Coronavirus disease of 2019 (COVID-19). A narrative review of the literature was undertaken to ascertain the effect of exogenous melatonin administration on humans. Night-time melatonin administration has a positive impact on human physiology and mental health. Indeed, melatonin (i) modulates the circadian components of the sleep-wake cycle; (ii) improves sleep efficiency and mood status; (iii) improves insulin sensitivity; and (iv) reduces inflammatory markers and oxidative stress. Melatonin has also remarkable neuroprotective and cardioprotective effects and may therefore prevent deterioration caused by COVID-19. We suggest that melatonin could be used as a potential therapy in the post-COVID-19 syndrome, and therefore call for action the research community to investigate on the potential use of exogenous melatonin to enhance the quality of life in patients with post-COVID-19 syndrome. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Amine Souissi
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
- *To whom correspondence should be addressed: Amine Souissi, Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie, E-mail:
| | - Ismail Dergaa
- Primary Health Care Corporation (PHCC), Doha, P.O. Box 26555, Qatar
| | - Mohamed Romdhani
- Research Unit: Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
- Motricité-Interactions-Performance, MIP, UR4334, Le Mans Université, Le Mans, France
| | - Amine Ghram
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Khadijeh Irandoust
- Department of Sport Sciences, Imam Khomeini International University, Qazvin, Iran
| | - Karim Chamari
- Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Center of Excellence, Doha, Qatar
| | - Helmi Ben Saad
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| |
Collapse
|
20
|
Franco C, Sciatti E, Favero G, Bonomini F, Vizzardi E, Rezzani R. Essential Hypertension and Oxidative Stress: Novel Future Perspectives. Int J Mol Sci 2022; 23:ijms232214489. [PMID: 36430967 PMCID: PMC9692622 DOI: 10.3390/ijms232214489] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Among cardiovascular diseases, hypertension is one of the main risk factors predisposing to fatal complications. Oxidative stress and chronic inflammation have been identified as potentially responsible for the development of endothelial damage and vascular stiffness, two of the primum movens of hypertension and cardiovascular diseases. Based on these data, we conducted an open-label randomized study, first, to evaluate the endothelial damage and vascular stiffness in hypertense patients; second, to test the effect of supplementation with a physiological antioxidant (melatonin 1 mg/day for 1 year) in patients with essential hypertension vs. hypertensive controls. Twenty-three patients of either gender were enrolled and randomized 1:1 in two groups (control and supplemented group). The plasmatic total antioxidant capacity (as a marker of oxidative stress), blood pressure, arterial stiffness, and peripheral endothelial function were evaluated at the beginning of the study and after 1 year in both groups. Our results showed that arterial stiffness improved significantly (p = 0.022) in supplemented patients. The endothelial function increased too, even if not significantly (p = 0.688), after 1 year of melatonin administration. Moreover, the supplemented group showed a significative reduction in TAC levels (p = 0.041) correlated with the improvement of arterial stiffness. These data suggest that melatonin may play an important role in reducing the serum levels of TAC and, consequently, in improving arterial stiffness.
Collapse
Affiliation(s)
- Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Edoardo Sciatti
- Cardiology Unit 1, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
- Correspondence: (E.V.); (R.R.)
| |
Collapse
|
21
|
Li Y, Hung SW, Zhang R, Man GCW, Zhang T, Chung JPW, Fang L, Wang CC. Melatonin in Endometriosis: Mechanistic Understanding and Clinical Insight. Nutrients 2022; 14:nu14194087. [PMID: 36235740 PMCID: PMC9572886 DOI: 10.3390/nu14194087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is defined as the development of endometrial glands and stroma outside the uterine cavity. Pathophysiology of this disease includes abnormal hormone profiles, cell survival, migration, invasion, angiogenesis, oxidative stress, immunology, and inflammation. Melatonin is a neuroendocrine hormone that is synthesized and released primarily at night from the mammalian pineal gland. Increasing evidence has revealed that melatonin can be synthesized and secreted from multiple extra-pineal tissues where it regulates immune response, inflammation, and angiogenesis locally. Melatonin receptors are expressed in the uterus, and the therapeutic effects of melatonin on endometriosis and other reproductive disorders have been reported. In this review, key information related to the metabolism of melatonin and its biological effects is summarized. Furthermore, the latest in vitro and in vivo findings are highlighted to evaluate the pleiotropic functions of melatonin, as well as to summarize its physiological and pathological effects and treatment potential in endometriosis. Moreover, the pharmacological and therapeutic benefits derived from the administration of exogenous melatonin on reproductive system-related disease are discussed to support the potential of melatonin supplements toward the development of endometriosis. More clinical trials are needed to confirm its therapeutic effects and safety.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Sze-Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Gene Chi-Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Laboratory of Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| |
Collapse
|
22
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
23
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
24
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
25
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Redeker NS, Conley S, Hwang Y. Sleep Deficiency: A Symptoms Perspective: Exemplars from Chronic Heart Failure, Inflammatory Bowel Disease, and Breast Cancer. Clin Chest Med 2022; 43:217-228. [PMID: 35659020 PMCID: PMC9178708 DOI: 10.1016/j.ccm.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sleep deficiency is associated with disabling daytime symptoms, including excessive daytime sleepiness (EDS) and fatigue. The purpose of this article is to discuss the contributions of sleep deficiency and sleep disorders to fatigue and EDS among people with chronic conditions. We use exemplars from the literature on chronic heart failure, inflammatory bowel disease, and breast cancer to (1) describe the prevalence of fatigue and EDS and their consequences; (2) examine the evidence for the contributions of sleep deficiency and sleep disorders to these symptoms; and (3) recommend implications for future research and practice.
Collapse
Affiliation(s)
- Nancy S Redeker
- UCONN School of Nursing, Yale University, University of Connecticut School of Nursing, 231 Glenbrook Road, Unit 4026, Storrs, CT 06269-4026, USA.
| | - Samantha Conley
- Nursing Research Division, Department of Nursing, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Youri Hwang
- Yale School of Nursing, PO Box 27399, West Haven, CT 06516-0972, USA
| |
Collapse
|
27
|
Tain YL, Hsu CN. Developmental and Early Life Origins of Hypertension: Preventive Aspects of Melatonin. Antioxidants (Basel) 2022; 11:924. [PMID: 35624788 PMCID: PMC9138087 DOI: 10.3390/antiox11050924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertension represents a major disease burden worldwide. Abundant evidence suggests that hypertension can originate in early life. Adverse programming processes can be prevented by early life intervention-namely, reprogramming-to avoid developing chronic diseases later in life. Melatonin is an endogenously produced hormone with a multifaceted biological function. Although melatonin supplementation has shown benefits for human health, less attention has been paid to exploring its reprogramming effects on the early life origins of hypertension. In this review, first, we discuss the physiological roles of melatonin in pregnancy, fetal development, and the regulation of blood pressure. Then, we summarize the epidemiological and experimental evidence for the early life origins of hypertension. This is followed by a description of the animal models used to examine early melatonin therapy as a reprogramming strategy to protect against the early life origins of hypertension. A deeper understanding of the developmental programming of hypertension and recent advances in early melatonin intervention might provide a path forward in reducing the global burden of hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
28
|
Андреева ЕН, Григорян ОР, Абсатарова ЮС, Шереметьева ЕВ, Михеев РК. [Melatonin status in obese patients with ovarian dysfunction at reproductive age]. PROBLEMY ENDOKRINOLOGII 2022; 68:94-100. [PMID: 35262300 PMCID: PMC9112952 DOI: 10.14341/probl12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Melatonin is the main hormone of the pineal gland. By regulating circadian rhythms and being an immune regulator and antioxidant, this hormone takes part in the work of the ovaries: its high concentrations block apoptosis and neutralize reactive oxygen species involved in folliculogenesis, ovulation, egg maturation and corpus luteum formation. AIM To study melatonin status and its relationship with menstrual dysfunction and sleep disorders in obese women of reproductive age. MATERIALS AND METHODS In a one-stage comparative study, women 18-35 years old took part: 30 patients with obesity and menstrual disorders of an inorganic nature and 30 healthy women in the comparison group with normal weight and regular menstrual cycle. All participants underwent a questionnaire to identify somnological disorders, and the level of melatonin in saliva and 6-sulfatoxymelatonin in urine was also investigated. RESULTS In the group of patients with obesity (n=30), various sleep disorders were encountered in 47% of cases (p=0.003), including more often obstructive sleep apnea syndrome was recorded (30% of cases), and a correlation was found between the indicators of the questionnaire survey of subjective sleep characteristics and body mass index of patients (r=0.450, p=0.030) compared with a group of healthy women with normal weight (n=30). In the main group, the level of melatonin in saliva was statistically significantly lower than in the control: median 12.6 pg / ml and 25.5 pg / ml, respectively (p=0.008), the same pattern was recorded for 6-sulfatoxymelatonin: 14, 72 pg / ml and 31.12 pg / ml, respectively. CONCLUSION Patients with obesity and menstrual dysfunction are more likely to suffer from various sleep disorders and have lower levels of melatonin in saliva and 6-sulfatoxymelatonin in urine.
Collapse
Affiliation(s)
- Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии;
Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
29
|
Jafari-Vayghan H, Moludi J, Saleh-Ghadimi S, Enamzadeh E, Seyed-Mohammadzad MH, Alizadeh M. Impact of Melatonin and Branched-Chain Amino Acids Cosupplementation on Quality of Life, Fatigue, and Nutritional Status in Cachectic Heart Failure Patients: A Randomized Controlled Trial. Am J Lifestyle Med 2022; 16:130-140. [PMID: 35185435 PMCID: PMC8848111 DOI: 10.1177/1559827619874044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/23/2024] Open
Abstract
Background: Cardiac cachexia (CC) adversely affects the lifestyle of heart failure (HF) patients. The current study examined the impact of melatonin cosupplementation and branched-chain amino acids (BCAAs) on quality of life (QoL), fatigue, and nutritional status in cachectic HF patients. Methods: In this trial, 84 CC patients were randomized to melatonin, BCAAs, or coadministration (both) as intervention groups and a control group over 8 weeks. At baseline and postintervention, QoL, fatigue, and nutritional status were assessed. Results: After intervention, improvement in the overall and physical dimensions of QoL and appetite score were found to be statistically significant in the BCAAs (P < .001) and the melatonin+BCAAs (P < .001) groups compared with the placebo group. The emotional dimension score was significantly lower in the BCAAs group compared with the placebo group (P = .001). There was a statistically significant improvement in fatigue severity in all 3 intervention groups compared with the placebo group. The nutrition risk index (NRI) score increased significantly only in the melatonin group (P = .015), and there was no significant difference between the other groups (P = .804). Conclusions: Cosupplementation with BCAAs and melatonin improved QoL, fatigue status, and appetite in cachectic HF patients but did not affect NRI.
Collapse
Affiliation(s)
- Hamed Jafari-Vayghan
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Jalal Moludi
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Sevda Saleh-Ghadimi
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Elgar Enamzadeh
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Mir Hossein Seyed-Mohammadzad
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| | - Mohammad Alizadeh
- Student Research Committee (HJ-V, JM), Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences (SS-G), Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center (EE), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science (MA), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cardiology, Shohada Hospital, Urmia University of Medical Sciences, Urmia, Iran (MHS-M)
| |
Collapse
|
30
|
Dhanabalan K, Mzezewa S, Huisamen B, Lochner A. Mitochondrial Oxidative Phosphorylation Function and Mitophagy in Ischaemic/Reperfused Hearts from Control and High-Fat Diet Rats: Effects of Long-Term Melatonin Treatment. Cardiovasc Drugs Ther 2021; 34:799-811. [PMID: 32458321 DOI: 10.1007/s10557-020-06997-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Oxidative stress causes mitochondrial dysfunction in myocardial ischaemia/reperfusion (I/R) as well as in obesity. Mitochondrial depolarization triggers mitophagy to degrade damaged mitochondria, a process important for quality control. The aims of this study were to evaluate (i) the effect of I/R on mitochondrial oxidative phosphorylation and its temporal relationship with mitophagy in hearts from obese rats and their age-matched controls, and (ii) the role of oxidative stress in these processes using melatonin, a free radical scavenger. METHODS Male Wistar rats were divided into 4 groups: control (normal diet ± melatonin) and high-fat sucrose diet (HFSD ± melatonin). Rats received melatonin orally (10 mg/kg/day). After 16 weeks, hearts were removed and subjected to 40-min stabilization, and 25-min global ischaemia/10-min reperfusion for preparation of mitochondria. Mitochondrial oxidative phosphorylation was measured polarographically. Western blotting was used for evaluation of PINK1, Parkin, p62/SQSTM1 (p62) and TOM 70. Infarct size was measured using tetrazolium staining. RESULTS Ischaemia and reperfusion respectively reduced and increased mitochondrial QO2 (state 3) and the ox-phos rate in both control and HFSD mitochondria, showing no major changes between the groups, while melatonin pretreatment had little effect. p62 as indicator of mitophagic flux showed up- and downregulation of mitophagy by ischaemia and reperfusion respectively, with melatonin having no significant effect. Melatonin treatment caused a significant reduction in infarct size in hearts from both control and diet groups. CONCLUSIONS The results suggest that I/R (i) affects mitochondria from control and HFSD hearts similarly and (ii) melatonin-induced cardioprotection is not associated with reversal of mitochondrial dysfunction or changes in the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Karthik Dhanabalan
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Sibonginkosi Mzezewa
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
31
|
Langston-Cox A, Marshall SA, Lu D, Palmer KR, Wallace EM. Melatonin for the Management of Preeclampsia: A Review. Antioxidants (Basel) 2021; 10:antiox10030376. [PMID: 33802558 PMCID: PMC8002171 DOI: 10.3390/antiox10030376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Preeclampsia is a disease specific to pregnancy characterised by new-onset hypertension with maternal organ dysfunction and/or fetal growth restriction. It remains a major cause of maternal and perinatal morbidity and mortality. For sixty years, antihypertensives have been the mainstay of treating preeclampsia and only recently have insights into the pathogenesis of the disease opened new avenues for novel therapies. Melatonin is one such option, an endogenous and safe antioxidant, that may improve the maternal condition in preeclampsia while protecting the fetus from a hostile intrauterine environment. Here we review the evidence for melatonin as a possible adjuvant therapy for preeclampsia, including in vitro evidence supporting a role for melatonin in protecting the human placenta, preclinical models, vascular studies, and clinical studies in hypertension and pregnancy.
Collapse
Affiliation(s)
- Annie Langston-Cox
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Sarah A. Marshall
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Daisy Lu
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Kirsten R. Palmer
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
- Monash Health, Clayton, VIC 3168, Australia
| | - Euan M. Wallace
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
- Correspondence: ; Tel.: +61-3-9594-5145; Fax: +61-3-9594-5003
| |
Collapse
|
32
|
Abstract
Preservation of a robust circadian rhythmicity (particulsarly of the sleep/wake cycle), a proper nutrition and adequate physical exercise are key elements for healthy aging. Aging comes along with circadian alteration, e.g. a disrupted sleep and inflammation, that leads to metabolic disorders. In turn, sleep cycle disturbances cause numerous pathophysiological changes that accelerates the aging process. In the central nervous system, sleep disruption impairs several functions, among them, the clearance of waste molecules. The decrease of plasma melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, plays a particular role as far as the endocrine sequels of aging. Every day, the late afternoon/nocturnal increase of melatonin synchronizes both the central circadian pacemaker located in the hypothalamic suprachiasmatic nuclei as well as myriads of peripheral cellular circadian clocks. This is called the "chronobiotic effect" of melatonin, the methoxyindole being the prototype of the endogenous family of chronobiotic agents. In addition, melatonin exerts a significant cytoprotective action by buffering free radicals and reversing inflammation via down regulation of proinflammatory cytokines, suppression of low degree inflammation and prevention of insulin resistance. Because of these properties melatonin has been advocated to be a potential therapeutic tool in COVID 19 pandemic. Melatonin administration to aged animals counteracts a significant number of senescence-related changes. In humans, melatonin is effective both as a chronobiotic and a cytoprotective agent to maintain a healthy aging. Circulating melatonin levels are consistently reduced in the metabolic syndrome, ischemic and non-ischemic cardiovascular diseases and neurodegenerative disorders like the Alzheimer's and Parkinson's diseases. The potential therapeutic value of melatonin has been suggested by a limited number of clinical trials generally employing melatonin in the 2-10mg/day range. However, from animal studies the cytoprotective effects of melatonin need higher doses to become apparent (i.e. in the 100mg/day range). Hence, controlled studies employing melatonin doses in this range are urgently needed.
Collapse
|
33
|
Rahbarghazi A, Siahkouhian M, Rahbarghazi R, Ahmadi M, Bolboli L, Keyhanmanesh R, Mahdipour M, Rajabi H. Role of melatonin in the angiogenesis potential; highlights on the cardiovascular disease. J Inflamm (Lond) 2021; 18:4. [PMID: 33531055 PMCID: PMC7852194 DOI: 10.1186/s12950-021-00269-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/21/2021] [Indexed: 01/18/2023] Open
Abstract
Melatonin possesses multi-organ and pleiotropic effects with potency to control angiogenesis at both molecular and cellular levels. To date, many efforts have been made to control and regulate the dynamic of angiogenesis modulators in a different milieu. The term angiogenesis or neovascularization refers to the development of de novo vascular buds from the pre-existing blood vessels. This phenomenon is tightly dependent on the balance between the pro- and anti-angiogenesis factors which alters the functional behavior of vascular cells. The promotion of angiogenesis is thought to be an effective strategy to accelerate the healing process of ischemic changes such as infarcted myocardium. Of note, most of the previous studies have focused on the anti-angiogenesis capacity of melatonin in the tumor niche. To the best of our knowledge, few experiments highlighted the melatonin angiogenesis potential and specific regulatory mechanisms in the cardiovascular system. Here, we aimed to summarize some previous experiments related to the application of melatonin in cardiovascular diseases such as ischemic injury and hypertension by focusing on the regulatory mechanisms.
Collapse
Affiliation(s)
- Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science & Psychology, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Siahkouhian
- Department of Physical Education and Sports Sciences, Faculty of Educational Science & Psychology, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran.
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lotfali Bolboli
- Department of Physical Education and Sports Sciences, Faculty of Educational Science & Psychology, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Ozkalayci F, Kocabas U, Altun BU, Pandi-Perumal S, Altun A. Relationship Between Melatonin and Cardiovascular Disease. Cureus 2021; 13:e12935. [PMID: 33654615 PMCID: PMC7914336 DOI: 10.7759/cureus.12935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of morbidity and mortality worldwide. The coronary atherosclerotic process involves different pathological mechanisms; inflammation is one of the major triggers for the development of atherosclerotic plaque. Although several studies showed the favorable effects of melatonin on the cardiovascular system (CVS), melatonin seems not to take its rightful place in today's clinical practice. This review aims to point out the role of melatonin on cardiovascular disease (CVD) and its' risk factors. All data were obtained via PubMed, Wikipedia, and Google.
Collapse
Affiliation(s)
| | - Umut Kocabas
- Cardiology, Baskent University Izmir Hospital, Izmir, TUR
| | | | | | - Armagan Altun
- Cardiology, Baskent University İstanbul Hospital, Istanbul, TUR
| |
Collapse
|
35
|
Steffen LM, Yi SY, Duprez D, Zhou X, Shikany JM, Jacobs DR. Walnut consumption and cardiac phenotypes: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Nutr Metab Cardiovasc Dis 2021; 31:95-101. [PMID: 33097410 PMCID: PMC8574984 DOI: 10.1016/j.numecd.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Observational studies and clinical trials have shown cardiovascular benefits of nut consumption, including walnuts. However, the relations of walnut consumption with systolic and diastolic function, risk factors for heart failure, are unknown. We examined the associations of walnut consumption with cardiac structure and function parameters in black and white adults enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) study. METHODS AND RESULTS After exclusions, the study population included 3341 participants. Dietary intake was assessed using the CARDIA Diet History questionnaire at baseline, year 7 and year 20 exams. Cardiac structure and function were measured by echocardiography at year 25. Multivariable linear regression evaluated the associations of walnut consumption with blood pressure (BP), heart rate, and cardiac phenotypes, adjusting for age, sex, race, lifestyle habits, and clinical characteristics. We found the majority of walnut consumers compared to non-consumers were females, whites, and more highly educated, and had lower waist circumference, diastolic BP, and heart rate, and higher diet quality score. Even though cardiac structure and function measures were generally within normal ranges among participants, walnut consumers had significantly better values for diastolic function parameters A wave, E/A ratio, septal and lateral e' than non-consumers. Further adjustment for body mass index and diabetes status did not materially change the significance between walnut consumer groups. Systolic function parameters did not differ by walnut group. CONCLUSION Compared to non-consumers, walnut consumption is associated with better diastolic dysfunction in young to middle-aged adults.
Collapse
Affiliation(s)
- Lyn M Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - So Yun Yi
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Duprez
- Cardiology Division, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xia Zhou
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
36
|
Ramirez AVG, Filho DR, de Sá LBPC. Melatonin and its Relationships with Diabetes and Obesity: A Literature Review. Curr Diabetes Rev 2021; 17:e072620184137. [PMID: 32718296 DOI: 10.2174/1573399816666200727102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is an important clinical entity, causing many public health issues. Around two billion people in the world are overweight and obese. Almost 40% of American adults are obese and Brazil has about 18 million obese people. Nowadays, 415 million people have diabetes, around 1 in every 11 adults. These numbers will rise to 650 million people within 20 years. Melatonin shows a positive profile on the regulation of the metabolism of the human body. OBJECTIVE This study aimed to carry out a broad narrative review of the metabolic profile and associations between melatonin, diabetes and obesity. METHODS Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, and placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the content part of the paper, and 153 studies composed the narrative review. RESULTS Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding the possible benefit of it. There is so far no consensus about the possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Ana V G Ramirez
- Clinic Ana Valeria (CAV)- Clinic of Nutrition and Health Science, Street Antônio José Martins Filho, 300, Sao Jose do Rio Preto SP, 15092-230, Brazil
| | - Durval R Filho
- Associacao Brasileira de Nutrologia (ABRAN)/Brazilian Association of Nutrology, Catanduva/SP, Rua Belo Horizonte, 909 - Centro, Catanduva SP, Brazil
| | | |
Collapse
|
37
|
Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: A review of physiological mechanisms and clinical applications. Pharmacol Res 2020; 163:105254. [PMID: 33080320 DOI: 10.1016/j.phrs.2020.105254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Despite the evolving advances in clinical approaches to obesity and its inherent comorbidities, the therapeutic challenge persists. Among several pharmacological tools already investigated, recent studies suggest that melatonin supplementation could be an efficient therapeutic approach in the context of obesity. In the present review, we have amalgamated the evidence so far available on physiological effects of melatonin supplementation in obesity therapies, addressing its effects upon neuroendocrine systems, cardiometabolic biomarkers and body composition. Most studies herein appraised employed melatonin supplementation at dosages ranging from 1 to 20 mg/day, and most studies followed up participants for periods from 3 weeks to 12 months. Overall, it was observed that melatonin plays an important role in glycaemic homeostasis, in addition to modulation of white adipose tissue activity and lipid metabolism, and mitochondrial activity. Additionally, melatonin increases brown adipose tissue volume and activity, and its antioxidant and anti-inflammatory properties have also been demonstrated. There appears to be a role for melatonin in adiposity reduction; however, several questions remain unanswered, for example melatonin baseline levels in obesity, and whether any seeming hypomelatonaemia or melatonin irresponsiveness could be clarifying factors. Supplementation dosage studies and more thorough clinical trials are needed to ascertain not only the relevance of such findings but also the efficacy of melatonin supplementation.
Collapse
Affiliation(s)
- Rafael Genario
- School of Medicine, University of Sao Paulo (USP), São Paulo, Brazil.
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
38
|
Morvaridzadeh M, Sadeghi E, Agah S, Nachvak SM, Fazelian S, Moradi F, Persad E, Heshmati J. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol Res 2020; 161:105210. [PMID: 33007423 DOI: 10.1016/j.phrs.2020.105210] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxidative stress, defined as an imbalance between pro-oxidants and neutralizing antioxidants within the body, is a growing public health concern. Oxidative stress is involved in the progression of nearly all chronic diseases. Melatonin has been suggested to reduce oxidative stress by its potential radical scavenging properties. OBJECTIVE To determine the efficacy and safety of melatonin as a therapy for the improvement of oxidative stress parameters in randomized controlled trials. METHODS A systematic database search using Scopus, PubMed/Medline, EMBASE, Web of Science, the Cochrane Controlled Register of Trials and clinicaltrials.gov (https://clinicaltrials.gov) for studies published up to July 2020 was conducted. We included studies which investigated the effect of supplemental melatonin compared to placebo on oxidative stress parameters in unhealthy patients. Quantitative data synthesis was conducted using a random-effects model with standard mean difference (SMD) and 95 % confidence intervals (CI). Cochrane's Q and I2 values were used to evaluate heterogeneity. RESULTS A total of 12 randomized controlled trials (RCTs) were eligible. The meta-analysis indicated an association between melatonin intake and a significant increase in total antioxidant capacity (TAC) (SMD: 0.76; 95 % CI: 0.30, 1.21; I2 = 80.1 %), glutathione (GSH) levels (SMD: 0.57; 95 % CI: 0.32, 0.83; I2 = 15.1 %), superoxide dismutase (SOD) (SMD: 1.38; 95 % CI: 0.13, 2.62; I2 = 86.9 %), glutathione peroxidase (GPx) (SMD: 1.36; 95 % CI: 0.46, 2.30; I2 = 89.3 %), glutathione reductase (GR) (SMD: 1.21; 95 % CI: 0.65, 1.77; I2 = 00.0 %) activities, and a significant reduction in malondialdehyde (MDA) levels (SMD: -0.79; 95 % CI: -1.19, -0.39; I2 = 73.1 %). Melatonin intake was not shown to significantly affect nitric oxide (NO) levels (SMD: -0.24; 95 % CI: -0.61, 0.14; I2 = 00.0 %) or catalase (CAT) activity (SMD: -1.38; 95 % CI: -1.42, 4.18; I2 = 96.6 %). CONCLUSION Melatonin intake was shown to have a significant impact on improving Oxidative stress parameters. However, future research through large, well-designed randomized controlled trials are required to determine the effect of melatonin on oxidative stress parameters in different age groups and different disease types.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
39
|
Wang Y, Han D, Zhou T, Zhang J, Liu C, Cao F, Dong N. Melatonin ameliorates aortic valve calcification via the regulation of circular RNA CircRIC3/miR-204-5p/DPP4 signaling in valvular interstitial cells. J Pineal Res 2020; 69:e12666. [PMID: 32369647 DOI: 10.1111/jpi.12666] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent with marked morbidity and mortality rates and a lack of pharmaceutical treatment options because its mechanisms are unknown. Melatonin is reported to exert atheroprotective effects. However, whether melatonin protects against aortic valve calcification, a disease whose pathogenesis shares many similarities to that of atherosclerosis, and the underlying molecular mechanisms remain unknown. In this study, we found that the intragastric administration of melatonin for 24 weeks markedly ameliorated aortic valve calcification in high cholesterol diet (HCD)-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased transvalvular peak jet velocity and increased aortic valve area), and decreased osteogenic differentiation marker (Runx2, osteocalcin, and osterix) expression in the aortic valves. Consistent with these in vivo data, we also confirmed the suppression of in vitro calcification by melatonin in hVICs. Mechanistically, melatonin reduced the level of CircRIC3, a procalcification circular RNA, which functions by acting as a miR-204-5p sponge to positively regulate the expression of the procalcification gene dipeptidyl peptidase-4 (DPP4). Furthermore, CircRIC3 overexpression abolished the inhibitory effects of melatonin on hVIC osteogenic differentiation. Taken together, our results suggest that melatonin ameliorates aortic valve calcification via the regulation of CircRIC3/miR-204-5p/DPP4 signaling in hVICs; therefore, melatonin medication might be considered a novel pharmaceutical strategy for CAVD treatment.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Han
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Liu X, Gao Q, Feng Z, Tang Y, Zhao X, Chen D, Feng X. Protective Effects of Spermidine and Melatonin on Deltamethrin-Induced Cardiotoxicity and Neurotoxicity in Zebrafish. Cardiovasc Toxicol 2020; 21:29-41. [PMID: 32651933 DOI: 10.1007/s12012-020-09591-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Increased application of the pyrethroid insecticide deltamethrin has adverse effects on the cardiac system and neurobehavior on the non-target organisms, which has raised the public's attention. Because of spermidine and melatonin considered to have cardioprotective and neuroprotective characteristics, zebrafish were utilized as the model organism to explore the protective effects of spermidine and melatonin against deltamethrin-induced toxicity. We tested the neurobehavior of zebrafish larvae through a rest/wake behavior assay, and evaluated the levels of the expression of Scn5lab, gata4, nkx2.5, hcrt, hcrtr, and aanat2 by qRT-PCR. Besides that cmlc2 was evaluated by whole-mount in situ hybridization. Results have shown that compared with control group, 0.025 mg/L deltamethrin could significantly disturb the cardiac development, downregulating the expression of Scn5lab and transcriptional factors gata4 and nkx2.5, disturbing cardiac looping, resulting in defects in cardiac morphology and function. Moreover, deltamethrin could alter the expression levels of rest/wake genes and cause hyperactivity in zebrafish larvae. Besides, compared with deltamethrin group, the exogenous 0.01 mg/L spermidine and 0.232 mg/L melatonin could significantly rescue the adverse effects of deltamethrin on the cardiac system and neurobehavior in zebrafish. This indicated that spermidine and melatonin have neuroprotective and cardioprotective effects against deltamethrin-induced adverse effects in zebrafish.
Collapse
Affiliation(s)
- Xingyu Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qian Gao
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Zeyang Feng
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Yaqiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Dongyan Chen
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
41
|
Wu J, Yang Y, Gao Y, Wang Z, Ma J. Melatonin Attenuates Anoxia/Reoxygenation Injury by Inhibiting Excessive Mitophagy Through the MT2/SIRT3/FoxO3a Signaling Pathway in H9c2 Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2047-2060. [PMID: 32546969 PMCID: PMC7260543 DOI: 10.2147/dddt.s248628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Purpose Autophagy caused by ischemia/reperfusion (I/R) increases the extent of cardiomyocyte damage. Melatonin (Mel) diminishes cardiac injury through regulating autophagy and mitochondrial dynamics. However, illustrating the specific role of mitophagy in the cardioprotective effects of melatonin remains a challenge. The aim of our research was to investigate the impact and underlying mechanisms of melatonin in connection with mitophagy during anoxia/reoxygenation (A/R) injury in H9c2 cells. Methods H9c2 cells were pretreated with melatonin with or without the melatonin membrane receptor 2 (MT2) antagonist 4-P-PDOT, the MT2 agonist IIK7 and the sirtuin 3 (SIRT3) inhibitor 3-TYP for 4 hours and then subjected to A/R injury. Cell viability, cellular apoptosis, necrosis levels and oxidative markers were assessed. The expression of SIRT3 and forkhead box O3a (FoxO3a), mitochondrial function and the levels of mitophagy-related proteins were also evaluated. Results A/R injury provoked enhanced mitophagy in H9c2 myocytes. In addition, increased mitophagy was correlated with decreased cellular viability, increased oxidative stress and mitochondrial dysfunction in H9c2 cells. However, melatonin pretreatment notably increased cell survival and decreased cell apoptosis and oxidative response after A/R injury, accompanied by restored mitochondrial function. The inhibition of excessive mitophagy is involved in the cardioprotective effects of melatonin, as shown by the decreased expression of the mitophagy-related molecules Parkin, Beclin1, and BCL2-interacting protein 3-like (BNIP3L, best known as NIX) and decreased light chain 3 II/light chain 3 I (LC3 II/LC3 I) ratio and upregulation of p62 expression. Moreover, the decreased expression of SIRT3 and FoxO3a in A/R-injured H9c2 cells was abrogated by melatonin, but these beneficial effects were attenuated by the MT2 antagonist 4-P-PDOT or the SIRT3 inhibitor 3-TYP and enhanced by the MT2 agonist IIK7. Conclusion These results indicate that melatonin protects H9c2 cells during A/R injury through suppressing excessive mitophagy by activating the MT2/SIRT3/FoxO3a pathway. Melatonin may be a useful candidate for alleviating myocardial ischemia/reperfusion (MI/R) injury in the future, and the MT2 receptor might become a therapeutic target.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yafen Gao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
42
|
Soares AC, Fonseca DA. Cardiovascular diseases: a therapeutic perspective around the clock. Drug Discov Today 2020; 25:1086-1098. [PMID: 32320853 DOI: 10.1016/j.drudis.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023]
Abstract
Biological rhythms are a ubiquitous feature of life. Most bodily functions, including physiological, biochemical, and behavioral processes, are coupled by the circadian rhythm. In the cardiovascular system, circadian fluctuations regulate several functions, namely heart rate, blood pressure, cardiac contractility, and metabolism. In fact, current lifestyles impose external timing constraints that clash with our internal circadian physiology, often increasing the risk of cardiovascular disease (CVD). Still, the mechanisms of dysregulation are not fully understood because this is a growing area of research. In this review, we explore the modulatory role of the circadian rhythms on cardiovascular function and disease as well as the role of chronotherapy in the context of CVD and how such an approach could improve existing therapies and assist in the development of new ones.
Collapse
Affiliation(s)
| | - Diogo A Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
43
|
Xu F, Zhong J, Lin X, Shan S, Guo B, Zheng M, Wang Y, Li F, Cui R, Wu F, Zhou E, Liao X, Liu Y, Yuan L. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res 2020; 68:e12631. [PMID: 31943334 PMCID: PMC7154654 DOI: 10.1111/jpi.12631] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
In the elderly with atherosclerosis, hypertension and diabetes, vascular calcification and ageing are ubiquitous. Melatonin (MT) has been demonstrated to impact the cardiovascular system. In this study, we have shown that MT alleviates vascular calcification and ageing, and the underlying mechanism involved. We found that both osteogenic differentiation and senescence of vascular smooth muscle cells (VSMCs) were attenuated by MT in a MT membrane receptor-dependent manner. Moreover, exosomes isolated from VSMCs or calcifying vascular smooth muscle cells (CVSMCs) treated with MT could be uptaken by VSMCs and attenuated the osteogenic differentiation and senescence of VSMCs or CVSMCs, respectively. Moreover, we used conditional medium from MT-treated VSMCs and Transwell assay to confirm exosomes secreted by MT-treated VSMCs attenuated the osteogenic differentiation and senescence of VSMCs through paracrine mechanism. We also found exosomal miR-204/miR-211 mediated the paracrine effect of exosomes secreted by VSMCs. A potential target of these two miRs was revealed to be BMP2. Furthermore, treatment of MT alleviated vascular calcification and ageing in 5/6-nephrectomy plus high-phosphate diet-treated (5/6 NTP) mice, while these effects were partially reversed by GW4869. Exosomes derived from MT-treated VSMCs were internalised into mouse artery detected by in vivo fluorescence image, and these exosomes reduced vascular calcification and ageing of 5/6 NTP mice, but both effects were largely abolished by inhibition of exosomal miR-204 or miR-211. In summary, our present study revealed that exosomes from MT-treated VSMCs could attenuate vascular calcification and ageing in a paracrine manner through an exosomal miR-204/miR-211.
Collapse
Affiliation(s)
- Feng Xu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Jia‐Yu Zhong
- Department of GeriatricsInstitute of Aging and Age‐related Disease ResearchThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Xiao Lin
- Department of RadiologyThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Su‐Kang Shan
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Bei Guo
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Ming‐Hui Zheng
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Yi Wang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Fuxingzi Li
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Rong‐Rong Cui
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Feng Wu
- Department of PathologyThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - En Zhou
- Department of Otorhinolaryngology Head and Neck SurgeryHunan Provincial People's HospitalChangshaChina
| | - Xiao‐Bo Liao
- Department of Cardiovascular SurgeryThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - You‐Shuo Liu
- Department of GeriatricsInstitute of Aging and Age‐related Disease ResearchThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Ling‐Qing Yuan
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesHunan Provincial Key Laboratory of Metabolic Bone DiseasesThe Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
44
|
Tsai D, Chen H, Leu H, Chen S, Hsu N, Huang C, Chen J, Lin S, Chou P. The association between clinically diagnosed insomnia and age-related macular degeneration: a population-based cohort study. Acta Ophthalmol 2020; 98:e238-e244. [PMID: 31496121 DOI: 10.1111/aos.14238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE The decreased level of melatonin, the substance involved in the control of the sleep-wake cycle, has been reported among the patients with age-related macular degeneration (AMD). However, knowledge about the relationship between sleep disturbance and AMD is still limited. This longitudinal case-control study aims to investigate the risk of incident AMD among the patients with clinically diagnosed insomnia using the Taiwan National Health Insurance Research Database. METHODS The insomnia cohort (n = 15 465) consisted of newly diagnosed insomnia cases aged ≥55 years between 2000 and 2009. Subjects without insomnia, matched for age, gender and enrolment time, were randomly sampled as the control cohort (n = 92 790). Cox proportional hazard regressions were performed to calculate the hazard ratios (HR) of incident AMD for the two cohorts after adjusting for potential confounders. RESULTS Of the 108 255 sampled subjects, 2094 (1.9%) were diagnosed with AMD, including 214 (0.2%) with neovascular AMD, during a mean follow-up period of 5.1 ± 2.8 years. Insomnia patients were more likely to have subsequent AMD than those without insomnia (2.5% versus 1.8%, p < 0.001). Further, the incidence of exudative AMD was also higher in the insomnia cohort than the control cohort (0.3% versus 0.2%, p = 0.002). The adjusted HR was 1.33 (95% confidence interval [CI], 1.18-1.48, p < 0.001) for AMD and 1.67 (95% CI, 1.20-2.33, p = 0.002) for exudative AMD. CONCLUSIONS Clinically diagnosed insomnia is an independent indicator for the increased risk of subsequent AMD development.
Collapse
Affiliation(s)
- Der‐Chong Tsai
- Department of Ophthalmology National Yang‐Ming University Hospital Yilan Taiwan
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Community Medicine Research Center & Institute of Public Health National Yang‐Ming University Taipei Taiwan
| | - Hsi‐Chung Chen
- Community Medicine Research Center & Institute of Public Health National Yang‐Ming University Taipei Taiwan
- Department of Psychiatry & Center of Sleep Disorders National Taiwan University Hospital Taipei Taiwan
| | - Hsin‐Bang Leu
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Cardiovascular Research Center National Yang‐Ming University Taipei Taiwan
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
- Healthcare and Management Center Taipei Veterans General Hospital Taipei Taiwan
| | - Shih‐Jen Chen
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Department of Ophthalmology Taipei Veterans General Hospital Taipei Taiwan
| | - Nai‐Wei Hsu
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Community Medicine Research Center & Institute of Public Health National Yang‐Ming University Taipei Taiwan
- Department of Internal Medicine National Yang‐Ming University Hospital Yilan Taiwan
- Public Health Bureau Yilan County Yilan Taiwan
| | - Chin‐Chou Huang
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Cardiovascular Research Center National Yang‐Ming University Taipei Taiwan
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
- Institute of Pharmacology National Yang‐Ming University Taipei Taiwan
- Department of Medical Education Taipei Veterans General Hospital Taipei Taiwan
| | - Jaw‐Wen Chen
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Cardiovascular Research Center National Yang‐Ming University Taipei Taiwan
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
- Institute of Pharmacology National Yang‐Ming University Taipei Taiwan
- Department of Medical Research Taipei Veterans General Hospital Taipei Taiwan
| | - Shing‐Jong Lin
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Cardiovascular Research Center National Yang‐Ming University Taipei Taiwan
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
- Healthcare and Management Center Taipei Veterans General Hospital Taipei Taiwan
- Institute of Pharmacology National Yang‐Ming University Taipei Taiwan
| | - Pesus Chou
- National Yang‐Ming University School of Medicine Taipei Taiwan
- Community Medicine Research Center & Institute of Public Health National Yang‐Ming University Taipei Taiwan
| |
Collapse
|
45
|
Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:521-536. [DOI: 10.1007/s00210-020-01822-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
|
46
|
Perinatal Use of Melatonin for Offspring Health: Focus on Cardiovascular and Neurological Diseases. Int J Mol Sci 2019; 20:ijms20225681. [PMID: 31766163 PMCID: PMC6888176 DOI: 10.3390/ijms20225681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular and neurological diseases can originate in early life. Melatonin, a biologically active substance, acts as a pleiotropic hormone essential for pregnancy and fetal development. Maternal melatonin can easily pass the placenta and provide photoperiodic signals to the fetus. Though melatonin uses in pregnant or lactating women have not yet been recommended, there is a growing body of evidence from animal studies in support of melatonin as a reprogramming strategy to prevent the developmental programming of cardiovascular and neurological diseases. Here, we review several key themes in melatonin use in pregnancy and lactation within offspring health and disease. We have particularly focused on the following areas: the pathophysiological roles of melatonin in pregnancy, lactation, and fetal development; clinical uses of melatonin in fetal and neonatal diseases; experimental evidence supporting melatonin as a reprogramming therapy to prevent cardiovascular and neurological diseases; and reprogramming mechanisms of melatonin within developmental programming. The targeting of melatonin uses in pregnancy and lactation will be valuable in the prevention of various adult chronic diseases in later life, and especially cardiovascular and neurological diseases.
Collapse
|
47
|
Prado NJ, Egan Beňová T, Diez ER, Knezl V, Lipták B, Ponce Zumino AZ, Llamedo-Soria M, Szeiffová Bačová B, Miatello RM, Tribulová N. Melatonin receptor activation protects against low potassium-induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J Pineal Res 2019; 67:e12605. [PMID: 31408542 DOI: 10.1111/jpi.12605] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022]
Abstract
Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 μmol/L), a melatonin receptor blocker (luzindole, 5 μmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Tamara Egan Beňová
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Vladimír Knezl
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Boris Lipták
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Amira Zulma Ponce Zumino
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mariano Llamedo-Soria
- Department of Electronic Engineering, Universidad Tecnológica Nacional, Buenos Aires, Argentina
| | - Barbara Szeiffová Bačová
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| | - Roberto Miguel Miatello
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Narcisa Tribulová
- Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovakia
| |
Collapse
|
48
|
Zahid JA, Isbrand A, Kleif J, Schou-Pedersen AMV, Lykkesfeldt J, Madsen MT, Gögenur I. The effect of melatonin on endothelial dysfunction in patients after acute coronary syndrome: The MEFACS randomized clinical trial. J Pineal Res 2019; 67:e12600. [PMID: 31355944 DOI: 10.1111/jpi.12600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction (ED) precedes acute coronary syndrome. Oxidative stress results in ED but is reversible. Melatonin is aside from being a circadian hormone, also an antioxidant. The aim of this study was to investigate whether 25 mg melatonin administered for twelve weeks following acute coronary syndrome (ACS) could improve ED. In this placebo-controlled randomized trial, ED was measured as reactive hyperemia index (RHI) at baseline, day 14, and day 84. The effect was assessed using a generalized estimating equation adjusted for the baseline RHI. As secondary outcome, the concentrations of three biomarkers were measured: l-arginine, asymmetric dimethylarginine, and uric acid. Thirty-one patients were included in the study. The intention-to-treat analysis of the primary outcome had 26 patients due to missing data. The estimated marginal mean difference in RHI at day 14 and day 84 between the groups was 0.15 (95% CI: 0.29-0.01, P = .039) in favor of the placebo group. No significant differences in the biomarker concentrations were found. Melatonin treatment after ACS did not improve but may have aggravated ED. The significant difference between groups was in favor of placebo, but this might be due to the effect of missing data or uneven distribution of comorbidities.
Collapse
Affiliation(s)
- Jawad Ahmad Zahid
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Anders Isbrand
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, Herlev, Denmark
| | - Jakob Kleif
- Department of Surgery, Nordsjaellands Hospital, Hillerød, Denmark
| | | | - Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Tvilling Madsen
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Ismail Gögenur
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Køge, Denmark
| |
Collapse
|
49
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Xu L, Zhang W, Kwak M, Zhang L, Lee PCW, Jin JO. Protective Effect of Melatonin Against Polymicrobial Sepsis Is Mediated by the Anti-bacterial Effect of Neutrophils. Front Immunol 2019; 10:1371. [PMID: 31275316 PMCID: PMC6593141 DOI: 10.3389/fimmu.2019.01371] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/30/2019] [Indexed: 02/02/2023] Open
Abstract
Sepsis is an infection- or toxin-mediated systemic inflammatory syndrome. Previous studies have shown that melatonin, the primary hormone produced by the pineal gland, attenuates the effect of polymicrobial infection-mediated septic shock in animals. However, the mechanism of the anti-septic effect of melatonin during polymicrobial infection has not been well-studied. In this study, we investigated how melatonin protects mice from polymicrobial sepsis. Melatonin treatment inhibited peripheral tissue inflammation and tissue damage in a cecal ligation puncture (CLP)-induced polymicrobial sepsis model, consequently reducing the mortality of the mice. We found that macrophages and neutrophils expressed melatonin receptors. Upon depletion of neutrophils, melatonin-induced protection against polymicrobial infection failed in the mice, but melatonin treatment in macrophage-depleted mice attenuated the mice mortality resulting from polymicrobial sepsis. Moreover, melatonin treatment promoted the development of the neutrophil extracellular trap (NET), which contributed to anti-bacterial activity during polymicrobial infection, whereas the phagocytic activities of neutrophils were inhibited by melatonin. The data from this study support previously unexplained antiseptic effects of melatonin during a polymicrobial infection and could be potentially useful for human patients with sepsis.
Collapse
Affiliation(s)
- Li Xu
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, South Korea
| | - LiJun Zhang
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peter C W Lee
- Department of Biomedical Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|