1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Si J, Yu K, Hao J, Wang J, Zhang L. The therapeutic effects and mechanisms of glucagon-like peptide-1 receptor agonists in neurocognitive disorders. Ther Adv Neurol Disord 2025; 18:17562864251332035. [PMID: 40291753 PMCID: PMC12033604 DOI: 10.1177/17562864251332035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic cerebral hypoperfusion (CCH) represents a key pathogenic contributor to neurocognitive disorders. It can lead to multifaceted pathological alterations including neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, synaptic plasticity deficits, and mitochondrial dysfunction. The glucagon-like peptide-1 receptor (GLP-1R), ubiquitously expressed across multiple organ systems, exerts neuroprotective effects by maintaining intracellular homeostasis and mitigating neuronal damage triggered by oxidative stress, inflammatory cascades, apoptotic signaling, and ischemic insults. Furthermore, GLP-1R activity is modulated by gut microbiota composition and short-chain fatty acid abundance, implicating the gut-brain axis in its regulatory influence on neurological function. This review systematically examines the pathophysiological mechanisms underlying CCH and highlights the therapeutic potential of GLP-1R activation. Specifically, GLP-1R-targeted interventions attenuate hypoperfusion-induced damage through pleiotropic pathways and gut-brain crosstalk, thereby offering novel perspectives for advancing both fundamental research and clinical management of neurocognitive disorders.
Collapse
Affiliation(s)
- Junchen Si
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Kai Yu
- Department of Burn and Plastic Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, No. 45 Huashan Road, Liaocheng, Shandong 252000, China
| |
Collapse
|
3
|
Au HCT, Lam PH, Lim PK, McIntyre RS. Role of Glucagon-Like Peptide-1 on Amyloid, Tau, and α-Synuclein: Target Engagement and Rationale for the Development in Neurodegenerative Disorders. Neurosci Biobehav Rev 2025; 173:106159. [PMID: 40252880 DOI: 10.1016/j.neubiorev.2025.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Glucagon-like Peptide-1 (GLP-1) and Glucagon-Like Peptide-1 receptor agonist (GLP-1 RA) administration has been associated with neuroprotective effects in neurodegenerative disorders. We conducted a comprehensive synthesis of known effects of GLP-1 and GLP-1 RAs on the cognitive, cellular, and molecular changes in neurodegenerative diseases. METHODS We examined preclinical and clinical paradigms that investigated changes in neurodegenerative disease pathology following administration of GLP-1 and GLP-1 RAs. Relevant articles were retrieved through OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), PubMed, and Web of Science from database inception to September 27th, 2024. Primary studies investigating the aforementioned changes following GLP-1 and GLP-1 RA administration were retrieved for analysis (n = 62). RESULTS GLP-1 and GLP-1 RAs (i.e. dulaglutide, exenatide, liraglutide, lixisenatide, semaglutide, and tirzepatide) improved cognitive and motor function in neurodegenerative diseases in preclinical and clinical paradigms. Additionally, GLP-1 and GLP-1 RAs were associated with modulating changes in neuroinflammation, oxidative stress, and proliferative pathways. DISCUSSION We observed that GLP-1 and GLP-1 RAs modulate molecular and cellular changes known to govern the phenomenology of neurodegenerative diseases. Future research should examine the interaction between signaling molecules, neuronal subpopulations, and cognitive effects affected by GLP-1 and GLP-1 RA administration.
Collapse
Affiliation(s)
- Hezekiah C T Au
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Pak Ho Lam
- Institute of Epidemiology and Health Care, University College London, London, United Kingdom.
| | - Poh Khuen Lim
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
James-Okoro PP, Lewis JE, Gribble FM, Reimann F. The role of GIPR in food intake control. Front Endocrinol (Lausanne) 2025; 16:1532076. [PMID: 40166681 PMCID: PMC11955450 DOI: 10.3389/fendo.2025.1532076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is one of two incretin hormones playing key roles in the control of food intake, nutrient assimilation, insulin secretion and whole-body metabolism. Recent pharmacological advances and clinical trials show that unimolecular co-agonists that target the receptors for the incretins - GIP and glucagon-like peptide 1 (GLP-1) - offer more effective treatment strategies for obesity and type 2 diabetes mellitus (T2D) compared with GLP-1 receptor (GLP1R) agonists alone, suggesting previously underappreciated roles of GIP in regulating food intake and body weight. The mechanisms by which GIP regulates energy balance remain controversial as both agonism and antagonism of the GIP receptor (GIPR) produce weight loss and improve metabolic outcomes in preclinical models. Recent studies have shown that GIPR signalling in the central nervous system (CNS), especially in regions of the brain that regulate energy balance, is essential for its action on appetite regulation. This finding has sparked interest in understanding the mechanisms by which GIP engages brain circuits to reduce food intake and body weight. In this review, we present key knowledge around the actions of GIP on food intake regulation and the potential mechanisms by which GIPR and GIPR/GLP1R agonists may regulate energy balance.
Collapse
Affiliation(s)
| | | | - Fiona Mary Gribble
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic-Science-Metabolic Research Laboratories and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Toker D, Chiang JN, Vespa PM, Schnakers C, Monti MM. The Dipeptidyl Peptidase-4 Inhibitor Saxagliptin as a Candidate Treatment for Disorders of Consciousness: A Deep Learning and Retrospective Clinical Analysis. Neurocrit Care 2025:10.1007/s12028-025-02217-0. [PMID: 39904872 DOI: 10.1007/s12028-025-02217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Despite advancements in the neuroscience of consciousness, no new medications for disorders of consciousness (DOC) have been discovered in more than a decade. Repurposing existing US Food and Drug Administration (FDA)-approved drugs for DOC is crucial for improving clinical management and patient outcomes. METHODS To identify potential new treatments among existing FDA-approved drugs, we used a deep learning-based drug screening model to predict the efficacy of drugs as awakening agents based on their three-dimensional molecular structure. A retrospective cohort study from March 2012 to October 2024 tested the model's predictions, focusing on changes in Glasgow Coma Scale (GCS) scores in 4047 patients in a coma from traumatic, vascular, or anoxic brain injury. RESULTS Our deep learning drug screens identified saxagliptin, a dipeptidyl peptidase-4 inhibitor, as a promising awakening drug for both acute and prolonged DOC. The retrospective clinical analysis showed that saxagliptin was associated with the highest recovery rate from acute coma among diabetes medications. After matching patients by age, sex, initial GCS score, coma etiology, and glycemic status, brain-injured patients with diabetes on incretin-based therapies, including dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 analogues, recovered from coma at significantly higher rates compared to both brain-injured patients with diabetes on non-incretin-based diabetes medications (95% confidence interval of 1.8-14.1% higher recovery rate, P = 0.0331) and brain-injured patients without diabetes (95% confidence interval of 2-21% higher recovery rate, P = 0.0272). Post matching, brain-injured patients with diabetes on incretin-based therapies also recovered at a significantly higher rate than patients treated with amantadine (95% confidence interval for the difference 2.4-25.1.0%, P = 0.0364). A review of preclinical studies identified several pathways through which saxagliptin and other incretin-based medications may aid awakening from both acute and chronic DOC: restoring monoaminergic and GABAergic neurotransmission, reducing brain inflammation and oxidative damage, clearing hyperphosphorylated tau and amyloid-β, normalizing thalamocortical glucose metabolism, increasing neural plasticity, and mitigating excitotoxic brain damage. CONCLUSIONS Our findings suggest incretin-based medications in general, and saxagliptin in particular, as potential novel therapeutic agents for DOC. Further prospective clinical trials are needed to confirm their efficacy and safety in DOC.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul M Vespa
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Cui H, Li Z, Sun H, Zhao W, Ma H, Hao L, Zhang Z, Hölscher C, Ma D, Zhang Z. The neuroprotective effects of cholecystokinin in the brain: antioxidant, anti-inflammatory, cognition, and synaptic plasticity. Rev Neurosci 2025:revneuro-2024-0142. [PMID: 39832348 DOI: 10.1515/revneuro-2024-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated. Studies have shown in a series of animal models of neurodegenerative diseases that CCK receptor agonists show neuroprotective effects and can effectively alleviate oxidative stress, alleviate chronic inflammation of the central nervous system, improve neuronal synaptic plasticity, prevent neuronal loss, and improve cognitive dysfunction in Alzheimer's disease (AD) model mice and motor activity in animal models of Parkinson's disease. In addition, CCK plays important roles in the amygdala to regulate anxiety and depressive states. Activation of interneurons or inhibition of excitatory neurons can improve anxiety levels. This review summarizes the effects on memory formation and synaptic plasticity, the neuroprotective effects of cholecystokinin and its analogs in neurological diseases such as Alzheimer and Parkinson's disease, and the effects on anxiety and neuronal activity in the amygdala.
Collapse
Affiliation(s)
- Hailiang Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Hongyu Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Wanlin Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou 451100, Henan Province, China
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
7
|
Zhou Q, Li G, Hang K, Li J, Yang D, Wang MW. Weight Loss Blockbuster Development: A Role for Unimolecular Polypharmacology. Annu Rev Pharmacol Toxicol 2025; 65:191-213. [PMID: 39259982 DOI: 10.1146/annurev-pharmtox-061324-011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Kaini Hang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Pathology and Treatments of Alzheimer's Disease Based on Considering Changes in Brain Energy Metabolism Due to Type 2 Diabetes. Molecules 2024; 29:5936. [PMID: 39770025 PMCID: PMC11677283 DOI: 10.3390/molecules29245936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited. Epidemiologic studies provide convincing evidence for a significant association between type 2 diabetes and AD. Here, we showed energy metabolism using glucose, lactate, ketone bodies, and lipids as energy substrates in a normal brain, and changes in such energy metabolism due to type 2 diabetes. We also showed the influences of such altered energy metabolism due to type 2 diabetes on the pathology of AD. Furthermore, we comprehensively searched for risk factors related with type 2 diabetes for AD and showed possible therapeutic interventions based on considering risk factors and altered brain energy metabolism due to type 2 diabetes for the development of AD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | | | | | | |
Collapse
|
9
|
Mani V, Arfeen M. In Vivo and Computational Studies on Sitagliptin's Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer's Disease. Brain Sci 2024; 14:1191. [PMID: 39766390 PMCID: PMC11674309 DOI: 10.3390/brainsci14121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 (DPP-4) inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain. Computational studies supported the in vivo findings. RESULTS SITG significantly reduced the brain enzyme levels of acetylcholinesterase (AChE), beta-secretase-1 (BACE-1), DPP-4, and glycogen synthase kinase-3β (GSK-3β) in T2DM-induced rats. It also reduced inflammation by lowering cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and nuclear factor-κB (NF-κB). Additionally, SITG improved oxidative stress markers by reducing malondialdehyde (MDA) and enhancing glutathione (GSH). It increased anti-apoptotic B-cell lymphoma protein-2 (Bcl-2) while reducing pro-apoptotic markers such as Bcl-2-associated X (BAX) and Caspace-3. SITG also lowered blood glucose levels and improved plasma insulin levels. To explore potential molecular level mechanisms, docking was performed on AChE, COX-2, GSK-3β, BACE-1, and Caspace-3. The potential binding affinity of SITG for the above-mentioned target enzymes were 10.8, 8.0, 9.7, 7.7, and 7.9 kcal/mol, respectively, comparable to co-crystallized ligands. Further binding mode analysis of the lowest energy conformation revealed interactions with the critical residues. CONCLUSIONS These findings highlight SITG's neuroprotective molecular targets in T2DM-associated neurodegeneration and its potential as a therapeutic approach for AD, warranting further clinical investigations.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
10
|
Forny Germano L, Koehler JA, Baggio LL, Cui F, Wong CK, Rittig N, Cao X, Matthews D, Drucker DJ. The GLP-1 medicines semaglutide and tirzepatide do not alter disease-related pathology, behaviour or cognitive function in 5XFAD and APP/PS1 mice. Mol Metab 2024; 89:102019. [PMID: 39216535 PMCID: PMC11408156 DOI: 10.1016/j.molmet.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The development of glucagon-like peptide-1 receptor (GLP-1R) agonists for the treatment of type 2 diabetes and obesity has been accompanied by evidence for anti-inflammatory and cytoprotective actions in the heart, blood vessels, kidney, and brain. Whether GLP-1R agonists might be useful clinically for attenuating deterioration of cognitive dysfunction and reducing the progression of Alzheimer's disease remains uncertain. METHODS Here we evaluated the actions of semaglutide and tirzepatide, clinically distinct GLP-1 medicines, in two mouse models of neurodegeneration. RESULTS Semaglutide reduced body weight and improved glucose tolerance in 12-month-old male and female 5XFAD and APP/PS1 mice, consistent with pharmacological engagement of the GLP-1R. Nevertheless, amyloid plaque density was not different in the cerebral cortex, hippocampus, or subiculum of semaglutide-treated 12-month-old 5XFAD and APP/PS1 mice. IBA1 and GFAP expression were increased in the hippocampus of 5XFAD and APP/PS1 mice but were not reduced by semaglutide. Moreover, parameters of neurobehavioral and cognitive function evaluated using Open Field testing or the Morris water maze were not improved following treatment with semaglutide. To explore whether incretin therapies might be more effective in younger mice, we studied semaglutide and tirzepatide action in 6-month-old male and female 5XFAD mice. Neither semaglutide nor tirzepatide modified the extent of plaque accumulation, hippocampal IBA1+ or GFAP+ cells, or parameters of neurobehavioral testing, despite improving glucose tolerance and reducing body weight. mRNA biomarkers of inflammation and neurodegeneration were increased in the hippocampus of male and female 5XFAD mice but were not reduced after treatment with semaglutide or tirzepatide. CONCLUSIONS Collectively, these findings reveal preservation of the metabolic actions of two GLP-1 medicines, semaglutide and tirzepatide, yet inability to detect improvement in structural and functional parameters of neurodegeneration in two mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Fiona Cui
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Nikolaj Rittig
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, M5G1X5, Canada.
| |
Collapse
|
11
|
Tran J, Parekh S, Rockcole J, Wilson D, Parmar MS. Repurposing antidiabetic drugs for Alzheimer's disease: A review of preclinical and clinical evidence and overcoming challenges. Life Sci 2024; 355:123001. [PMID: 39173996 DOI: 10.1016/j.lfs.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Repurposing antidiabetic drugs for the treatment of Alzheimer's disease (AD) has emerged as a promising therapeutic strategy. This review examines the potential of repurposing antidiabetic drugs for AD treatment, focusing on preclinical evidence, clinical trials, and observational studies. In addition, the review aims to explore challenges and opportunities in repurposing antidiabetic drugs for AD, emphasizing the importance of well-designed clinical trials that consider patient selection criteria, refined outcome measures, adverse effects, and combination therapies to enhance therapeutic efficacy. Preclinical evidence suggests that glucagon-like peptide-1 (GLP-1) analogs, dipeptidyl peptidase-4 (DPP4) inhibitors, metformin, thiazolidinediones, and sodium-glucose co-transporter-2 (SGLT2) inhibitors exhibit neuroprotective effects in AD preclinical models. In preclinical studies, antidiabetic drugs have demonstrated neuroprotective effects by reducing amyloid beta (Aβ) plaques, tau hyperphosphorylation, neuroinflammation, and cognitive impairment. Antidiabetic drug classes, notably GLP-1 analogs and SGLT2 inhibitors, and a reduced risk of dementia in patients with diabetes mellitus. While the evidence for DPP4 inhibitors is mixed, some studies suggest a potential protective effect. On the other hand, alpha-glucosidase inhibitors (AGIs) and sulfonylureas may potentially increase the risk, especially in those experiencing recurrent hypoglycemic events. Repurposing antidiabetic drugs for AD is a promising therapeutic strategy, but challenges such as disease heterogeneity, limited biomarkers, and benefits versus risk evaluation need to be addressed. Ongoing clinical trials in mild cognitive impairment (MCI) and early AD patients without diabetes will be crucial in determining the clinical efficacy and safety of the antidiabetic drugs, paving the way for potential treatments for AD.
Collapse
Affiliation(s)
- Jacky Tran
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Sneh Parekh
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Julia Rockcole
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Danielle Wilson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
12
|
Rhea EM, Babin A, Thomas P, Omer M, Weaver R, Hansen K, Banks WA, Talbot K. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer's and Parkinson's diseases. Tissue Barriers 2024; 12:2292461. [PMID: 38095516 PMCID: PMC11583597 DOI: 10.1080/21688370.2023.2292461] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics. METHODS We quantitatively measure the ability of four IRAs to cross the BBB. We injected adult male CD-1 mice intravenously with 125I- or 14C-labeled albiglutide, dulaglutide, DA5-CH, or tirzepatide and used multiple-time regression analyses to measure brain kinetics up to 1 hour. For those IRAs failing to enter the brain 1 h after intravenous injection, we also investigated their ability to enter over a longer time frame (i.e., 6 h). RESULTS Albiglutide and dulaglutide had the fastest brain uptake rates within 1 hour. DA5-CH appears to enter the brain rapidly, reaching equilibrium quickly. Tirzepatide does not appear to cross the BBB within 1 h after iv injection but like albumin, did so slowly over 6 h, presumably via the extracellular pathways. CONCLUSIONS We find that IRAs can cross the BBB by two separate processes; one that is fast and one that is slow. Three of the four IRAs investigated here have fast rates of transport and should be taken into consideration for testing as AD and PD therapeutics as they would have the ability to act quickly and directly on the brain as a whole.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Peter Thomas
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Mohamed Omer
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
13
|
Diz-Chaves Y, Maastor Z, Spuch C, Lamas JA, González-Matías LC, Mallo F. Glucagon-like peptide 1 receptor activation: anti-inflammatory effects in the brain. Neural Regen Res 2024; 19:1671-1677. [PMID: 38103230 PMCID: PMC10960307 DOI: 10.4103/1673-5374.389626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
The glucagon-like peptide 1 is a pleiotropic hormone that has potent insulinotropic effects and is key in treating metabolic diseases such as diabetes and obesity. Glucagon-like peptide 1 exerts its effects by activating a membrane receptor identified in many tissues, including different brain regions. Glucagon-like peptide 1 activates several signaling pathways related to neuroprotection, like the support of cell growth/survival, enhancement promotion of synapse formation, autophagy, and inhibition of the secretion of proinflammatory cytokines, microglial activation, and apoptosis during neural morphogenesis. The glial cells, including astrocytes and microglia, maintain metabolic homeostasis and defense against pathogens in the central nervous system. After brain insult, microglia are the first cells to respond, followed by reactive astrocytosis. These activated cells produce proinflammatory mediators like cytokines or chemokines to react to the insult. Furthermore, under these circumstances, microglia can become chronically inflammatory by losing their homeostatic molecular signature and, consequently, their functions during many diseases. Several processes promote the development of neurological disorders and influence their pathological evolution: like the formation of protein aggregates, the accumulation of abnormally modified cellular constituents, the formation and release by injured neurons or synapses of molecules that can dampen neural function, and, of critical importance, the dysregulation of inflammatory control mechanisms. The glucagon-like peptide 1 receptor agonist emerges as a critical tool in treating brain-related inflammatory pathologies, restoring brain cell homeostasis under inflammatory conditions, modulating microglia activity, and decreasing the inflammatory response. This review summarizes recent advances linked to the anti-inflammatory properties of glucagon-like peptide 1 receptor activation in the brain related to multiple sclerosis, Alzheimer's disease, Parkinson's disease, vascular dementia, or chronic migraine.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Zainab Maastor
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Sala Investigación, Estrada Clara Campoamor, Vigo, Spain
| | - José Antonio Lamas
- Biomedical Research Centre (CINBIO), Laboratory of Neuroscience, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Lucas C. González-Matías
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| | - Federico Mallo
- Biomedical Research Centre (CINBIO), Laboratory of Endocrinology, University of Vigo, Galicia Sur Health Research Institute, Vigo, Spain
| |
Collapse
|
14
|
Hölscher C. Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson's and Alzheimer's disease clinical trials: A revolution in the making? Neuropharmacology 2024; 253:109952. [PMID: 38677445 DOI: 10.1016/j.neuropharm.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Parkinson's disease (PD) is a complex syndrome for which there is no disease-modifying treatment on the market. However, a group of drugs from the Glucagon-like peptide-1 (GLP-1) class have shown impressive improvements in clinical phase II trials. Exendin-4 (Bydureon), Liraglutide (Victoza, Saxenda) and Lixisenatide (Adlyxin), drugs that are on the market as treatments for diabetes, have shown clear effects in improving motor activity in patients with PD in phase II clinical trials. In addition, Liraglutide has shown improvement in cognition and brain shrinkage in a phase II trial in patients with Alzheimer disease (AD). Two phase III trials testing the GLP-1 drug semaglutide (Wegovy, Ozempic, Rybelsus) are ongoing. This perspective article will summarize the clinical results obtained so far in this novel research area. We are at a crossroads where GLP-1 class drugs are emerging as a new treatment strategy for PD and for AD. Newer drugs that have been designed to enter the brain easier are being developed already show improved effects in preclinical studies compared with the older GLP-1 class drugs that had been developed to treat diabetes. The future looks bright for new treatments for AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Henan Academy of Innovations in Medical Science, Neurodegeneration Research Group, 451100 Xinzheng, Henan province, China.
| |
Collapse
|
15
|
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer's and Parkinson's disease. Front Neuroendocrinol 2024; 73:101122. [PMID: 38346453 DOI: 10.1016/j.yfrne.2024.101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.
Collapse
Affiliation(s)
- Niklas Reich
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK; Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Christian Hölscher
- Second associated Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China; Henan Academy of Innovations in Medical Science, Neurodegeneration research group, Xinzhen, Henan province, China
| |
Collapse
|
16
|
Crook H, Edison P. Incretin Mimetics as Potential Disease Modifying Treatment for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S357-S370. [PMID: 39422964 DOI: 10.3233/jad-240730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative condition that exerts a significant global burden. Despite recent efforts, disease modifying therapies remain extremely limited, with a tremendous proportion of patients having to rely on symptomatic treatment only. Epidemiological and pathological overlaps exist between Alzheimer's disease and diabetes mellitus type 2, with people with diabetes mellitus type 2 at a significantly increased risk of developing Alzheimer's disease in the future. Incretin mimetics, also known as GLP-1/GIP receptor agonists, are useful tools licensed for the treatment of diabetes mellitus type 2 which have recently been the subject of news coverage for their off-label use as weight loss medications. Emerging evidence highlights the possible neuroprotective function of incretin mimetics in models of Alzheimer's disease as well as in clinical studies. This review details the pre-clinical and clinical studies that have explored the effectiveness of incretin mimetics to alleviate Alzheimer's disease associated pathology and cognitive impairment, while also highlighting the progress made to examine the effectiveness of these molecules in Parkinson's disease. Should clinical trials prove effective, incretin mimetics may be able to be repurposed and become useful novel tools as disease-modifying treatments for Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
18
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 PMCID: PMC11807374 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Guo X, Lei M, Zhao J, Wu M, Ren Z, Yang X, Ouyang C, Liu X, Liu C, Chen Q. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front Pharmacol 2023; 14:1146960. [PMID: 37701028 PMCID: PMC10493299 DOI: 10.3389/fphar.2023.1146960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: One of the typical symptoms of diabetes mellitus patients was memory impairment, which was followed by gradual cognitive deterioration and for which there is no efficient treatment. The anti-diabetic incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were demonstrated to have highly neuroprotective benefits in animal models of AD. We wanted to find out how the GLP-1/GIP dual agonist tirzepatide affected diabetes's impairment of spatial learning memory. Methods: High fat diet and streptozotocin injection-induced diabetic rats were injected intraperitoneally with Tirzepatide (1.35 mg/kg) once a week. The protective effects were assessed using the Morris water maze test, immunofluorescence, and Western blot analysis. Golgi staining was adopted for quantified dendritic spines. Results: Tirzepatide significantly improved impaired glucose tolerance, fasting blood glucose level, and insulin level in diabetic rats. Then, tirzepatide dramatically alleviated spatial learning and memory impairment, inhibited Aβ accumulation, prevented structural damage, boosted the synthesis of synaptic proteins and increased dendritic spines formation in diabetic hippocampus. Furthermore, some aberrant changes in signal molecules concerning inflammation signaling pathways were normalized after tirzepatide treatment in diabetic rats. Finally, PI3K/Akt/GSK3β signaling pathway was restored by tirzepatide. Conclusion: Tirzepatide obviously exerts a protective effect against spatial learning and memory impairment, potentially through regulating abnormal insulin resistance and inflammatory responses.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Jiangyan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- Pharmacy College, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
20
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
21
|
Pelle MC, Zaffina I, Giofrè F, Pujia R, Arturi F. Potential Role of Glucagon-like Peptide-1 Receptor Agonists in the Treatment of Cognitive Decline and Dementia in Diabetes Mellitus. Int J Mol Sci 2023; 24:11301. [PMID: 37511061 PMCID: PMC10379573 DOI: 10.3390/ijms241411301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Dementia is a permanent illness characterized by mental instability, memory loss, and cognitive decline. Many studies have demonstrated an association between diabetes and cognitive dysfunction that proceeds in three steps, namely, diabetes-associated cognitive decrements, mild cognitive impairment (MCI; both non-amnesic MCI and amnesic MCI), and dementia [both vascular dementia and Alzheimer's disease (AD)]. Based on this association, this disease has been designated as type 3 diabetes mellitus. The underlying mechanisms comprise insulin resistance, inflammation, lipid abnormalities, oxidative stress, mitochondrial dysfunction, glycated end-products and autophagy. Moreover, insulin and insulin-like growth factor-1 (IGF-1) have been demonstrated to be involved. Insulin in the brain has a neuroprotective role that alters cognitive skills and alteration of insulin signaling determines beta-amyloid (Aβ) accumulation, in turn promoting brain insulin resistance. In this complex mechanism, other triggers include hyperglycemia-induced overproduction of reactive oxygen species (ROS) and inflammatory cytokines, which result in neuroinflammation, suggesting that antidiabetic drugs may be potential treatments to protect against AD. Among these, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are the most attractive antidiabetic drugs due to their actions on synaptic plasticity, cognition and cell survival. The present review summarizes the significant data concerning the underlying pathophysiological and pharmacological mechanisms between diabetes and dementia.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Pujia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
23
|
Mota IFL, de Lima LS, Santana BDM, Gobbo GDAM, Bicca JVML, Azevedo JRM, Veras LG, Taveira RDAA, Pinheiro GB, Mortari MR. Alzheimer's Disease: Innovative Therapeutic Approaches Based on Peptides and Nanoparticles. Neuroscientist 2023; 29:78-96. [PMID: 34018874 DOI: 10.1177/10738584211016409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in the world and its etiology is not yet fully understood. The pathology of AD is primarily characterized by intracellular neurofibrillary tangles and extracellular amyloid-β plaques. Unfortunately, few treatment options are available, and most treat symptoms, as is the case of acetylcholinesterase inhibitors (IAChE) and N-methyl-d-aspartate receptor antagonists. For more than 20 years pharmaceutical research has targeted the "amyloid cascade hypothesis," but this has not produced meaningful results, leading researchers to focus now on other characteristics of the disease and on multitarget approaches. This review aims to evaluate some new treatments that are being developed and studied. Among these are new treatments based on peptides, which have high selectivity and low toxicity; however, these compounds have a short half-life and encounter challenges when crossing the blood-brain barrier. The present review discusses up-and-coming peptides tested as treatments and explores some nanotechnological strategies to overcome the downsides. These compounds are promising, as they not only act on the symptoms but also aim to prevent progressive neuronal loss.
Collapse
Affiliation(s)
- Isabela F L Mota
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Larissa S de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Bruna de M Santana
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Giovanna de A M Gobbo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - João V M L Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Juliana R M Azevedo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Letícia G Veras
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rodrigo de A A Taveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Gabriela B Pinheiro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
24
|
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease. Mol Psychiatry 2023; 28:217-229. [PMID: 36258018 PMCID: PMC9812772 DOI: 10.1038/s41380-022-01792-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023]
Abstract
Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK. .,School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
25
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
26
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
28
|
Shao S, Zhang X, Xu Q, Pan R, Chen Y. Emerging roles of Glucagon like peptide-1 in the management of autoimmune diseases and diabetes-associated comorbidities. Pharmacol Ther 2022; 239:108270. [PMID: 36002078 DOI: 10.1016/j.pharmthera.2022.108270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
|
29
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
30
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|
31
|
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front Synaptic Neurosci 2022; 14:955258. [PMID: 35965783 PMCID: PMC9363704 DOI: 10.3389/fnsyn.2022.955258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are peptide hormones and growth factors. A major pathological feature of both Alzheimer’s dis-ease (AD) and Parkinson’s disease (PD) is the loss of synaptic transmission in the cortex in AD and the loss of dopaminergic synapses in the nigra-striatal dopaminergic projection. Several studies demonstrate that GLP-1 and GIP receptor agonists protect synapses and synaptic transmission from the toxic events that underlie AD and PD. In a range of AD animal models, treatment with GLP-1, GIP, or dual-GLP-1/GIP receptor agonists effectively protected cognition, synaptic trans-mission, long-term potentiation (LTP), and prevented the loss of synapses and neurons. In PD models, dopaminergic production resumed and synapses became functional again. Importantly, the GLP-1 receptor agonists exendin-4 and liraglutide have shown good protective effects in clinical trials in AD and PD patients. Studies show that growth factors and peptide drugs that can cross the blood–brain barrier (BBB) better are more potent than those that do not cross the BBB. We therefore developed dual-GLP-1/GIP receptor agonists that can cross the BBB at an enhanced rate and showed superior protective properties on synapses in animal models of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
32
|
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 2022; 151:170749. [PMID: 35065096 DOI: 10.1016/j.peptides.2022.170749] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.
Collapse
Affiliation(s)
- Ashok Mayendraraj
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
A review of glucoregulatory hormones potentially applicable to the treatment of Alzheimer’s disease: mechanism and brain delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Mallo F. Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. VITAMINS AND HORMONES 2022; 118:457-478. [PMID: 35180937 DOI: 10.1016/bs.vh.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone very well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain, and it displays critical roles in neuroprotection by activating the GLP-1 receptor signaling pathways. GLP-1 enhances learning and memory in the hippocampus, promotes neurogenesis, decreases inflammation and apoptosis, modulates reward behavior, and reduces food intake. Its pharmacokinetics have been improved to enhance the peptide's half-life, enhancing exposure and time of action. The GLP-1 agonists are successfully in clinical use for the treatment of type-2 diabetes, obesity, and clinical evaluation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
35
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
Hölscher C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br J Pharmacol 2022; 179:695-714. [PMID: 33900631 PMCID: PMC8820183 DOI: 10.1111/bph.15508] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus and the associated desensitisation of insulin signalling has been identified as a risk factor for progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and others. Glucagon-like peptide 1 (GLP-1) is a hormone that has growth factor-like and neuroprotective properties. Several clinical trials have been conducted, testing GLP-1 receptor agonists in patients with Alzheimer's disease, Parkinson's disease or diabetes-induced memory impairments. The trials showed clear improvements in Alzheimer's disease, Parkinson's disease and diabetic patients. Glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) is the 'sister' incretin hormone of GLP-1. GIP analogues have shown neuroprotective effects in animal models of disease and can improve on the effects of GLP-1. Novel dual GLP-1/GIP receptor agonists have been developed that can enter the brain at an enhanced rate. The improved neuroprotective effects of these drugs suggest that they are superior to single GLP-1 receptor agonists and could provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Christian Hölscher
- The Second Associated Hospital, Neurology DepartmentShanxi Medical UniversityTaiyuanChina
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
37
|
Katsenos AP, Davri AS, Simos YV, Nikas IP, Bekiari C, Paschou SA, Peschos D, Konitsiotis S, Vezyraki P, Tsamis KI. New treatment approaches for Alzheimer's disease: preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin Investig Drugs 2022; 31:105-123. [PMID: 34941464 DOI: 10.1080/13543784.2022.2022122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) represent two major chronic diseases that affect a large percentage of the population and share common pathogenetic mechanisms, including oxidative stress and inflammation. Considering their common mechanistic aspects, and given the current lack of effective therapies for AD, accumulating research has focused on the therapeutic potential of antidiabetic drugs in the treatment or prevention of AD. AREAS COVERED This review examines the latest preclinical and clinical evidence on the potential of antidiabetic drugs as candidates for AD treatment. Numerous approved drugs for T2DM, including insulin, metformin, glucagon-like peptide-1 receptor agonists (GLP-1 RA), and sodium glucose cotransporter 2 inhibitors (SGLT2i), are in the spotlight and may constitute novel approaches for AD treatment. EXPERT OPINION Among other pharmacologic agents, GLP-1 RA and SGLT2i have so far exhibited promising results as novel treatment approaches for AD, while current research has centered on deciphering their action on the central nervous system (CNS). Further investigation is crucial to reveal the most effective pharmacological agents and their optimal combinations, maximize their beneficial effects on neurons, and find ways to increase their distribution to the CNS.
Collapse
Affiliation(s)
- Andreas P Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | - Athena S Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, school of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece.,Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
38
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
39
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) is a hormone produced in the upper gut and secreted to the circulation in response to the ingestion of foods, especially fatty foods. Growing evidence supports the physiological and pharmacological relevance of GIP in obesity. In an obesity setting, inhibition of endogenous GIP or its receptor leads to decreased energy intake, increased energy expenditure, or both, eventually causing weight loss. Further, supraphysiological dosing of exogenous long-lasting GIP agonists alters energy balance and has a marked antiobesity effect. This remarkable yet paradoxical antiobesity effect is suggested to occur primarily via the brain. The brain is capable of regulating both energy intake and expenditure and plays a critical role in human obesity. In addition, the GIP receptor is widely distributed throughout the brain, including areas responsible for energy homeostasis. Recent studies have uncovered previously underappreciated roles of the GIP receptor in the brain in the context of obesity. This article highlights how the GIP receptor expressed by the brain impacts obesity-related pathogenesis.
Collapse
Affiliation(s)
- Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
41
|
Cai HY, Yang D, Qiao J, Yang JT, Wang ZJ, Wu MN, Qi JS, Hölscher C. A GLP-1/GIP Dual Receptor Agonist DA4-JC Effectively Attenuates Cognitive Impairment and Pathology in the APP/PS1/Tau Model of Alzheimer's Disease. J Alzheimers Dis 2021; 83:799-818. [PMID: 34366339 DOI: 10.3233/jad-210256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION DA4-JC is a promising drug for the treatment of AD.
Collapse
Affiliation(s)
- Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China
| | - Dan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jing Qiao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jun-Ting Yang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin-Shun Qi
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Neuroscience Research Group, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
42
|
Role of liraglutide in Alzheimer's disease pathology. ALZHEIMERS RESEARCH & THERAPY 2021; 13:112. [PMID: 34118986 PMCID: PMC8199799 DOI: 10.1186/s13195-021-00853-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Background The described relationship between Alzheimer’s disease (AD) and type 2 diabetes (T2D) and the fact that AD has no succesful treatment has led to the study of antidiabetic drugs that may limit or slow down AD pathology. Main body Although T2D treatment has evident limitations, options are increasing including glucagon-like peptide 1 analogs. Among these, liraglutide (LRGT) is commonly used by T2D patients to improve β cell function and suppress glucagon to restore normoglycaemia. Interestingly, LRGT also counterbalances altered brain metabolism and has anti-inflammatory properties. Previous studies have reported its capacity to reduce AD pathology, including amyloid production and deposition, tau hyperphosphorylation, or neuronal and synaptic loss in animal models of AD, accompanied by cognitive improvement. Given the beneficial effects of LRGT at central level, studies in patients have been carried out, showing modest beneficial effects. At present, the ELAD trial (Evaluating Liraglutide in Alzheimer’s Disease NCT01843075) is an ongoing phase IIb study in patients with mild AD. In this minireview, we resume the outcomes of LRGT treatment in preclinical models of AD as well as the available results in patients up to date. Conclusion The effects of LRGT on animal models show significant benefits in AD pathology and cognitive impairment. While studies in patients are limited, ongoing clinical trials will probably provide more definitive conclusions on the role of LRGT in AD patients.
Collapse
|