1
|
Chiang CH, Song J, Chi KY, Chang YC, Xanthavanij N, Chang Y, Hsia YP, Chiang CH, Ghamari A, Reynolds KL, Lin S, Xu XH, Neilan TG. Glucagon-like Peptide-1 Agonists Reduce Cardiovascular Events in Cancer Patients on Immune Checkpoint Inhibitors. Eur J Cancer 2025; 216:115170. [PMID: 39709670 DOI: 10.1016/j.ejca.2024.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are associated with an increased risk of major adverse cardiovascular events (MACE). Glucagon-like peptide-1 agonists (GLP1a), initially developed for type 2 diabetes mellitus (T2DM), have shown promising results in reducing cardiovascular events. We aimed to investigate the effect of GLP1a on cardiovascular events in patients receiving ICIs. METHODS We conducted a retrospective, propensity score-matched cohort study using the TriNetX database. We identified adults with cancer and T2DM who received ICIs between April 2013 and May 2023. The primary efficacy outcome was incident MACE, defined as a composite of myocardial infarction, need for coronary revascularization, heart failure, ischemic stroke, and cardiac arrest. The secondary efficacy outcomes were the individual components of MACE as well as myocarditis and pericarditis. Safety outcomes included the occurrence of immune-related adverse events, serious adverse events related to GLP1a use, and all-cause mortality. RESULTS We identified 7651 patients eligible for inclusion, among which 479 received GLP1a and 7172 received non-GLP1a diabetes medications. After matching (469 patients each), baseline characteristics were well-balanced. Over a median 12-month follow-up, the GLP1a cohort had a significantly lower MACE incidence than the non-GLP1a cohort (9.0 vs. 17.1 events per 100 patient-years) with a 54 % lower risk of MACE (Hazard ratio (HR),0.46 [95 % CI: 0.32-0.67]). There were reductions in myocardial infarction or need for coronary revascularization, heart failure, and all-cause mortality, with no differences in other cardiovascular events. GLP1a use did not increase risk of adverse events, including pancreatitis, biliary disease, bowel obstruction, gastroparesis, and immune-related adverse events. CONCLUSION GLP1a use in cancer patients with T2DM receiving ICIs was associated with reduced MACE and all-cause mortality without an increased risk in serious adverse events.
Collapse
Affiliation(s)
- Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA.
| | - Junmin Song
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kuan-Yu Chi
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Nutchapon Xanthavanij
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yu Chang
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan Ping Hsia
- Department of Family Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
| | - Cho-Hung Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Azin Ghamari
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kerry L Reynolds
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shuwen Lin
- Department of Oncology, Montefiore Medical Center, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiaocao Haze Xu
- Division of Hematology and Oncology, Department of Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Tomas G Neilan
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Osman AAM, Seres-Bokor A, Ducza E. Diabetes mellitus therapy in the light of oxidative stress and cardiovascular complications. J Diabetes Complications 2025; 39:108941. [PMID: 39671854 DOI: 10.1016/j.jdiacomp.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Type 2 diabetes is a chronic disease requiring comprehensive pharmacological and non-pharmacological interventions to slow its progression and prevent or delay its micro- and macrovascular complications. Oxidative stress contributes to the development and progression of type 2 diabetes as well as to the development of its complications through several mechanisms. Therefore, therapeutic targeting of oxidative stress could aid in managing this disease and its complications. In our study, we have collected information on the most frequently used antidiabetic drugs (metformin, glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors) in the EU and the USA based on their antioxidant effects. Based on our results, we can conclude that the antioxidant effects of the investigated antidiabetics may contribute significantly to the management of the disease and its complications and may open new therapeutic perspectives in their prevention.
Collapse
Affiliation(s)
- Alaa A M Osman
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
3
|
Zhang X, Cao C, Zheng F, Liu C, Tian X. Therapeutic Potential of GLP-1 Receptor Agonists in Diabetes and Cardiovascular Disease: Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07670-9. [PMID: 39832069 DOI: 10.1007/s10557-025-07670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice. OBJECTIVE This review aims to comprehensively summarize the role of GLP-1 RAs in the management of diabetes mellitus (DM) and cardiovascular disease (CVD), with a particular emphasis on the underlying signal transduction pathways and their therapeutic potential. METHODS A comprehensive review was carried out through literature research. RESULTS AND DISCUSSION In pancreatic β-cells, GLP-1 RAs regulate the secretion of insulin and glucagon in a glucosedependent manner by influencing signaling pathways such as cAMP, PI3K, and MAPK. They also contribute to the regulation of blood glucose levels by promoting the proliferation of β-cells and inhibiting apoptosis in these cells. Recent comprehensive studies have also demonstrated the favorable impact of GLP-1 RAs on cardiovascular wellbeing. In addition to the cardiovascular protection afforded by glucose metabolism regulation, a large body of evidence from animal and cellular studies has corroborated the beneficial effects of GLP-1 RAs on conditions such as heart failure (HF), hypertension, and ischemic cardiomyopathy. These benefits are mainly attributed to the alleviation of inflammatory responses, reduction of oxidative stress, and prevention of cell apoptosis. Clinical data shows that GLP-1 RAs can reduce the risk of major adverse cardiovascular events (MACE) in diabetic patients. CONCLUSION GLP-1 RAs play an important role in the management of both diabetes and cardiovascular diseases. They show potential therapeutic value through the modulation of multiple signal transduction pathways. However, there may still be some issues in practical applications that require further research and resolution.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China
| | - Chao Cao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Chang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Xiuqing Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China.
| |
Collapse
|
4
|
Wang TY, Yang Q, Cheng XY, Ding JC, Hu PF. Beyond weight loss: the potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:17-38. [PMID: 39269643 DOI: 10.1007/s10741-024-10438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various phenotypes, and obesity is one of the most common and clinically relevant phenotypes of HFpEF. Obesity contributes to HFpEF through multiple mechanisms, including sodium retention, neurohormonal dysregulation, altered energy substrate metabolism, expansion of visceral adipose tissue, and low-grade systemic inflammation. Glucagon-like peptide-1 (GLP-1) is a hormone in the incretin family. It is produced by specialized cells called neuroendocrine L cells located in the distal ileum and colon. GLP-1 reduces blood glucose levels by promoting glucose-dependent insulin secretion from pancreatic β cells, suppressing glucagon release from pancreatic α cells, and blocking hepatic gluconeogenesis. Recent evidence suggests that GLP-1 receptor agonists (GLP-1 RAs) can significantly improve physical activity limitations and exercise capacity in obese patients with HFpEF. The possible cardioprotective mechanisms of GLP-1 RAs include reducing epicardial fat tissue thickness, preventing activation of the renin-angiotensin-aldosterone system, improving myocardial energy metabolism, reducing systemic inflammation and cardiac oxidative stress, and delaying the progression of atherosclerosis. This review examines the impact of obesity on the underlying mechanisms of HFpEF, summarizes the trial data on cardiovascular outcomes of GLP-1 RAs in patients with type 2 diabetes mellitus, and highlights the potential cardioprotective mechanisms of GLP-1 RAs to give a pathophysiological and clinical rationale for using GLP-1 RAs in obese HFpEF patients.
Collapse
Affiliation(s)
- Tian-Yu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Yi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Can Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng-Fei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Sabe SA, Harris DD, Broadwin M, Sellke FW. Cardioprotection in cardiovascular surgery. Basic Res Cardiol 2024; 119:545-568. [PMID: 38856733 DOI: 10.1007/s00395-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA.
| |
Collapse
|
6
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Ravic M, Srejovic I, Novakovic J, Andjic M, Sretenovic J, Muric M, Nikolic M, Bolevich S, Alekseevich Kasabov K, Petrovich Fisenko V, Stojanovic A, Jakovljevic V. Effect of GLP-1 Receptor Agonist on Ischemia Reperfusion Injury in Rats with Metabolic Syndrome. Pharmaceuticals (Basel) 2024; 17:525. [PMID: 38675485 PMCID: PMC11053642 DOI: 10.3390/ph17040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MetS) represents an important factor that increases the risk of myocardial infarction, and more severe complications. Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs) exhibit cardioprotective potential, but their efficacy in MetS-related myocardial dysfunction has not been fully explored. Therefore, we aimed to assess the effects of exenatide and dulaglutide on heart function and redox balance in MetS-induced rats. Twenty-four Wistar albino rats with induced MetS were divided into three groups: MetS, exenatide-treated (5 µg/kg), dulaglutide-treated (0.6 mg/kg). After 6 weeks of treatment, in vivo heart function was assessed via echocardiography, while ex vivo function was evaluated using a Langendorff apparatus to simulate ischemia-reperfusion injury. Heart tissue samples were analyzed histologically, and oxidative stress biomarkers were measured spectrophotometrically from the coronary venous effluent. Both exenatide and dulaglutide significantly improved the ejection fraction by 3% and 7%, respectively, compared to the MetS group. Histological analyses corroborated these findings, revealing a reduction in the cross-sectional area of cardiomyocytes by 11% in the exenatide and 18% in the dulaglutide group, indicating reduced myocardial damage in GLP-1RA-treated rats. Our findings suggest strong cardioprotective potential of GLP-1RAs in MetS, with dulaglutide showing a slight advantage. Thus, both exenatide and dulaglutide are potentially promising targets for cardioprotection and reducing mortality in MetS patients.
Collapse
Affiliation(s)
- Marko Ravic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Ivan Srejovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Jasmina Sretenovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Maja Muric
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia;
| | - Kirill Alekseevich Kasabov
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Vladimir Petrovich Fisenko
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Aleksandra Stojanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Vladimir Jakovljevic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia;
| |
Collapse
|
8
|
Sharma S, Sharma P, Subedi U, Bhattarai S, Miller C, Manikandan S, Batinic-Haberle I, Spasojevic I, Sun H, Panchatcharam M, Miriyala S. Mn(III) Porphyrin, MnTnBuOE-2-PyP 5+, Commonly Known as a Mimic of Superoxide Dismutase Enzyme, Protects Cardiomyocytes from Hypoxia/Reoxygenation Induced Injury via Reducing Oxidative Stress. Int J Mol Sci 2023; 24:6159. [PMID: 37047131 PMCID: PMC10094288 DOI: 10.3390/ijms24076159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (I/R) causes damage to cardiomyocytes through oxidative stress and apoptosis. We investigated the cardioprotective effects of MnTnBuOE-2-PyP5+ (BMX-001), a superoxide dismutase mimic, in an in vitro model of I/R injury in H9c2 cardiomyocytes. We found that BMX-001 protected against hypoxia/reoxygenation (H/R)-induced oxidative stress, as evident by a significant reduction in intracellular and mitochondrial superoxide levels. BMX-001 pre-treatment also reduced H/R-induced cardiomyocyte apoptosis, as marked by a reduction in TUNEL-positive cells. We further demonstrated that BMX-001 pre-treatment significantly improved mitochondrial function, particularly O2 consumption, in mouse adult cardiomyocytes subjected to H/R. BMX-001 treatment also attenuated cardiolipin peroxidation, 4-hydroxynonenal (4-HNE) level, and 4-HNE adducted proteins following H/R injury. Finally, the pre-treatment with BMX-001 improved cell viability and lactate dehydrogenase (LDH) activity in H9c2 cells following H/R injury. Our findings suggest that BMX-001 has therapeutic potential as a cardioprotective agent against oxidative stress-induced H/R damage in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Shrivats Manikandan
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
9
|
Kobara M, Toba H, Nakata T. A Glucagon-like Peptide 1 Analog Protects Mitochondria and Attenuates Hypoxia-Reoxygenation Injury in Cultured Cardiomyocytes. J Cardiovasc Pharmacol 2022; 79:568-576. [PMID: 34983916 DOI: 10.1097/fjc.0000000000001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Glucagon-like peptide 1 (GLP-1) analogs improve glycemic control in diabetes and protect the heart against ischemia-reperfusion injury. However, the mechanisms underlying this protection remain unclear. Mitochondria are essential for myocyte homeostasis. Therefore, we herein examined the effects of a GLP-1 analog on mitochondria after the hypoxia-reoxygenation of rat neonatal cultured cardiomyocytes. Cardiomyocytes were subjected to hypoxia for 5 hours followed by reoxygenation for 30 minutes in the presence or absence of exendin-4 (50 nmol/L), a GLP-1 analog. Hypoxia-reoxygenation increased lactate dehydrogenase and caspase-3 activities, indicators of lethal myocyte injury and apoptosis, respectively, and exendin-4 attenuated these increases. The content of ATP in myocytes decreased after hypoxia-reoxygenation but was preserved by exendin-4. The membrane potential and shape of mitochondria were assessed using a fluorescent probe. Exendin-4 attenuated the hypoxia-reoxygenation-induced disruption of the mitochondrial membrane potential and shortening. Mitochondrial quality control-related factors, such as optic atrophy protein 1, mitofusin 2, dynamin-related protein 1, and parkin, were examined by Western blotting. Exendin-4 significantly increased the expression of the fusion proteins, optic atrophy protein 1 and mitofusin 2, and decreased that of the mitophagy-related protein, parkin, without altering dynamin-related protein 1 expression levels. Exendin-4 also preserved Akt phosphorylation levels after hypoxia-reoxygenation, whereas wortmannin, an inhibitor of the phosphoinositide 3-kinase-Akt pathway, blunted exendin-4-induced myocyte protection and its effects on mitochondrial quality control factors. In conclusion, exendin-4 protected mitochondria by preserving the phosphorylation of Akt and fusion proteins, leading to the attenuation of hypoxia-reoxygenation-induced injury in cultured myocytes.
Collapse
Affiliation(s)
- Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | |
Collapse
|
10
|
Sun T, Wang D, Wang B, Liu X, Li N, Shi K. Melatonin attenuates cisplatin-induced acute kidney injury in mice: Involvement of PPARα and fatty acid oxidation. Food Chem Toxicol 2022; 163:112970. [PMID: 35367536 DOI: 10.1016/j.fct.2022.112970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
The present study focused on the protective effects of melatonin against cisplatin-induced acute kidney injury in mice and its possible mechanism of action in relation to the major regulator of fatty acid oxidation (FAO), peroxidase proliferative receptor α (PPARα). The experiment consisted of the following four groups: vehicle control, cisplatin (15 mg/kg), cisplatin & melatonin (20 mg/kg/day), and melatonin (20 mg/kg/day). Concomitant administration of melatonin significantly ameliorated cisplatin-induced acute kidney injury in mice by decreasing serum levels of triglyceride, blood urea nitrogen and creatinine, reducing the number and size of lipid droplets in tubular epithelial cells, and decreasing the incidence of histopathological changes including tubular cell apoptosis. Moreover, melatonin administration protected kidney tissue by significantly upregulating the levels of PPARα reduced by cisplatin injection, resulting in increased FAO pathway-associated genes (PGC-1a, Acadm, Acat1, Acsm2, Acsm3, Bdh2, Echs and Pecr) as well as reducing protein levels of caspase-3, -9 and Bax. Melatonin not only partially modulated FAO via PPARα signaling, but also decreased cisplatin-induced apoptosis by inhibiting the caspase-3, -9 and Bax pathways. Our findings suggest that melatonin prevents cisplatin-induced acute kidney injury in mice, possibly by upregulating the expression of PPARα, resulting in enhanced FAO and anti-apoptotic properties.
Collapse
Affiliation(s)
- Tao Sun
- Henan Medical College, Zhengzhou, 451191, China
| | - Di Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoying Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 450046, China
| | - Xianghua Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 450046, China
| | - Ningning Li
- Henan Medical College, Zhengzhou, 451191, China.
| | - Ke Shi
- Henan Medical College, Zhengzhou, 451191, China
| |
Collapse
|
11
|
Peng Y, Lin H, Tian S, Liu S, Li J, Lv X, Chen S, Zhao L, Pu F, Chen X, Shu H, Qing X, Shao Z. Glucagon-like peptide-1 receptor activation maintains extracellular matrix integrity by inhibiting the activity of mitogen-activated protein kinases and activator protein-1. Free Radic Biol Med 2021; 177:247-259. [PMID: 34737144 DOI: 10.1016/j.freeradbiomed.2021.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Disruption of the intervertebral disc extracellular matrix (ECM) is a hallmark of intervertebral disc degeneration (IDD), which is largely attributed to excessive oxidative stress. However, there is a lack of clinically feasible approaches to promote the reconstruction of the disc ECM. Glucagon-like peptide-1 (GLP-1), a safe polypeptide hormone adopted to treat type 2 diabetes mellitus, has shown great potential for relieving oxidative stress-related damage. To our knowledge, this is the first study to reveal that exenatide, a GLP-1 receptor (GLP-1R) agonist, can upregulate disc ECM synthesis and attenuate oxidative stress-induced ECM degradation and IDD. Mechanistically, we found that exenatide inhibited the activation of mitogen-activated protein kinases (MAPK) signaling pathway and the formation of BATF/JUNs heterodimers (an index of activator protein-1 (AP-1) activity). The restoration of MAPK signaling activation reversed the protective effects of exenatide and enhanced downstream BATF/JUNs binding. BATF overexpression was also found to aggravate disc ECM damage, even in the presence of exenatide. In summary, exenatide is an effective agent that regulates ECM anabolic balance and restores disc degeneration by inhibiting MAPK activation and its downstream AP-1 activity. The present study provides a therapeutic rationale for activating the GLP-1 receptor against IDD and establishes the important role of AP-1 activity in the pathogenesis of IDD.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
13
|
Bameri B, Armandeh M, Baeeri M, Haghi-Aminjan H, Rahimifard M, Hassani S, Hooshangi Shayesteh MR, Samadi M, Gholami M, Nayebpour M, Ostad SN, Abdollahi M. Electrocardiographic, hemodynamic, and biochemical evidence on the protective effects of exenatide against phosphine-induced cardiotoxicity in rat model. Hum Exp Toxicol 2021; 40:S381-S396. [PMID: 34569344 DOI: 10.1177/09603271211040819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminum phosphide (AlP) poisoning can be deadly in most cases targeting the heart. To overcome AlP toxicity, exenatide has been studied in the present study due to its pleiotropic effects on cardiac damages. In this study, the rats were exposed to LD50 of AlP (10 mg/kg) by gavage, and exenatide at doses (0.05, 0.1, and 0.2 mg/kg) injected intraperitoneally 30 min after poisoning. The cardiac parameters including heart rate (HR), blood pressure (BP), QRS, corrected QT (QTc), and ST were monitored for 180 min. Blood glucose level was measured in the study groups 30 min after exenatide injection. Evaluation of biochemical parameters including mitochondrial complexes I, II, and IV activities, adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio, malondialdehyde (MDA), apoptosis, lactate, troponin I, and brain natriuretic peptide (BNP) was done on heart tissues after 12 and 24 h. Additionally, the tissues were analyzed for any pathological damages including necrosis, hemorrhage, or hyperemia 24 h post-treatment. Our results showed that AlP-induced HR, BP, and electrocardiographic changes were improved by exenatide at all doses. The blood glucose levels of poisoned animals reached control levels after exenatide treatment. Besides, treatment with exenatide at all doses improved complexes I and IV activity, ADP/ATP ratio, and apoptosis. Malondialdehyde, lactate, troponin I, and BNP levels were also diminished after exenatide co-treatment in poisoned animals. On the other hand, administration of exenatide doses improved the histopathology of AlP-induced tissues. Based on our findings, exenatide has a protective effect against phosphine-induced cardiotoxicity in an almost dose-dependent way. However, further investigations are needed on the potential clinical use of exenatide in this poisoning.
Collapse
Affiliation(s)
- Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hooshangi Shayesteh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nayebpour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 48439Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), 48439Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Effects of Yiqi Huoxue Decoction on Post-Myocardial Infarction Cardiac Nerve Remodeling and Cardiomyocyte Hypertrophy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5168574. [PMID: 34471416 PMCID: PMC8405294 DOI: 10.1155/2021/5168574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Myocardial infarction can lead to ventricular remodeling and arrhythmia, which is closely related to nerve remodeling. Our previous study found that Yiqi Huoxue decoction (YQHX) can improve ventricular remodeling and reduce myocardial damage. Therefore, in this study, we observed the effect of YQHX on cardiac neural remodeling and cardiomyocyte hypertrophy and its possible mechanism. This research is composed of two parts: animal and H9c2 cells experiments. The animal model of acute myocardial infarction was established by ligating the left anterior descending coronary artery in Sprague Dawley (SD) rats. H9c2 cells were placed in 94% N2, 5% CO2, and 1% O2 hypoxic environment for 12 hours to replicate the hypoglycemic hypoxia model. The experimental results showed that, compared with the MI group, YQHX can significantly improve heart function after myocardial infarction and reduce nerve remodeling and myocardial hypertrophy. Pathological structure observation demonstrated reducing myocardial tissue damage and decreasing of cell cross-sectional area, diameter, and circumference. The positive rate of TH declined apparently, and the sympathetic nerve density was lower than that of the MI group. After YQHX was given for 28 days, the proneural remodeling factors TH, NGF, and GAP43 in the marginal zone of infarction and stellate ganglion decreased obviously while the inhibitory nerve remodeling factor Sema-3A increased. The myocardial hypertrophic protein ANP and β-MHC were also significantly inhibited with p-ERK1/2 protein expression level prominently reduced. There was no difference between the YQHX group and the Meto group. After myocardial infarction, nerve remodeling was seen in the marginal area of infarction and stellate ganglion, and the neuropeptides released by which promoted myocardial hypertrophy. The mechanism may be related to the ERK1/2 signaling pathway. YQHX could regulate the ERK1/2 signaling pathway, inhibit the release of nerve remodeling factors and myocardial hypertrophy protein to reduce nerve remodeling, and relieve myocardial hypertrophy.
Collapse
|
15
|
Berndt J, Ooi SL, Pak SC. What Is the Mechanism Driving the Reduction of Cardiovascular Events from Glucagon-like Peptide-1 Receptor Agonists?-A Mini Review. Molecules 2021; 26:4822. [PMID: 34443410 PMCID: PMC8400553 DOI: 10.3390/molecules26164822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are considered the standard of care for type 2 diabetes in many countries worldwide. These molecules have profound anti-hyperglycaemic actions with a favourable safety profile. They are now being considered for their robust cardiovascular (CV) protective qualities in diabetic patients. Most recent CV outcome trials have reported that GLP-1 RAs reduce major adverse cardiovascular events (MACE). Furthermore, the GLP-1 RAs seem to target the atherosclerotic CV disease processes preferentially. GLP-1 RAs also improve a wide range of routinely measured surrogate markers associated with CV risk. However, mediation analysis suggests these modest improvements may contribute indirectly to the overall anti-atherogenic profile of the molecules but fall short in accounting for the significant reduction in MACE. This review explores the body of literature to understand the possible mechanisms that contribute to the CV protective profile of GLP-1 RAs.
Collapse
Affiliation(s)
- Jared Berndt
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
- Eli Lilly Australia Pty. Ltd., West Ryde, NSW 2114, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia; (J.B.); (S.L.O.)
| |
Collapse
|
16
|
Abel F, Murke F, Gaida M, Garnier N, Ochsenfarth C, Theiss C, Thielmann M, Kleinbongard P, Giebel B, Peters J, Frey UH. Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure. PLoS One 2020; 15:e0228948. [PMID: 32059016 PMCID: PMC7021285 DOI: 10.1371/journal.pone.0228948] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/26/2020] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) can evoke cardioprotection following ischemia/reperfusion and this may depend on the anesthetic used. We tested whether 1) extracellular vesicles (EVs) isolated from humans undergoing RIPC protect cardiomyoblasts against hypoxia-induced apoptosis and 2) this effect is altered by cardiomyoblast exposure to isoflurane or propofol. EVs were isolated before and 60 min after RIPC or Sham from ten patients undergoing coronary artery bypass graft surgery with isoflurane anesthesia and quantified by Nanoparticle Tracking Analysis. Following EV-treatment for 6 hours under exposure of isoflurane or propofol, rat H9c2 cardiomyoblasts were cultured for 18 hours in normoxic or hypoxic atmospheres. Apoptosis was detected by flow cytometry. Serum nanoparticle concentrations in patients had increased sixty minutes after RIPC compared to Sham (2.5x1011±4.9x1010 nanoparticles/ml; Sham: 1.2x1011±2.0x1010; p = 0.04). Hypoxia increased apoptosis of H9c2 cells (hypoxia: 8.4%±0.6; normoxia: 2.5%±0.1; p<0.0001). RIPC-EVs decreased H9c2 cell apoptosis compared to control (apoptotic ratio: 0.83; p = 0.0429) while Sham-EVs showed no protection (apoptotic ratio: 0.97). Prior isoflurane exposure in vitro even increased protection (RIPC-EVs/control, apoptotic ratio: 0.79; p = 0.0035; Sham-EVs/control, apoptotic ratio:1.04) while propofol (50μM) abrogated protection by RIPC-EVs (RIPC-EVs/control, Apoptotic ratio: 1.01; Sham-EVs/control, apoptotic ratio: 0.94; p = 0.602). Thus, EVs isolated from patients undergoing RIPC under isoflurane anesthesia protect H9c2 cardiomyoblasts against hypoxia-evoked apoptosis and this effect is abrogated by propofol. This supports a role of human RIPC-generated EVs in cardioprotection and underlines propofol as a possible confounder in RIPC-signaling mediated by EVs.
Collapse
Affiliation(s)
- Frederik Abel
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Florian Murke
- Institut für Transfusionsmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Morten Gaida
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Nicolas Garnier
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Crista Ochsenfarth
- Klinik für Anästhesiologie, Operative Intensivmedizin, Schmerz- und Palliativmedizin, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Theiss
- Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität-Bochum, Bochum, Germany
| | - Matthias Thielmann
- Klinik für Thorax- und Kardiovaskuläre Chirurgie, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Bernd Giebel
- Institut für Transfusionsmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Ulrich H. Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
- Klinik für Anästhesiologie, Operative Intensivmedizin, Schmerz- und Palliativmedizin, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
17
|
Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother 2019; 120:109487. [PMID: 31577975 DOI: 10.1016/j.biopha.2019.109487] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) leads to an increase in morbidity and mortality globally. Disorders of energy metabolism and apoptosis of cardiomyocytes are critically involved in the progression of HF. Ginsenoside Rb3 (G-Rb3) is a natural product derived from ginseng that has cardio-protective effect. The pharmacological mechanism of G-Rb3 in the treatment of HF remains to be clarified. In this study, we aimed to explore the regulative effects of G-Rb3 on fatty acids oxidation and apoptosis by in vivo and in vitro studies. Myocardial infarction (MI)-induced HF mice model and a cellular H9C2 injury model was induced by oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The results showed that G-Rb3 could protect heart functions in MI-induced HF model. G-Rb3 treatment up-regulated expressions of key enzymes involved in β-oxidation of fatty acids, including carnitine palmitoyltransterase-1α (CPT-1α), acyl-CoA dehydrogenase long chain (ACADL) and the major mitochondrial deacetylase enzyme sirtuin 3 (SIRT3). The upstream transcriptional regulator, peroxisome proliferator-activated receptor α (PPARα), was also up-regulated by G-Rb3 treatment. In vitro study demonstrated that G-Rb3 could protect mitochondrial membrane integrity and exert anti-apoptotic effects, in addition to regulating fatty acids oxidation. Impressively, after cells were co-treated with PPARα inhibitor, the regulative effects of G-Rb3 on energy metabolism and apoptosis were abrogated. Our study suggests that G-Rb3 is a promising agent and PPARα is potential target in the management of HF.
Collapse
|
18
|
Manu TM, Anand T, Pandareesh MD, Kumar PB, Khanum F. Terminalia arjuna extract and arjunic acid mitigate cobalt chloride-induced hypoxia stress-mediated apoptosis in H9c2 cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1107-1119. [PMID: 31069430 DOI: 10.1007/s00210-019-01654-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Arjunic acid (AA) is one of the major active component of Terminalia arjuna known for its health benefits. In the present study, we evaluated cardioprotective potential of Terminalia arjuna extract (TAE) and AA against cobalt chloride (CoCl2)-induced hypoxia damage and apoptosis in rat cardiomyocytes. TAE (50 μg/ml) and AA (8 μg/ml) significantly (p < 0.001) protected H9c2 cells as evidenced by cell viability assays against CoCl2 (1.2 mM)-induced cytotoxicity. TAE and AA pretreatments protected the cells from oxidative damage by decreasing the generation of free radicals (ROS, hydroperoxide, and nitrite levels). TAE and AA pretreatments retained mitochondrial membrane potential by alleviating the rate of lipid peroxidation induced by CoCl2 treatment. TAE and AA pretreatments elevated antioxidant status including phase II antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and total glutathione levels against CoCl2-induced oxidative stress. Further immunoblotting studies confirmed anti-apoptotic effects of TAE and AA by alleviating the phosphorylation of JNK and c-jun and also by regulating protein expression levels of Bcl2, Bax, caspase 3, heat shock protein-70, and inducible nitric oxide synthase. Overall, our results suggest that both the extract and the active component exhibit antioxidant and anti-apoptotic defense against CoCl2-induced hypoxic injury.
Collapse
Affiliation(s)
- T Mohan Manu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India.
| | - M D Pandareesh
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| | - P Bhuvanesh Kumar
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, 570011, India
| |
Collapse
|
19
|
Fang J, Tang Y, Cheng X, Wang L, Cai C, Zhang X, Liu S, Li P. Exenatide alleviates adriamycin-induced heart dysfunction in mice: Modulation of oxidative stress, apoptosis and inflammation. Chem Biol Interact 2019; 304:186-193. [DOI: 10.1016/j.cbi.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
|
20
|
Wang X, Li Z, Huang X, Li F, Liu J, Li Z, Bai D. An experimental study of exenatide effects on renal injury in diabetic rats1. Acta Cir Bras 2019; 34:e20190010000001. [PMID: 30785502 PMCID: PMC6585921 DOI: 10.1590/s0102-865020190010000001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To investigate the effects of exenatide on renal injury in streptozotocin-induced diabetic rats. METHODS Fifty SD rats were randomly divided into normal control, model, exenatide-1, exenatide-2 and exenatide-3 groups, 10 rats in each group. The diabetic nephropathy model was constructed in later 4 groups. Then, the later 3 groups were treated with 2, 4 and 8 μg/kg exenatide for 8 weeks, respectively. The serum and urine biochemical indexes and oxidative stress and inflammatory indexes in renal tissue were determined. RESULTS Compared to the model group, in exenatide-3 group the serum fasting plasma glucose and hemoglobin A1c levels were significantly decreased, the fasting insulin level was significantly increased, the renal index and blood urea nitrogen, serum creatinine and 24 h urine protein levels were significantly decreased, the renal tissue superoxide dismutase and glutathione peroxidase levels were significantly increased, the malondialdehyde level was significantly decreased, and the renal tissue tumor necrosis factor alpha, interleukin 6, hypersensitive C-reactive protein and chemokine (C-C motif) ligand 5 levels were significantly decreased P<0.05). CONCLUSIONS Exenatide can mitigate the renal injury in diabetic rats. The mechanisms may be related to its resistance of oxidative stress and inflammatory response in renal tissue.
Collapse
Affiliation(s)
- Xiaodong Wang
- Master, Second Department of Nephrology, Tai'an Central Hospital, China. Technical procedures, critical revision, final approval
| | - Zhaoliang Li
- Bachelor, Second Department of Endocrinology, Tai'an Central Hospital, China. Technical procedures, statistical analysis, critical revision, final approval
| | - Xiaolei Huang
- Master, Department of Hemodialysis, Tai'an Central Hospital, China. Acquisition of data, critical revision, final approval
| | - Fenghua Li
- Bachelor, Second Department of Endocrinology, Tai'an Central Hospital, China. Technical procedures, statistical analysis, critical revision, final approval
| | - Jinbo Liu
- MD, Department of Endocrinology, Qilu Hospital, Shandong University, China. Statistical analysis, critical revision, final approval
| | - Zhenzuo Li
- MD, Department of Endocrinology, The Fourth People's Hospital of Ji'nan City, China. Manuscript writing, critical revision, final approval
| | - Dongfang Bai
- Master, Second Department of Endocrinology, Tai'an Central Hospital, China. Design of the study, critical revision, final approval
| |
Collapse
|
21
|
Tao L, Wang L, Yang X, Jiang X, Hua F. Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol 2019; 481:95-103. [PMID: 30503377 DOI: 10.1016/j.mce.2018.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Obstructive sleep apnea syndrome is a chronic disease associated with intermittent hypoxia (IH) and is an important risk factor for cardiovascular disease. Glucagon-like peptide (GLP-1) is a naturally occurring incretin used as a promising therapeutic agent in the treatment of acute myocardial infarction, dilated cardiomyopathy, and advanced heart failure. However, whether GLP-1 can protect against IH-induced cardiac injury is still unclear. Accordingly, in this study, we evaluated the effects of recombinant human GLP-1 (rhGLP-1) on cardiac health in mice. METHODS Mice were subjected to repetitive 5% O2 for 30 s and 21% O2 for 30 s, for a total of 8 h/day for 4 weeks. Subsequently, mice received subcutaneous injection of saline or rhGLP-1 (100 μg/kg, three times per day). Cardiac function, myocardial apoptosis and fibrosis, energy metabolism, and mitochondrial biogenesis were examined for evaluation of cardiac injury. RESULTS A reduction in diastolic function (E/A ratio) in mice exposed to IH was significantly reversed by rhGLP-1. IH induced marked cardiomyocyte apoptosis and myocardial fibrosis. Additionally, IH resulted in a shift from fatty acid to glucose metabolism in the myocardium with downregulation of peroxisome proliferator-activated receptor (PPAR) α and PPARγ. Moreover, IH caused a reduction in mitochondrial DNA (mtDNA) replication and transcription, together with reduced mtDNA content and impaired mitochondrial ultrastructure. These changes were abolished by rhGLP-1 via activation of PGC-1α and Akt signaling. CONCLUSIONS rhGLP-1 protects against IH-induced cardiac injury by improving myocardial energy metabolism and enhancing the early adaptive changes of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Long Wang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| |
Collapse
|
22
|
Ding W, Chang WG, Guo XC, Liu Y, Xiao DD, Ding D, Wang JX, Zhang XJ. Exenatide Protects Against Cardiac Dysfunction by Attenuating Oxidative Stress in the Diabetic Mouse Heart. Front Endocrinol (Lausanne) 2019; 10:202. [PMID: 31024445 PMCID: PMC6459897 DOI: 10.3389/fendo.2019.00202] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease is the major cause of death in patients with diabetes. Current treatment strategies for diabetes rely on lifestyle changes and glucose control to prevent angiopathy and organ failure. Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is used as an add-on therapy to insulin treatment. Exenatide also has multiple beneficial effects in addition to its hypoglycemic effects, such as preventing hepatic steatosis and protecting against cardiac injury from doxorubicin-induced cardiotoxicity or ischemic reperfusion. However, the mechanisms underlying the cardioprotective effects of exenatide in diabetes have not been fully clarified. To address this issue, we investigated the cardioprotective effects of exenatide in type 1 and type 2 diabetic mice. We found that exenatide simultaneously attenuated reactive oxidative species (ROS) production through increases in the antioxidant enzymes manganese dependent superoxide dismutase (MnSOD) and catalase. Moreover, exenatide decreased tumor protein P53 (p53) expression and prevented cell apoptosis in H9c2 cells. The presence of the catalase inhibitor 3-AT attenuated the effects of exenatide. Overall, the results strongly indicate that exenatide treatment may be protective against the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Wen-guang Chang
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiao-ci Guo
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Ying Liu
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Dan-dan Xiao
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Dan Ding
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Jian-xun Wang
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
- *Correspondence: Jian-xun Wang
| | - Xue-juan Zhang
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
- Xue-juan Zhang
| |
Collapse
|
23
|
Wei H, Bu R, Yang Q, Jia J, Li T, Wang Q, Chen Y. Exendin-4 Protects against Hyperglycemia-Induced Cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway. J Diabetes Res 2019; 2019:8905917. [PMID: 31886288 PMCID: PMC6925927 DOI: 10.1155/2019/8905917] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which results in cardiac hypertrophy and subsequent heart failure. Chronic inflammation in the diabetic heart results in loss of cardiomyocytes and subsequentially cardiac dysfunction. Accumulated evidence implicated pyroptosis as a vital contributor to the hyperglycemia-induced cardiac inflammatory response. Exendin-4, a GLP analog, promotes survival of cardiomyocytes in cardiovascular diseases, including diabetic cardiomyopathy. However, the role of Exendin-4 in cardiac pyroptosis remains to be elucidated. Our study revealed that Exendin-4 treatment protected against heart remolding and dysfunction and attenuated cardiac inflammation in high-fat diet-fed rats. The activity of caspase-1 and production of pyroptotic cytokines were significantly inhibited by Exendin-4 treatment in the diabetic heart and in high glucose-treated cardiomyocytes as well. In an effort to understand the signaling mechanisms underlying the antipyroptotic property of Exendin-4, we found that blockade of AMPK, an oxidative stress sensor, activity diminished the antipyroptotic property of Exendin-4. Phosphorylation of AMPK resulted in degeneration of TXNIP that promoted the activation of the NLRP3 inflammasome. Exendin-4 treatment decreased the protein level of TXNIP. Moreover, RNA silencing of TXNIP mimicked the antipyroptotic actions of Exendin-4. These findings promoted us to propose a new signaling pathway mediating cardioprotective effect of Exendin-4 under hyperglycemic conditions: Exendin-4 → ROS↓ → pAMPK↑ → TXNIP↓ → caspase-1↓ → IL-1β and IL-18↓ → pyroptosis↓. In general, our study identified Exendin-4 as a pyroptotic inhibitor protecting against hyperglycemia-induced cardiomyocyte pyroptosis via the AMPK-TXNIP pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caspase 1/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Exenatide/pharmacology
- Hypoglycemic Agents/pharmacology
- Incretins/pharmacology
- Interleukin-18/metabolism
- Interleukin-1beta/metabolism
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Phosphorylation
- Proteolysis
- Pyroptosis/drug effects
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Thioredoxins/genetics
- Thioredoxins/metabolism
Collapse
Affiliation(s)
- Hong Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Bu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghui Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Jia
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuping Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjun Chen
- Department of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
24
|
Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep 2018; 8:17491. [PMID: 30504832 PMCID: PMC6269513 DOI: 10.1038/s41598-018-35726-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated the cardio-protection mediated by the total flavonoid extracted from Dracocephalum moldavica L. (TFDM) following myocardial ischemia reperfusion injury (MIRI). The present study assessed the presence and mechanism of TFDM-related cardio-protection on MIRI-induced apoptosis in vivo. Male Sprague-Dawley rats experienced 45-min ischemia with 12 h of reperfusion. Rats pretreated with TFDM (3, 10 or 30 mg/kg/day) were compared with Sham (no MIRI and no TFDM), MIRI (no TFDM), and Positive (trapidil tablets, 13.5 mg/kg/day) groups. In MIRI-treated rats, high dose-TFDM (H-TFDM) pre-treatment with apparently reduced release of LDH, CK-MB and MDA, enhanced the concentration of SOD in plasma, and greatly reduced the infarct size, apoptotic index and mitochondrial injury. H-TFDM pretreatment markedly promoted the phosphorylation of PI3K, Akt, GSK-3β and ERK1/2 in comparison with the MIRI model group. Western blot analysis after reperfusion also showed that H-TFDM decreased release of Bax, cleaved caspase-3, caspase-7 and caspase-9, and increased expression of Bcl-2 as evident by the higher Bcl-2/Bax ratio. TFDM cardio-protection was influenced by LY294002 (PI3K inhibitor) and PD98059 (ERK1/2 inhibitor). Taken together, these results provide convincing evidence of the benefit of TFDM pretreatment due to inhibited myocardial apoptosis as mediated by the PI3K/Akt/GSK-3β and ERK1/2 signaling pathways.
Collapse
|
25
|
Yu S, Guo Y, Zhang W, Zheng L, Ren J, Jin J, Yu B, Zhang Y, Wang H, Zhang Y. [Effects of propofol pretreatment on myocardial cell apoptosis and SERCA2 expression in rats with hepatic ischemia/reperfusion]. Rev Bras Anestesiol 2018; 68:591-596. [PMID: 30195630 DOI: 10.1016/j.bjan.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 06/03/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Hepatic ischemia-reperfusion injury is a common pathophysiological process in liver surgery. Whether Propofol can reduce myocardial ischemia-reperfusion injury induced by hepatic ischemia-reperfusion injury in rats, together with related mechanisms, still needs further studies. OBJECTIVE To investigate if propofol would protect the myocardial cells from apoptosis with hepatic ischemia-reperfusion injury. METHODS Male Sprague-Dawley rats (n=18) were randomly allocated into three groups: Sham Group (Group S, n=6), Hepatic Ischemia-reperfusion Injury Group (Group IR, n=6) and Propofol Group (Group P, n=6). Group S was only subjected to laparotomy. Group IR was attained by ischemia for 30min and reperfusion for 4h. Group P was subjected identical insult as in Group IR with the administration of propofol started 10min before ischemia with 120mg.kg-1, following by continuous infusion at 20mg.kg-1.h-1. Cell apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and cysteine-containing aspartic acid cleaved-caspase3 (cleaved-caspase3) were assayed by western blot and Altimeter polymerase chain reaction. RESULTS Apoptosis rate was increased, with mRNA and protein of SERCA2 down-regulated and cleaved-caspase3 up-regulated in Group IR compared with Group S (p<0.01). Apoptosis rate was decreased, with mRNA and protein of SERCA2 up-regulated and cleaved-caspase3 down-regulated in Group P compared with Group IR (p<0.01). CONCLUSIONS Propofol can reduce hepatic ischemia-reperfusion injury-induced myocardial cell apoptosis, meanwhile, can up-regulate mRNA and protein of SERCA2 in rats.
Collapse
Affiliation(s)
- Shuzhen Yu
- Shanxi Provincial People's Hospital, Department of Anesthesiology, Taiyuan, China
| | - Yongqing Guo
- Shanxi Provincial People's Hospital, Department of Anesthesiology, Taiyuan, China.
| | - Weiwei Zhang
- Shanxi Provincial People's Hospital, Department of Anesthesiology, Taiyuan, China
| | - Lina Zheng
- Shanxi Provincial People's Hospital, Department of Anesthesiology, Taiyuan, China
| | - Junming Ren
- Shanxi Medical University, Department of Biochemistry, Taiyuan, China
| | - Jianmin Jin
- Shanxi Provincial People's Hospital, Department of Anesthesiology, Taiyuan, China
| | - Baofeng Yu
- Shanxi Medical University, Department of Biochemistry, Taiyuan, China
| | - Yu Zhang
- Shanxi People's Hospital, Department of General Surgery, Taiyuan, China
| | - Hao Wang
- Shanxi People's Hospital, Department of General Surgery, Taiyuan, China
| | - Yuhong Zhang
- Shanxi People's Hospital, Department of General Surgery, Taiyuan, China
| |
Collapse
|
26
|
Chen T, Vunjak-Novakovic G. In vitro Models of Ischemia-Reperfusion Injury. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:142-153. [PMID: 30393757 PMCID: PMC6208331 DOI: 10.1007/s40883-018-0056-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/25/2018] [Indexed: 01/23/2023]
Abstract
Timely reperfusion after a myocardial infarction is necessary to salvage the ischemic region; however, reperfusion itself is also a major contributor to the final tissue damage. Currently, there is no clinically relevant therapy available to reduce ischemia-reperfusion injury (IRI). While many drugs have shown promise in reducing IRI in preclinical studies, none of these drugs have demonstrated benefit in large clinical trials. Part of this failure to translate therapies can be attributed to the reliance on small animal models for preclinical studies. While animal models encapsulate the complexity of the systemic in vivo environment, they do not fully recapitulate human cardiac physiology. Furthermore, it is difficult to uncouple the various interacting pathways in vivo. In contrast, in vitro models using isolated cardiomyocytes allow studies of the direct effect of therapeutics on cardiomyocytes. External factors can be controlled in simulated ischemia-reperfusion to allow for better understanding of the mechanisms that drive IRI. In addition, the availability of cardiomyocytes derived from human induced pluripotent stem cells (hIPS-CMs) offers the opportunity to recapitulate human physiology in vitro. Unfortunately, hIPS-CMs are relatively fetal in phenotype, and are more resistant to hypoxia than the mature cells. Tissue engineering platforms can promote cardiomyocyte maturation for a more predictive physiologic response. These platforms can further be improved upon to account for the heterogenous patient populations seen in the clinical settings and facilitate the translation of therapies. Thereby, the current preclinical studies can be further developed using currently available tools to achieve better predictive drug testing and understanding of IRI. In this article, we discuss the state of the art of in vitro modeling of IRI, propose the roles for tissue engineering in studying IRI and testing the new therapeutic modalities, and how the human tissue models can facilitate translation into the clinic.
Collapse
Affiliation(s)
- Timothy Chen
- Department of Biomedical Engineering, University in the City of New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, University in the City of New York
- Department of Medicine Columbia University in the City of New York
| |
Collapse
|
27
|
Rashid CS, Bansal A, Simmons RA. Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes. Physiology (Bethesda) 2018; 33:348-359. [PMID: 30109821 PMCID: PMC6230552 DOI: 10.1152/physiol.00023.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.
Collapse
Affiliation(s)
- Cetewayo S Rashid
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Candeias E, Sebastião I, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats. Mol Neurobiol 2018; 55:4030-4050. [PMID: 28573460 DOI: 10.1007/s12035-017-0622-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent signaling pathways. Specifically, Ex-4 stimulated protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/Akt signaling, increasing cGMP and AMPK levels, and decreasing GSK3β and JNK activation in T2D rat brains. Moreover, Ex-4 regulated several markers for autophagy in GK rat brains (as mTOR, PI3K class III, LC3 II, Atg7, p62, LAMP-1, and Parkin), ultimately protecting against apoptosis (by decreasing several caspase-like activities and mitochondrial cytochrome c, and increasing Bcl2 levels upon T2D). Altogether, this study demonstrates that peripheral Ex-4 administration may constitute a promising therapy against the chronic complications of T2D affecting the brain.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Inês Sebastião
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Maria Sancha Santos
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Catarina Resende Oliveira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Ana I Duarte
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
29
|
Zhao L, Li X, Niu P, Li L. The effect of shear on the cytoskeleton remodeling and physiological performance of myocardium cells through Tmod1. RSC Adv 2018; 8:33347-33353. [PMID: 35548140 PMCID: PMC9086437 DOI: 10.1039/c8ra05982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/09/2018] [Indexed: 11/21/2022] Open
Abstract
Objective: mechanical stimulation alters cell metabolism, but little is known about the effects of mechanical strain on the cytoskeleton of myocardium cells. This study was to investigate the changes of F-actin, a cytoskeleton protein of myocardium cells, and to provide a theoretical basis for further investigation of the mechanism of myocardium-remodeling. Methods: we examined the effects of fluid shear stress on the Tmod1 expression and F-actin cytoskeleton remodeling. Then, after myocardial cells, silenced by si-Tmod1, were treated by fluid shear stress, the change of intracellular calcium ion concentration, ROS in myocardial cells, cytochrome C, and the amount of F-actin, LDH and T-SOD MDA were evaluated with laser light confocal microscopy, western blot, and ELISA, respectively. Results: fluid shear stress can induce F-actin cytoskeleton remodeling and upregulate Tmod1 expression. After myocardial cells were under the conditions of Tmod1 inhibition, shear stress can significantly reduce the increase of ROS levels and calcium content, decrease the release of cells cytochrome C and LDH, decrease the MDA content, and increase the level of T-SOD. Conclusion: in conclusion, shear treatment can remodel the cytoskeleton through Tmod1, and its mechanism may be related to scavenging oxidative stress products, ROS and MDA, the increase of intracellular antioxidant enzyme activity of SOD and improvement in mitochondrial dysfunction. F-actin cytoskeleton remodeling observed by laser scanning confocal microscopy was induced by shear stress in cardiac myocytes (A), and the F-actin content change was manifested in (B).![]()
Collapse
Affiliation(s)
- Liang Zhao
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Institute of Life Science and Health
- College of Life Sciences and Technology
| | - Xiafei Li
- Institute of Life Science and Health
- College of Life Sciences and Technology
- Xinxiang Medical University
- Xinxiang
- China
| | - Pei Niu
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Department of Mechanics and Engineering Science
- College of Engineering
| | - Li Li
- PKU-HKUST Shenzhen-Hongkong Institution
- Shenzhen
- China
- Department of Mechanics and Engineering Science
- College of Engineering
| |
Collapse
|
30
|
Oh YS, Jun HS. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling. Int J Mol Sci 2017; 19:ijms19010026. [PMID: 29271910 PMCID: PMC5795977 DOI: 10.3390/ijms19010026] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative cellular damage caused by free radicals is known to contribute to the pathogenesis of various diseases such as cancer, diabetes, and neurodegenerative diseases, as well as to aging. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein1 (Keap1) signaling pathways play an important role in preventing stresses including oxidative and inflammatory stresses. Nrf2 is a master regulator of cellular stress responses, induces the expression of antioxidant and detoxification enzymes, and protects against oxidative stress-induced cell damage. Glucagon-like peptide-1 (GLP-1) is an incretin hormone, which was originally found to increase insulin synthesis and secretion. It is now widely accepted that GLP-1 has multiple functions beyond glucose control in various tissues and organs including brain, kidney, and heart. GLP-1 and GLP-1 receptor agonists are known to be effective in many chronic diseases, including diabetes, via antioxidative mechanisms. In this review, we summarize the current knowledge regarding the role of GLP-1 in the protection against oxidative damage and the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea.
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea.
| |
Collapse
|
31
|
Angelini A, Pi X, Xie L. Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Front Physiol 2017; 8:1044. [PMID: 29311974 PMCID: PMC5732914 DOI: 10.3389/fphys.2017.01044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
The heart must consume a significant amount of energy to sustain its contractile activity. Although the fuel demands are huge, the stock remains very low. Thus, in order to supply its daily needs, the heart must have amazing adaptive abilities, which are dependent on dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging to distinguish causes from consequences in cardiac pathologies. Finally, despite the progress achieved in the past few decades, medical treatments have not improved substantially, either. In such a situation, it seems clear that much remains to be learned about cardiac diseases. Therefore, in this review, we will discuss how reconciling dioxygen availability and cardiac metabolic adaptations may contribute to develop full and innovative strategies from bench to bedside.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Xinchun Pi
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Liang Xie
- Department of Medicine-Athero and Lipo, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
Lee KH, Cho H, Lee S, Woo JS, Cho BH, Kang JH, Jeong YM, Cheng XW, Kim W. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int J Cardiol 2017; 232:40-47. [PMID: 28159361 DOI: 10.1016/j.ijcard.2017.01.123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/27/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Exenatide is a glucagon-like peptide-1 analogue that mitigates myocardial injury caused by ischemia-reperfusion injury via the survival signaling pathway. We hypothesized that exenatide would provide a protective effect in doxorubicin-induced cardiotoxicity. METHODS H9c2 cardiomyocytes were pre-treated with exenatide followed by doxorubicin (DOX), and cell viability and intracellular reactive oxygen species (ROS) were subsequently measured. In order to determine the role of autophagy, we performed western blot as well as TUNEL and autophagosome staining. Additionally, rats were treated with exenatide 1h prior to every DOX treatment. Left ventricular (LV) function and performance were then assessed by echocardiography. Myocardial and serum ROS was measured with DHE fluorescence and ROS/RNS assay. RESULTS DOX-induced caspase-3 activation decreased after pre-treatment with exenatide both in vivo and in vitro. Oxidative stress was attenuated by exenatide in H9c2 cells, as well as in cardiac tissue and serum. The number of autophagosomes and autophagic markers were further increased by exenatide in the DOX-treated H9c2 cells, which mediated AMPK activation. Suppression of the autophagosome abolished exenatide-induced anti-apoptotic effect. Echocardiography showed that pre-treatment with exenatide significantly improved LV dysfunction that is induced by DOX treatment. Exenatide inhibits the DOX-induced production of intracellular ROS and apoptosis in the myocardium. The autophagic markers increased in exenatide pre-treated cardiac tissue. CONCLUSION Exenatide reduces DOX-induced apoptosis of cardiomyocytes by upregulating autophagy and improving cardiac dysfunction. These novel results highlight the therapeutic potential of exenatide to prevent doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Kyung Hye Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Shin Woo
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Byung Hyun Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Hee Kang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Mi Jeong
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Xian Wu Cheng
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Cao YY, Chen ZW, Gao YH, Wang XX, Ma JY, Chang SF, Qian JY, Ge JB. Exenatide Reduces Tumor Necrosis Factor-α-induced Apoptosis in Cardiomyocytes by Alleviating Mitochondrial Dysfunction. Chin Med J (Engl) 2016; 128:3211-8. [PMID: 26612298 PMCID: PMC4794880 DOI: 10.4103/0366-6999.170259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Tumor necrosis factor-α (TNF-α) plays an important role in progressive contractile dysfunction in several cardiac diseases. The cytotoxic effects of TNF-α are suggested to be partly mediated by reactive oxygen species (ROS)- and mitochondria-dependent apoptosis. Glucagon-like peptide-1 (GLP-1) or its analogue exhibits protective effects on the cardiovascular system. The objective of the study was to assess the effects of exenatide, a GLP-1 analogue, on oxidative stress, and apoptosis in TNF-α-treated cardiomyocytes in vitro. Methods: Isolated neonatal rat cardiomyocytes were divided into three groups: Control group, with cells cultured in normal conditions without intervention; TNF-α group, with cells incubated with TNF-α (40 ng/ml) for 6, 12, or 24 h without pretreatment with exenatide; and exenatide group, with cells pretreated with exenatide (100 nmol/L) 30 mins before TNF-α (40 ng/ml) stimulation. We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry, measured ROS production and mitochondrial membrane potential (MMP) by specific the fluorescent probes, and assessed the levels of proteins by Western blotting for all the groups. Results: Exenatide pretreatment significantly reduced cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay at 12 h and 24 h. Also, exenatide inhibited excessive ROS production and maintained MMP. Furthermore, declined cytochrome-c release and cleaved caspase-3 expression and increased bcl-2 expression with concomitantly decreased Bax activation were observed in exenatide-pretreated cultures. Conclusion: These results suggested that exenatide exerts a protective effect on cardiomyocytes, preventing TNF-α-induced apoptosis; the anti-apoptotic effects may be associated with protection of mitochondrial function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ju-Ying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | |
Collapse
|
34
|
Cox-2 Inhibition Protects against Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Akt-Dependent Enhancement of iNOS Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453059. [PMID: 27795807 PMCID: PMC5067333 DOI: 10.1155/2016/3453059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/02/2023]
Abstract
The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2) expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R) by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFκB specific inhibitor). Furthermore, pretreatment with NS398 (COX-2 specific inhibitor) significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH) leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells) in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6) and tumor necrosis factor (TNFα)] and reactive oxygen species (ROS) production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS) and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor) or 1400W (iNOS-selective inhibitor) cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFκB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury via mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling.
Collapse
|
35
|
Abstract
Vascular endothelial cells play a major role in maintaining cardiovascular homeostasis. Endothelial dysfunction, characterized by reduced endothelium-dependent relaxations or accompanied by enhanced endothelium-dependent contractions, is a hallmark of and plays a pivotal role in the pathogenesis of hypertension. Endothelial dysfunction in hypertension has been linked to decreases in nitric oxide (NO) bioavailability, reflecting the impaired generation of NO and/or the enhanced inactivation of NO by reactive oxygen species. Many of these conditions can be improved by glucagon-like peptide 1 (GLP-1), a proglucagon-derived hormone secreted by intestinal endocrine L-type cells, which is rapidly inactivated by an enzyme dipeptidyl peptidase 4 in circulation. On one hand, GLP-1 analogues or dipeptidyl peptidase 4 inhibitors upregulate endothelial nitric oxide synthase expression and increase endothelial nitric oxide synthase phosphorylation, resulting in improved production of NO and thus endothelium-dependent relaxations. On the other hand, GLP-1 and related agents attenuate endothelium-dependent contractions by reducing reactive oxygen species generation and cyclooxygenase-2 expression. GLP-1 elevating agents and GLP-1 receptor agonists improve endothelial function in hypertension, suggesting that GLP-1 signaling could be a therapeutic target in hypertension-related vascular events.
Collapse
|
36
|
Li PC, Tien YC, Day CH, Pai P, Kuo WW, Chen TS, Kuo CH, Tsai CH, Ju DT, Huang CY. Impact of LPS-induced cardiomyoblast cell apoptosis inhibited by earthworm extracts. Cardiovasc Toxicol 2016; 15:172-9. [PMID: 25249212 DOI: 10.1007/s12012-014-9281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dilong is an earthworm extract with a dense nutritional content, widely used in Chinese herbal medicine to remove stasis and stimulate wound healing. Earthworm extracts are traditionally used by indigenous people throughout the world. How this Dilong inhibits Lipopolysaccharide (LPS)-induced cardiomyoblast cell apoptosis is still unclear. This study investigates the Dilong extract effect on LPS-induced apoptosis in H9c2 cardiomyoblast cells. LPS (1 μg/ml) administration for 24 h induced apoptosis in H9c2 cells. Cell apoptosis was detected using MTT, LDH, TUNEL assay and JC-1 staining. Western blot analysis was used to detect pro-apoptotic and anti-apoptotic proteins. Dilong extract totally blocked the LPS impact, leading to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, stabilized the mitochondria membrane and down-regulated the extrinsic and intrinsic pro-apoptotic proteins, TNF-α, active caspase-8, t-Bid, Bax, active caspase-9 and active caspase-3. Dilong could potentially serve as a cardio protective agent against LPS-induced H9c2 cardiomyoblast cell apoptosis.
Collapse
Affiliation(s)
- Ping-Chun Li
- Division of Cardiovascular Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang H, Liang X, Luo G, Ding M, Liang Q. Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism. MOLECULAR BIOSYSTEMS 2016; 12:2257-2264. [DOI: 10.1039/c6mb00108d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Nicotinamide exerts a protective effect on cardiomyoblasts against hypoxia/re-oxygenation-induced injury through reduction of reactive oxygen species generation via succinate dehydrogenase inhibition.
Collapse
Affiliation(s)
- He Wang
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Xiaoping Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Guoan Luo
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Mingyu Ding
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Qionglin Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation
- Key lab of Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|
38
|
Petersen KE, Rakipovski G, Raun K, Lykkesfeldt J. Does Glucagon-like Peptide-1 Ameliorate Oxidative Stress in Diabetes? Evidence Based on Experimental and Clinical Studies. Curr Diabetes Rev 2016; 12:331-358. [PMID: 26381142 PMCID: PMC5101636 DOI: 10.2174/1573399812666150918150608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) has shown to influence the oxidative stress status in a number of in vitro, in vivo and clinical studies. Well-known effects of GLP-1 including better glycemic control, decreased food intake, increased insulin release and increased insulin sensitivity may indirectly contribute to this phenomenon, but glucose-independent effects on ROS level, production and antioxidant capacity have been suggested to also play a role. The potential 'antioxidant' activity of GLP-1 along with other proposed glucose-independent modes of action related to ameliorating redox imbalance remains a controversial topic but could hold a therapeutic potential against micro- and macrovascular diabetic complications. This review discusses the presently available knowledge from experimental and clinical studies on the effects of GLP-1 on oxidative stress in diabetes and diabetes-related complications.
Collapse
Affiliation(s)
| | | | | | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|
39
|
Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase A and B/Akt manner. Pharmacol Rep 2015; 68:329-37. [PMID: 26922535 DOI: 10.1016/j.pharep.2015.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Incretin-based therapies in the treatment of type 2 diabetes mellitus are associated with significant improvements in glycemic control, which are accompanied by a beneficial impact on atherosclerosis. Macrophages are essential in the development of atherosclerotic plaques and may develop features that accelerate atherosclerosis (classically activated macrophages) or protect arterial walls against it (alternatively activated macrophages). Therefore, we explored whether beneficial actions of exenatide are connected with the influence on the macrophages' phenotype and synthesis of inflammatory and anti-inflammatory cytokines. METHODS Monocytes/macrophages were harvested from 10 healthy subjects. Cells were cultured in the presence of exenatide, exendin 9-39 (GLP-1 antagonist), LPS, IL-4, PKI (PKA inhibitor) and triciribine (PKB/Akt inhibitor). We measured the effects of the above-mentioned compounds on markers of macrophages' phenotype (inducible nitrous oxide (iNOS), arginase 1 (arg1) and mannose receptors) and concentration of nitrite, IL-1β, TNF-α and IL-10. RESULTS Exenatide significantly increased the level of IL-10 and decreased both TNF-α and IL-1β in LPS-treated monocytes/macrophages. Furthermore exenatide increased the expression of arg1-a marker of classical activation and reduced the LPS-induced expression of iNOS-a marker of classical activation. According to experiments with protein kinases inhibitors we found that proinflammatory markers were protein kinase A dependent, whereas the activation of alternative activation was similarly reliant on protein kinase A and B/Akt. CONCLUSIONS We showed that exenatide skewed the macrophages phenotype toward anti-inflammatory phenotype and this effect is predominantly attributable to protein kinase A and to a less extent to B/Akt activation.
Collapse
|
40
|
Zhao P, Li F, Gao W, Wang J, Fu L, Chen Y, Huang M. Angiotensin1-7 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress by preventing ROS-associated mitochondrial dysfunction and activating the Akt signaling pathway. Acta Histochem 2015; 117:803-10. [PMID: 26251197 DOI: 10.1016/j.acthis.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/12/2023]
Abstract
Angiotensin1-7 (Ang1-7) is a biologically active member of the renin-angiotensin system, which has been reported to exhibit protective effect in myocardial ischemia reperfusion-induced injury. However, the molecular basis of this effect is not well understood. It has been proposed that oxidative stress-induced cardiomyocyte apoptosis is a major consequence of hypoxia/reoxygenation (H/R) injury. This study investigates the protective effect of Ang1-7 against H/R-induced oxidative stress in rat H9C2 cells. Our results showed that Ang1-7 (80nM) treatment significantly protected cells from H/R-induced oxidative injury via improving cell viability and reducing cell apoptosis. The protective effect of Ang1-7 was associated with the inhibition of ROS-associated mitochondrial dysfunction as well as the induction of Akt phosphorylation. These findings may significantly contribute to better understanding the protective effect of Ang1-7, particularly in hypoxia/reoxygenation-induced heart diseases and form the basis in the therapeutic development in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Pengjun Zhao
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Fen Li
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China.
| | - Wei Gao
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Jing Wang
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Lijun Fu
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Yiwei Chen
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Meirong Huang
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| |
Collapse
|
41
|
Bułdak Ł, Łabuzek K, Bułdak RJ, Machnik G, Bołdys A, Okopień B. Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:905-19. [PMID: 25980358 PMCID: PMC4537507 DOI: 10.1007/s00210-015-1124-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022]
Abstract
Macrophages are dominant cells in the pathogenesis of atherosclerosis. They are also a major source of reactive oxygen species (ROS). Oxidative stress, which is particularly high in subjects with diabetes, is responsible for accelerated atherosclerosis. Novel antidiabetic drugs (e.g., glucagon-like peptide-1 (GLP-1) agonists) were shown to reduce ROS level. Therefore, we conceived a study to evaluate the influence of exenatide, a GLP-1 agonist, on redox status in human monocytes/macrophages cultured in vitro, which may explain the beneficial effects of incretin-based antidiabetic treatment. Human macrophages obtained from 10 healthy volunteers were in vitro subjected to the treatment with GLP-1 agonist (exenatide) in the presence of lipopolysaccharide (LPS), antagonist of GLP-1 receptors (exendin 9-39), or protein kinase A inhibitor (H89). Afterwards, reactive oxygen species, malondialdehyde level, NADPH oxidase, and antioxidative enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase] expression was evaluated. Finally, we estimated the activity of the abovementioned enzymes in the presence of H89. According to our findings, exenatide reduced ROS and malondialdyhyde (MDA) level by decreasing the expression of ROS-generating NADPH oxidase and by increasing the expression and activities of SOD and GSH-Px. We also showed that this effect was significantly inhibited by exendin 9-39 (a GLP-1 antagonist) and blocked by H89. Exenatide improved the antioxidative potential and reduced oxidative stress in cultured human monocytes/macrophages, and this finding may be responsible for the pleiotropic effects of incretin-based therapies. This effect relied on the stimulation of GLP-1 receptor.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland,
| | | | | | | | | | | |
Collapse
|
42
|
Zhong J, Gong Q, Goud A, Srinivasamaharaj S, Rajagopalan S. Recent Advances in Dipeptidyl-Peptidase-4 Inhibition Therapy: Lessons from the Bench and Clinical Trials. J Diabetes Res 2015; 2015:606031. [PMID: 26075284 PMCID: PMC4446505 DOI: 10.1155/2015/606031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022] Open
Abstract
DPP4 inhibitors (DPP4i) are a class of newly developed antidiabetic drugs which preserve incretin hormones and promote postprandial insulin secretion. Although the cardiovascular effect of DPP4 inhibition has been substantially studied, the exact role of DPP4 in cardiovascular disease especially in humans remains elusive. Previous small studies and meta-analyses have suggested a benefit in both surrogate outcomes and cardiovascular events for these agents. However, there was growing evidence in recent years questioning the cardioprotective effect of DPP4i. Further, a signal of heart failure hospitalization in a recent large scale clinical trial SAVOR-TIMI 53 has called into question the safety of these agents and their utility in the treatment of cardiovascular disease. In this review, we will revisit the physiologic function of DPP4 and discuss its role in cardiometabolic disease based on recent experimental and clinical studies.
Collapse
Affiliation(s)
- Jixin Zhong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Aditya Goud
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Srividya Srinivasamaharaj
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:276-84. [PMID: 25450968 PMCID: PMC4388199 DOI: 10.1016/j.bbamcr.2014.11.015] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
Abstract
Dysfunction of cardiac energy metabolism plays a critical role in many cardiac diseases, including heart failure, myocardial infarction and ischemia-reperfusion injury and organ transplantation. The characteristics of these diseases can be elucidated in vivo, though animal-free in vitro experiments, with primary adult or neonatal cardiomyocytes, the rat ventricular H9c2 cell line or the mouse atrial HL-1 cells, providing intriguing experimental alternatives. Currently, it is not clear how H9c2 and HL-1 cells mimic the responses of primary cardiomyocytes to hypoxia and oxidative stress. In the present study, we show that H9c2 cells are more similar to primary cardiomyocytes than HL-1 cells with regard to energy metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and morphology of mitochondria. In contrast to HL-1, H9c2 cells possess beta-tubulin II, a mitochondrial isoform of tubulin that plays an important role in mitochondrial function and regulation. We demonstrate that H9c2 cells are significantly more sensitive to hypoxia-reoxygenation injury in terms of loss of cell viability and mitochondrial respiration, whereas HL-1 cells were more resistant to hypoxia as evidenced by their relative stability. In comparison to HL-1 cells, H9c2 cells exhibit a higher phosphorylation (activation) state of AMP-activated protein kinase, but lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels, suggesting that each cell type is characterized by distinct regulation of mitochondrial biogenesis. Our results provide evidence that H9c2 cardiomyoblasts are more energetically similar to primary cardiomyocytes than are atrial HL-1 cells. H9c2 cells can be successfully used as an in vitro model to simulate cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck A-6020, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Stephan Sickinger
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Sandra Frotschnig
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Michael Grimm
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck A-6020, Austria
| |
Collapse
|
44
|
DeNicola M, Du J, Wang Z, Yano N, Zhang L, Wang Y, Qin G, Zhuang S, Zhao TC. Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab 2014; 307:E630-43. [PMID: 25117407 PMCID: PMC4200306 DOI: 10.1152/ajpendo.00109.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/04/2014] [Indexed: 12/21/2022]
Abstract
We have demonstrated that GLP-1 improved myocardial functional recovery in acute myocardial ischemic injury. However, whether stimulation of the GLP-1 receptor (GLP-1R) with exendin-4, a selective GLP-1R agonist, could initiate a protective effect in the heart remains to be determined. Mouse myocardial infarction (MI) was created by ligation of the left descending artery. After 48 h of MI, animals were divided into the following groups (n = 5-7/group): 1) sham (animals that underwent thoracotomy without ligation), 2) MI [animals that underwent MI and received a daily dose of intraperitoneal injection (ip) of saline]; and 3) MI + exendin-4 [infarcted mice that received injections of exendin-4 (0.1 mg/kg ip)]. Two weeks later, cardiac function was assessed by echocardiography and an isovolumetrically perfused heart. Compared with control MI hearts, stimulation of GLP-1R improved cardiac function, which was associated with attenuation of myocardial hypertrophy, the mitigation of interstitial fibrosis, and an increase in survival rate in post-MI hearts. Furthermore, H9c2 cardiomyoblasts were preconditioned with exendin-4 at a dose of 100 nmol/l and then subjected to hydrogen peroxide exposure at concentrations of 50 and 100 μmol/l. The exendin-4 treatment decreased lactate dehydrogenase leakage and increased cell survival. Notably, this event was also associated with the reduction of cleaved caspase-3 and caspase-9 and attenuation of reactive oxygen species production. Exendin-4 treatments improved mitochondrial respiration and suppressed the opening of mitochondrial permeability transition pore and protected mitochondria function. Our results indicate that GLP-1R serves as a novel approach to eliciting cardioprotection and mitigating oxidative stress-induced injury.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Apoptosis/drug effects
- Cardiotonic Agents/pharmacology
- Cardiotonic Agents/therapeutic use
- Cell Line
- Cell Survival/drug effects
- Disease Models, Animal
- Exenatide
- Glucagon-Like Peptide-1 Receptor
- Heart Ventricles/diagnostic imaging
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/prevention & control
- Kaplan-Meier Estimate
- Male
- Mice, Inbred ICR
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Molecular Targeted Therapy
- Myoblasts, Cardiac/drug effects
- Myoblasts, Cardiac/metabolism
- Myocardial Infarction/drug therapy
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Oxidative Stress/drug effects
- Peptides/pharmacology
- Peptides/therapeutic use
- Rats
- Receptors, Glucagon/agonists
- Receptors, Glucagon/metabolism
- Ultrasonography
- Venoms/pharmacology
- Venoms/therapeutic use
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Megan DeNicola
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, Rhode Island
| | - Jianfeng Du
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, Rhode Island
| | - Zhengke Wang
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, Rhode Island
| | - Naohiro Yano
- Department of Obstetrics and Gynecology, Women and Infants' Hospital of Rhode Island, Providence, Rhode Island
| | | | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio; and
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, Rhode Island;
| |
Collapse
|
45
|
Margulies KB, Anstrom KJ, Hernandez AF, Redfield MM, Shah MR, Braunwald E, Cappola TP. GLP-1 agonist therapy for advanced heart failure with reduced ejection fraction: design and rationale for the functional impact of GLP-1 for heart failure treatment study. Circ Heart Fail 2014; 7:673-9. [PMID: 25028349 PMCID: PMC4102890 DOI: 10.1161/circheartfailure.114.000346] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/12/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Kenneth B Margulies
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.).
| | - Kevin J Anstrom
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.)
| | - Adrian F Hernandez
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.)
| | - Margaret M Redfield
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.)
| | - Monica R Shah
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.)
| | - Eugene Braunwald
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.)
| | - Thomas P Cappola
- From the Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M., T.P.C.); Duke Clinical Research Institute, Durham, NC (K.J.A., A.F.H.); Mayo Clinic, Rochester, MN (M.M.R.); Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD (M.R.S.); and Harvard Medical School, Boston, MA (E.B.).
| |
Collapse
|