1
|
Ghasemian M, Gholami MA, Fattahi MJ, Ghasemi F, Ghaderi H, Khademi B, Ghaderi A, Haghshenas MR. Heterogeneity in benign and malignant salivary gland tumors. Clin Chim Acta 2025; 572:120258. [PMID: 40118266 DOI: 10.1016/j.cca.2025.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Advanced proteomics tools have identified the role of proteins in cancer biology, highlighting the importance of these molecules for biomarker discovery and providing valuable insights into cancer diagnosis, prognosis, and targeted therapy. Proteome analysis of tissue using high-throughput proteomics techniques has identified proteins associated with recurrence and malignant transformation in benign tumors, and protein profiling of fine needle aspiration has revealed potential biomarkers for distinguishing malignant salivary gland tumors from benign ones. In addition, proteomics studies have identified distinct protein expression patterns in mesenchymal stem cells derived from malignant salivary gland tumors, suggesting a potential role for proteins in adverse behavior and/or targeted therapy. To provide a comprehensive knowledge of salivary gland tumors, this review will first provide a brief description of the molecular and cellular alterations in common benign and malignant salivary gland tumors and then describe the proteomics studies by concentration on different biological sources including serum/plasma, saliva, tumor tissues and related derivatives (e.g. mesenchymal stem cells, tumor cells, tumor established cell lines, and fine needle aspiration), and introduce potential targets for diagnosis, prognosis, and cancer therapy.
Collapse
Affiliation(s)
- Mehdi Ghasemian
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Gholami
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnia Ghasemi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghaderi
- Violet Vines Marshman Centre for Rural Health Research, La Trobe University, Bendigo, Australia
| | - Bijan Khademi
- Otolaryngology Research Center, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Dewan M, Shrivastava D, Goyal L, Zwiri A, Hussein AF, Alam MK, Srivastava KC, Anil S. Recent Advancements and Applications of Nanosensors in Oral Health: Revolutionizing Diagnosis and Treatment. Eur J Dent 2025; 19:286-297. [PMID: 39750525 PMCID: PMC12020585 DOI: 10.1055/s-0044-1792010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Advances in the field of nanomaterials are laying the foundation for the fabrication of nanosensors that are sensitive, selective, specific, cost-effective, biocompatible, and versatile. Being highly sensitive and selective, nanosensors are crucial in detecting small quantities of analytes and early diagnosis of diseases. These devices, operating on the nanoscale, detect signals, such as physical, chemical, optical, electrochemical, or biological, and then transduce them into a readable form. They show great promise for real-time, point-of-care, and home-based applications in health care. With the integration of wireless technology, these nanosensors, specifically biosensors, can potentially revolutionize therapeutic techniques. These advancements particularly impact the oral cavity, the primary entry point for various bodily substances. Nanosensors can transform oral and dental health practices, enabling timely disease diagnosis and precise drug delivery. This review examines the recent advancements in nanobiosensors, exploring their applications in various oral health conditions while discussing their benefits and potential limitations.
Collapse
Affiliation(s)
- Meghna Dewan
- Sudha Rastogi College of Dental Sciences and Research, Faridabad, Haryana, India
| | - Deepti Shrivastava
- Division of Periodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Lata Goyal
- Division of Periodontics, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, India
| | - Abdalwhab Zwiri
- Department of Oral Surgery and Diagnostic Sciences, Faculty of Dentistry, Applied Sciences Private University, Amman, Jordan
| | - Areen Fareed Hussein
- Department of Oral Surgery and Diagnostic Sciences, Faculty of Dentistry, Applied Sciences Private University, Amman, Jordan
| | - Mohammad Khursheed Alam
- Division of Orthodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Dental Research Cell, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Kumar Chandan Srivastava
- Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar, College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Liu X, Zhang J, Hua K, Cui Y. Both aerosol and primer dimer breakdown for straightforward genotyping based on an integrated immunochromatographic biosensor. Talanta 2025; 285:127300. [PMID: 39616759 DOI: 10.1016/j.talanta.2024.127300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
Straightforward genotyping can provide timely diagnostic information for diseases prevention and treatment. Taking advantages of speediness and convenience, although numerous genotyping strategies combined loop-mediated isothermal amplification (LAMP) and lateral flow have been reported to satisfy the demand of point-of-care test, the false positive result caused by aerosol and primer dimer as an innate conflict seriously limits their practical application. In this study, both aerosol and primer dimer as extrinsic and intrinsic inducements respectively are first broken through at one stroke based on an integrated immunochromatographic biosensor. By introducing digoxigenin labeled dUTP into LAMP, not only the amplicon can be analyzed through naked eye, but also the aerosol contamination can be eliminated thoroughly by uracil DNA glycosylase ignoring the open vessel. Primer dimer, the significant drawback in lateral flow-based strategies, has been overcome due to the bio-labeled deoxyribonucleotide and oligonucleotide cannot couple for signal generation even under the high primer concentration. Instead of colloidal gold, the gold magnetic nanoparticle is synthesized and assembled into this biosensor as a nanoprobe, which enables the result to be quantified by the magnetic signal for subjective bias elimination. The polymorphism of C677T in methylenetetrahydrofolate reductase, a crucial genetic code related to folate metabolism, is genotyped using saliva as noninvasive specimen dispense with DNA purification. Only 1 ng genomic DNA can provide accurate result within 25 min by a simple heater, which proves the potential of this biosensor to facilitate precision medicine.
Collapse
Affiliation(s)
- Xiaonan Liu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, China; College of Life Sciences, Northwest University, Xi'an, 710069, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, China.
| | - Jiaxing Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kai Hua
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yali Cui
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Mao X, Li H, Min S, Su J, Wei P, Zhang Y, He Q, Wu L, Yu G, Cong X. Loss of tricellular tight junction tricellulin leads to hyposalivation in Sjögren's syndrome. Int J Oral Sci 2025; 17:22. [PMID: 40108118 PMCID: PMC11923234 DOI: 10.1038/s41368-025-00349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/22/2025] Open
Abstract
Tricellulin, a key tricellular tight junction (TJ) protein, is essential for maintaining the barrier integrity of acinar epithelia against macromolecular passage in salivary glands. This study aims to explore the role and regulatory mechanism of tricellulin in the development of salivary gland hypofunction in Sjögren's syndrome (SS). Employing a multifaceted approach involving patient biopsies, non-obese diabetic (NOD) mice as a SS model, salivary gland acinar cell-specific tricellulin conditional knockout (TricCKO) mice, and IFN-γ-stimulated salivary gland epithelial cells, we investigated the role of tricellulin in SS-related hyposalivation. Our data revealed diminished levels of tricellulin in salivary glands of SS patients. Similarly, NOD mice displayed a reduction in tricellulin expression from the onset of the disease, concomitant with hyposecretion and an increase in salivary albumin content. Consistent with these findings, TricCKO mice exhibited both hyposecretion and leakage of macromolecular tracers when compared to control animals. Mechanistically, the JAK/STAT1/miR-145 axis was identified as mediating the IFN-γ-induced downregulation of tricellulin. Treatment with AT1001, a TJ sealer, ameliorated epithelial barrier dysfunction, restored tricellulin expression, and consequently alleviated hyposalivation in NOD mice. Importantly, treatment with miR-145 antagomir to specifically recover the expression of tricellulin in NOD mice significantly alleviated hyposalivation and macromolecular leakage. Collectively, we identified that tricellulin deficiency in salivary glands contributed to hyposalivation in SS. Our findings highlight tricellulin as a potential therapeutic target for hyposecretion, particularly in the context of reinforcing epithelial barrier function through preventing leakage of macromolecules in salivary glands.
Collapse
Affiliation(s)
- Xiangdi Mao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, China
| | - Haibing Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, China
| | - Sainan Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiazeng Su
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, China
| | - Qihua He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Liling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, China
| | - Guangyan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, China.
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
5
|
Liang B, Wang S, Zheng J, Li B, Cheng N, Gan N. All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases. Biosens Bioelectron 2025; 271:117077. [PMID: 39731821 DOI: 10.1016/j.bios.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements. This device enables probe preparation and one-pot immunoassay procedures on a reusable microfluidic chip. By engaging the vibrator with the reaction chamber, the vibration-enhanced incubation module significantly accelerates immune complex formation, drastically reducing the sample-to-answer timeline of approximately 1 h required for room temperature enzyme-linked immunosorbent assay (ELISA) to just under 15 min. We showcase the utility of the device with an on-demand assay for a biomarker panel comprising C-reactive protein (CRP), interleukin 6 (IL-6), and procalcitonin (PCT). The device achieved a linear detection range of 1.75-28 ng mL-1 for CRP and 1.56-100 ng mL-1 for IL-6 and PCT with an R2 > 0.98 for all three biomarkers. The limits of detection were 0.295, 0.400, and 0.947 ng mL-1, respectively. Results from real saliva samples were consistent with standard ELISA (R2 = 0.952). This fully integrated, modular immunosensing device opens up opportunities for household CVD screening and could be adapted for rapid, affordable multiplexed biosensing for other major chronic diseases at the point of care.
Collapse
Affiliation(s)
- Baihui Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Shan Wang
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Junmei Zheng
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Bin Li
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Ningtao Cheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| | - Ning Gan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China.
| |
Collapse
|
6
|
Suarez GD, Tang YYK, Bayer S, Cheung PPH, Nagl S. Multiplexed detection of respiratory virus RNA using optical pH sensors and injection-molded centrifugal microfluidics. Mikrochim Acta 2025; 192:151. [PMID: 39937251 PMCID: PMC11821746 DOI: 10.1007/s00604-025-06996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
The application is demonstrated of injection-molded centrifugal microfluidic chips with integrated optical pH sensors for multiplexed detection of respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, and influenza B RNA. The optical pH sensors generated sensitive fluorescent readouts from diagnostic reverse transcription loop-mediated isothermal amplification (RT-LAMP) reactions; limits of detection for influenzas A and B, and SARS-CoV-2 of 89, 245, and 38 RNA copies per reaction, respectively, were attained. Results were obtainable within 44 min for SARS-CoV-2 and influenza A, and 48 min for influenza B. We implemented a data processing strategy based on numerical derivatives of the fluorescence curves that allowed for reliable, quantitative thresholds for deciding reaction outcomes and enabled 100% specificity. This work demonstrates the utility of optical pH sensors and injection-molded centrifugal microfluidics for multiplexed infectious disease diagnostics with point-of-care applications.
Collapse
Affiliation(s)
| | | | - Steevanson Bayer
- Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Stefan Nagl
- Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| |
Collapse
|
7
|
Yacoub S, Khemiss M, Besbes A, Ben Saad H. Impact of Ramadan Intermittent Fasting on Salivary pH, Flow Rate, and Electrolyte Levels in Healthy Adult Men. Am J Mens Health 2025; 19:15579883241312396. [PMID: 39931913 PMCID: PMC11811989 DOI: 10.1177/15579883241312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
This before-and-after design study, which was conducted during Ramadan 2023, aimed to compare salivary flow rate (SFR), potential hydrogen (pH), and electrolyte concentrations before Ramadan (BR), at the end of Ramadan (ER), and after Ramadan (AR). Men aged 20 to 30 years who were fasting during Ramadan were recruited from the University of Monastir (Tunisia). Unstimulated saliva was collected over a 5-minute period between 10 and 11 a.m. at BR, ER, and AR. After recording the SFR, the pH was measured immediately using a pH meter. Concentrations of several salivary electrolytes (e.g., calcium, potassium, sodium, chloride, and phosphate) were determined using inductively coupled plasma-optical emission spectroscopy. Twenty-seven participants completed all three sessions. Ramadan intermittent fasting (RIF) caused significant changes only in calcium levels and pH. The mean (M)±standard deviation (SD) salivary calcium concentration decreased during ER compared to BR and AR (0.10 ± 0.08 vs. 0.21 ± 0.18 [p = .041] vs. 0.22 ± 0.20 [p = .026], respectively). The M±SD salivary pH increased during ER compared to BR (6.88 ± 0.23 vs. 6.69 ± 0.35 [p = .049], respectively). To conclude, RIF decreased salivary calcium, increased salivary pH, and did not significantly affect potassium, sodium, chloride, or phosphate. The pH change, although statistically significant, was clinically insignificant, as values remained normal. The lack of reference values for salivary calcium limits assessment of its clinical impact. There is a need for further research on the effects of RIF on saliva secretion.
Collapse
Affiliation(s)
- Sinda Yacoub
- Department of Oral Medicine and Oral Surgery, Academic Dental Clinic of Monastir, Monastir, Tunisia
- Research Laboratory LR12SP10: Functional and Aesthetic Rehabilitation of Maxillary, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Mehdi Khemiss
- Research Laboratory LR12SP10: Functional and Aesthetic Rehabilitation of Maxillary, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
- Department of Dental Medicine, Fattouma BOURGUIBA University Hospital of Monastir, University of Monastir, Monastir, Tunisia
| | - Amira Besbes
- Unit of Microbiology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
- Laboratory Research of Medical and Molecular Parasitology and Mycology, LR12ES08, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Helmi Ben Saad
- Hôpital Farhat HACHED, Faculté de Médecine de Sousse, Service de Physiologie et Explorations Fonctionnelles, Université de Sousse, Sousse, Tunisie
- Hôpital Farhat HACHED, Faculté de Médecine de Sousse, Laboratoire de recherche (Insuffisance cardiaque, LR12SP09), Université de Sousse, Sousse, Tunisie
| |
Collapse
|
8
|
Maar S, Czuni L, Hassve JK, Takatsy A, Rendeki S, Mintal T, Gallyas F, Bock-Marquette I. Technical considerations regarding saliva sample collection to achieve comparable protein identification and detection via one- and two-dimensional gel electrophoresis among humans. Heliyon 2024; 10:e40752. [PMID: 39759277 PMCID: PMC11696668 DOI: 10.1016/j.heliyon.2024.e40752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Background and aims Recently, demands towards identifying various molecules in support of stress detection and potential clinical utilization are dramatically increasing. Moreover, the accuracy with which researchers quantify these informative molecules is now far more improved when compared to the past. As RNA or protein markers are conventionally detected via repeated invasive procedures from blood, it is critical to develop secure technologies to obtain the desired information via less stressful methodologies, such as saliva collection. Moreover, for superb interpretation, it became equally significant to obtain the information from the same exact specimen. RNA is easily degradable, thus it is paramount to supplement the samples with protective agents, such as RNAlater, to achieve accurate quantitative results. Methods In our research we investigated whether and how this commonly applied RNA protection procedure influences protein and peptide separation of the human saliva via quantitative two-dimensional protein electrophoresis. Results Our results revealed, in contrary to previously published data regarding plasma, the addition of RNAlater to saliva samples negatively influences isoelectric focusing and protein detection. We equally found the application oftentimes employed referred to as selective precipitation and reduction-alkylation, partially rescued separation, however, with a significant loss in protein yield and quality when compared to untreated samples. Conclusion Our results suggest collection of human saliva for biomarker identification must be performed with extreme diligence. We propose application of RNAlater should be avoided and snap freezing of the collected saliva is recommended when joint protein and RNA quantification is the ultimate goal.
Collapse
Affiliation(s)
- Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Lilla Czuni
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Jørgen Kosberg Hassve
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Szilard Rendeki
- Department of Anesthesiology and Intensive Therapy, University of Pecs, Medical School Pecs, Hungary
- Medical Skills Education and Innovation Centre, University of Pecs, Medical School, Pecs, Hungary
| | - Tibor Mintal
- Department of Orthopedics, University of Pecs, Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs, Hungary
| |
Collapse
|
9
|
Okuyama K, Yanamoto S. Saliva in Balancing Oral and Systemic Health, Oral Cancer, and Beyond: A Narrative Review. Cancers (Basel) 2024; 16:4276. [PMID: 39766175 PMCID: PMC11674559 DOI: 10.3390/cancers16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Saliva plays a multifaceted role in oral health and systemic well-being. It supports digestion, protects oral tissues, maintains a healthy oral microbiome, and facilitates wound healing. Additionally, saliva serves as a diagnostic tool that reflects systemic health and disease/therapeutic states. Furthermore, although saliva shows a protective effect against oral cancer development, once tumor formation occurs, it may be involved in tumor progression and metastasis via exosomes and microRNAs. This review discusses the essential role of saliva; its relationship with the development, progression, and metastasis of head and neck squamous cell carcinoma (HNSCC); liquid biopsy tools for early diagnosis and monitoring of HNSCC; and the potential of exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| |
Collapse
|
10
|
Schneider G, Kaliappan A, Joos N, Dooley LM, Shumway BS, Chaires JB, Zacharias W, Bumpous JM, Garbett NC. Evaluation of Thermal Liquid Biopsy Analysis of Saliva and Blood Plasma Specimens as a Novel Diagnostic Modality in Head and Neck Cancer. Cancers (Basel) 2024; 16:4220. [PMID: 39766119 PMCID: PMC11674294 DOI: 10.3390/cancers16244220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Over the past decade, saliva-based liquid biopsies have emerged as promising tools for the early diagnosis, prognosis, and monitoring of cancer, particularly in high-risk populations. However, challenges persist because of low concentrations and variable modifications of biomarkers linked to tumor development when compared to normal salivary components. METHODS This study explores the application of differential scanning calorimetry (DSC)-based thermal liquid biopsy (TLB) for analyzing saliva and blood plasma samples from head and neck cancer (HNC) patients. RESULTS Our research identified an effective saliva processing method via high-speed centrifugation and ultrafiltration, resulting in reliable TLB data. Notably, we recorded unique TLB profiles for saliva from 48 HNC patients and 21 controls, revealing distinct differences in thermal transition features that corresponded to salivary protein denaturation. These results indicated the potential of saliva TLB profiles in differentiating healthy individuals from HNC patients and identifying tumor characteristics. In contrast, TLB profiles for blood plasma samples exhibited smaller differences between HNC patients and had less utility for differentiation within HNC. CONCLUSIONS Our findings support the feasibility of saliva-based TLB for HNC diagnostics, with further refinement in sample collection and the incorporation of additional patient variables anticipated to enhance accuracy, ultimately advancing non-invasive diagnostic strategies for HNC detection and monitoring.
Collapse
Affiliation(s)
- Gabriela Schneider
- UofL Health—Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (G.S.); (A.K.); (J.B.C.); (W.Z.)
| | - Alagammai Kaliappan
- UofL Health—Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (G.S.); (A.K.); (J.B.C.); (W.Z.)
| | - Nathan Joos
- Department of Otolaryngology Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (N.J.); (L.M.D.); (J.M.B.)
| | - Laura M. Dooley
- Department of Otolaryngology Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (N.J.); (L.M.D.); (J.M.B.)
| | - Brian S. Shumway
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY 40202, USA;
| | - Jonathan B. Chaires
- UofL Health—Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (G.S.); (A.K.); (J.B.C.); (W.Z.)
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Wolfgang Zacharias
- UofL Health—Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (G.S.); (A.K.); (J.B.C.); (W.Z.)
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeffrey M. Bumpous
- Department of Otolaryngology Head and Neck Surgery and Communicative Disorders, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (N.J.); (L.M.D.); (J.M.B.)
| | - Nichola C. Garbett
- UofL Health—Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (G.S.); (A.K.); (J.B.C.); (W.Z.)
- Division of Medical Oncology and Hematology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Rong J, Chen X, Li Z, Li B, Sun Y, Miao Y. Dysregulation of saliva and fecal microbiota as novel biomarkers of colorectal cancer. Front Oncol 2024; 14:1498328. [PMID: 39743994 PMCID: PMC11688226 DOI: 10.3389/fonc.2024.1498328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The aim of this study was to investigate the biomarkers of salivary and fecal microbiota in Colorectal cancer (CRC). Initially, the study scrutinized the microbial community composition disparities among groups. Utilizing Lasso analysis, it sifted through operational taxonomic units (OTUs) to pinpoint distinctive features. Subsequently, by intersecting feature OTUs across groups, it curated a set of core-shared OTUs and devised a corresponding network. Concluding with functional enrichment analysis, the research delved into the divergent biological functions of these microbial communities within the studied groups. Analysis revealed higher bacterial diversity in saliva compared to feces, with distinct differences at both phylum and genus levels. Feces primarily contained Firmicutes, while saliva was dominated by Bacteroidetes and Proteobacteria. Notably, Escherichia-Shigella and Fusobacterium in feces and Streptococcus in saliva showed increasing abundance from average to adenoma to colorectal cancer. Specific dominant flora was identified within and between groups, including CRC and adenomas across different stages. Seventeen core shared OTUs were identified, and networks of shared OTUs were constructed for each group. Functional enrichment analysis highlighted distinct microbial community functions among the groups. This study's findings on characteristic OTUs in saliva and fecal samples offer valuable insights for distinguishing between healthy individuals, adenoma patients, and those with colorectal cancer. This study identified distinctive OTUs in saliva and feces to distinguish between healthy individuals, adenoma patients, and those with CRC, offering a valuable diagnostic reference.
Collapse
Affiliation(s)
- Jiamei Rong
- Yan’an Hospital Affiliated To Kunming Medical University, Kunming, Yunnan, China
| | - Xiaocui Chen
- Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zhangqin Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bona Li
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Sun
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Rashid S, Puttagunta P, Pamulapati S, Yang J, Pocha S, Saba NF, Teng Y. Leveraging Saliva for Insights into Head and Neck Cancer. Int J Mol Sci 2024; 25:13514. [PMID: 39769275 PMCID: PMC11678725 DOI: 10.3390/ijms252413514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Head and neck cancer (HNC) represents a heterogeneous group of malignancies with increasing global incidence and notable mortality. Early detection is essential for improving survival rates and minimizing recurrence; however, existing diagnostic methods are often invasive and complex. There is a need for noninvasive and more effective approaches for early detection and real-time monitoring of HNC. Saliva contains various biomolecules that may serve as indicators of HNC. As a result, saliva-based biomarkers have emerged as a transformative approach in the diagnosis and treatment of HNC due to their ease of collection, non-invasiveness, and potential to provide details about biomolecular changes associated with cancer progression. This narrative review synthesizes the current literature on the potential of saliva as a noninvasive diagnostic tool for HNC. It highlights various biomarkers found in saliva, including cell-free DNA, RNA, proteins, and metabolites, and explores emerging technologies in saliva detection that could transform the future of HNC management. Continued research efforts and larger-scale validation studies are essential to fully realize the potential of saliva-based biopsy and help pinpoint notable biomarkers to improve patient outcomes and reduce mortality associated with HNC worldwide.
Collapse
Affiliation(s)
- Saad Rashid
- Internal Medicine Program, Mercyhealth Graduate Medical Education Consortium, Rockford, IL 61114, USA; (S.R.); (S.P.)
| | - Prashant Puttagunta
- Medical Education, University of Michigan Medical School, Ann Arbor, MI 48105, USA;
| | - Saagar Pamulapati
- Hematology-Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA;
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.Y.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Suneha Pocha
- Internal Medicine Program, Mercyhealth Graduate Medical Education Consortium, Rockford, IL 61114, USA; (S.R.); (S.P.)
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.Y.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.Y.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Sorg BS, Byun JS, Westbrook VA, Tricoli JV, Doroshow JH, Harris LN. NCI workshop on ctDNA in cancer treatment and clinical care. J Natl Cancer Inst 2024; 116:1890-1895. [PMID: 39087596 PMCID: PMC11630565 DOI: 10.1093/jnci/djae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Detection of cell-free circulating tumor DNA (ctDNA) from solid tumors is a fast-evolving field with significant potential for improving patient treatment outcomes. The spectrum of applications for ctDNA assays is broad and includes very diverse intended uses that will require different strategies to demonstrate utility. On September 14-15, 2023, the National Cancer Institute held an in-person workshop in Rockville, MD titled "ctDNA in Cancer Treatment and Clinical Care." The goal of the workshop was to examine what is currently known and what needs to be determined for various ctDNA liquid biopsy use cases related to treatment and management of patients with solid tumors and to explore how the community can best assess the value of ctDNA assays and technology. Additionally, new approaches were presented that may show promise in the future. The information exchanged in this workshop will provide the community with a better understanding of this field and its potential to affect and benefit decision-making in the treatment of patients with solid tumors.
Collapse
Affiliation(s)
- Brian S Sorg
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung S Byun
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - V Anne Westbrook
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Machado L, Prudente R, Franco E, Gatto M, Mota G, Pagan L, Brizola L, dos Santos M, Cunha T, Sabino-Silva R, Goulart L, Martins M, Santos P, Maia L, Albuquerque A, Ferreira E, Baldi B, Okoshi M, Tanni S. Salivary Metabolomics in Patients with Long COVID-19 Infection. Metabolites 2024; 14:598. [PMID: 39590834 PMCID: PMC11596941 DOI: 10.3390/metabo14110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Long COVID-19 has been characterized by the presence of symptoms lasting longer than 4 weeks after the acute infection. The pathophysiology of clinical manifestations still lacks knowledge. Objective: The objective of this paper was to evaluate metabolite abundance in the saliva of long COVID patients 60 days after hospital discharge. Methods: A convenience sample was composed of 30 post-discharge patients with long COVID and seven non-COVID-19 controls. All COVID-19 patients were evaluated by demographic characteristics, spirometry, 6 min walk test (6mWT), Saint George Respiratory Questionnaire (SGRQ), and body composition. Metabolomics was performed on saliva. Results: The long COVID-19 patients were 60.4 ± 14.3 years-old, and 66% male. Their lean body mass was 30.7 ± 7.3 kg and fat mass, 34.4 ± 13.7 kg. Spirometry evaluation showed forced vital capacity (FVC) of 3.84 ± 0.97 L with 96.0 ± 14.0% of the predicted value, and forced expiratory volume in the first second (FEV1) of 3.11 ± 0.83 L with 98.0 ± 16.0 of the predicted value. The long COVID-19 patients had reduced maximal inspiratory (90.1 ± 31.6 cmH2O) and maximal expiratory (97.3 ± 31.0 cmH2O) pressures. SGRQ showed domain symptoms of 32.3 ± 15.2, domain activities of 41.9 ± 25.6, and domain impact 13.7 ± 11.4, with a mean of 24.3 ± 14.9%. Physical capacity measured by distance covered in the 6mWT was 418.2 ± 130 m with a 73.3% (22.3-98.1) predictive value. The control group consisted of 44.1 ± 10.7-year-old men with a body mass index of 26.5 ± 1.66 Kg/m2. Metabolomics revealed 19 differentially expressed metabolites; expression was lower in 16 metabolites, and 2 metabolites were absent in the COVID-19 patients compared to controls. Calenduloside G methyl ester (p = 0.03), Gly Pro Lys (p = 0.0001), and creatine (p = 0.0001) expressions were lower in patients than controls. Conclusions: Long COVID-19 patients present less abundance of calenduloside G methyl ester, Gly Pro Lys, and creatine in saliva than healthy controls. Lower creatine abundance may be related to reduced physical capacity and fatigue.
Collapse
Affiliation(s)
- Luiz Machado
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Robson Prudente
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Estefânia Franco
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Mariana Gatto
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Gustavo Mota
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Luana Pagan
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Luís Brizola
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Maércio dos Santos
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Thulio Cunha
- Faculty of Medicine of the Federal, University of Uberlandia, Uberlândia 38408-100, Brazil; (T.C.); (R.S.-S.); (M.M.); (P.S.); (L.M.)
| | - Robinson Sabino-Silva
- Faculty of Medicine of the Federal, University of Uberlandia, Uberlândia 38408-100, Brazil; (T.C.); (R.S.-S.); (M.M.); (P.S.); (L.M.)
| | - Luiz Goulart
- Faculty of Medicine of the Federal, University of Uberlandia, Uberlândia 38408-100, Brazil; (T.C.); (R.S.-S.); (M.M.); (P.S.); (L.M.)
| | - Mario Martins
- Faculty of Medicine of the Federal, University of Uberlandia, Uberlândia 38408-100, Brazil; (T.C.); (R.S.-S.); (M.M.); (P.S.); (L.M.)
| | - Paula Santos
- Faculty of Medicine of the Federal, University of Uberlandia, Uberlândia 38408-100, Brazil; (T.C.); (R.S.-S.); (M.M.); (P.S.); (L.M.)
| | - Larissa Maia
- Faculty of Medicine of the Federal, University of Uberlandia, Uberlândia 38408-100, Brazil; (T.C.); (R.S.-S.); (M.M.); (P.S.); (L.M.)
| | - André Albuquerque
- Department of Pneumology, University of São Paulo, São Paulo 05403-000, Brazil; (A.A.); (B.B.)
| | - Eloara Ferreira
- Department of the Federal, University of São Paulo, São Paulo 01246-903, Brazil;
| | - Bruno Baldi
- Department of Pneumology, University of São Paulo, São Paulo 05403-000, Brazil; (A.A.); (B.B.)
| | - Marina Okoshi
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| | - Suzana Tanni
- Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil; (R.P.); (E.F.); (M.G.); (G.M.); (L.P.); (L.B.); (M.d.S.); (M.O.); (S.T.)
| |
Collapse
|
15
|
Yılmaz B, Emingil G. Validating proteomic biomarkers in saliva: distinguishing between health and periodontal diseases. Expert Rev Proteomics 2024; 21:417-429. [PMID: 39385324 DOI: 10.1080/14789450.2024.2413099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Periodontitis is a chronic inflammatory disease characterized by progressive soft tissue and alveolar bone loss due to interactions between microbial dental plaque and the host response. Despite extensive research on biomarkers from saliva or gingival crevicular fluid (GCF) for diagnosing periodontitis, clinical and radiological parameters remain the primary diagnostic tools. AREAS COVERED This review discusses the ongoing research into salivary biomarkers for periodontitis diagnosis, emphasizing the need for reliable biomarkers to differentiate between periodontal health and disease. Salivary biomarker research has gained momentum with advancements in proteomic technologies, enabling noninvasive sample collection and revealing potential candidate biomarkers. EXPERT OPINION Proteomic research since the early 2000s has identified promising biomarkers and provided insights into the pathogenesis of periodontitis. Bioinformatic analysis of proteomic data elucidates the underlying biological mechanisms. This review summarizes key findings and highlights common potential biomarkers identified through proteomic research in periodontology.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| |
Collapse
|
16
|
Garcia PN, de Souza MM, Izidoro MA, Juliano L, Lourenço SV, Camillo CMC. Saliva metabolomics: concepts and applications in oral disorders. Clin Oral Investig 2024; 28:579. [PMID: 39377832 DOI: 10.1007/s00784-024-05990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES The purpose of this review was to present the basic concepts of metabolomics methodology and the use of saliva for diagnostic, prognostic, and predictive strategies. MATERIAL AND METHODS This review followed the focus in: "saliva metabolomics" and "oral diseases". The authors searched studies on PubMed database. The inclusion criteria were original studies and reviews that assessed metabolomics techniques. A descriptive analysis was performed considering the study design, approach system, clinical steps, and tools for the determination of profile or biomarkers metabolites, and the advantages and disadvantages. RESULTS Metabolomic analyses use a combination of analytical instrumentation and informatic tools to provide information on metabolite characteristics. In this review we described different technologies applied and the advantages and limitations of each technique. Furthermore, in the literature search, we retrieved 25 studies that investigated saliva metabolites in oral diseases: 8 studies used targeted analysis and 17 untargeted metabolomics approaches. Most studies included patients with periodontal diseases, oral squamous cell carcinoma, and Sjögren Syndrome. The most frequently reported metabolites were glycine, leucine, phenylalanine, dipeptides, linoleic acid, arachidonic acid, tyrosine, choline, taurine, lactate, valine, and proline. CONCLUSIONS Metabolomics analysis has emerged as a powerful tool for tumor diagnosis and to enhance tumor classification, including salivary gland tumors (SGTs). It also holds promise for developing personalized treatment plans and defining more precise prognostic categories. CLINICAL RELEVANCE Metabolomics is the most functional and comprehensive technique for monitoring and understanding gene functions and identifying the biochemical state of an organism in response to genetic and environmental changes.
Collapse
Affiliation(s)
- Pedro Nunes Garcia
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Milena Monteiro de Souza
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil.
| | | | - Luiz Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Cláudia Malheiros Coutinho Camillo
- International Research Center, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| |
Collapse
|
17
|
Pradhan P, Saxena V, Haider A. Comparative Bibliometric Analysis of Established and Emerging Databases on Salivary Biomarkers for Early Oral Cancer Diagnosis. J Oral Pathol Med 2024; 53:595-604. [PMID: 39168484 DOI: 10.1111/jop.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Salivary biomarkers play an important role in the preventive strategy for oral cancer detection at an early stage. The aim of this study was to carry out a comparative quantitative analysis of the research material on the topic in one established database, Scopus and another emerging database, Dimensions. METHOD An electronic search was performed in Scopus and Dimensions in April 2024 with the search subjects "Saliva," "Biomarkers," "Diagnosis," and "Oral Cancer." The retrieved data were analyzed using Biblioshiny for RStudio and MS Excel. RESULT The search yielded 229 and 158 documents in Scopus and Dimensions, respectively. The data were studied to understand the coverage, concentration, and diversion of research articles. The analysis revealed high singularity index for Scopus and low overlap percentage between the two databases. Scopus was found to have higher citation count per article, however, the citation correlation between Scopus and Dimensions was found to be strong. Author productivity was found to be low in both the databases. CONCLUSION Scopus and Dimensions vary in their scope, volume of data, and coverage policies. Both the databases have complimentary coverage on salivary biomarkers for oral cancer diagnosis. However, Scopus has a greater number of articles, sources, and citations resulting in better coverage of the topic.
Collapse
Affiliation(s)
- Pragya Pradhan
- Department of Dentistry, District Hospital, Neemuch, Madhya Pradesh, India
| | - Vrinda Saxena
- Department of Public Health Dentistry, Government College of Dentistry, Indore, Madhya Pradesh, India
| | - Aiman Haider
- Department of Paediatric and Preventive Dentistry, College of Dental Science and Hospital Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
18
|
Shahsavari A, Liu F. Diagnostic and therapeutic potentials of extracellular vesicles for primary Sjögren's Syndrome: A review. DENTISTRY REVIEW 2024; 4:100150. [PMID: 39310092 PMCID: PMC11416744 DOI: 10.1016/j.dentre.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The current therapies of pSS are merely short-term symptomatic relief and can't provide effective long-term remedy. Extracellular vehicles (EVs) are nano-sized lipid bilayer-delimited particles spontaneously released by almost all types of cells and carrying various bioactive molecules to mediate inter-cellular communications. Recent studies found that EVs from salivary gland epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by modulating immune responses. This review summarizes recent findings in roles of EVs in pSS pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research directions.
Collapse
Affiliation(s)
- Arash Shahsavari
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Fei Liu
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Sanesi L, Mori G, Troiano G, Ballini A, Valzano F, Dioguardi M, Muzio LL, Magalhaes M, Caponio VCA. Salivary exosomal microRNA profile as biomonitoring tool for diagnosis and prognosis of patients with head and neck squamous cell carcinoma: a systematic review. Arch Oral Biol 2024; 165:106012. [PMID: 38879952 DOI: 10.1016/j.archoralbio.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Exosomes are extracellular vesicles found in saliva and other body fluids. These vesicles range in size from 30 to 150 nm and play a crucial role in intercellular communication, transporting different biomolecules, actively targeting cells. These vesicles regulate both physiological and pathological processes within recipient cells. MicroRNAs (miRs) are transported within exosomes and are delivered to target cells where they influence signaling pathways, taking on a crucial regulatory role in oncogenesis; for example, they are implicated in progression and infiltration of various cancers, such as head and neck squamous cell carcinoma (HNSCC). MATERIAL AND METHODS A systematic literature search based on specific keywords, according to the PRISMA guidelines, was carried out on PubMed, Web of Science, Scopus, and Google Scholar. Only original articles were selected during this review. The risk of bias was assessed by QUADAS-2. RESULTS At the end of the selection process 9 articles were included. In these studies, 41 miRs showed differential expression between healthy subjects and patient with HNSCC. The techniques varied among studies for the extraction and analysis of exosomal miRs. We presented also salivary exosomal miRs pathways, to give insights about pathogenetic mechanisms. CONCLUSIONS Exosomal microRNA are promising biomarkers for HNSCC detection. MiR-10b-5p, miR-486-5p, miR-24-3p, miR-412-3p, and miR-512-3p are the most promising markers applicable to diagnostics, while miR-1307-5p and miR-519c-3p resulted overexpressed and correlated to worse survival outcomes.
Collapse
Affiliation(s)
- Lorenzo Sanesi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco Magalhaes
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, ON M5G 1×3, Canada
| | | |
Collapse
|
20
|
Avelar FM, Lanza CRM, Bernardino SS, Garcia-Junior MA, Martins MM, Carneiro MG, de Azevedo VAC, Sabino-Silva R. Salivary Molecular Spectroscopy with Machine Learning Algorithms for a Diagnostic Triage for Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:9464. [PMID: 39273410 PMCID: PMC11395251 DOI: 10.3390/ijms25179464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. Due to the wide variety of phenotypes, the diagnosis of AI is complex, requiring a genetic test to characterize it better. Thus, there is a demand for developing low-cost, noninvasive, and accurate platforms for AI diagnostics. This case-control pilot study aimed to test salivary vibrational modes obtained in attenuated total reflection fourier-transformed infrared (ATR-FTIR) together with machine learning algorithms: linear discriminant analysis (LDA), random forest, and support vector machine (SVM) could be used to discriminate AI from control subjects due to changes in salivary components. The best-performing SVM algorithm discriminates AI better than matched-control subjects with a sensitivity of 100%, specificity of 79%, and accuracy of 88%. The five main vibrational modes with higher feature importance in the Shapley Additive Explanations (SHAP) were 1010 cm-1, 1013 cm-1, 1002 cm-1, 1004 cm-1, and 1011 cm-1 in these best-performing SVM algorithms, suggesting these vibrational modes as a pre-validated salivary infrared spectral area as a potential biomarker for AI screening. In summary, ATR-FTIR spectroscopy and machine learning algorithms can be used on saliva samples to discriminate AI and are further explored as a screening tool.
Collapse
Affiliation(s)
- Felipe Morando Avelar
- Department of Genetics, Ecology, and Evolution, ICB, Federal University of Minas Gerais, Belo Horizonte 312-901, MG, Brazil
| | - Célia Regina Moreira Lanza
- Department of Clinical Pathology and Dental Surgery, Dental School, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sttephany Silva Bernardino
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| | - Marcelo Augusto Garcia-Junior
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| | | | | | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
- Laboratory of Nanobiotechnology "Luiz Ricardo Goulart", Biotechnology Institute, Federal University of Uberlandia, Uberlandia 38408-100, MG, Brazil
| |
Collapse
|
21
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
22
|
Pandey D, Ghosh D. Proteomics-based host-specific biomarkers for tuberculosis: The future of TB diagnosis. J Proteomics 2024; 305:105245. [PMID: 38942234 DOI: 10.1016/j.jprot.2024.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses. Hence, rapid, sensitive, and affordable diagnostic methods for TB is the current prerequisite for disease management. This review summarizes the proteomics investigations for host-specific biomarkers from serum, sputum, saliva, and urine samples of TB patients, along with patients having comorbidity. Thorough data mining from available literature led us to conclude that the host-specific proteins involved in immunity and defense, metabolic regulation, cellular adhesion, and motility, inflammatory responses, and tissue remodelling have shown significant deregulation upon Mycobacterium tuberculosis (Mtb) infection. Notably, the immunoregulatory protein orosomucoid (ORM) was up-regulated in active TB compared to non-TB individuals, as observed in multiple studies from diverse sample types. Mannose receptor C type 2 (MRC2) was identified as an upregulated, treatment response biomarker in two independent serum proteomics investigations. Thorough mechanistic investigation on these candidate proteins would be fascinating to dig into potential drug targets and customized therapeutics for TB patients, along with their diagnostic potentials.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Dipanjana Ghosh
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Technological University, Airport Bypass Road, Bhopal 462033, India.
| |
Collapse
|
23
|
Srivastava P, Rai A, Kumar M. Expression profile of diagnostic genes in oral submucous fibrosis. Pathol Res Pract 2024; 260:155416. [PMID: 38944023 DOI: 10.1016/j.prp.2024.155416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Oral Submucous Fibrosis (OSMF) is a chronic precancerous disorder of the oral mucosa caused by chewing of areca nut and its other variants. Chewing of areca nuts leads to dysregulated expression of specific genes, leading to various premalignant or malignant disorders. This study aimed to determine the differential expression of the diagnostic genes (MYH6, TNNT3, MYL1, and TPM2) in healthy controls and OSMF patients using saliva and tissue samples, determining the histopathological grade of the clinical samples. A total of 20 patients were included in the study and were divided into two groups: Group I consisted of 10 healthy patients (control group) and Group II consisted of 10 OSMF patients. Unstimulated whole saliva samples were collected from both groups, and the tissue samples were divided into two parts: one for RT-qPCR analysis and the other for histopathological assay. The expression profile of genes concerning OSMF saliva and tissue samples was significantly upregulated compared to the healthy control, and all the clinical samples of the study were categorized into histopathological grade 1. The findings of this study concluded that these genes can be referred to as diagnostic genes for OSMF in early and very early clinical samples, and saliva can be used as a promising diagnostic tool for early OSMF studies.
Collapse
Affiliation(s)
- Prerna Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arpita Rai
- Dental Institute, Rajendra Institute of Medical Sciences, Ranchi 834009, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
24
|
Pakravan F, Chatraei F, Heidari Z, Nilchian F, Ghazavi R, Nasr Isfahani M. Unraveling the Connection Between Stress-induced Oral Diseases and Salivary Alpha-amylase Levels: a Systematic Review and Meta-analysis. CURRENT ORAL HEALTH REPORTS 2024; 11:258-267. [DOI: 10.1007/s40496-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 01/03/2025]
|
25
|
Regueira-Iglesias A, Suárez-Rodríguez B, Blanco-Pintos T, Relvas M, Alonso-Sampedro M, Balsa-Castro C, Tomás I. The salivary microbiome as a diagnostic biomarker of periodontitis: a 16S multi-batch study before and after the removal of batch effects. Front Cell Infect Microbiol 2024; 14:1405699. [PMID: 39071165 PMCID: PMC11272481 DOI: 10.3389/fcimb.2024.1405699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Microbiome-based clinical applications that improve diagnosis related to oral health are of great interest to precision dentistry. Predictive studies on the salivary microbiome are scarce and of low methodological quality (low sample sizes, lack of biological heterogeneity, and absence of a validation process). None of them evaluates the impact of confounding factors as batch effects (BEs). This is the first 16S multi-batch study to analyze the salivary microbiome at the amplicon sequence variant (ASV) level in terms of differential abundance and machine learning models. This is done in periodontally healthy and periodontitis patients before and after removing BEs. Methods Saliva was collected from 124 patients (50 healthy, 74 periodontitis) in our setting. Sequencing of the V3-V4 16S rRNA gene region was performed in Illumina MiSeq. In parallel, searches were conducted on four databases to identify previous Illumina V3-V4 sequencing studies on the salivary microbiome. Investigations that met predefined criteria were included in the analysis, and the own and external sequences were processed using the same bioinformatics protocol. The statistical analysis was performed in the R-Bioconductor environment. Results The elimination of BEs reduced the number of ASVs with differential abundance between the groups by approximately one-third (Before=265; After=190). Before removing BEs, the model constructed using all study samples (796) comprised 16 ASVs (0.16%) and had an area under the curve (AUC) of 0.944, sensitivity of 90.73%, and specificity of 87.16%. The model built using two-thirds of the specimens (training=531) comprised 35 ASVs (0.36%) and had an AUC of 0.955, sensitivity of 86.54%, and specificity of 90.06% after being validated in the remaining one-third (test=265). After removing BEs, the models required more ASVs (all samples=200-2.03%; training=100-1.01%) to obtain slightly lower AUC (all=0.935; test=0.947), lower sensitivity (all=81.79%; test=78.85%), and similar specificity (all=91.51%; test=90.68%). Conclusions The removal of BEs controls false positive ASVs in the differential abundance analysis. However, their elimination implies a significantly larger number of predictor taxa to achieve optimal performance, creating less robust classifiers. As all the provided models can accurately discriminate health from periodontitis, implying good/excellent sensitivities/specificities, the salivary microbiome demonstrates potential clinical applicability as a precision diagnostic tool for periodontitis.
Collapse
Affiliation(s)
- Alba Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Berta Suárez-Rodríguez
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Triana Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Relvas
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (IUCS-CESPU), Unidade de Investigação em Patologia e Reabilitação Oral (UNIPRO), Gandra, Portugal
| | - Manuela Alonso-Sampedro
- Department of Internal Medicine and Clinical Epidemiology, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
26
|
Zhang Y, Li X, Wang J, Ma W, Wang H, Wang J, Xu J. Exploring Salivary Iodine Concentration as a Biomarker for Iodine Status and Thyroid Nodules in Females From Different Water Iodine Areas: a Cross-sectional Study. Am J Clin Nutr 2024; 120:162-169. [PMID: 38677523 DOI: 10.1016/j.ajcnut.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/24/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND It is unclear whether salivary iodine concentration (SIC) can assess iodine status in females from different water iodine regions. OBJECTIVES Through a cross-sectional study, we explored the feasibility of SIC as a biomarker to assess iodine status in females and develop optimal cutoff values. METHODS A total of 1991 females were analyzed in this cross-sectional study from the coastal iodine-deficient areas (CIDAs), inland iodine-deficient areas (IIDAs), iodine-adequate areas (IAAs), iodine-excess areas (IEAs), and iodine extra-high areas (IEHAs). SIC, spot urine iodine concentration (SUIC), and daily total iodine intake (TII) were assessed, and ultrasonography was performed in all subjects. RESULTS There was a positive correlation between SIC and SUIC (r = 0.67; 95% CI: 0.64, 0.69; P < 0.001), and TII (r = 0.47; 95% CI: 0.43, 0.50; P < 0.001). The prevalence of thyroid nodules (TN) showed an upward trend with SIC increasing (Z = -2.83; P-trend = 0.005). The area under the receiver-operating characteristic (ROC) curve for SIC to assess iodine deficiency was 0.62 (95% CI: 0.60, 0.65; P < 0.001) and 0.75 (95% CI: 0.73, 0.77; P < 0.001) for iodine excess. The cutoff values were as follows: SIC < 93.32 μg/L, iodine deficiency; 93.32-224.60 μg/L, iodine adequacy; and >224.60 μg/L, iodine excess. When SIC > 224.60 μg/L, the odds ratio (OR) for UIC > 300 μg/L, excessive TII, and the prevalence of TN were 6.44, 3.68, and 1.27 (95% CI: 4.98, 8.31; 2.83, 4.79; and 1.02, 1.56, respectively; P < 0.05); when SIC < 93.32 μg/L, the OR for UIC < 100 μg/L and insufficient TII were 2.34 and 1.94 (95% CI: 1.73, 3.14 and 1.33, 2.83, respectively; P < 0.05). CONCLUSIONS Using SIC as a biomarker, females in CIDA exhibited mild iodine deficiency, those in IIDA and IAA demonstrated moderate iodine deficiency, and those in IEA and IEHA exhibited an excess of iodine, consistent with SUIC to assess iodine status. SIC can be used as a good biomarker to evaluate the iodine status in population.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuwei Li
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianqiang Wang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Ma
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haiyan Wang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Xu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the Peoples' Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
27
|
Bai B, Wen Y, Wang J, Wen F, Yan H, Yuan X, Xie J, Zhang R, Xia Q, Wang G. Fatty Acid Desaturase Bmdesat5, Suppressed in the Salivary Glands by Domestication, is Involved in Regulation of Food Intake in Silkworms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14177-14190. [PMID: 38875711 DOI: 10.1021/acs.jafc.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Understanding the evolutionary genetics of food intake regulation in domesticated animals has relevance to evolutionary biology, animal improvement, and obesity treatment. Here, we observed that the fatty acid desaturase gene (Bmdesat5), which regulates food intake, is suppressed in domesticated silkworms, but expressed in the salivary glands of the wild silkworm Bombyx mandarina. The content of its catalytic product, cis-vaccenic acid, was related to the expression levels of Bmdesat5 in the salivary glands of domesticated and wild silkworm strains. These two strains also showed significant differences in food intake. Using orally administering cis-vaccenic acid and transgenic-mediated overexpression, we verified that cis-vaccenic acid functions as a satiation signal, regulating food intake and growth in silkworms. Selection analysis showed that Bmdesat5 experienced selection, especially in the potential promoter, 5'-untranslated, and intron regions. This study highlights the importance of the decrement of satiety in silkworm domestication and provides new insights into the potential involvement of salivary glands in the regulation of satiety in animals, by acting as a supplement to gut-brain nutrient signaling.
Collapse
Affiliation(s)
- Bingchuan Bai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuchan Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Jing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Feng Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Yan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xingli Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Jiatong Xie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ruihan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Genhong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Röckendorf N, Ramaker K, Gaede K, Tappertzhofen K, Lunding L, Wegmann M, Horbert P, Weber K, Frey A. Parallel detection of multiple biomarkers in a point-of-care-competent device for the prediction of exacerbations in chronic inflammatory lung disease. Sci Rep 2024; 14:12830. [PMID: 38834656 DOI: 10.1038/s41598-024-62784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Sudden aggravations of chronic inflammatory airway diseases are difficult-to-foresee life-threatening episodes for which advanced prognosis-systems are highly desirable. Here we present an experimental chip-based fluidic system designed for the rapid and sensitive measurement of biomarkers prognostic for potentially imminent asthma or COPD exacerbations. As model biomarkers we chose three cytokines (interleukin-6, interleukin-8, tumor necrosis factor alpha), the bacterial infection marker C-reactive protein and the bacterial pathogen Streptococcus pneumoniae-all relevant factors in exacerbation episodes. Assay protocols established in laboratory environments were adapted to 3D-printed fluidic devices with emphasis on short processing times, low reagent consumption and a low limit of detection in order to enable the fluidic system to be used in point-of-care settings. The final device demonstrator was validated with patient sample material for its capability to detect endogenous as well as exogenous biomarkers in parallel.
Collapse
Affiliation(s)
- Niels Röckendorf
- Division of Mucosal Immunology and Diagnostics, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Member of Leibniz Health Technologies, Parkallee 1-40, Borstel, Germany
| | - Katrin Ramaker
- Division of Mucosal Immunology and Diagnostics, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Member of Leibniz Health Technologies, Parkallee 1-40, Borstel, Germany
| | - Karoline Gaede
- BioMaterialBank-North, Department of Medicine, Research Center Borstel - Leibniz Lung Center, Parkallee 1-40, Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Kristof Tappertzhofen
- Division of Mucosal Immunology and Diagnostics, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Member of Leibniz Health Technologies, Parkallee 1-40, Borstel, Germany
| | - Lars Lunding
- Division of Lung Immunology, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Member of Leibniz Health Technologies, Parkallee 1-40, Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Member of Leibniz Health Technologies, Parkallee 1-40, Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Peter Horbert
- Department of Spectroscopy and Imaging, Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, Jena, Germany
| | - Karina Weber
- Department of Spectroscopy and Imaging, Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, Jena, Germany
| | - Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Member of Leibniz Health Technologies, Parkallee 1-40, Borstel, Germany.
| |
Collapse
|
29
|
Yu SM, Zheng HC, Wang SC, Rong WY, Li P, Jing J, He TT, Li JH, Ding X, Wang RL. Salivary metabolites are promising noninvasive biomarkers of drug-induced liver injury. World J Gastroenterol 2024; 30:2454-2466. [PMID: 38764769 PMCID: PMC11099387 DOI: 10.3748/wjg.v30.i18.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/11/2024] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is one of the most common adverse events of medication use, and its incidence is increasing. However, early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests. AIM To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools. METHODS Saliva samples from 31 DILI patients and 35 healthy controls (HCs) were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry. Subsequent analyses, including partial least squares-discriminant analysis modeling, t tests and weighted metabolite coexpression network analysis (WMCNA), were conducted to identify key differentially expressed metabolites (DEMs) and metabolite sets. Furthermore, we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction. The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves. RESULTS We found 247 differentially expressed salivary metabolites between the DILI group and the HC group. Using WMCNA, we identified a set of 8 DEMs closely related to liver injury for further prediction testing. Interestingly, the distinct separation of DILI patients and HCs was achieved with five metabolites, namely, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, tetradecanedioic acid, hypoxanthine, and inosine (area under the curve: 0.733-1). CONCLUSION Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients. Our study may provide a potentially feasible and noninvasive diagnostic method for DILI, but further validation is needed.
Collapse
Affiliation(s)
- Si-Miao Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao-Cheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Si-Ci Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Ya Rong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ping Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Jing
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ting-Ting He
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jia-Hui Li
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Lin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
30
|
Ostheim P, Tichý A, Badie C, Davidkova M, Kultova G, Stastna MM, Sirak I, Stewart S, Schwanke D, Kasper M, Ghandhi SA, Amundson SA, Bäumler W, Stroszczynski C, Port M, Abend M. Applicability of Gene Expression in Saliva as an Alternative to Blood for Biodosimetry and Prediction of Radiation-induced Health Effects. Radiat Res 2024; 201:523-534. [PMID: 38499035 PMCID: PMC11587817 DOI: 10.1667/rade-23-00176.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
As the great majority of gene expression (GE) biodosimetry studies have been performed using blood as the preferred source of tissue, searching for simple and less-invasive sampling methods is important when considering biodosimetry approaches. Knowing that whole saliva contains an ultrafiltrate of blood and white blood cells, it is expected that the findings in blood can also be found in saliva. This human in vivo study aims to examine radiation-induced GE changes in saliva for biodosimetry purposes and to predict radiation-induced disease, which is yet poorly characterized. Furthermore, we examined whether transcriptional biomarkers in blood can also be found equivalently in saliva. Saliva and blood samples were collected in parallel from radiotherapy (RT) treated patients who suffered from head and neck cancer (n = 8) undergoing fractioned partial-body irradiations (1.8 Gy/fraction and 50-70 Gy total dose). Samples were taken 12-24 h before first irradiation and ideally 24 and 48 h, as well as 5 weeks after radiotherapy onset. Due to the low quality and quantity of isolated RNA samples from one patient, they had to be excluded from further analysis, leaving a total of 24 saliva and 24 blood samples from 7 patients eligible for analysis. Using qRT-PCR, 18S rRNA and 16S rRNA (the ratio being a surrogate for the relative human RNA/bacterial burden), four housekeeping genes and nine mRNAs previously identified as radiation responsive in blood-based studies were detected. Significant GE associations with absorbed dose were found for five genes and after the 2nd radiotherapy fraction, shown by, e.g., the increase of CDKN1A (2.0 fold, P = 0.017) and FDXR (1.9 fold increased, P = 0.002). After the 25th radiotherapy fraction, however, all four genes (FDXR, DDB2, POU2AF1, WNT3) predicting ARS (acute radiation syndrome) severity, as well as further genes (including CCNG1 [median-fold change (FC) = 0.3, P = 0.013], and GADD45A (median-FC = 0.3, P = 0.031)) appeared significantly downregulated (FC = 0.3, P = 0.01-0.03). A significant association of CCNG1, POU2AF1, HPRT1, and WNT3 (P = 0.006-0.04) with acute or late radiotoxicity could be shown before the onset of these clinical outcomes. In an established set of four genes predicting acute health effects in blood, the response in saliva samples was similar to the expected up- (FDXR, DDB2) or downregulation (POU2AF1, WNT3) in blood for up to 71% of the measurements. Comparing GE responses (PHPT1, CCNG1, CDKN1A, GADD45A, SESN1) in saliva and blood samples, there was a significant linear association between saliva and blood response of CDKN1A (R2 = 0.60, P = 0.0004). However, the GE pattern of other genes differed between saliva and blood. In summary, the current human in vivo study, (I) reveals significant radiation-induced GE associations of five transcriptional biomarkers in salivary samples, (II) suggests genes predicting diverse clinical outcomes such as acute and late radiotoxicity as well as ARS severity, and (III) supports the view that blood-based GE response can be reflected in saliva samples, indicating that saliva is a "mirror of the body" for certain but not all genes and, thus, studies for each gene of interest in blood are required for saliva.
Collapse
Affiliation(s)
- P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - A. Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Czech Republic
- Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - M. Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - G. Kultova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Czech Republic
| | - M. Markova Stastna
- Institute for Hematology and Blood Transfusion, Hospital Na Bulovce, Prague, Czech Republic
| | - I. Sirak
- Department of Oncology and Radiotherapy, University Hospital and Medical Faculty in Hradec Kralove, Czech Republic
| | - S. Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - D. Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Kasper
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032
| | - S. A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032
| | - W. Bäumler
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C. Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
31
|
Rocha VAD, Cruz-Machado SDS, Silva IA, Fernandes PACM, Markus RP, Bueno M. Identification of Inflammatory Mediators in Saliva Samples From Hospitalized Newborns: Potential Biomarkers? Clin Nurs Res 2024; 33:207-219. [PMID: 38506123 DOI: 10.1177/10547738241238249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Saliva measurements serve as a noninvasive tool for clinically monitoring newborns (NB) and children, a vulnerable population with promising potential for both research and clinical practice. Saliva acts as a repository for various inflammatory biomarkers involved in diverse biological functions. Particularly for children, it offers numerous advantages when compared to plasma and urine sampling. Nevertheless, there is a significant knowledge gap regarding detectable levels of cytokines in the saliva of newborns and children, as well as studies aiming to assess the relationship of this content with physiological and pathological processes. OBJECTIVES To characterize the levels of 11 inflammatory mediators (IFNg, IL1b, IL2, IL4, IL6, IL8, IL10, IL12, IL17, TNF, and VEGF) in saliva samples from NB on the first and second day of hospitalization in the Neonatal Intensive Care Unit (NICU). METHOD Exploratory study, descriptive, nested within a primary clinical, observational, and prospective study, conducted in the NICU of a public hospital in São Paulo, Brazil. Demographic data and vital signs were recorded in the clinical records of 90 NB, and five saliva samples from 5 NB were collected between the first and second day of life (D1-D2) at approximately 8-hr intervals (8-9 am, 4-5 pm, and 11-12 pm). Saliva samples were used for the measurement of 11 cytokines (IFNg, IL1b, IL2, IL4, IL6, IL8, IL10, IL12, IL17, TNF, and VEGF). RESULTS Five NBs participated in this exploratory study, and the vital signs showed variability from the first (D1) to the second day (D2) of hospitalization, variability similar to that of the total population of the primary study. The presence and levels of the 11 cytokines were detected in the saliva samples, as well as a statistical correlation between 10 cytokines (IFNg, IL1b, IL2, IL4, IL6, IL10, IL12, IL17, TNF, and VEGF) and vital signs. CONCLUSIONS The novelty of measuring inflammatory mediators in saliva samples from hospitalized NBs in the NICU is highlighted, providing support and new perspectives for the development of clinical and experimental research and an opportunity for developing and implementing new salivary biomarkers in different population segments.
Collapse
Affiliation(s)
- Vanderlei Amadeu da Rocha
- Universidade de São Paulo, Hospital Universitário, Unidade de Terapia Intensiva Pediátrica e Neonatal, São Paulo, SP, Brasil
| | | | - Isília Aparecida Silva
- Escola de Enfermagem, Departamento de Enfermagem Materno-Infantil e Psiquiatrica, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Regina Pekelmann Markus
- Universidade de São Paulo, Instituto de Biociências, Laboratório de Cronofarmacologia, São Paulo, SP, Brasil
| | | |
Collapse
|
32
|
Huang X, Bai S, Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore) 2024; 103:e37793. [PMID: 38608048 PMCID: PMC11018244 DOI: 10.1097/md.0000000000037793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Acute myocardial infarction (AMI), the most severe cardiovascular event in clinical settings, imposes a significant burden with its annual increase in morbidity and mortality rates. However, it is noteworthy that mortality due to AMI in developed countries has experienced a decline, largely attributable to the advancements in medical interventions such as percutaneous coronary intervention. This trend highlights the importance of accurate diagnosis and effective treatment to preserve the myocardium at risk and improve patient outcomes. Conventional biomarkers such as myoglobin, creatine kinase isoenzymes, and troponin have been instrumental in the diagnosis of AMI. However, recent years have witnessed the emergence of new biomarkers demonstrating the potential to further enhance the accuracy of AMI diagnosis. This literature review focuses on the recent advancements in biomarker research in the context of AMI diagnosis.
Collapse
Affiliation(s)
| | - Suwen Bai
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Yumei Luo
- Guangdong Medical University, Zhanjiang, China
- Cardiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
33
|
Alqedari H, Altabtbaei K, Espinoza JL, Bin-Hasan S, Alghounaim M, Alawady A, Altabtabae A, AlJamaan S, Devarajan S, AlShammari T, Ben Eid M, Matsuoka M, Jang H, Dupont CL, Freire M. Host-microbiome associations in saliva predict COVID-19 severity. PNAS NEXUS 2024; 3:pgae126. [PMID: 38617584 PMCID: PMC11010653 DOI: 10.1093/pnasnexus/pgae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Established evidence indicates that oral microbiota plays a crucial role in modulating host immune responses to viral infection. Following severe acute respiratory syndrome coronavirus 2, there are coordinated microbiome and inflammatory responses within the mucosal and systemic compartments that are unknown. The specific roles the oral microbiota and inflammatory cytokines play in the pathogenesis of coronavirus disease 2019 (COVID-19) are yet to be explored. Here, we evaluated the relationships between the salivary microbiome and host parameters in different groups of COVID-19 severity based on their oxygen requirement. Saliva and blood samples (n = 80) were collected from COVID-19 and from noninfected individuals. We characterized the oral microbiomes using 16S ribosomal RNA gene sequencing and evaluated saliva and serum cytokines and chemokines using multiplex analysis. Alpha diversity of the salivary microbial community was negatively associated with COVID-19 severity, while diversity increased with health. Integrated cytokine evaluations of saliva and serum showed that the oral host response was distinct from the systemic response. The hierarchical classification of COVID-19 status and respiratory severity using multiple modalities separately (i.e. microbiome, salivary cytokines, and systemic cytokines) and simultaneously (i.e. multimodal perturbation analyses) revealed that the microbiome perturbation analysis was the most informative for predicting COVID-19 status and severity, followed by the multimodal. Our findings suggest that oral microbiome and salivary cytokines may be predictive of COVID-19 status and severity, whereas atypical local mucosal immune suppression and systemic hyperinflammation provide new cues to understand the pathogenesis in immunologically compromised populations.
Collapse
Affiliation(s)
- Hend Alqedari
- Department of Public Health and Community Service, Tufts University School of Dental Medicine, 1 Kneeland Street, Boston, MA 02111, USA
- Dasman Diabetes Institute, 1180 Dasman, 9XQV+V9 Kuwait City, Kuwait
| | - Khaled Altabtbaei
- Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB T6G 2L7, Canada
| | - Josh L Espinoza
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Mohammad Alghounaim
- Department of Pediatrics, Amiri Hospital, Ministry of Health, 9XQQ+42 Kuwait City, Kuwait
| | - Abdullah Alawady
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Abdullah Altabtabae
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Sarah AlJamaan
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | | | | | - Mohammed Ben Eid
- Department of Pediatrics, Farwaniyah Hospital, Ministry of Health, 7XF4+WPJ Al Farwaniyah, Kuwait
| | - Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Hyesun Jang
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Christopher L Dupont
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
LaBute B, Fong J, Ziaee F, Gombar R, Stover M, Beaudin T, Badalova M, Geng Q, Corchis-Scott R, Podadera A, Lago K, Xu Z, Lim F, Chiu F, Fu M, Nie X, Wu Y, Quan C, Hamm C, McKay RM, Ng K, Porter LA, Tong Y. Evaluating and optimizing Acid-pH and Direct Lysis RNA extraction for SARS-CoV-2 RNA detection in whole saliva. Sci Rep 2024; 14:7017. [PMID: 38527999 DOI: 10.1038/s41598-024-54183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
COVID-19 has been a global public health and economic challenge. Screening for the SARS-CoV-2 virus has been a key part of disease mitigation while the world continues to move forward, and lessons learned will benefit disease detection beyond COVID-19. Saliva specimen collection offers a less invasive, time- and cost-effective alternative to standard nasopharyngeal swabs. We optimized two different methods of saliva sample processing for RT-qPCR testing. Two methods were optimized to provide two cost-efficient ways to do testing for a minimum of four samples by pooling in a 2.0 mL tube and decrease the need for more highly trained personnel. Acid-pH-based RNA extraction method can be done without the need for expensive kits. Direct Lysis is a quick one-step reaction that can be applied quickly. Our optimized Acid-pH and Direct Lysis protocols are reliable and reproducible, detecting the beta-2 microglobulin (B2M) mRNA in saliva as an internal control from 97 to 96.7% of samples, respectively. The cycle threshold (Ct) values for B2M were significantly higher in the Direct Lysis protocol than in the Acid-pH protocol. The limit of detection for N1 gene was higher in Direct Lysis at ≤ 5 copies/μL than Acid-pH. Saliva samples collected over the course of several days from two COVID-positive individuals demonstrated Ct values for N1 that were consistently higher from Direct Lysis compared to Acid-pH. Collectively, this work supports that each of these techniques can be used to screen for SARS-CoV-2 in saliva for a cost-effective screening platform.
Collapse
Affiliation(s)
- Brayden LaBute
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Jackie Fong
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
| | - Farinaz Ziaee
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Robert Gombar
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Mathew Stover
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Terry Beaudin
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Maria Badalova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kyle Lago
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
| | - ZhenHuan Xu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Fievel Lim
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Felix Chiu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Minghua Fu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Xiaofeng Nie
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | - Yuanmin Wu
- Aumintec Research Inc., Richmond Hill, ON, Canada
| | | | - Caroline Hamm
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
- Windsor Regional Hospital, Windsor, ON, Canada
| | - R Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Kenneth Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada.
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada.
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada.
- WE-SPARK Health Institute, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
35
|
O’Farrell HE, Kok HC, Goel S, Chang AB, Yerkovich ST. Endotypes of Paediatric Cough-Do They Exist and Finding New Techniques to Improve Clinical Outcomes. J Clin Med 2024; 13:756. [PMID: 38337450 PMCID: PMC10856076 DOI: 10.3390/jcm13030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic cough is a common symptom of many childhood lung conditions. Given the phenotypic heterogeneity of chronic cough, better characterization through endotyping is required to provide diagnostic certainty, precision therapies and to identify pathobiological mechanisms. This review summarizes recent endotype discoveries in airway diseases, particularly in relation to children, and describes the multi-omic approaches that are required to define endotypes. Potential biospecimens that may contribute to endotype and biomarker discoveries are also discussed. Identifying endotypes of chronic cough can likely provide personalized medicine and contribute to improved clinical outcomes for children.
Collapse
Affiliation(s)
- Hannah E. O’Farrell
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Hing Cheong Kok
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Department of Paediatrics, Sabah Women and Children’s Hospital, Kota Kinabalu 88996, Sabah, Malaysia
| | - Suhani Goel
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Anne B. Chang
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| | - Stephanie T. Yerkovich
- NHMRC Centre for Research Excellence in Paediatric Bronchiectasis (AusBREATHE), Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; (H.C.K.); (A.B.C.); (S.T.Y.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
36
|
Janovičová Ľ, Holániová D, Vlková B, Celec P. Pre-Analytical Factors Affecting Extracellular DNA in Saliva. Diagnostics (Basel) 2024; 14:249. [PMID: 38337765 PMCID: PMC10855236 DOI: 10.3390/diagnostics14030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Salivary DNA is widely used for genetic analyses because of its easy collection. However, its extracellular fraction in particular, similar to the extracellular DNA (ecDNA) in plasma, could be a promising biomarker for oral or systemic diseases. In contrast to genetics, the quantity of salivary ecDNA is of importance and can be affected by the pre-analytical processing of samples, but the details are not known. The aim of our study was to analyze the effects of centrifugation and freezing of saliva on the concentration of ecDNA in saliva. Fifteen healthy volunteers, free of any known systemic or oral diseases, were asked to collect unstimulated saliva samples. Aliquots were centrifuged at 1600× g and frozen or directly processed. The fresh or thawed cell-free saliva samples underwent subsequent centrifugation at 16,000× g. The supernatants were used for DNA isolation and quantification using fluorometry and real-time PCR. While freezing had minimal effects on the salivary ecDNA concentration, another centrifugation step decreased ecDNA considerably in both fresh and frozen samples (by 97.8% and 98.4%, respectively). This was mirrored in the quantitative PCR targeting a nuclear (decrease by 93.5%) and mitochondrial (decrease by 97.7%) ecDNA sequence. In conclusion, in this first study focusing on the technical aspects of salivary ecDNA quantitation, we show that, regardless of its subcellular origin, the concentration of ecDNA in saliva is mainly affected by additional centrifugation and not by the freezing of centrifuged cell-free saliva samples. This suggests that most salivary ecDNA likely is associated with cell debris and apoptotic bodies. Which fraction is affected by a particular disease should be the focus of further targeted studies.
Collapse
Affiliation(s)
- Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
| | - Dominika Holániová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia; (Ľ.J.); (D.H.); (B.V.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
37
|
Wei D, Sun J, Luo Z, Zhang G, Liu Y, Zhang H, Xie Z, Gu Z, Tao WA. Targeted Phosphoproteomics of Human Saliva Extracellular Vesicles via Multiple Reaction Monitoring Cubed (MRM 3). Anal Chem 2024; 96:1223-1231. [PMID: 38205554 DOI: 10.1021/acs.analchem.3c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has become a global health problem due to its increasing incidence and high mortality rate. Early intervention through monitoring of the diagnostic biomarker levels during OSCC treatment is critical. Extracellular vesicles (EVs) are emerging surrogates in intercellular communication through transporting biomolecule cargo and have recently been identified as a potential source of biomarkers such as phosphoproteins for many diseases. Here, we developed a multiple reaction monitoring cubed (MRM3) method coupled with a novel sample preparation strategy, extracellular vesicles to phosphoproteins (EVTOP), to quantify phosphoproteins using a minimal amount of saliva (50 μL) samples from OSCC patients with high specificity and sensitivity. Our results established differential patterns in the phosphopeptide content of healthy, presurgery, and postsurgery OSCC patient groups. Notably, we discovered significantly increased salivary phosphorylated alpha-amylase (AMY) in the postsurgery group compared to the presurgery group. We hereby present the first targeted MS method with extremely high sensitivity for measuring endogenous phosphoproteins in human saliva EVs.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Padoan A, Cosma C, Di Chiara C, Furlan G, Gastaldo S, Talli I, Donà D, Basso D, Giaquinto C, Plebani M. Clinical and Analytical Performance of ELISA Salivary Serologic Assay to Detect SARS-CoV-2 IgG in Children and Adults. Antibodies (Basel) 2024; 13:6. [PMID: 38247570 PMCID: PMC10801479 DOI: 10.3390/antib13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Saliva is a promising matrix with several purposes. Our aim is to verify if salivary anti-SARS-CoV-2 antibody determination is suitable for monitoring immune responses. One hundred eighty-seven subjects were enrolled at University-Hospital Padova: 105 females (56.1%) and 82 males (43.9%), 95 (50.8%) children and 92 (49.2%) adults. Subjects self-collected saliva using Salivette; nineteen subjects collected three different samples within the day. A serum sample was obtained for all individuals. The N/S anti-SARS-CoV-2 salivary IgG (sal-IgG) and serum anti-SARS-CoV-2 S-RBD IgG (ser-IgG) were used for determining anti-SARS-CoV-2 antibodies. The mean (min-max) age was 9.0 (1-18) for children and 42.5 (20-61) for adults. Of 187 samples, 63 were negative for sal-IgG (33.7%), while 7 were negative for ser-IgG (3.7%). Spearman's correlation was 0.56 (p < 0.001). Sal-IgG and ser-IgG levels were correlated with age but not with gender, comorbidities, prolonged therapy, previous SARS-CoV-2 infection, or time from last COVID-19 infection/vaccination. The repeatability ranged from 23.8% (7.4 kAU/L) to 4.0% (3.77 kAU/L). The linearity of the assay was missed in 4/6 samples. No significant intrasubject differences were observed in sal-IgG across samples collected at different time points. Sal-IgG has good agreement with ser-IgG. Noninvasive saliva collection represents an alternative method for antibody measurement, especially in children.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (A.P.); (C.C.); (D.B.); (M.P.)
- UOC of Laboratory Medicine, University-Hospital of Padova, 35128 Padova, Italy
- QI.LAB.MED, Spin-off of the University of Padova, 35011 Padova, Italy;
| | - Chiara Cosma
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (A.P.); (C.C.); (D.B.); (M.P.)
- UOC of Laboratory Medicine, University-Hospital of Padova, 35128 Padova, Italy
- QI.LAB.MED, Spin-off of the University of Padova, 35011 Padova, Italy;
| | - Costanza Di Chiara
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy (S.G.); (D.D.); (C.G.)
- Penta–Child Health Research, 35127 Padua, Italy
| | - Giulia Furlan
- QI.LAB.MED, Spin-off of the University of Padova, 35011 Padova, Italy;
| | - Stefano Gastaldo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy (S.G.); (D.D.); (C.G.)
| | - Ilaria Talli
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (A.P.); (C.C.); (D.B.); (M.P.)
- UOC of Laboratory Medicine, University-Hospital of Padova, 35128 Padova, Italy
| | - Daniele Donà
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy (S.G.); (D.D.); (C.G.)
- Penta–Child Health Research, 35127 Padua, Italy
| | - Daniela Basso
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (A.P.); (C.C.); (D.B.); (M.P.)
- UOC of Laboratory Medicine, University-Hospital of Padova, 35128 Padova, Italy
- QI.LAB.MED, Spin-off of the University of Padova, 35011 Padova, Italy;
| | - Carlo Giaquinto
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy (S.G.); (D.D.); (C.G.)
- Penta–Child Health Research, 35127 Padua, Italy
| | - Mario Plebani
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (A.P.); (C.C.); (D.B.); (M.P.)
- UOC of Laboratory Medicine, University-Hospital of Padova, 35128 Padova, Italy
- QI.LAB.MED, Spin-off of the University of Padova, 35011 Padova, Italy;
| |
Collapse
|
39
|
Drobintseva AO, Mironova ES, Zubareva TS, Krylova YS, Kvetnoy IM, Paltsev MA, Yablonsky PK. [Modern approaches to studying the molecular mechanisms of lung functioning in normal and pathological conditions]. Arkh Patol 2024; 86:58-64. [PMID: 38591908 DOI: 10.17116/patol20248602158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Problems with breathing and lung function are caused by the development of various lung diseases associated with lifestyle, harmful environmental factors and genetic predisposition. Knowledge of the molecular mechanisms of the development of the pathological process will allow on time identification of the disease or the development of targeted therapy. The article provides an overview of modern methods that make it possible to most accurately reproduce the structural, functional and mechanical properties of the lung (organ-on-a-chip), to perform non-invasive molecular studies of biomarkers of bronchopulmonary pathology using saliva diagnostics, as well as using DNA and RNA aptamers, verify tumor markers in biological samples of human tissue. Analysis of alterations in the pattern of protein glycosylation using glycodiagnostic methods makes it possible to detect lung cancer in the early stages.
Collapse
Affiliation(s)
- A O Drobintseva
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - E S Mironova
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - T S Zubareva
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - Yu S Krylova
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- First Saint Petersburg State Medical University named after. acad. I.P. Pavlov (Pavlov University), St. Petersburg, Russia
| | - I M Kvetnoy
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| | - M A Paltsev
- Lomonosov Moscow State University, Moscow, Russia
| | - P K Yablonsky
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
40
|
LaCasse Z, Chivte P, Kress K, Seethi VDR, Bland J, Alhoori H, Kadkol SS, Gaillard ER. Enhancing saliva diagnostics: The impact of amylase depletion on MALDI-ToF MS profiles as applied to COVID-19. J Mass Spectrom Adv Clin Lab 2024; 31:59-71. [PMID: 38323116 PMCID: PMC10846328 DOI: 10.1016/j.jmsacl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Human saliva contains a wealth of proteins that can be monitored for disease diagnosis and progression. Saliva, which is easy to collect, has been extensively studied for the diagnosis of numerous systemic and infectious diseases. However, the presence of amylase, the most abundant protein in saliva, can obscure the detection of low-abundance proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF MS), thus reducing its diagnostic utility. Objectives In this study, we used a device to deplete salivary amylase from water-gargle samples by affinity adsorption. Following depletion, saliva proteome profiling was performed using MALDI-ToF MS on gargle samples from individuals confirmed to have COVID-19 based on nasopharyngeal (NP) swab reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results The depletion of amylase led to increased signal intensities of various peaks and the detection of previously unobserved peaks in the MALDI-ToF MS spectra. The overall specificity and sensitivity after amylase depletion were 100% and 85.17%, respectively, for detecting COVID-19. Conclusion This simple, rapid, and inexpensive technique for depleting salivary amylase can reveal spectral diversity in saliva using MALDI-ToF MS, expose low-abundance proteins, and assist in establishing novel biomarkers for diseases.
Collapse
Affiliation(s)
- Zane LaCasse
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Prajkta Chivte
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Kari Kress
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Thermo Fisher Scientific, Rockford, IL 61101, USA
| | | | - Joshua Bland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hamed Alhoori
- Departments of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Shrihari S. Kadkol
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Elizabeth R. Gaillard
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
41
|
Rashidova G, Tilegen M, Pham TT, Bekmurzayeva A, Tosi D. Functionalized optical fiber ball-shaped biosensor for label-free, low-limit detection of IL-8 protein. BIOMEDICAL OPTICS EXPRESS 2024; 15:185-198. [PMID: 38223184 PMCID: PMC10783906 DOI: 10.1364/boe.504780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 01/16/2024]
Abstract
Detection of biomarkers for tracking disease progression is becoming increasingly important in biomedicine. Using saliva as a diagnostic sample appears to be a safe, cost-effective, and non-invasive approach. Salivary interleukin-8 levels demonstrate specific changes associated with diseases such as obstructive pulmonary disease, squamous cell carcinoma, oral cancer, and breast cancer. Traditional protein detection methods, such as enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and Western blot are often expensive, complex, and time-consuming. In this study, an optical fiber-based biosensor was developed to detect salivary IL-8 protein in a label-free manner. The biosensor was able to achieve an ultra-low limit detection of 0.91 fM. Moreover, the tested concentration range was wide: from 273 aM to 59 fM. As a proof-of-concept for detecting the protein in real clinical samples, the detection was carried out in artificial saliva. It was possible to achieve high sensitivity for the target protein and minimal signal alterations for the control proteins.
Collapse
Affiliation(s)
- Gyunel Rashidova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Meruyert Tilegen
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tri T. Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
42
|
Santos KO, Filho DMP, Ventura TMO, Thomassian LTG, Macedo AG, Buzalaf MAR, Braga AS, Faria MH, Magalhães AC. Salivary proteomic profile of response to different resistance training protocols: A case report. Cell Biochem Funct 2024; 42:e3936. [PMID: 38269522 DOI: 10.1002/cbf.3936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Resistance training (RT) with blood flow restriction (BFR) or high intensity (HI) are effective to increase muscle mass. To understand this effect, techniques known as "omics" are used to identify possible biomarkers. This study analyzed the salivary proteomic profile of healthy individuals trained before and after two RT protocols both designed with eight exercises for upper- and lower-limbs, one performed at low percentage of one-maximum repetition (%1RM) with BFR technique, and other at high %1RM (HI) without BRF technique. Four healthy males between 18 and 28 years participated in the study. Stimulated saliva was collected before (BBFR/BHI) and immediately after (ABFR/AHI) the two RT protocols. All protein-related processing was performed using label-free proteomic. The difference in expression between groups was expressed as p < .05 for downregulated proteins and 1-p > .95 for upregulated proteins. There was difference in salivary flow between ABFR and BBFR (p = .005). For HI, 87 proteins were found after the practice and 119 before. Three hemoglobin isoforms were increased in AHI compared with BHI. In the BFR comparison, 105 proteins were identified after (ABFR) and 70 before (BBFR). Among those increased ABFR, we highlight five hemoglobin isoforms and Deleted in malignant brain tumors 1 protein. Between ABFR and AHI, 17 isoforms of histones, Transaldolase, Transketolase, Glyceraldehyde-3-phosphate dehydrogenase, and Antileukoproteinase were decreased ABFR. For HI, there was an increase in proteins related to oxidative stress and metabolism of the musculoskeletal system, compared with BFR. HI seems to induce higher anabolic signaling to muscle mass increase and antiatherosclerotic effects.
Collapse
Affiliation(s)
- Karina Oliveira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| | - Dalton Muller Pessôa Filho
- Post-graduate Program in Human Development and Technology, Bioscience Institute (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Department of Physical Education, School of Sciences (FC), São Paulo State University (UNESP), Bauru, São Paulo, Brazil
| | | | | | - Anderson Geremias Macedo
- Post-graduate Program in Human Development and Technology, Bioscience Institute (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Pos-Graduation Program in Rehabilitation Sciences, Institute of Motricity Sciences, Federal University of Alfenas, Santa Clara Campus, Alfenas, Minas Gerais, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| | - Aline Silva Braga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| | - Murilo Henrique Faria
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| |
Collapse
|
43
|
Fathima R, Ramamoorthi R, Gopalakrishnan S, Jayaseelan VP, Muniapillai S. Expression of salivary levels of S100A7 in oral submucous fibrosis and oral leukoplakia. J Oral Maxillofac Pathol 2024; 28:84-89. [PMID: 38800445 PMCID: PMC11126246 DOI: 10.4103/jomfp.jomfp_113_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 05/29/2024] Open
Abstract
Aim The aim of the study is to evaluate the expression of S100A7 levels in saliva of oral sub-mucous fibrosis, oral leukoplakia patients, and healthy control. Materials and Methods The study comprised of saliva samples from 15 patients each with clinically diagnosed oral sub-mucous fibrosis, oral leukoplakia, and healthy control. Salivary S100A7 levels were estimated using Enzyme-Linked Immunosorbent Assay. Statistical analysis was performed using SPSS. The significance level is fixed at 5% (α = 0.05). To compare the mean values of concentration between the disease group oral leukoplakia (OL) and oral submucous fibrosis (OSMF) and control, one-way analysis of variance was used followed by a post hoc test for multiple pairwise comparisons. Results The results of the study indicated a statistically significant increase in the salivary S100A7 level among the OSMF and OL when compared with the control group. When a pairwise comparison was done between OSMF with a control group and leukoplakia with a control group, a statistically significant difference was observed, subsequently while comparing OSMF with leukoplakia, and no statistically significant difference was observed. Conclusion Results from this study demonstrated increased S100A7 levels in OSMF and OL when compared with control group. This indicated that salivary S100A7 can be used as an adjunctive marker to identify patients at risk of progression into oral squamous cell carcinoma (OSCC).
Collapse
Affiliation(s)
- Razwia Fathima
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Kundrathur, Chennai, Tamil Nadu, India
| | - Raghini Ramamoorthi
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Kundrathur, Chennai, Tamil Nadu, India
| | - Sivakumar Gopalakrishnan
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Kundrathur, and Research Scholar, Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Vijayashree P. Jayaseelan
- Associate Professor, Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Sivakumar Muniapillai
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Kundrathur, Chennai, Tamil Nadu, India
| |
Collapse
|
44
|
Szulimowska J, Zalewska A, Taranta-Janusz K, Trocka D, Żendzian-Piotrowska M, Tomasiuk R, Maciejczyk M. Association of Ischemia-Modified Albumin (IMA) in Saliva, Serum, and Urine with Diagnosis of Chronic Kidney Disease (CKD) in Children: A Case-Control Study. Med Sci Monit 2023; 29:e942230. [PMID: 38093614 PMCID: PMC10729497 DOI: 10.12659/msm.942230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ischemia-modified albumin (IMA) is a secreted biomarker for ischemic oxidative stress. This case-control study aimed to evaluate the association of ischemia-modified albumin (IMA) in saliva, serum, and urine with diagnosis of chronic kidney disease (CKD) in 24 children. MATERIAL AND METHODS The study involved 24 children with CKD. CKD was defined according to the Kidney Disease Improving Global Outcomes (KDIGO) diagnostic criteria. The control group consisted of 24 healthy children who were matched for age and gender to the experimental group. The concentration of IMA was determined by the colorimetric method in non-stimulated whole saliva (NWS), stimulated whole saliva (SWS), serum, and urine of children with CKD. The Mann-Whitney U test was used for inter-group comparisons. RESULTS IMA levels were significantly higher in NWS (P=0.0082) and SWS (P=0.0014) of children with CKD than in the control group. The concentration of IMA in NWS was correlated with standard indicators of kidney function, including the estimated glomerular filtration rate (r=-0.798, P≤0.0001), stage of CKD (r=0.814, P≤0.0001), and serum creatinine (r=0.711, P≤0.0001) and urea levels (r=0.738, P≤0.0001). CONCLUSIONS Salivary IMA concentration depends on renal function in children. Salivary IMA discriminates children with end-stage kidney disease from children with mild and moderate CKD and healthy children with high sensitivity and specificity. Further research is required, including assessment of the diagnostic usefulness and validation of the biomarker in a clinical diagnostic study.
Collapse
Affiliation(s)
- Julita Szulimowska
- Department of Conservative Dentistry, Medical University of Białystok, Białystok, Poland
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Białystok, Białystok, Poland
| | | | - Daria Trocka
- Students’ Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| | | | - Ryszard Tomasiuk
- Department of Medicine, Faculty of Medical Sciences and Health Sciences, Kazimierz Pułaski University in Radom, Radom, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Białystok, Poland
| |
Collapse
|
45
|
Yadav S, Tripathi V, Saran V. Identification of habit specific bacteria in human saliva through Next-Generation Sequencing. Forensic Sci Int 2023; 353:111871. [PMID: 37939434 DOI: 10.1016/j.forsciint.2023.111871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Characterization of human saliva through Next-Generation Sequencing has emerged as a valuable tool for understanding the complex microbial communities residing in the oral cavity. This study aims to investigate the habit-based variations in the salivary microbiome using Next-Generation Sequencing technology. Saliva samples were collected from a diverse population representing different habits, including smoking, alcohol consumption, and vegan diet. The DNA from the samples was extracted, and the V3-V4 region of the 16 S rRNA gene was amplified for Next-Generation Sequencing analysis. The obtained sequences were processed and analysed using bioinformatics tools to determine the microbial composition and diversity. Preliminary results revealed distinct microbial profiles associated with different habits, indicating the potential influence of different habits on the salivary microbiome. Smokers exhibited a higher abundance of certain pathogenic bacteria, while alcohol consumers showed alterations in microbial diversity compared to non-consumers. Furthermore, individuals with vegan diet demonstrated an increased prevalence of specific bacteria. These findings highlight the significance of habit-based characterization of the salivary microbiome and its potential implications in the presence of certain bacteria. Understanding the relationship between habits and the salivary microbiome could contribute to developing personalized approaches for estimating and identifying any particular individual. Further research is warranted to explore additional factors and expand the scope of habit-based analysis in saliva-based microbial characterization through Next-Generation Sequencing.
Collapse
Affiliation(s)
- Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India.
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India; Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, U.K.-248002, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
46
|
Shu J, Ren X, Cheng H, Wang S, Yue L, Li X, Yin M, Chen X, Zhang T, Hui Z, Bao X, Song W, Yu H, Dang L, Zhang C, Wang J, Zhao Q, Li Z. Beneficial or detrimental: Recruiting more types of benign cases for cancer diagnosis based on salivary glycopatterns. Int J Biol Macromol 2023; 252:126354. [PMID: 37591435 DOI: 10.1016/j.ijbiomac.2023.126354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
With the advantages of convenient, painless and non-invasive collection, saliva holds great promise as a valuable biomarker source for cancer detection, pathological assessment and therapeutic monitoring. Salivary glycopatterns have shown significant potential for cancer screening in recent years. However, the understanding of benign lesions at non-cancerous sites in cancer diagnosis has been overlooked. Clarifying the influence of benign lesions on salivary glycopatterns and cancer screening is crucial for advancing the development of salivary glycopattern-based diagnostics. In this study, 2885 samples were analyzed using lectin microarrays to identify variations in salivary glycopatterns according to the number, location, and type of lesions. By utilizing our previously published data of tumor-associated salivary glycopatterns, the performance of machine learning algorithm for cancer screening was investigated to evaluate the effect of adding benign disease cases to the control group. The results demonstrated that both the location and number of lesions had discernible effects on salivary glycopatterns. And it was also revealed that incorporating a broad range of benign diseases into the controls improved the classifier's performance in distinguishing cancer cases from controls. This finding holds guiding significance for enhancing salivary glycopattern-based cancer screening and facilitates their practical implementation in clinical settings.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China; School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Hongwei Cheng
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Shiyi Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lixin Yue
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Mengqi Yin
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiangqin Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Tiantian Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ziye Hui
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Wanghua Song
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jun Wang
- University Hospital, Northwest University, Xi'an, China
| | - Qi Zhao
- University Hospital, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
47
|
Wang J, Pan J, Tang Y, Chen J, Fei X, Xue W, Liu X. Advances of hafnium based nanomaterials for cancer theranostics. Front Chem 2023; 11:1283924. [PMID: 38075497 PMCID: PMC10704140 DOI: 10.3389/fchem.2023.1283924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2024] Open
Abstract
Hafnium-based nanomaterials (Hf-NMs) have attracted the interest of numerous biomedical researchers by their unique properties. Recent years have witnessed significant advancements in the field of Hafnium-based nanomaterials, particularly in the context of cancer diagnosis and treatment. However, research in this area, especially concerning the clinical application of Hafnium-based nanomaterials, has not been thoroughly reviewed. This review will cover: 1) Classification and synthesis of Hafnium-based nanomaterials including Hafnium oxide nanomaterials, Hafnium Metal-Organic Frameworks/nanoscale coordination polymers (MOFs/NCPs); 2) Hafnium-based nanomaterials act as contrast enhancement agent for cancer imaging, and hafnium-based nanomaterials used for diagnosis in cancer liquid biopsy; 3) hafnium-based nanomaterials for cancer therapy, including hafnium-based nanomaterials for radiotherapy, hafnium-based nanomaterials for photodynamic therapy, hafnium-based nanomaterials for various combined therapy; and 4) Translation, toxicity, and safety for Hf-NMs in human and preclinical animal models. More attention will be given to the clinical translation of Hf-NMs in cancer.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Urology and Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Pan
- Department of Urology and Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingqi Chen
- Department of Urology and Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochen Fei
- Department of Urology and Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology and Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueliang Liu
- Department of Urology and Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Liu M, Yu X, Bu J, Xiao Q, Ma S, Chen N, Qu C. Comparative analyses of salivary exosomal miRNAs for patients with or without lung cancer. Front Genet 2023; 14:1249678. [PMID: 38028609 PMCID: PMC10657645 DOI: 10.3389/fgene.2023.1249678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Lung cancer is the most frequent cause of cancer-related deaths worldwide. Exosomes are involved in different types of cancer, including lung cancer. Methods: We collected saliva from patients with (LC) or without (NC) lung cancer and successfully isolated salivary exosomes by ultracentrifugation. MiRNA sequencing was implemented for the exosome samples from NC and LC groups, dgeR was used to determine differentially expressed miRNAs (DE miRNAs), and quantitative real-time polymerase chain reaction (qPCR) was used to verify three differentially expressed microRNAs (miRNAs). Results: A total of 372 miRNAs were identified based on the sequencing results. Subsequently, 15 DE miRNAs were identified in LC vs. NC, including eight upregulated miRNAs and seven downregulated miRNAs. Some DE miRNAs were validated via qPCR. A total of 488 putative target genes of the upregulated DE miRNAs were found, and the functional analyses indicated that numerous target genes were enriched in the pathways associated with cancer. Discussion: This suggests that miRNAs of salivary exosomes might have the potential to be used as biomarkers for prediction and diagnosis of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changfa Qu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
49
|
Ichigaya N, Kawanishi N, Adachi T, Sugimoto M, Kimoto K, Hoshi N. Effects of Denture Treatment on Salivary Metabolites: A Pilot Study. Int J Mol Sci 2023; 24:13959. [PMID: 37762262 PMCID: PMC10531179 DOI: 10.3390/ijms241813959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Symptoms of oral discomfort such as dry mouth are common in older people wearing dentures. Such symptoms are mainly treated symptomatically. Many of these symptoms are related to saliva, and associations with salivary volume have been reported. Although denture treatment improves symptoms by increasing the amount of saliva, the effects on salivary components remain unclear. This study aimed to investigate the effects of denture treatment on salivary metabolite changes based on salivary metabolome analyses. We enrolled 21 patients requiring denture treatment. At the first visit, and after completion of denture treatment, saliva outflow was measured under resting and stimulated conditions, samples for salivary metabolite analysis were collected, and masticatory efficiency was tested. In all participants, masticatory efficiency increased after denture treatment. Moreover, the amounts of resting and stimulated saliva were increased. Using salivary metabolome analysis, 61 salivary metabolites were detected. Substantial concentration changes were observed for 4 and 21 metabolites in resting and stimulated saliva, respectively. The four metabolites common to both saliva tests had significantly lower concentrations after treatment. These results suggest that the improvement in masticatory function by dentures is related not only to salivary secretion volume, but also to salivary metabolite composition.
Collapse
Affiliation(s)
- Narumi Ichigaya
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Norishige Kawanishi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Takuya Adachi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Masahiro Sugimoto
- Institute of Medical Sciences, Tokyo Medical University, Shinjuku 160-8402, Japan;
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Katsuhiko Kimoto
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
| | - Noriyuki Hoshi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.I.); (N.K.); (T.A.); (K.K.)
- Department of Education Planning, Kanagawa Dental University, Yokosuka 238-8580, Japan
| |
Collapse
|
50
|
Rajendran P, Sekar R, Zahra HA, Jayaraman S, Rajagopal P, Abdallah BM, Ali EM, Abdelsalam SA, Veeraraghavan V. Salivaomics to decode non-coding RNAs in oral cancer. A narrative review. Noncoding RNA Res 2023; 8:376-384. [PMID: 37250455 PMCID: PMC10220469 DOI: 10.1016/j.ncrna.2023.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|