1
|
Chan HY, Wang Q, Howie A, Bucci J, Graham P, Li Y. Extracellular vesicle biomarkers redefine prostate cancer radiotherapy. Cancer Lett 2025; 616:217568. [PMID: 39978570 DOI: 10.1016/j.canlet.2025.217568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Radiotherapy (RT) remains a cornerstone in the treatment of prostate cancer (PCa). Extracellular vesicles (EVs), nano-sized particles secreted by cells, play important roles in intercellular communication within the tumour microenvironment (TME) and contribute to tumour growth, metastasis, and therapy resistance. Recent advancements demonstrate the potential of EVs as biomarkers for cancer diagnosis, prognosis, and treatment monitoring. Accumulating evidence supports the role of EVs in modulating RT outcomes by shaping the TME, mediating radioresistance, and influencing cancer metastasis. Despite substantial progress, challenges remain, including the heterogeneity of EV biogenesis, variability in cargo composition, and the absence of standardised methods for EV isolation and characterisation. While the therapeutic and diagnostic prospects of EVs in PCa management are promising, further research is needed to clarify the mechanisms through which EVs impact RT and to translate these findings into clinical practice. Incorporating EV research into PCa treatment paradigms could enhance diagnostic accuracy, enable real-time monitoring of RT responses, and support the development of new targeted therapeutic strategies. This review discusses recent progress in understanding EVs in the context of RT for PCa, focuses on their roles in modulating tumour growth, contributing to radioresistance within the TME, and facilitating the monitoring of RT efficacy and recurrence. In addition, the potential of EVs as biomarkers for liquid biopsy and their applications in enhancing radiosensitivity or overcoming radioresistance is also explored.
Collapse
Affiliation(s)
- Hei Yeung Chan
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Andrew Howie
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
2
|
Pandey P, Lakhanpal S, Mahmood D, Baldaniya L, Kang HN, Hwang S, Kang S, Choi M, Moon S, Pandey S, Chaudhary K, Khan F, Kim B. Recent Update of Natural Compounds as HIF-1α Inhibitors in Colorectal Carcinoma. Drug Des Devel Ther 2025; 19:2017-2034. [PMID: 40124557 PMCID: PMC11929541 DOI: 10.2147/dddt.s511406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025] Open
Abstract
Hypoxia-inducible factor (HIF)-1 is a transcription factor that regulates the expression of target genes associated with oxygen homeostasis under hypoxic conditions, thereby contributing to tumor development and progression. Accumulating evidence has demonstrated that HIF-1α mediates different biological processes, including tumor angiogenesis, metastasis, metabolism, and immune evasion. Thus, overexpression of HIF-1α is strongly associated with poor prognosis in cancer patients. Natural compounds are important sources of anticancer drugs and studies have emphasized the decisive role of these mediators in modulating HIF-1α. Therefore, the pharmacological targeting of HIF-1α has emerged as a novel cancer therapeutic approach in recent years. The novelty of this review is that it summarizes natural products targeting HIF-1α in colorectal cancer that have not been presented earlier. We studied research publications related to the HIF-1α domain in cancer from 2010 to 2024. However, our main focus was to identify a better targeted approach for colorectal carcinoma management. Our review described HIF-1α role in tumor progression, summarizes the natural compounds employed as HIF-1α inhibitors, and discusses their potential in the development of natural compounds as HIF-1α inhibitors for colorectal cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himanchal Pradesh, 174103, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sungho Hwang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea
| |
Collapse
|
3
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Fan J, Qin Y, Qiu W, Liang J, Xiao C, Xie Q, Tong C, Yuan L, Long Y, Liu B. Gamabufotalin loaded micro-nanocomposites for multimodal therapy of metastatic TNBC by efficiently inducing ICD. Biomaterials 2025; 314:122851. [PMID: 39366186 DOI: 10.1016/j.biomaterials.2024.122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Gamabufotalin (CS-6), a main active compound derived from Chinese medicine Chansu, exhibits a robust inhibitory effect on programmed death-ligand 1 (PD-L1) in triple-negative breast cancer (TNBC) cells. Despite its potential for tumor therapy, the medical application of CS-6 is constrained by its hydrophobic nature, lack of targeting capability, and weak immunogenic cell death (ICD) effect. To address these limitations and improve the therapeutic efficiency of this drug against metastatic TNBC, we designed a new kind of CS-6@CPB-S.lux that integrates carboxy-Prussian blue nanoparticles (CPB NPs), CS-6, and attenuated Salmonella typhimurium (S.lux) for TNBC therapy. In vitro and in vivo results have confirmed that CS-6@CPB NPs were efficiently delivered to neoplastic tissue by the tumor hypoxic chemotaxis property of S.lux, wherein the nanomedicine induced significant tumor cell necroptosis and apoptosis via photothermal therapy (PTT) of CPB NPs and chemotherapy of CS-6, which elicited ICD and inhibited PD-L1 expression, resulting in dendritic cells (DCs) maturation and effector T cells activation to comprehensively eliminate tumors. Additionally, the CS-6@CPB-S.lux + Laser treatment significantly transformed the immunosuppressive tumor microenvironment (TME), enhancing antitumor immunity through promoting the polarization of tumor-associated macrophages into antitumorigenic M1 and reducing Tregs recruitment. Consequently, this comprehensive therapy not only inhibited primary and abscopal tumor progression but also prevented TNBC metastasis, which significantly prolonged survival time in animal models. In summary, these findings indicated an alternative approach for metastatic TNBC therapy.
Collapse
Affiliation(s)
- Jialong Fan
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Yan Qin
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wensheng Qiu
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiahao Liang
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Chang Xiao
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Qian Xie
- Department of Pharmacy, Maternal and Child Health of Hunan Province, Changsha, 410008, China
| | - Chunyi Tong
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Ying Long
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| | - Bin Liu
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Bou Antoun N, Afshan Mahmood HTN, Walker AJ, Modjtahedi H, Grose RP, Chioni AM. Development and Characterization of Three Novel FGFR Inhibitor Resistant Cervical Cancer Cell Lines to Help Drive Cervical Cancer Research. Int J Mol Sci 2025; 26:1799. [PMID: 40076427 PMCID: PMC11898767 DOI: 10.3390/ijms26051799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Primary or acquired resistance to therapeutic agents is a major obstacle in the treatment of cancer patients. Cervical cancer is the fourth leading cause of cancer deaths among women worldwide and, despite major advances in cancer screening and treatments, many patients with advanced stage cervical cancer have a high recurrence rate within two years of standard treatment, with drug resistance being a major contributing factor. The development of cancer cell lines with acquired resistance to therapeutic agents can facilitate the comprehensive investigation of resistance mechanisms, which cannot be easily performed in clinical trials. This study aimed to create three novel and robust cervical cancer cell lines (HeLa, CaSki, and SiHa) with acquired resistance to a fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor (PD173074). All three drug-resistant (DR) cell lines overexpressed FGFR1, FGFR2, FGF2, FGF4, and FGF7 proteins that were also localized to the nucleus. In addition, the DR cells had a significantly more aggressive phenotype (more migratory and proliferative, less apoptotic) compared to the parental cell lines. These novel DR cervical cancer cells are a critical tool for understanding the molecular mechanisms underpinning drug resistance and for the identification of potential cervical cancer biomarkers. Moreover, the availability of such DR cell lines may facilitate the development of more effective therapeutic strategies using FGFR inhibitors in combination with other agents that target pathways responsible for acquired resistance to FGFR inhibitors.
Collapse
Affiliation(s)
- Nauf Bou Antoun
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Hiba-Tun-Noor Afshan Mahmood
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Helmout Modjtahedi
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| |
Collapse
|
6
|
Zhou S, Sun J, Zhu W, Yang Z, Wang P, Zeng Y. Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol Rep 2025; 53:29. [PMID: 39749693 PMCID: PMC11715622 DOI: 10.3892/or.2024.8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most prevalent and lethal types of cancers worldwide and its high incidence and mortality rates pose a significant public health challenge. Despite significant advances in targeted therapy and immunotherapy, the overall prognosis of patients with NSCLC remains poor. Hypoxia is a critical driving factor in tumor progression, influencing the biological behavior of tumor cells through complex molecular mechanisms. The present review systematically examined the role of the hypoxic microenvironment in NSCLC, demonstrating its crucial role in promoting tumor cell growth, invasion and metastasis. Additionally, it has been previously reported that the hypoxic microenvironment enhances tumor cell resistance by activating hypoxia‑inducible factor and regulating exosome secretion. The hypoxic microenvironment also enables tumor cells to adapt to low oxygen and nutrient‑deficient conditions by enhancing metabolic reprogramming, such as through upregulating glycolysis. Further studies have shown that the hypoxic microenvironment facilitates immune escape by modulating tumor‑associated immune cells and suppressing the antitumor response of the immune system. Moreover, the hypoxic microenvironment increases tumor resistance to radiotherapy, chemotherapy and other types of targeted therapy through various pathways, significantly reducing the therapeutic efficacy of these treatments. Therefore, it could be suggested that early detection of cellular hypoxia and targeted therapy based on hypoxia may offer new therapeutic approaches for patients with NSCLC. The present review not only deepened the current understanding of the mechanisms of action and role of the hypoxic microenvironment in NSCLC but also provided a solid theoretical basis for the future development of precision treatments for patients with NSCLC.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zhiying Yang
- Department of Radiation Oncology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Ping Wang
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
7
|
Qi LX, Zhou X, Fu YG, Zhou WY. Diagnostic value of mammography combined with ultrasound shear wave elastography and magnetic resonance imaging in breast cancer. Oncol Lett 2025; 29:85. [PMID: 39664614 PMCID: PMC11632411 DOI: 10.3892/ol.2024.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer is one of the most common malignancies affecting women worldwide, and an early diagnosis is critical for improving prognosis. The present study aimed to investigate the diagnostic value of mammography (MG) combined with ultrasound shear wave elastography (SWE) and magnetic resonance imaging (MRI) for the early screening of breast cancer. Patients with breast tumors who underwent lumpectomy at a single hospital between December 2021 and January 2023 were selected and categorized into a benign or malignant group based on pathological findings. All patients had undergone examinations with MG, SWE and MRI. Imaging parameters were subsequently compared between the two groups. A total of 93 patients with breast tumors were included in the study, comprising 37 individuals in the benign group and 56 in the malignant group. MG findings revealed that patients in the malignant group exhibited significantly higher incidences of high breast glandular density, irregular mass margins, unclear mass borders and axillary lymph node involvement compared with those in the benign group. SWE results indicated that the elasticity ratio of the lesion to fat, and the mean and maximum values of the elastic modulus were significantly lower in the benign group than in the malignant group. Additionally, MRI findings demonstrated that the MRI-measured maximum diameter was larger, and the prevalence of irregular lesion morphology, irregular mass margins, signal enhancement and type III time-signal intensity curves was greater in the malignant group compared with the benign group. The diagnostic sensitivity, specificity, positive predictive value and negative predictive value of MG + SWE + MRI were 94.6, 86.5, 91.4 and 91.4%, respectively. Furthermore, the diagnostic efficacy of this combination surpassed that of MG + SWE, MG + MRI and SWE + MRI (area under the curve, 0.906 vs. 0.767, 0.758 and 0.763, respectively). In conclusion, the combination of MG with SWE and MRI exhibits a superior performance in the early diagnosis of breast cancer, exhibiting higher diagnostic accuracy and reliability compared with pairwise combinations.
Collapse
Affiliation(s)
- Long-Xiu Qi
- Department of Radiology, Yancheng No. 1 People's Hospital (The First People's Hospital of Yancheng), Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224000, P.R. China
| | - Xiao Zhou
- Department of Radiology, Yancheng No. 1 People's Hospital (The First People's Hospital of Yancheng), Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224000, P.R. China
| | - Yi-Gang Fu
- Department of Radiology, Yancheng No. 1 People's Hospital (The First People's Hospital of Yancheng), Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224000, P.R. China
| | - Wen-Yan Zhou
- Department of Ultrasound, Yancheng No. 1 People's Hospital (The First People's Hospital of Yancheng), Affiliated Hospital of Medical School, Nanjing University, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
8
|
Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, P. Mongan N, Mamat @ Yusof MN, Kampan NC, Chew KT, Shafiee MN. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers (Basel) 2025; 17:129. [PMID: 39796756 PMCID: PMC11720045 DOI: 10.3390/cancers17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Endometrial cancer (EC) is a common gynaecological malignancy associated with metabolic dysfunctions such as obesity, diabetes and insulin resistance, as well as hormonal imbalances, particularly involving oestrogen and progesterone. These factors disrupt normal cellular metabolism, heightening the risk of developing endometrioid EC (EEC), the most prevalent subtype of EC. The insulin-like growth factor-1 (IGF1) pathway, a key regulator of growth, metabolism, and organ function, is implicated in EC progression. Recent research highlights the distinct roles of IGF1 isoforms, including IGF1-Ea, IGF1-Eb, and IGF1-Ec, in promoting tumour growth, metastasis, and hormone signalling interactions, particularly with oestrogen. This review examines the function and clinical significance of IGF-1 isoforms, emphasising their mechanisms in gynaecological physiology and their contributions to EC pathogenesis. Evidence from other cancers further underscores the relevance of IGF1 isoforms in driving tumour behaviours, offering valuable insights into their potential as biomarkers and therapeutic targets. Understanding these mechanisms provides opportunities for novel approaches to the prevention, diagnosis, and treatment of EC, improving patient outcomes and advancing the broader field of hormone-driven cancers.
Collapse
Affiliation(s)
| | - Norfilza Mohd Mokthar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Mohd Nazzary Mamat @ Yusof
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kah Teik Chew
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Chen S, Wu Z. Targeting tumor microenvironments with gold nanoparticles for enhanced photothermal therapy. ONCOLOGIE 2024; 26:899-912. [DOI: 10.1515/oncologie-2024-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Abstract
Gold nano-drug delivery system-mediated photothermal therapy (PTT) has been widely studied in the field of anti-tumor. In order to achieve accurate drug release and improve photothermal efficiency, nano-drug delivery strategies targeting tumor microenvironment (TME) have become a hot research topic in recent years. This paper introduces four characteristics of the TME: hypoxia, low pH, high level of reactive oxygen species (ROS), and overexpression of enzymes. These differences between tumor and normal tissue become effective targets for tumor therapy. This paper summarizes the gold nano-drug delivery system that can target these four characteristics, so as to realize a large amount of drug aggregation at the tumor site and achieve efficient photothermal therapy. Moreover, the multi-response nano-drug delivery system can further control drug delivery and improve therapeutic effects. Finally, this paper also summarizes the gold nanoparticles for tumor therapy that have entered clinical trials so far. The purpose of this review is to discuss the research progress of enhanced photothermal therapy with gold nano-drug delivery systems targeting the TME, with a view to providing a reference for the future development of novel anti-tumor nanoplatforms and the clinical translation of gold nanoparticles.
Collapse
Affiliation(s)
- Sisi Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhibing Wu
- Department of Oncology , 584020 Affiliated Zhejiang Hospital of Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
10
|
Taghizadeh-Hesary F. Is Chronic Ice Water Ingestion a Risk Factor for Gastric Cancer Development? An Evidence-Based Hypothesis Focusing on East Asian Populations. Oncol Ther 2024; 12:629-646. [PMID: 39231856 PMCID: PMC11573998 DOI: 10.1007/s40487-024-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
This article introduces a novel risk factor for gastric cancer (GC) by analyzing available epidemiological data from East Asian populations. A significantly higher age-standardized GC rate was observed in Japanese and Korean populations than in Chinese populations, despite nearly identical ethnicity, food habits, obesity rates, and alcohol consumption. Given the pivotal role of environmental factors in GC development, particularly for the intestinal type, a thorough evaluation of the lifestyles of these three populations was conducted to identify commonalities and disparities. It was observed that Japanese and Korean individuals prefer consuming ice water, while Chinese individuals tend to drink warm water, potentially influenced by traditional Chinese medicine disciplines. Considering the key features of GC development, a literature review was conducted to investigate the mechanisms through which the consumption of ice water might contribute to GC initiation and progression. Mechanistically, exposing gastric cells to hypothermia can increase the risk of carcinogenesis through multiple pathways. This includes the promotion of Helicobacter pylori colonization, prolonged gastric inflammation, and mitochondrial dysfunction in gastric cells. Furthermore, drinking ice water can enhance the survival, proliferation, and invasion of GC cells by releasing cold shock proteins, increasing gastric acid secretion, and delaying gastric emptying. Additionally, hypothermia can boost the immune evasion of cancer cells by weakening the antitumor immune system and activating different components of the tumor microenvironment. This paper also explores the association between exposure of GC cells to hypothermia and current insights into cancer hallmarks. These findings may partially elucidate the higher incidence of GC in Japanese and Korean populations and provide a clue for future experimental studies.Graphical abstract available for this article.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Li H, Jiao Y, Zhang Y, Liu J, Huang S. Exploring tumor microenvironment interactions and apoptosis pathways in NSCLC through spatial transcriptomics and machine learning. Cell Oncol (Dordr) 2024; 47:2383-2405. [PMID: 39699801 DOI: 10.1007/s13402-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting for 85% of all cases. Programmed cell death (PCD), an important regulatory mechanism for cell survival and homeostasis, has become increasingly prominent in cancer research in recent years. As such, exploring the role of PCD in NSCLC may help uncover new mechanisms for therapeutic targets. METHODS We utilized the GEO database and TCGA NSCLC gene data to screen for co-expressed genes. To delve deeper, single-cell sequencing combined with spatial transcriptomics was employed to study the intrinsic mechanisms of programmed cell death in cells and their interaction with the tumor microenvironment. Furthermore, Mendelian randomization was applied to screen for causally related genes. Prognostic models were constructed using various machine learning algorithms, and multi-cohort multi-omics analyses were conducted to screen for genes. In vitro experiments were then carried out to reveal the biological functions of the genes and their relationship with apoptosis. RESULTS Cells with high programmed cell death activity primarily activate pathways related to apoptosis, cell migration, and hypoxia, while also exhibiting strong interactions with smooth muscle cells in the tumor microenvironment. Based on a set of programmed cell death genes, the prognostic model NSCLCPCD demonstrates strong predictive capabilities. Moreover, laboratory experiments confirm that SLC7A5 promotes the proliferation of NSCLC cells, and the knockout of SLC7A5 significantly increases tumor cell apoptosis. CONCLUSIONS Our data indicate that programmed cell death is predominantly associated with pathways related to apoptosis, tumor metastasis, and hypoxia. Additionally, it suggests that SLC7A5 is a significant risk indicator for the prognosis of non-small cell lung cancer (NSCLC) and may serve as an effective target for enhancing apoptosis in NSCLC tumor cells.
Collapse
Affiliation(s)
- Huimin Li
- Department of Internal Medicine Residency Training Base, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Yuheng Jiao
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Zhang
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Junzhi Liu
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
| | - Shuixian Huang
- Department of Otolaryngology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
| |
Collapse
|
12
|
Dai Y, Ying Y, Zhu G, Xu Y, Ji K. STAT3 drives the expression of HIF1alpha in cancer cells through a novel super-enhancer. Biochem Biophys Res Commun 2024; 735:150483. [PMID: 39098275 DOI: 10.1016/j.bbrc.2024.150483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Aerobic glycolysis is one of the major hallmarks of malignant tumors. This metabolic reprogramming benefits the rapid proliferation of cancer cells, facilitates the formation of tumor microenvironment to support their growth and survival, and impairs the efficacy of various tumor therapies. Therefore, the elucidation of the mechanisms driving aerobic glycolysis in tumors represents a pivotal breakthrough in developing therapeutic strategies for solid tumors. HIF1α serves as a central regulator of aerobic glycolysis with elevated mRNA and protein expression across multiple tumor types. However, the mechanisms contributing to this upregulation remain elusive. This study reports the identification of a novel HIF1α super enhancer (HSE) in multiple cancer cells using bioinformatics analysis, chromosome conformation capture (3C), chromatin immunoprecipitation (ChIP), and CRISPR/Cas9 genome editing techniques. Deletion of HSE in cancer cells significantly reduces the expression of HIF1α, glycolysis, cell proliferation, colony and tumor formation ability, confirming the role of HSE as the enhancer of HIF1α in cancer cells. Particularly, we demonstrated that STAT3 promotes the expression of HIF1α by binding to HSE. The discovery of HSE will help elucidate the pathways driving tumor aerobic glycolysis, offering new therapeutic targets and potentially resolving the bottleneck in solid tumor treatment.
Collapse
Affiliation(s)
- Yonghui Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Ying
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaoyang Zhu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| | - Kaiyuan Ji
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
13
|
Glowa C, Bendinger AL, Euler-Lange R, Peschke P, Brons S, Debus J, Karger CP. Irradiation with Carbon Ions Effectively Counteracts Hypoxia-related Radioresistance in a Rat Prostate Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:875-883. [PMID: 38750905 DOI: 10.1016/j.ijrobp.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiation therapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint "local tumor control within 300 days" and compared with previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to that under oxic conditions and also to quantify the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS Compared with those under oxic conditions, TCD50 values under hypoxic conditions increased by a factor of 1.53 ± 0.08 for photons and by a factor of 1.28 ± 0.06 for carbon ions (oxygen enhancement ratio). Compared with those for photons, TCD50 values for carbon ions decreased by a factor of 2.08 ± 0.13 under oxic conditions and by a factor of 2.49 ± 0.08 under hypoxic conditions (relative biological effectiveness). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS The reduced oxygen enhancement ratio of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the effect of intertumor heterogeneity on the radiation response. Therefore, carbon ions may confer a significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiation therapy.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina L Bendinger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Rosemarie Euler-Lange
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Department of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
14
|
Rani R, Kumar V. Thematic issue 'tumor glycolysis'. Semin Cancer Biol 2024; 104-105:16-17. [PMID: 39025345 DOI: 10.1016/j.semcancer.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, UP 201306, India.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research Amity University, Sector-125, Noida, UP 201313, India.
| |
Collapse
|
15
|
Liu W, Wang B, Guo B, Zhu J, Xu Z, Xu J, Wang Z, Sun G, Wang W, Zhang Y, Xue W. Modularized supramolecular assemblies for hypoxia-activatable fluorescent visualization and image-guided theranostics. Theranostics 2024; 14:3634-3652. [PMID: 38948059 PMCID: PMC11209709 DOI: 10.7150/thno.95590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Molecular imaging of microenvironment by hypoxia-activatable fluorescence probes has emerged as an attractive approach to tumor diagnosis and image-guided treatment. Difficulties remain in its translational applications due to hypoxia heterogeneity in tumor microenvironments, making it challenging to image hypoxia as a reliable proxy of tumor distribution. Methods: We report a modularized theranostics platform to fluorescently visualize hypoxia via light-modulated signal compensation to overcome tumor heterogeneity, thereby serving as a diagnostic tool for image-guided surgical resection and photodynamic therapy. Specifically, the platform integrating dual modules of fluorescence indicator and photodynamic moderator using supramolecular host-guest self-assembly, which operates cooperatively as a cascaded "AND" logic gate. First, tumor enrichment and specific fluorescence turn-on in hypoxic regions were accessible via tumor receptors and cascaded microenvironment signals as simultaneous inputs of the "AND" gate. Second, image guidance by a lighted fluorescence module and light-mediated endogenous oxygen consumption of a photodynamic module as dual inputs of "AND" gate collaboratively enabled light-modulated signal compensation in situ, indicating homogeneity of enhanced hypoxia-related fluorescence signals throughout a tumor. Results: In in vitro and in vivo analyses, the biocompatible platform demonstrated several strengths including a capacity for dual tumor targeting to progressively facilitate specific fluorescence turn-on, selective signal compensation, imaging-time window extension conducive to precise normalized image-guided treatment, and the functionality of tumor glutathione depletion to improve photodynamic efficacy. Conclusion: The hypoxia-activatable, image-guided theranostic platform demonstrated excellent potential for overcoming hypoxia heterogeneity in tumors.
Collapse
Affiliation(s)
- Wen Liu
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bincheng Wang
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bei Guo
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Junbin Zhu
- China Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Zejun Xu
- College of Pharmacy, Jinan University, Guangzhou 510630, China
- Bai Yun Shan Pharmaceutical General Factory, Guangzhou Bai Yun Shan Pharmaceutical Holdings Co. Ltd. Guangzhou 510515, China
| | - Jiayue Xu
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhen Wang
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Guodong Sun
- China Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yi Zhang
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- China Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Wei Xue
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Kong L, Yin H, Zhou D, Li X, Zhou J. Optimizing anesthesia strategies to NSCLC patients in VATS procedures: Insights from drug requirements and patient recovery patterns. Open Med (Wars) 2024; 19:20240961. [PMID: 38841176 PMCID: PMC11151396 DOI: 10.1515/med-2024-0961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the intricate relationship between cancer clinicopathological features and anesthetics dosage is crucial for optimizing patient outcomes and safety during surgery. This retrospective study investigates this relationship in patients with non-small cell lung cancer (NSCLC) undergoing video-assisted thoracic surgery (VATS). A comprehensive analysis of medical records was undertaken for NSCLC patients who underwent VATS with intravenous compound inhalation general anesthesia. Patients were categorized based on histological, chemotherapy, radiotherapy, and epidural anesthesia factors. Statistical analysis was performed to compare the differences between the groups. The results revealed compelling insights. Specifically, patients with lung adenocarcinoma (LUAD) undergoing VATS exhibited higher dosages of rocuronium bromide and midazolam during general anesthesia, coupled with a shorter post-anesthesia care unit (PACU) stay compared to those with squamous cell carcinoma (sqCL). Furthermore, chemotherapy patients undergoing VATS demonstrated diminished requirements for phenylephrine and remifentanil in contrast to their non-chemotherapy counterparts. Similarly, radiotherapy patients undergoing VATS demonstrated a decreased necessity for rocuronium bromide compared to non-radiotherapy patients. Notably, patients who received epidural anesthesia in combination with general anesthesia manifested reduced hydromorphone requirements and prolonged hospital stays compared to those subjected to general anesthesia alone. In conclusion, the findings from this study indicate several important observations in diverse patient groups undergoing VATS. The higher dosages of rocuronium bromide and midazolam in LUAD patients point to potential differences in drug requirements among varying lung cancer types. Additionally, the observed shorter PACU stay in LUAD patients suggests a potentially expedited recovery process. The reduced anesthetic requirements of phenylephrine and remifentanilin chemotherapy patients indicate distinct responses to anesthesia and pain management. Radiotherapy patients requiring lower doses of rocuronium bromide imply a potential impact of prior radiotherapy on muscle relaxation. Finally, the combination of epidural anesthesia with general anesthesia resulted in reduced hydromorphone requirements and longer hospital stays, suggesting the potential benefits of this combined approach in terms of pain management and postoperative recovery. These findings highlight the importance of tailoring anesthesia strategies for specific patient populations to optimize outcomes in VATS procedures.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Pathology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Yin
- Department of Anesthesiology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Danran Zhou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Xin Li
- Department of Anesthesiology, Hubei Cancer Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| |
Collapse
|
17
|
Chowdhury M, Das PK. Hypoxia: Intriguing Feature in Cancer Cell Biology. ChemMedChem 2024; 19:e202300551. [PMID: 38328976 DOI: 10.1002/cmdc.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Hypoxia, a key aspect of the tumor microenvironment, plays a vital role in cell proliferation, angiogenesis, metabolism, and the immune response within tumors. These factors collectively promote tumor advancement, aggressiveness, metastasis and result in a poor prognosis. Hypoxia inducible factor 1α (HIF-1α), activated under low oxygen conditions, mediates many of these effects by altering drug target expression, metabolic regulation, and oxygen consumption. These changes promote cancer cell growth and survival. Hypoxic tumor cells develop aggressive traits and resistance to chemotherapy and radiotherapy, leading to increased mortality. Targeting hypoxic tumor offers a potential solution to overcome the challenges posed by tumor heterogeneity and can be used in designing diagnostic and therapeutic nanocarriers for various solid cancers. This concept provides an overview of the intricate relationship between hypoxia and the tumor microenvironment, highlighting its potential as a promising tool for cancer therapies. The article explores the development of hypoxia in cancer cells and its role in cancer progression, along with the latest advancements in hypoxia-triggered cancer treatment.
Collapse
Affiliation(s)
- Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
18
|
Kim DH, Kang YN, Jin J, Park M, Kim D, Yoon G, Yun JW, Lee J, Park SY, Lee YR, Byun JK, Choi YK, Park KG. Glutamine-derived aspartate is required for eIF5A hypusination-mediated translation of HIF-1α to induce the polarization of tumor-associated macrophages. Exp Mol Med 2024; 56:1123-1136. [PMID: 38689086 PMCID: PMC11148203 DOI: 10.1038/s12276-024-01214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/30/2023] [Accepted: 02/12/2024] [Indexed: 05/02/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are vital contributors to the growth, metastasis, and therapeutic resistance of various cancers, including hepatocellular carcinoma (HCC). However, the exact phenotype of TAMs and the mechanisms underlying their modulation for therapeutic purposes have not been determined. Here, we present compelling evidence that glutamine-derived aspartate in TAMs stimulates spermidine production through the polyamine synthesis pathway, thereby increasing the translation efficiency of HIF-1α via eIF5A hypusination. Consequently, augmented translation of HIF-1α drives TAMs to undergo an increase glycolysis and acquire a metabolic phenotype distinct from that of M2 macrophages. Finally, eIF5A levels in tumor stromal lesions were greater than those in nontumor stromal lesions. Additionally, a higher degree of tumor stromal eIF5A hypusination was significantly associated with a more advanced tumor stage. Taken together, these data highlight the potential of inhibiting hypusinated eIF5A by targeting glutamine metabolism in TAMs, thereby opening a promising avenue for the development of novel therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Dong-Ho Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Yoo Na Kang
- Department of Forensic Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Mihyang Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Daehoon Kim
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Ghilsuk Yoon
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Daegu, 41404, South Korea
| | - Jae Won Yun
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, 05368, South Korea
| | - Jaebon Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, 05368, South Korea
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, South Korea
| | - Jun-Kyu Byun
- BK21 FOUR Community‑Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, South Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, South Korea.
| | - Keun-Gyu Park
- Department of Biomedical Science, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
19
|
Shayan S, Arashkia A, Bahramali G, Azadmanesh K. Investigating the Effects of HMGB1 Overexpression on Colorectal Cancer Cell Migration via Oncolytic Herpes simplex Virus Type 1 (oHSV-1). Avicenna J Med Biotechnol 2024; 16:120-129. [PMID: 38618508 PMCID: PMC11007377 DOI: 10.18502/ajmb.v16i2.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/25/2023] [Indexed: 04/16/2024] Open
Abstract
Background Colorectal Cancer (CRC) represents a significant global health challenge, and its progression, resistance to therapy, and metastasis are strongly influenced by the tumor microenvironment, including factors like hypoxia. This study explores the impact of High Mobility Group Box 1 (HMGB1) overexpression on CRC cell migration, while identifying potential genes associated with this process. Methods To explore this, we developed oncolytic virotherapy, resulting in HSVHMGB1, an oncolytic Herpes simplex virus that expresses HMGB1. HMGB1 is known its role in cancer progression, particularly in the context of cancer cell migration. Results Contrary to expectations, our scratch assays indicated that HSV-HMGB1 did not significantly induce migration in CRC cells, suggesting that HMGB1 might not directly contribute to this process. Employing microarray analysis, we investigated gene expression changes linked to CRC cell migration, leading to construction of a Protein-Protein Interaction (PPI) network. This network revealed the presence of hub proteins, including as NDRG1, LGALS1, and ANGPTL4, which are recognized for their roles in cancer cell migration. The differential expression of these genes under hypoxic conditions was further validated using quantitative RT-PCR, aligning with the findings from our microarray data. Conclusion Our findings emphasize the complex regulation of CRC cell migration, and provides valuable insights into potential molecular mechanisms and pathways. These findings have implications for further research into cancer progression and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Sara Shayan
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Zheng GS, Shen CL, Niu CY, Lou Q, Jiang TC, Li PF, Shi XJ, Song RW, Deng Y, Lv CF, Liu KK, Zang JH, Cheng Z, Dong L, Shan CX. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat Commun 2024; 15:2365. [PMID: 38491012 PMCID: PMC10943204 DOI: 10.1038/s41467-024-46668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.
Collapse
Affiliation(s)
- Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chun-Yao Niu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| | - Tian-Ci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Fan Lv
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
22
|
Taylor-Williams M, Tao R, Sawyer TW, Waterhouse DJ, Yoon J, Bohndiek SE. Targeted multispectral filter array design for the optimization of endoscopic cancer detection in the gastrointestinal tract. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:036005. [PMID: 38560531 PMCID: PMC10978444 DOI: 10.1117/1.jbo.29.3.036005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Significance Color differences between healthy and diseased tissue in the gastrointestinal (GI) tract are detected visually by clinicians during white light endoscopy; however, the earliest signs of cancer are often just a slightly different shade of pink compared to healthy tissue making it hard to detect. Improving contrast in endoscopy is important for early detection of disease in the GI tract during routine screening and surveillance. Aim We aim to target alternative colors for imaging to improve contrast using custom multispectral filter arrays (MSFAs) that could be deployed in an endoscopic "chip-on-tip" configuration. Approach Using an open-source toolbox, Opti-MSFA, we examined the optimal design of MSFAs for early cancer detection in the GI tract. The toolbox was first extended to use additional classification models (k -nearest neighbor, support vector machine, and spectral angle mapper). Using input spectral data from published clinical trials examining the esophagus and colon, we optimized the design of MSFAs with three to nine different bands. Results We examined the variation of the spectral and spatial classification accuracies as a function of the number of bands. The MSFA configurations tested showed good classification accuracies when compared to the full hyperspectral data available from the clinical spectra used in these studies. Conclusion The ability to retain good classification accuracies with a reduced number of spectral bands could enable the future deployment of multispectral imaging in an endoscopic chip-on-tip configuration using simplified MSFA hardware. Further studies using an expanded clinical dataset are needed to confirm these findings.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Ran Tao
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Travis W. Sawyer
- University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States
| | - Dale J. Waterhouse
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
- University College London, Wellcome/EPRSC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Jonghee Yoon
- Ajou University, Department of Physics, Suwon-si, Republic of Korea
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
23
|
Bai L, Luo T, Tang J, Zhang J, Tan X, Tang J, Huang L, Dong X, Li N, Li P, Liu Z. Ultrasound-Induced Tumor Perfusion Changes and Doxorubicin Delivery: A Study on Pulse Length and Pulse Repetition Frequency. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:253-263. [PMID: 37853950 DOI: 10.1002/jum.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To investigate the appropriate combination of pulse length (PL) and pulse repetition frequency (PRF) when performing ultrasound stimulated microbubble (USMB) to enhance doxorubicin (DOX) delivery to tumors. METHODS A total of 48 tumor-bearing mice were divided into four groups, namely groups A-D. The mice in groups B-D were treated with chemotherapy and USMB treatment with different combinations of PL and PRF, and group A was control. Contrast-enhanced ultrasound imaging was conducted to analyze tumor blood perfusion. Fluorescence microscopy and high-performance liquid chromatography were used to qualitatively and quantitatively analyse DOX release. The structural changes of tumors were observed under light microscope and transmission electron microscope. Furthermore, another 24 tumor-bearing mice were treated with sonochemotherapy and some related inflammatory factors were measured to explore the underlying mechanism. RESULTS With PL of three cycles and PRF of 2 kHz, the tumor perfusion area ratio increased by 26.67%, and the DOX concentration was 4.69 times higher than the control (P < .001). With PL of 34.5 cycles and PRF of 200 Hz, the tumor perfusion area ratio decreased by 12.7% and DOX did not exhibit increased extravasation compared with the control. Microvascular rupture and hemorrhage were observed after long PL and low PRF treatment. While vasodilation and higher levels of some vasodilator inflammatory factors were found after treatment with short PL and high PRF. CONCLUSIONS USMB treatment using short PL and high PRF could enhance tumor blood perfusion and increase DOX delivery, whereas long PL and low PRF could not serve the same purpose.
Collapse
Affiliation(s)
- Luhua Bai
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tingting Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xi Tan
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Junhui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Leidan Huang
- Department of Ultrasound, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoxiao Dong
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Peijing Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Park W, Han JH, Wei S, Yang ES, Cheon SY, Bae SJ, Ryu D, Chung HS, Ha KT. Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:807. [PMID: 38255882 PMCID: PMC10815680 DOI: 10.3390/ijms25020807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic effects. The study findings suggest that natural products can be promising inhibitors of glycolytic enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors as innovative therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Shibo Wei
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea;
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| |
Collapse
|
25
|
Buonvino S, Arciero I, Martinelli E, Seliktar D, Melino S. Modelling the disease: H 2S-sensitivity and drug-resistance of triple negative breast cancer cells can be modulated by embedding in isotropic micro-environment. Mater Today Bio 2023; 23:100862. [PMID: 38046276 PMCID: PMC10689286 DOI: 10.1016/j.mtbio.2023.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Three-dimensional (3D) cell culture systems provide more physiologically relevant information, representing more accurately the actual microenvironment where cells reside in tissues. However, the differences between the tissue culture plate (TCP) and 3D culture systems in terms of tumour cell growth, proliferation, migration, differentiation and response to the treatment have not been fully elucidated. Tumoroid microspheres containing the MDA-MB 231 breast cancer cell line were prepared using either tunable PEG-fibrinogen (PFs) or tunable PEG-silk fibroin (PSFs) hydrogels, respectively named MDAPFs and MDAPSFs. The cancer cells in the tumoroids showed changes both in globular morphology and at the protein expression level. A decrease of both Histone H3 acetylation and cyclin D1 expression in all 3D systems, compared to the 2D cell culture, was detected in parallel to changes of the matrix stiffness. The effects of a glutathionylated garlic extract (GSGa), a slow H2S-releasing donor, were investigated on both tumoroid systems. A pro-apoptotic effect of GSGa on tumour cell growth in 2D culture was observed as opposed to a pro-proliferative effect apparent in both MDAPFs and MDAPSFs. A dedicated ad hoc 3D cell migration chip was designed and optimized for studying tumour cell invasion in a gel-in-gel configuration. An anti-cell-invasion effect of the GSGa was observed in the 2D cell culture, whereas a pro-migratory effect in both MDAPFs and MDAPSFs was observed in the 3D cell migration chip assay. An increase of cyclin D1 expression after GSGa treatment was observed in agreement with an increase of the cell invasion index. Our results suggest that the "dimensionality" and the stiffness of the 3D cell culture milieu can change the response to both the gasotransmitter H2S and doxorubicin due to differences in both H2S diffusion and changes in protein expression. Moreover, we uncovered a direct relation between the cyclin D1 expression and the stiffness of the 3D cell culture milieu, suggesting the potential causal involvement of the cyclin D1 as a bio-marker for sensitivity of the tumour cells to their matrix stiffness. Therefore, our hydrogel-based tumoroids represent a valid tunable model for studying the physically induced transdifferentiation (PiT) of cancer cells and as a more reliable and predictive in vitro screening platform to investigate the effects of anti-tumour drugs.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on -Chip and Organ-on-Chip Applications, University of Rome Tor Vergata, Rome, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
- NAST Centre, University of Rome ‘Tor Vergata’, Rome, Italy
| |
Collapse
|
26
|
Yang Q, Tian H, Guo Z, Ma Z, Wang G. The role of noncoding RNAs in the tumor microenvironment of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1697-1706. [PMID: 37867435 PMCID: PMC10686793 DOI: 10.3724/abbs.2023231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading fatal malignancy worldwide. The tumor microenvironment (TME) can affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the challenges faced in the future.
Collapse
Affiliation(s)
- Qianqian Yang
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Tian
- Department of GeriatricsZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyi Guo
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Guangzhi Wang
- School of Medical ImagingWeifang Medical UniversityWeifang261053China
- Department of Medical Imaging CenterAffiliated Hospital of Weifang Medical UniversityWeifang261053China
| |
Collapse
|
27
|
Cunha A, Silva PMA, Sarmento B, Queirós O. Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 2023; 15:2610. [PMID: 38004589 PMCID: PMC10675572 DOI: 10.3390/pharmaceutics15112610] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- 1H—TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| |
Collapse
|
28
|
Borde S, Matosevic S. Metabolic adaptation of NK cell activity and behavior in tumors: challenges and therapeutic opportunities. Trends Pharmacol Sci 2023; 44:832-848. [PMID: 37770314 DOI: 10.1016/j.tips.2023.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The adaptation of natural killer (NK) cells to conditions in the microenvironment of tumors is deeply affected by their metabolic activity, itself a result of nutrient availability and the metabolism of the cancer cells themselves. Elevated rates of glycolysis and lipid metabolism in cancers not only lead to the accumulation of immunosuppressive byproducts but also contribute to an environment of elevated concentrations of extracellular metabolites. This results in altered NK cell bioenergetics through changes in transcriptional and translational profiles, ultimately affecting their pharmacology and impairing NK cell responses. However, understanding the metabolic processes that drive alterations in immunological signaling on NK cells remains both difficult and vastly underexplored. We discuss the varied and complex drivers of NK cell metabolism in homeostasis and the tumor microenvironment (TME), challenges associated with their targetability, and unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Shambhavi Borde
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Hosokawa M, Tetsumoto S, Yasui M, Kono Y, Ogawara KI. 3-deazaneplanocin A, a histone methyltransferase inhibitor, improved the chemoresistance induced under hypoxia in melanoma cells. Biochem Biophys Res Commun 2023; 677:26-30. [PMID: 37542772 DOI: 10.1016/j.bbrc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
One of common characteristics of solid tumors is low O2 level, so-called hypoxia, which plays a critical role in chemoresistance. Epigenetic mechanism such as DNA methylation and histone modification is involved in cancer development and progression. There is ample evidence that epigenetic drugs reversed acquired chemoresistance in cancer cells under normal O2 level, normoxia. However, it remains unknown whether epigenetic drugs improve acquired chemoresistance under hypoxia. The aim of our study was to investigate whether epigenetic drugs can improve the chemoresistance induced under hypoxia in cancer cells. In murine melanoma B16-BL6 (B16) cells, the culture under hypoxia, 1%O2 caused the elevated expression of hypoxia-inducible factor-1α (HIF-1α) and its target genes. The chemoresistance to 7-ethyl-10-hydroxycamptothecin (SN-38, the active metabolite of irinotecan) was also acquired under hypoxia in B16 cells. In addition, as epigenetic mechanisms, the protein expression of the enhancer of zeste homolog 2 (EZH2), histone methyltransferase and its target histone H3 trimethylation at lysine 27 (H3K27Me3) level increased under hypoxia. The induction of H3K27Me3 under hypoxia was suppressed by EZH2 siRNA and 3-deazaneplanocin A (DZNep), an EZH2 inhibitor. Furthermore, both EZH2 siRNA and DZNep significantly reduced the cell viability after SN-38 treatment and improved the chemoresistance to SN-38 under hypoxia. These results indicated that the chemoresistance to SN-38 under hypoxia would arise from epigenetic mechanism, H3K27Me3 elevation due to EZH2 induction. In conclusion, a histone methyltransferase EZH2 inhibitor, DZNep was capable of tackling acquired chemoresistance via the suppression of histone methylation induced under hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Sekai Tetsumoto
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Mirano Yasui
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yusuke Kono
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| |
Collapse
|
30
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
31
|
Xu N, Wu D, Gao J, Jiang H, Li Q, Bao S, Luo Y, Zhou Q, Liao C, Yang J. The effect of tumor vascular remodeling and immune microenvironment activation induced by radiotherapy: quantitative evaluation with magnetic resonance/photoacoustic dual-modality imaging. Quant Imaging Med Surg 2023; 13:6555-6570. [PMID: 37869299 PMCID: PMC10585512 DOI: 10.21037/qims-23-229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
Background Tumor radiotherapy combined with immunotherapy for solid tumors has been proposed, but tumor vascular structure abnormalities and immune microenvironment often affect the therapeutic effect of tumor, and multimodal imaging technology can provide more accurate and comprehensive information in tumor research. The purpose of this study was to evaluate the dynamic monitoring of tumor blood vessels and microenvironment induced by radiotherapy by magnetic resonance/photoacoustic (MR/PA) imaging, and to explore its application value in radiotherapy combined with immunotherapy. Methods The tumor-bearing mice were randomly allocated into six groups, which received different doses of radiation therapy (2 Gy ×14 or 8 Gy ×3) and anti-programmed death ligand-1 (PD-L1) antibody for two consecutive weeks. MR/PA imaging was used to noninvasively evaluate the response of tumor to different doses of radiotherapy, combined with histopathological techniques to observe the tumor vessels and microenvironment. Results The inhibitory effect of high-dose radiotherapy on tumors was significantly greater than that of low-dose radiotherapy, with the MR images revealing that the signal intensity decreased significantly (P<0.05). Compared with those in the other groups, the tumor vascular density decreased significantly (P<0.01), and the vascular maturity index increased significantly in the low-dose group (P<0.05). The PA images showed that the deoxyhemoglobin and total hemoglobin levels decreased and the SO2 level increased after radiation treatment (P<0.05). In addition, the high-dose group had an increased number of tumor-infiltrating lymphocytes (CD4+ T and CD8+ T cells) (P<0.01, P<0.05) and natural killer cells (P<0.001) and increased PD-L1 expression in the tumors (P<0.05). The combination of radiotherapy and immunotherapy increased the survival rate of the mice (P<0.05), and a regimen of an 8 Gy dose of radiation combined with immunotherapy inhibited tumor growth and increased the survival rate of the mice to a greater degree than the 2 Gy radiation dose with immunotherapy combination (P=0.002). Conclusions Differential fractionation radiotherapy doses exert biological effects on tumor vascular and the immune microenvironment, and MR/PA can be used to evaluate tumor vascular remodeling after radiotherapy, which has certain value for the clinical applications of radiotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Nan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Dan Wu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jingyan Gao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Shasha Bao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Yueyuan Luo
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| | - Qiuyue Zhou
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chengde Liao
- Department of Radiology, Kunming Yan’an Hospital (Yan’an Hospital Affiliated to Kunming Medical University), Kunming, China
| | - Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Center, Kunming, China
| |
Collapse
|
32
|
Bhatt HN, Diwan R, Borrego EA, Pérez CAM, Varela-Ramirez A, Kumar R, Aguilera RJ, Nurunnabi M. A photothermal driven chemotherapy for the treatment of metastatic melanoma. J Control Release 2023; 361:314-333. [PMID: 37562554 PMCID: PMC10787601 DOI: 10.1016/j.jconrel.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Solid tumors are abnormal mass of tissue, which affects the organs based on its malignancy and leads to the dysfunction of the affected organs. The major problem associated with treatment of solid tumors is delivering anticancer therapeutics to the deepest layers/core of the solid tumor. Deposition of excessive extracellular matrix (ECM) hinders the therapeutics to travel towards the core of the tumor. Therefore, conventional anticancer therapeutics can only reduce the tumor size and that also for a limited duration, and tumor recurrence occurs once the therapy is discontinued. Additionally, by the time the cancer is diagnosed, the cancer cells already started affecting the major organs of the body such as lung, liver, spleen, kidney, and brain, due to their ability to metastasize and lung is the primary site for them to be infiltrated. To facilitate the anticancer therapeutics to penetrate the deeper layers of tumor, and to provide concurrent treatment of both the solid tumor and metastasis, we have designed and developed a Bimodal Light Assisted Skin Tumor and Metastasis Treatment (BLAST), which is a combination of photothermal and chemotherapeutic moieties. The BLAST is composed of 2D boron nitride (BN) nanosheet with adsorbed molecules of BCL-2 inhibitor, Navitoclax (NAVI) on its surface, that can breakdown excessive ECM network and thereby facilitate dissociation of the solid tumor. The developed BLAST was evaluated for its ability to penetrate solid tumors using 3D spheroids for the uptake, cytotoxicity, growth inhibition, reactive oxygen species (ROS) detection, penetration, and downregulation of proteins upon laser irradiation. The in vivo therapeutic studies on a skin cancer mice model revealed that the BLAST with and without laser were able to penetrate the solid tumor, reduce tumor volume in mice, dissociate the protein network, and prevent lung metastasis as confirmed by immunohistochemistry and western blot analysis. Post analysis of serum and blood components revealed the safety and efficacy of BLAST in mice. Hence, the developed BLAST holds strong promise in solid tumor treatment and metastasis prevention simultaneously.
Collapse
Affiliation(s)
- Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Edgar A Borrego
- Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Carlos Alberto Martínez Pérez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Mexico
| | - Armando Varela-Ramirez
- Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Renato J Aguilera
- Department of Biological Sciences, The University of Texas El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
33
|
Sin SQ, Mohan CD, Goh RMWJ, You M, Nayak SC, Chen L, Sethi G, Rangappa KS, Wang L. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities. Cancer Metastasis Rev 2023; 42:741-764. [PMID: 36547748 DOI: 10.1007/s10555-022-10071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.
Collapse
Affiliation(s)
- Shant Qinxiang Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Institute, Hangzhou, 31002, China
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 31002, China
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Brockmueller A, Girisa S, Motallebi M, Kunnumakkara AB, Shakibaei M. Calebin A targets the HIF-1α/NF-κB pathway to suppress colorectal cancer cell migration. Front Pharmacol 2023; 14:1203436. [PMID: 37583906 PMCID: PMC10423823 DOI: 10.3389/fphar.2023.1203436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Hypoxia-inducible factor-1α (HIF-1α) is one of the major tumor-associated transcription factors modulating numerous tumor properties such as tumor cell metabolism, survival, proliferation, angiogenesis, and metastasis. Calebin A (CA), a compound derived from turmeric, is known for its anti-cancer activity through modulation of the NF-κB pathway. However, its impact on HIF-1α in colorectal cancer (CRC) cell migration is unknown. Methods: Human CRC cells (HCT-116) in 3D alginate and monolayer multicellular TME (fibroblasts/T lymphocytes) were subjected to CA or the HIF-1α inhibitor to explore the efficacy of CA on TME-induced inflammation, migration, and tumor malignancy. Results: CA significantly inhibited TME-promoted proliferation and migration of HCT-116 cells, similar to the HIF-1α inhibitor. Colony formation, toluidine blue staining, and immunolabeling showed that CA inhibited the migration of HCT-116 cells partly by inhibiting HIF-1α, which is critical for CRC cell viability, and these observations were confirmed by electron microscopy. In addition, Western blot analysis confirmed that CA inhibited TME-initiated expression of HIF-1α and biomarkers of metastatic factors (such as NF-κB, β1-integrin, and VEGF), and promoted apoptosis (caspase-3), in a manner comparable to the HIF-1α inhibitor. Finally, TME induced a purposeful pairing between HIF-1α and NF-κB, suggesting that the synergistic interplay between the two tumor-associated transcription factors is essential for CRC cell malignancy and migration and that CA silences these factors in tandem. Conclusion: These results shed light on a novel regulatory modulation of CA signaling in CRC cell migration, partially via HIF-1α/NF-κB with potentially relevant implications for cancer therapy.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Mahzad Motallebi
- Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
35
|
Jaworska M, Szczudło J, Pietrzyk A, Shah J, Trojan SE, Ostrowska B, Kocemba-Pilarczyk KA. The Warburg effect: a score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep 2023:10.1007/s43440-023-00504-1. [PMID: 37332080 PMCID: PMC10374743 DOI: 10.1007/s43440-023-00504-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Although Warburg's discovery of intensive glucose uptake by tumors, followed by lactate fermentation in oxygen presence of oxygen was made a century ago, it is still an area of intense research and development of new hypotheses that, layer by layer, unravel the complexities of neoplastic transformation. This seemingly simple metabolic reprogramming of cancer cells reveals an intriguing, multi-faceted nature that may link various phenomena including cell signaling, cell proliferation, ROS generation, energy supply, macromolecules synthesis/biosynthetic precursor supply, immunosuppression, or cooperation of cancerous cells with cancer-associated fibroblasts (CAFs), known as reversed Warburg effect. According to the current perception of the causes and consequences of the Warburg effect, PI3K/Akt/mTOR are the main signaling pathways that, in concert with the transcription factors HIF-1, p53, and c-Myc, modulate the activity/expression of key regulatory enzymes, including PKM2, and PDK1 to tune in the most optimal metabolic setting for the cancer cell. This in turn secures adequate levels of biosynthetic precursors, NADPH, NAD+, and rapid ATP production to meet the increased demands of intensively proliferating tumor cells. The end-product of "aerobic glycolysis", lactate, an oncometabolite, may provide fuel to neighboring cancer cells, and facilitate metastasis and immunosuppression together enabling cancer progression. The importance and possible applicability of the presented issue are best illustrated by numerous trials with various agents targeting the Warburg effect, constituting a promising strategy in future anti-cancer regimens. In this review, we present the key aspects of this multifactorial phenomenon, depicting the mechanisms and benefits behind the Warburg effect, and also pointing to selected aspects in the field of anticancer therapy.
Collapse
Affiliation(s)
- Martyna Jaworska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Julia Szczudło
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Adrian Pietrzyk
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Jay Shah
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Government Medical College Miraj, Miraj, Maharashtra, India
| | - Sonia E Trojan
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ostrowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Kinga A Kocemba-Pilarczyk
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
36
|
Zhuang H, Yu B, Tao D, Xu X, Xu Y, Wang J, Jiao Y, Wang L. The role of m6A methylation in therapy resistance in cancer. Mol Cancer 2023; 22:91. [PMID: 37264402 PMCID: PMC10233906 DOI: 10.1186/s12943-023-01782-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer therapy resistance is the main cause of cancer treatment failure. The mechanism of therapy resistance is a hot topic in epigenetics. As one of the most common RNA modifications, N6-methyladenosine (m6A) is involved in various processes of RNA metabolism, such as stability, splicing, transcription, translation, and degradation. A large number of studies have shown that m6A RNA methylation regulates the proliferation and invasion of cancer cells, but the role of m6A in cancer therapy resistance is unclear. In this review, we summarized the research progress related to the role of m6A in regulating therapy resistance in cancers.
Collapse
Affiliation(s)
- Hengzhao Zhuang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Bo Yu
- Department of Radiotherapy, The Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China
| | - Dan Tao
- Department of Radiation Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Jian Wang
- Department of Radiotherapy, The Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China.
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215000, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
37
|
Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, Duțu AG. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics 2023; 15:pharmaceutics15051406. [PMID: 37242648 DOI: 10.3390/pharmaceutics15051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Simona Șovrea
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Alina Gabriela Duțu
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Zhang W, Zhou H, Gong D, Wu H, Huang X, Miao Z, Peng H, Zha Z. AIPH-Encapsulated Thermo-Sensitive Liposomes for Synergistic Microwave Ablation and Oxygen-Independent Dynamic Therapy. Adv Healthc Mater 2023:e2202947. [PMID: 36829272 DOI: 10.1002/adhm.202202947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/12/2023] [Indexed: 02/26/2023]
Abstract
Microwave ablation (MWA) is a novel treatment modality that can lead to the death of tumor cells by heating the ions and polar molecules in the tissue through high-speed vibration and friction. However, the single hyperthermia is not sufficient to completely inhibit tumor growth. Herein, a thermodynamic cancer-therapeutic modality has been fabricated which could be able to overcome hypoxia's limitations in the tumor microenvironment. Using thermo-sensitive liposomes (TSLs) and oxygen-independent radical generators (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride [AIPH]), a nano-drug delivery system denoted as ATSL is developed for efficient sequential cancer treatment. Under the microwave field, the temperature rise of local tissue could not only lead to the damage of tumor cells but also induce the release of AIPH encapsulated in ATSL to produce free radicals, eliciting tumor cell death. In addition, the ATSL developed here would avoid the side effects caused by the uncontrolled diffusion of AIPH to normal tissues. The ATSLs have shown excellent therapeutic effects both in vitro and in vivo, suggesting its highly promising potential for clinic.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hu Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Deyan Gong
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiang Huang
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhaohua Miao
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hu Peng
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengbao Zha
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
39
|
Akter Z, Salamat N, Ali MY, Zhang L. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 2023; 12:1072739. [PMID: 36686754 PMCID: PMC9851275 DOI: 10.3389/fonc.2022.1072739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer immunotherapy shows durable treatment responses and therapeutic benefits compared to other cancer treatment modalities, but many cancer patients display primary and acquired resistance to immunotherapeutics. Immunosuppressive tumor microenvironment (TME) is a major barrier to cancer immunotherapy. Notably, cancer cells depend on high mitochondrial bioenergetics accompanied with the supply of heme for their growth, proliferation, progression, and metastasis. This excessive mitochondrial respiration increases tumor cells oxygen consumption, which triggers hypoxia and irregular blood vessels formation in various regions of TME, resulting in an immunosuppressive TME, evasion of anti-tumor immunity, and resistance to immunotherapeutic agents. In this review, we discuss the role of heme, heme catabolism, and mitochondrial respiration on mediating immunosuppressive TME by promoting hypoxia, angiogenesis, and leaky tumor vasculature. Moreover, we discuss the therapeutic prospects of targeting heme and mitochondrial respiration in alleviating tumor hypoxia, normalizing tumor vasculature, and TME to restore anti-tumor immunity and resensitize cancer cells to immunotherapy.
Collapse
|
40
|
Mao N, Wu X, Wang C, Mao H, Wei J. Effect of Moxibustion Combined With Cisplatin on Tumor Microenvironment Hypoxia and Vascular Normalization in Lewis Lung Cancer Mice. Integr Cancer Ther 2023; 22:15347354231198195. [PMID: 37694878 PMCID: PMC10498697 DOI: 10.1177/15347354231198195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
PURPOSE This study was developed to evaluate the effects of moxibustion on tumor microenvironmental hypoxia in a murine model of Lewis lung carcinoma (LLC). METHODS Twenty-four tumor-bearing mice were randomized into tumor group (T), tumor + cisplatin group (TC), tumor + moxibustion group (TM), and tumor + cisplatin + moxibustion group (TMC) (n = 6/group). Six age-matched C57BL/6 mice were employed as control group (Ctrl). A tumor model was established by implanting LLC cells into the right flank of each mouse. Animals in the TM group received moxibustion treatment at the ST36 (bilateral) and GV4 acupoints on the day of visible tumor formation. Moxibustion treatment was performed every other day for a total of 7 sessions. Animals in the TC group were intraperitoneally injected with cisplatin (3 mg/kg) on day 3 after visible tumor formation, and this treatment was performed every 3 days for 4 times. Animals in the TMC group underwent combined moxibustion and chemotherapy treatment, following the same conditions as outlined above. Following treatment, the concentrations of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), CD31, and Ki67 were measured using ELISA, Western blot, and immunohistochemical staining. RESULTS Compared to the tumor group, treatment in the TM, TC, and TCM groups resulted in varying reductions in tumor growth (P < .001 or P < .05), while tumor microenvironmental hypoxia was alleviated as evidenced by the downregulation of HIF-1α, VEGFA, and CD31(P < .001-P < .05). CONCLUSION Our results suggest that a combined approach of moxibustion and cisplatin can alleviate intratumoral hypoxia, promote vascular normalization, and slow the growth of LLC tumors in mice.
Collapse
Affiliation(s)
- Ni Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaofeng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Yang Q, Bae G, Nadiradze G, Castagna A, Berezhnoy G, Zizmare L, Kulkarni A, Singh Y, Weinreich FJ, Kommoss S, Reymond MA, Trautwein C. Acidic ascites inhibits ovarian cancer cell proliferation and correlates with the metabolomic, lipidomic and inflammatory phenotype of human patients. J Transl Med 2022; 20:581. [PMID: 36503580 PMCID: PMC9743551 DOI: 10.1186/s12967-022-03763-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The poor prognosis of ovarian cancer patients is strongly related to peritoneal metastasis with the production of malignant ascites. However, it remains largely unclear how ascites in the peritoneal cavity influences tumor metabolism and recurrence. This study is an explorative approach aimed at for a deeper molecular and physical-chemical characterization of malignant ascites and to investigate their effect on in vitro ovarian cancer cell proliferation. METHODS This study included 10 malignant ascites specimens from patients undergoing ovarian cancer resection. Ascites samples were deeply phenotyped by 1H-NMR based metabolomics, blood-gas analyzer based gas flow analysis and flow cytomertry based a 13-plex cytokine panel. Characteristics of tumor cells were investigated in a 3D spheroid model by SEM and metabolic activity, adhesion, anti-apoptosis, migratory ability evaluated by MTT assay, adhesion assay, flowcytometry and scratch assay. The effect of different pH values was assessed by adding 10% malignant ascites to the test samples. RESULTS The overall extracellular (peritoneal) environment was alkaline, with pH of ascites at stage II-III = 7.51 ± 0.16, and stage IV = 7.78 ± 0.16. Ovarian cancer spheroids grew rapidly in a slightly alkaline environment. Decreasing pH of the cell culture medium suppressed tumor features, metabolic activity, adhesion, anti-apoptosis, and migratory ability. However, 10% ascites could prevent tumor cells from being affected by acidic pH. Metabolomics analysis identified stage IV patients had significantly higher concentrations of alanine, isoleucine, phenylalanine, and glutamine than stage II-III patients, while stage II-III patients had significantly higher concentrations of 3-hydroxybutyrate. pH was positively correlated with acetate, and acetate positively correlated with lipid compounds. IL-8 was positively correlated with lipid metabolites and acetate. Glutathione and carnitine were negatively correlated with cytokines IL-6 and chemokines (IL-8 & MCP-1). CONCLUSION Alkaline malignant ascites facilitated ovarian cancer progression. Additionally, deep ascites phenotyping by metabolomics and cytokine investigations allows for a refined stratification of ovarian cancer patients. These findings contribute to the understanding of ascites pathology in ovarian cancer.
Collapse
Affiliation(s)
- Qianlu Yang
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany
| | - Gyuntae Bae
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Giorgi Nadiradze
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Arianna Castagna
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Laimdota Zizmare
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Aditi Kulkarni
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- grid.411544.10000 0001 0196 8249Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Research Institute of Women’s Health, Women’s Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Frank J. Weinreich
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany
| | - Stefan Kommoss
- grid.411544.10000 0001 0196 8249Research Institute of Women’s Health, Women’s Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Marc A. Reymond
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
44
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
45
|
Jacquet P, Stéphanou A. Searching for the Metabolic Signature of Cancer: A Review from Warburg's Time to Now. Biomolecules 2022; 12:biom12101412. [PMID: 36291621 PMCID: PMC9599674 DOI: 10.3390/biom12101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
This review focuses on the evolving understanding that we have of tumor cell metabolism, particularly glycolytic and oxidative metabolism, and traces back its evolution through time. This understanding has developed since the pioneering work of Otto Warburg, but the understanding of tumor cell metabolism continues to be hampered by misinterpretation of his work. This has contributed to the use of the new concepts of metabolic switch and metabolic reprogramming, that are out of step with reality. The Warburg effect is often considered to be a hallmark of cancer, but is it really? More generally, is there a metabolic signature of cancer? We draw the conclusion that the signature of cancer cannot be reduced to a single factor, but is expressed at the tissue level in terms of the capacity of cells to dynamically explore a vast metabolic landscape in the context of significant environmental heterogeneities.
Collapse
|
46
|
Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022; 12:978276. [PMID: 36226050 PMCID: PMC9550190 DOI: 10.3389/fonc.2022.978276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a kind of malignant tumor disease that poses a serious threat to human health. Its biological characteristics of rapid proliferation and delayed angiogenesis, lead to intratumoral hypoxia as a common finding in breast cancer. HIF as a transcription factor, mediate a series of reactions in the hypoxic microenvironment, including metabolic reprogramming, tumor angiogenesis, tumor cell proliferation and metastasis and other important physiological and pathological processes, as well as gene instability under hypoxia. In addition, in the immune microenvironment of hypoxia, both innate and acquired immunity of tumor cells undergo subtle changes to support tumor and inhibit immune activity. Thus, the elucidation of tumor microenvironment hypoxia provides a promising target for the resistance and limited efficacy of current breast cancer therapies. We also summarize the hypoxic mechanisms of breast cancer treatment related drug resistance, as well as the current status and prospects of latest related drugs targeted HIF inhibitors.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Cao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| |
Collapse
|
47
|
Peng L, Ma M, Dong Y, Wu Q, An S, Cao M, Wang Y, Zhou C, Zhou M, Wang X, Liang Q, Wang Y. Kuoxin Decoction promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Front Pharmacol 2022; 13:915161. [PMID: 36105188 PMCID: PMC9465995 DOI: 10.3389/fphar.2022.915161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Inadequate lymphangiogenesis is closely related to the occurrence of many kinds of diseases, and one of the important treatments is to promote lymphangiogenesis. Kuoxin Decoction (KXF) is an herbal formula from traditional Chinese medicine used to treat dilated cardiomyopathy (DCM), which is associated with lymphangiogenesis deficiency. In this study, we comprehensively verified whether KXF promotes lymphangiogenesis in zebrafish and in vitro based on network analysis. Methods: We performed virtual screening of the active compounds of KXF and potential targets regarding DCM based on network analysis. Tg (Flila: EGFP; Gata1: DsRed) transgenic zebrafish embryos were treated with different concentrations of KXF for 48 h with or without the pretreatment of MAZ51 for 6 h, followed by morphological observation of the lymphatic vessels and an assessment of lymphopoiesis. RT-qPCR was employed to identify VEGF-C, VEGF-A, PROX1, and LYVE-1 mRNA expression levels in different groups. After the treatment of lymphatic endothelial cells (LECs) with different concentrations of salvianolic acid B (SAB, the active ingredient of KXF), their proliferation, migration, and protein expression of VEGF-C and VEGFR-3 were compared by CCK-8 assay, wound healing assay, and western blot. Results: A total of 106 active compounds were identified constituting KXF, and 58 target genes of KXF for DCM were identified. There were 132 pathways generated from KEGG enrichment, including 5 signaling pathways related to lymphangiogenesis. Zebrafish experiments confirmed that KXF promoted lymphangiogenesis and increased VEGF-C and VEGF-A mRNA expression levels in zebrafish with or without MAZ51-induced thoracic duct injury. In LECs, SAB promoted proliferation and migration, and it could upregulate the protein expression of VEGF-C and VEGFR-3 in LECs after injury. Conclusion: The results of network analysis showed that KXF could regulate lymphangiogenesis through VEGF-C and VEGF-A, and experiments with zebrafish confirmed that KXF could promote lymphangiogenesis. Cell experiments confirmed that SAB could promote the proliferation and migration of LECs and upregulate the protein expression of VEGF-C and VEGFR-3. These results suggest that KXF promotes lymphangiogenesis by a mechanism related to the upregulation of VEGF-C/VEGFR-3, and the main component exerting this effect may be SAB.
Collapse
Affiliation(s)
- Longping Peng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjiao Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yidan Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying An
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Cao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Maolin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Qianqian Liang, ; Youhua Wang,
| |
Collapse
|
48
|
Kurt AH, Ayaz L, Ayaz F, Seferoglu Z, Nural Y. A review on the design, synthesis, and structure-activity relationships of benzothiazole derivatives against hypoxic tumors. Curr Org Synth 2022; 19:772-796. [PMID: 35352663 DOI: 10.2174/1570179419666220330001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
There has been a growing body of studies on benzothiazoles and benzothiazole derivatives as strong and effective antitumor agents against lung, liver, pancreas, breast, and brain tumors. Due to highly proliferative nature of the tumor cells, the oxygen levels get lower than that of a normal tissue in the tumor microenvironment. This situation is called as hypoxia and has been associated with increased ability for carcinogenesis. For the drug design and development strategies, hypoxic nature of the tumor tissues has been exploited more aggressively. Hypoxia itself acts as a signal initiating system to activate the pathways that eventually lead to the spread of the tumor cells into the different tissues, increases the rate of DNA damage and eventually ends up with more mutation levels that may increase the drug resistance. As one of the major mediators of hypoxic response, hypoxia inducible factors (HIFs) has been shown to activate to angiogenesis, metastasis, apoptosis resistance, and many other protumorigenic responses in cancer development. In the current review, we will be discussing the design, synthesis and structure-activity relationships of benzothiazole derivatives against hypoxic tumors such lung, liver, pancreas, breast and brain as potential anticancer drug candidates. The focus points of the study will be the biology behind carcinogenesis and how hypoxia contributes to the process, recent studies on benzothiazole and its derivatives as anti-cancer agents against hypoxic cancers, conclusions and future perspectives. We believe that this review will be useful for the researchers in the field of drug design during their studies to generate novel benzothiazole-containing hybrids against hypoxic tumors with higher efficacies.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Medicinal Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06500, Ankara, Turkey
| | - Yahya Nural
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
49
|
Du Z, Liu H, Bai L, Yan D, Li H, Peng S, Cao J, Liu SB, Tang Z. A Radiosensitivity Prediction Model Developed Based on Weighted Correlation Network Analysis of Hypoxia Genes for Lower-Grade Glioma. Front Oncol 2022; 12:757686. [PMID: 35280808 PMCID: PMC8916576 DOI: 10.3389/fonc.2022.757686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeHypoxia is one of the basic characteristics of the physical microenvironment of solid tumors. The relationship between radiotherapy and hypoxia is complex. However, there is no radiosensitivity prediction model based on hypoxia genes. We attempted to construct a radiosensitivity prediction model developed based on hypoxia genes for lower-grade glioma (LGG) by using weighted correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (Lasso).MethodsIn this research, radiotherapy-related module genes were selected after WGCNA. Then, Lasso was performed to select genes in patients who received radiotherapy. Finally, 12 genes (AGK, ETV4, PARD6A, PTP4A2, RIOK3, SIGMAR1, SLC34A2, SMURF1, STK33, TCEAL1, TFPI, and UROS) were included in the model. A radiosensitivity-related risk score model was established based on the overall rate of The Cancer Genome Atlas (TCGA) dataset in patients who received radiotherapy. The model was validated in TCGA dataset and two Chinese Glioma Genome Atlas (CGGA) datasets. A novel nomogram was developed to predict the overall survival of LGG patients.ResultsWe developed and verified a radiosensitivity-related risk score model based on hypoxia genes. The radiosensitivity-related risk score served as an independent prognostic indicator. This radiosensitivity-related risk score model has prognostic prediction ability. Moreover, a nomogram integrating risk score with age and tumor grade was established to perform better for predicting 1-, 3-, and 5-year survival rates.ConclusionsWe developed and validated a radiosensitivity prediction model that can be used by clinicians and researchers to predict patient survival rates and achieve personalized treatment of LGG.
Collapse
Affiliation(s)
- Zixuan Du
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Hanshan Liu
- Department of Medical Oncology, Jiangsu Provincial Corps Hospital, Chinese People’s Armed Police Forces, Yangzhou City, China
| | - Lu Bai
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Derui Yan
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Sun Peng
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - JianPing Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| | - Zaixiang Tang
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| |
Collapse
|
50
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|