1
|
Gulfishan S, Syed SA, Reddy PK, Krishnan P, Reddy AB, Fazal I. Comparative evaluation of serum and gingival crevicular fluid levels of interleukin 21 in periodontally diseased and healthy patients. J Circ Biomark 2024; 13:14-22. [PMID: 39314546 PMCID: PMC11417600 DOI: 10.33393/jcb.2024.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background Periodontitis is an inflammatory reaction to subgingival pathogenic microorganisms that causes gradual deterioration of the gingiva, periodontal ligament, and alveolar bone. Interleukin (IL)-21 is the most recently found member of type I cytokine family that is upregulated during inflammation. The current study aims to investigate the biological plausibility of IL-21 as a biomarker for chronic periodontitis. Materials and methods This cross-sectional clinico-biochemical investigation included 15 systemically healthy, 15 periodontally healthy, 15 chronic gingivitis, and 15 chronic periodontitis subjects aged 25 to 60 years. Following subject enrollment, gingival crevicular fluid (GCF) and blood samples were then taken from each subject. The concentration of IL-21 in all samples was determined using enzyme-linked immunosorbent assay (ELISA) kit. The data was examined using the Kruskal-Wallis test and the Spearman correlation test. Results Serum IL-21 levels in chronic periodontitis patients were substantially greater than in periodontally healthy individuals. GCF IL-21 levels were substantially greater in gingivitis and chronic periodontitis patients compared to periodontally healthy individuals. In terms of clinical indicators, serum IL-21 levels correlated significantly with bleeding index (BI) in the chronic periodontitis group. In chronic periodontitis group, disease severity as evaluated by probing pocket depth (PPD) and clinical attachment loss (CAL) did not correlate with serum or GCF IL-21 levels. Conclusion According to the current study's findings, periodontally involved patients had higher IL-21 levels than periodontally healthy patients, suggesting it can be used as biomarker. Further studies with larger sample size can shed more light on the clinical advantage of IL-21 as a possible marker for disease activity and progression.
Collapse
Affiliation(s)
- Shabnam Gulfishan
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana - India
| | | | | | - Preeti Krishnan
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana - India
| | - Aravinda B. Reddy
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana - India
| | - Ibrahim Fazal
- Department of Periodontics and Implantology, Brny Medical Complex, Al-Rashidiyah, Al-Ahsa - Saudi Arabia
| |
Collapse
|
2
|
Mishra S, Johnson L, Gazala MP, Dahiya S, Rahman W, Sreeraj VS. Systemic immune-inflammation index in patients with generalized stage III grade C periodontitis. Oral Dis 2023; 29:3599-3609. [PMID: 35913425 DOI: 10.1111/odi.14328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Systemic immune-inflammation index (SII) is a novel, inflammatory biomarker whose role in predicting several chronic systemic diseases has been recently identified. However, its association with generalized stage III grade C periodontitis in young adults remains unknown. MATERIAL AND METHODS The study is a multicentered, double-blind, hospital-based case-control clinical study. Periodontal examination comprised of recording plaque index, sites with bleeding on probing, pocket depth and clinical attachment loss for patients with generalized stage III grade C periodontitis and periodontally healthy group. Complete blood counts were obtained and used for calculating SII, neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio. Collected data were then subjected to statistical analyses. RESULTS SII was significantly higher in patients with generalized stage III grade C periodontitis compared to periodontally healthy individuals (723.87 vs. 537.74 × 109 /L, p < 0.0001). SII is associated with severe periodontitis in young adults (odds ratio [OR]:11.86, 95% CI 9.61-20.76, p < 0.0001) after adjusting for factors found significant in univariate analysis. Receiver operative curve analysis demonstrated a fair predictive validity of SII in detecting generalized stage III grade C periodontitis in young adults (AUC: 0.766, 95%CI 0.731-0.799, p < 0.0001, sensitivity 81.27%, specificity 76.50% and diagnostic accuracy 78.89%). SII did not exhibit superior predictive validity when compared with NLR in the context of generalized stage III grade C periodontitis (AUC for SII: 0.766, 95%CI 0.731-0.799, AUC for NLR: 0.788, 95% CI 0.754-0.819; p = 0.28). CONCLUSION SII is associated with generalized stage III grade C periodontitis in young adults.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Lynn Johnson
- Department of Periodontics, Rama Dental College, Kanpur, India
- Maitri College of Dentistry and Research Centre, Durg, India
| | - M P Gazala
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Sheetal Dahiya
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Waheda Rahman
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - V S Sreeraj
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| |
Collapse
|
3
|
Kou Y, Jiang Y, Liu S, Yang P, Lu Y, Liu H, Li M. Regulatory T cells showed characteristics of T helper-17(Th17) cells in mice periodontitis model. Oral Dis 2023; 29:1149-1162. [PMID: 34741371 DOI: 10.1111/odi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study aimed to clarify the regulatory role of Th17-Treg balance in periodontitis and further reveal Treg plasticity. MATERIALS AND METHODS An experimental periodontitis model was established by ligation and injection of Pg-LPS. Inflammatory factors were measured by ELISA and RT-PCR. Alveolar bone absorption was evaluated by micro-CT and histomorphology. Quantities of Treg and Th17 cell and their related gene expression were examined. Furthermore, after magnetic bead-sorting spleen Treg cells, Treg/Th17 characteristic genes were explored. Immunofluorescence double staining of Foxp3 and IL-17 was conducted to further reveal Treg plasticity. RESULTS Inflammatory cytokines in serum and gingival tissue increased significantly in periodontitis, which revealed obvious crestal bone loss. Further analysis showed that the number of Th17 cells and expression of related genes increased more significantly than Treg cells, demonstrating Treg-Th17 imbalance. Flow cytometry showed that the proportions of Treg cells in the blood and spleen were lower in periodontitis group. Furthermore, Foxp3 was downregulated, and Rorc/ IL-17A were increased in Treg cells of periodontitis group. Immunofluorescence double staining showed significantly increased number of IL-17+Foxp3+ cells in periodontitis. CONCLUSIONS These results provided evidence that Treg cells showed characteristics of Th17 cells in mice with periodontitis, although its mechanisms require further study.
Collapse
Affiliation(s)
- Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
4
|
Regulation of the Host Immune Microenvironment in Periodontitis and Periodontal Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043158. [PMID: 36834569 PMCID: PMC9967675 DOI: 10.3390/ijms24043158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The periodontal immune microenvironment is a delicate regulatory system that involves a variety of host immune cells including neutrophils, macrophages, T cells, dendritic cells and mesenchymal stem cells. The dysfunction or overactivation of any kind of local cells, and eventually the imbalance of the entire molecular regulatory network, leads to periodontal inflammation and tissue destruction. In this review, the basic characteristics of various host cells in the periodontal immune microenvironment and the regulatory network mechanism of host cells involved in the pathogenesis of periodontitis and periodontal bone remodeling are summarized, with emphasis on the immune regulatory network that regulates the periodontal microenvironment and maintains a dynamic balance. Future strategies for the clinical treatment of periodontitis and periodontal tissue regeneration need to develop new targeted synergistic drugs and/or novel technologies to clarify the regulatory mechanism of the local microenvironment. This review aims to provide clues and a theoretical basis for future research in this field.
Collapse
|
5
|
Hamdan N, Bhagirath AY, Batista EL. Sphingosine kinase activity and sphingosine-1-phosphate in the inflamed human periodontium. Oral Dis 2023; 29:265-273. [PMID: 34370362 DOI: 10.1111/odi.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study evaluated changes in the levels of Sphingosine-1-Phosphate (S1P) and Sphingosine Kinase (SPHK) activity in response to non-surgical periodontal treatment in humans. METHODS Diseased (n = 65) and healthy sites (n = 72) were screened in 18 patients with localized periodontitis stage II or III. Periodontal clinical parameters were recorded, and the gingival crevicular fluid (GCF) collected at baseline, 30 and 90 days of non-surgical treatment. Internal control sites without attachment loss/bleeding were sampled at baseline and after 90 days of treatment. SPHK activity and S1P levels and SPHK 1/2 isoforms were determined in the GCF at different time points using ELISA. RESULTS Non-surgical treatment caused significant improvement in all periodontal clinical parameters (p < 0.01). Activity of SPHK and S1P levels was decreased (p < 0.05) 30 days after treatment and continued up to 90 days (p < 0.01); control sites remained unchanged throughout the study and resembled treated sites at 3 months (p > 0.05). SPHK1 levels presented decrease after periodontal treatment (p < 0.001). SPHK2 levels were lower than SPHK1 (p < 0.001) and remained unchanged. CONCLUSIONS S1P levels and SPHK activity decreased within 3 months of non-surgical periodontal treatment, which were correlated with improvements in periodontal parameters. Only SPHK1 levels varied significantly in the states of health and disease.
Collapse
Affiliation(s)
- Nader Hamdan
- Department of Dental Clinical Sciences, Division of Periodontics, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - Anjali Y Bhagirath
- Department of Oral Biology, Max Rady Faculty of Health Sciences, Gerald Niznick College of Dentistry, Winnipeg, MB, Canada
| | - Eraldo L Batista
- Department of Dental Clinical Sciences, Division of Periodontics, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada.,Department of Dental Diagnostics and Surgical Sciences, Max Rady Faculty of Health Sciences, Gerald Niznick College of Dentistry, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Mishra S, M. P. G, Rahman W. Clinical and diagnostic significance of blood leukocyte ratios in young patients with stage III grade C periodontitis. Acta Odontol Scand 2022; 80:161-168. [PMID: 34436974 DOI: 10.1080/00016357.2021.1969035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Blood leukocyte ratios have been recently proposed as simple, rapid, cheap and easily accessible biomarkers of systemic inflammation. However, little is known about the relationship of neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) with periodontitis, which might not only serve as the potential biomarkers of systemic inflammation but also aid in diagnosis/screening of severe periodontitis. Hence, the purpose of this study was to evaluate the differences in the serum levels of these leukocyte ratios in healthy subjects and patients with generalized stage III Grade C periodontitis, and their applicability in identifying patients with the risk of developing severe periodontitis. MATERIAL AND METHODS The subjects were categorized into case and control group. Clinical parameters including Plaque index (PI), modified Gingival Index (mGI), Mean ratio of bleeding sites, Probing Pocket depth (PPD) and the clinical attachment loss (CAL) were assessed in both the groups. Venous blood samples were collected from subjects from both groups for the biochemical analysis and blood leukocyte ratios- NLR, PLR and LMR were calculated. The values were then subjected to statistical analysis. RESULTS The results showed significantly higher NLR and lower LMR values in patients with generalized stage III grade C periodontitis. Both the blood leukocyte ratios were moderately associated with increasing clinical parameters of periodontal disease. However, the values of PLR, although found to be higher in the periodontitis group, did not make a significant difference when compared with periodontally healthy subjects. The cut-off value of >2.15 for NLR and <7.16 for LMR fairly predicted the risk of severe periodontitis in young adults. CONCLUSIONS NLR and LMR can provide a new insight into the relationship between periodontitis and systemic diseases and can be of potential diagnostic value in identifying patients with severe periodontitis of younger age group.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Gazala M. P.
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| | - Waheda Rahman
- Department of Periodontics, Government Dental College and Hospital, Raipur, India
| |
Collapse
|
9
|
Ning W, Acharya A, Sun Z, Ogbuehi AC, Li C, Hua S, Ou Q, Zeng M, Liu X, Deng Y, Haak R, Ziebolz D, Schmalz G, Pelekos G, Wang Y, Hu X. Deep Learning Reveals Key Immunosuppression Genes and Distinct Immunotypes in Periodontitis. Front Genet 2021; 12:648329. [PMID: 33777111 PMCID: PMC7994531 DOI: 10.3389/fgene.2021.648329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Background Periodontitis is a chronic immuno-inflammatory disease characterized by inflammatory destruction of tooth-supporting tissues. Its pathogenesis involves a dysregulated local host immune response that is ineffective in combating microbial challenges. An integrated investigation of genes involved in mediating immune response suppression in periodontitis, based on multiple studies, can reveal genes pivotal to periodontitis pathogenesis. Here, we aimed to apply a deep learning (DL)-based autoencoder (AE) for predicting immunosuppression genes involved in periodontitis by integrating multiples omics datasets. Methods Two periodontitis-related GEO transcriptomic datasets (GSE16134 and GSE10334) and immunosuppression genes identified from DisGeNET and HisgAtlas were included. Immunosuppression genes related to periodontitis in GSE16134 were used as input to build an AE, to identify the top disease-representative immunosuppression gene features. Using K-means clustering and ANOVA, immune subtype labels were assigned to disease samples and a support vector machine (SVM) classifier was constructed. This classifier was applied to a validation set (Immunosuppression genes related to periodontitis in GSE10334) for predicting sample labels, evaluating the accuracy of the AE. In addition, differentially expressed genes (DEGs), signaling pathways, and transcription factors (TFs) involved in immunosuppression and periodontitis were determined with an array of bioinformatics analysis. Shared DEGs common to DEGs differentiating periodontitis from controls and those differentiating the immune subtypes were considered as the key immunosuppression genes in periodontitis. Results We produced representative molecular features and identified two immune subtypes in periodontitis using an AE. Two subtypes were also predicted in the validation set with the SVM classifier. Three “master” immunosuppression genes, PECAM1, FCGR3A, and FOS were identified as candidates pivotal to immunosuppressive mechanisms in periodontitis. Six transcription factors, NFKB1, FOS, JUN, HIF1A, STAT5B, and STAT4, were identified as central to the TFs-DEGs interaction network. The two immune subtypes were distinct in terms of their regulating pathways. Conclusion This study applied a DL-based AE for the first time to identify immune subtypes of periodontitis and pivotal immunosuppression genes that discriminated periodontitis from the healthy. Key signaling pathways and TF-target DEGs that putatively mediate immune suppression in periodontitis were identified. PECAM1, FCGR3A, and FOS emerged as high-value biomarkers and candidate therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.,Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zhengyang Sun
- Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Cong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shiting Hua
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianhua Ou
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muhui Zeng
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangqiong Liu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Yupei Deng
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - George Pelekos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Xianda Hu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| |
Collapse
|
10
|
Kaur K, Vaziri S, Romero-Reyes M, Paranjpe A, Jewett A. Phenotypic and Functional Alterations of Immune Effectors in Periodontitis; A Multifactorial and Complex Oral Disease. J Clin Med 2021; 10:jcm10040875. [PMID: 33672708 PMCID: PMC7924323 DOI: 10.3390/jcm10040875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
| | - Shahram Vaziri
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201, USA;
| | - Avina Paranjpe
- Department of Endodontics, University of Washington, Seattle, DC 98195, USA;
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, School of Dentistry and Medicine, Los Angeles, CA 90095, USA; (K.K.); (S.V.)
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-206-3970; Fax: +1-310-794-7109
| |
Collapse
|
11
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
12
|
Kumar P, Monteiro M, Dabdoub S, Miranda G, Casati M, Ribeiro F, Cirano F, Pimentel S, Casarin R. Subgingival Host-Microbial Interactions in Hyperglycemic Individuals. J Dent Res 2020; 99:650-657. [DOI: 10.1177/0022034520906842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an established risk factor for periodontitis, yet its contribution to creating host-bacterial disequilibrium in the subgingival crevice is poorly understood. The present investigation aimed to quantify the impact of hyperglycemia on host-bacterial interactions in established periodontitis and to map shifts in these dynamics following mechanical nonsurgical therapy. Seventeen T2DM and 17 non-T2DM subjects with generalized severe chronic periodontitis were recruited along with 20 periodontally healthy individuals. Subjects with periodontitis were treated with scaling and root planing (SRP). Samples of subgingival biofilm and gingival crevicular fluid were collected at baseline and at 1-, 3-, and 6 mo postoperatively. Correlations were generated between 13.7 million 16S ribosomal DNA sequences and 8 immune mediators. Intermicrobial and host-microbial interactions were modeled using differential network analysis. Periodontal health was characterized by a sparse interbacterial and highly connected cytokine-bacterial network, while both normoglycemics and T2DM subjects with periodontitis demonstrated robust congeneric and intergeneric hubs but significantly fewer cytokine-bacterial connections. Following SRP, the cytokine-bacterial edges demonstrated a 2-fold increase 1 mo postoperatively and a 10-fold increase at 6 mo in normoglycemics. In hyperglycemics, there was a doubling at 1 mo but no further changes thereafter. These shifts accompanied an increasingly sparse interbacterial network. In normoglycemics, the nodes anchored by interleukin (IL)–4, IL-6, and IL-10 demonstrated greatest rewiring, while in hyperglycemics, IL-1β, IL-6, INF-γ, and IL-17 exhibited progressive rewiring. Thus, the present investigation points to a breakdown in host-bacterial mutualism in periodontitis, with interbacterial interactions rather than host-bacterial interactions primarily determining community assembly. Hyperglycemia further exacerbates this uncoupled mutualism. Our data also demonstrate that while nonsurgical therapy might not consistently alter microbial abundances or lower proinflammatory molecules, it “reboots” the interaction between the immunoinflammatory system and the newly colonizing microbiome, restoring a role for the immune system in determining bacterial colonization. However, this outcome is lower and delayed in hyperglycemics.
Collapse
Affiliation(s)
- P.S. Kumar
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M.F. Monteiro
- Division of Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - S.M. Dabdoub
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - G.L. Miranda
- Division of Periodontology, School of Dentistry, Paulista University, São Paulo, Brazil
| | - M.Z. Casati
- Division of Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Division of Periodontology, School of Dentistry, Paulista University, São Paulo, Brazil
| | - F.V. Ribeiro
- Division of Periodontology, School of Dentistry, Paulista University, São Paulo, Brazil
| | - F.R. Cirano
- Division of Periodontology, School of Dentistry, Paulista University, São Paulo, Brazil
| | - S.P. Pimentel
- Division of Periodontology, School of Dentistry, Paulista University, São Paulo, Brazil
| | - R.C.V. Casarin
- Division of Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
13
|
Ercan N, Olgun E, Kisa Ü, Yalim M. Effect of synbiotics in the treatment of smokers and non-smokers with gingivitis: randomized controlled trial. Aust Dent J 2020; 65:210-219. [PMID: 32147827 DOI: 10.1111/adj.12755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND To evaluate the efficacy of synbiotic tablets on the clinical and biochemical parameters of smokers and non-smokers with gingivitis. METHODS Eighty patients with gingivitis [40 smokers (+), 40 non-smokers (-)] were randomly assigned to test (T) or control (C) groups. Four groups were defined: T(+), T(-), C(+) and C(-). The subjects daily chewed a synbiotic or placebo tablet for 30 days. The gingival crevicular fluid levels of interleukin (IL)-6, IL-8 and IL-10 were determined as the primary outcome variables. RESULTS The clinical and biochemical parameters for all groups significantly reduced compared with the baseline (P < 0.05). While there were no significant differences between the groups for gingival index, the plaque index was significantly higher in both smoker groups than that in the T(-) group during the second month (P < 0.05). IL-8 levels in C(-) and IL-6 levels in both control groups were significantly higher than those in the T(+) group. The IL-10 levels in both control groups were significantly higher than those in the T(-) group during the second month (P < 0.05). CONCLUSIONS Adjunctive synbiotic tablets significantly reduce subclinical therapeutic outcomes for both smokers and non-smokers compared with placebo according to the biochemical parameters.
Collapse
Affiliation(s)
- N Ercan
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - E Olgun
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Ü Kisa
- Biochemistry Department, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - M Yalim
- Periodontology Department, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Yuan A, Munz A, Reinert S, Hoefert S. Histologic analysis of medication-related osteonecrosis of the jaw compared with antiresorptive-exposed bone and other infectious, inflammatory, and necrotic jaw diseases. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 129:133-140. [PMID: 31606424 DOI: 10.1016/j.oooo.2019.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study characterized histologic features of medication-related osteonecrosis of the jaw (MRONJ) through analysis of tissues from patients and healthy individuals. STUDY DESIGN Bone biopsies were collected from various infectious, inflammatory, and necrotic jaw diseases. Samples were divided into bone exposed to bisphosphonates or denosumab, as well as bisphosphonate-related osteonecrosis of the jaw (BRONJ), denosumab-related osteonecrosis of the jaw (DRONJ), and mixed necrosis, enabling us to identify features of single agent necrosis without influence from previous therapies. Hematoxylin and eosin (H&E), receptor activator of nuclear factor κ-Β ligand (RANKL), tartrate-resistant acid phosphatase (TRAP), osteoprotegerin, toluidine blue, CD14, and CD68 staining and micro-computed tomography (micro-CT) analysis were performed. Groups were compared by using analysis of variance (ANOVA). RESULTS In total, 156 bone samples were collected from 105 patients. MRONJ variants exhibited more infectious infiltration. Bisphosphonate (P < .001) and mixed necrosis (P = .002) demonstrated more RANKL- and TRAP-positive osteoclasts. Denosumab necrosis (P = .007), and bone exposed to bisphosphonates (P = .028) in combination with denosumab (P = .022) demonstrated significantly lower numbers of osteocytes per area. CD14 and CD68 positivity was increased for BRONJ (P = .008; P < .001, respectively). MRONJ variants exhibited the widest trabecular width and decreased medullary space to bone. No diminished vascular network in MRONJ samples was observed. CONCLUSIONS Histologic features differ among MRONJ variants, with oversuppressed bone turnover, dysfunctional bone resorption, and a disturbed osteocyte network as potential mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Anna Yuan
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany.
| | - Adelheid Munz
- Medical Technical Assistant, Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Siegmar Reinert
- Professor and Department Head, Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hoefert
- Senior Surgeon, Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
T helper 1 and 2 stimuli induce distinct phenotypes in gingival fibroblasts. Arch Oral Biol 2019; 102:171-178. [DOI: 10.1016/j.archoralbio.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023]
|
17
|
Metallic crown-induced occlusal trauma as a protocol to evaluate inflammatory response in temporomandibular joint and periodontal tissues of rats. Clin Oral Investig 2018; 23:1905-1912. [DOI: 10.1007/s00784-018-2639-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
|
18
|
Napimoga MH, Rocha EP, Trindade-da-Silva CA, Demasi APD, Martinez EF, Macedo CG, Abdalla HB, Bettaieb A, Haj FG, Clemente-Napimoga JT, Inceoglu B, Hammock BD. Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 2018; 53:743-749. [PMID: 29851077 DOI: 10.1111/jre.12559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Soluble epoxide hydrolase (sEH) is an enzyme in the arachidonate cascade which converts epoxy fatty acids (EpFAs), such as epoxyeicosatrienoic acids (EETs) produced by cytochrome P450 enzymes, to dihydroxy-eicosatrienoic acids. In the last 20 years with the development of inhibitors to sEH it has been possible to increase the levels of EETs and other EpFAs in in vivo models. Recently, studies have shown that EETs play a key role in blocking inflammation in a bone resorption process, but the mechanism is not clear. In the current study we used the sEH inhibitor (1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea [TPPU]) to investigate the immunomodulatory effects in a mouse periodontitis model. MATERIAL AND METHODS Mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 6) that were treated orally, daily for 15 days, with 1 mg/kg of TPPU. Then, the mice were killed and their jaws were analyzed for bone resorption using morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by microarray PCR or western blotting. RESULTS Infected mice treated with TPPU showed lower bone resorption than infected mice without treatment. Interestingly, infected mice showed increased expression of sEH; however, mice treated with TPPU had a reduction in expression of sEH. Besides, several proinflammatory cytokines and molecular markers were downregulated in the gingival tissue in the group treated with 1 mg/kg of TPPU. CONCLUSION The sEH inhibitor, TPPU, showed immunomodulatory effects, decreasing bone resorption and inflammatory responses in a bone resorption mouse model.
Collapse
Affiliation(s)
- M H Napimoga
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - E P Rocha
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - C A Trindade-da-Silva
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - A P D Demasi
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - E F Martinez
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - C G Macedo
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - H B Abdalla
- Laboratory of Orofacial Pain, Department of Physiology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - A Bettaieb
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - F G Haj
- Nutrition Department, University of California, Davis, CA, USA
| | | | - B Inceoglu
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - B D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
20
|
Grauballe MB, Belstrøm D, Østergaard JA, Paster BJ, Schou S, Flyvbjerg A, Holmstrup P. Ligature-associated bacterial profiles are linked to type 2 diabetes mellitus in a rat model and influenced by antibody treatment against TNF-α or RAGE. Clin Exp Dent Res 2017; 3:25-31. [PMID: 28344834 PMCID: PMC5347912 DOI: 10.1002/cre2.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 02/05/2023] Open
Abstract
There is a bidirectional relationship between periodontal disease (PD) and type 2 diabetes mellitus (T2D). T2D may lead to ecological perturbations in the oral environment, which may facilitate an altered microbiota. However, previous studies have been inconclusive in determining the effect of T2D on oral bacterial profiles. Therefore, we aimed to evaluate the influence of T2D on the ligature-associated bacterial profile in a diabetic rat model with PD and investigated the impact of blocking inflammatory pathways with antibodies targeting either Tumor Necrosis Factor α (TNF-α) or the receptor of advanced glycation end-products (RAGE). A total of 62 Zucker obese rats (45 T2D) and 17 lean (non-T2D) were divided into 4 treatment groups; lean with PD, obese with PD, obese with PD and anti-TNF-α treatment, and obese with PD with anti-RAGE treatment. Periodontal disease was ligature induced. Ligature-associated bacterial profiles were analyzed using Human Oral Microbe Identification Microarray (HOMIM). Ligature-associated bacterial profiles differed between lean and obese rats. Furthermore, treatment with antibodies against TNF-α or RAGE had an impact on subgingival bacterial profiles. T2D phenotypes are associated with different ligature-associated bacterial profiles and influenced by treatment with antibodies against TNF-α or RAGE.
Collapse
Affiliation(s)
- M B Grauballe
- Section for Periodontology, Department of Dentistry, Faculty of Health Aarhus University Aarhus C Denmark
| | - D Belstrøm
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen N Denmark
| | - J A Østergaard
- The Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health, Aarhus University and Department of Endocrinology and Internal Medicine Aarhus University Hospital Aarhus C Denmark; Danish Diabetes Academy Odense Denmark
| | - B J Paster
- The Forsyth Institute Department of Microbiology Cambridge, MA USA; Department of Oral Medicine, Infection & Immunity Harvard School of Dental Medicine Boston, MA USA
| | - S Schou
- Section for Oral Surgery and Oral Pathology, Department of Odontology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen N Denmark
| | - A Flyvbjerg
- The Medical Research Laboratories, Department of Clinical Medicine, Faculty of Health, Aarhus University and Department of Endocrinology and Internal Medicine Aarhus University Hospital Aarhus C Denmark; Danish Diabetes Academy Odense Denmark; Department of Endocrinology and Internal Medicine Aarhus University Hospital Denmark
| | - P Holmstrup
- Section for Periodontology, Department of Dentistry, Faculty of Health Aarhus University Aarhus C Denmark; Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen N Denmark
| |
Collapse
|
21
|
Anovazzi G, de Medeiros MC, Pigossi SC, Finoti LS, Mayer MPA, Rossa C, Scarel-Caminaga RM. Functional Haplotypes in Interleukin 4 Gene Associated with Periodontitis. PLoS One 2017; 12:e0169870. [PMID: 28114408 PMCID: PMC5256924 DOI: 10.1371/journal.pone.0169870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic periodontitis (CP) is an infectious inflammatory disease that affects tooth-supporting structures and in which dental plaque bacteria, immune mechanisms and genetic predisposition play important roles. Interleukin 4 (IL-4) is a key anti-inflammatory cytokine with relevant action in imbalances in inflamed periodontal tissue. Individuals carrying the TCI/CCI genotype (S-haplotype) of the IL-4 gene are 5 times more susceptible to CP, whereas the CTI/TTD genotype (P-haplotype) confers protection against CP. Compared with the S-haplotype, subjects with the P-haplotype produce higher levels of the IL-4 protein after non-surgical periodontal therapy. The present in vitro study aimed to investigate the functionality of IL-4 haplotypes in immune cells to obtain insight into the influence of these genetic variations in regulating immune responses to CP-associated bacteria. Peripheral blood was collected from 6 subjects carrying each haplotype, and their immune cells were challenged with periodontopathogens to compare responses of the different haplotypes with regard to gene expression, protein secretion and the immunophenotype of T helper responses. We found higher IL-4 mRNA and protein levels in the P-haplotype, which also presented higher levels of anti-inflammatory cytokines. In contrast, cells from S-haplotype subjects responded with higher levels of pro-inflammatory cytokines. S-haplotype individuals exhibited significantly greater polarization toward the Th1 phenotype, whereas the P-haplotype was associated with an attenuated response to periodontopathogens, with suggestive skewing toward Th2/M2 phenotypes. In conclusion, IL-4 genetic variations associated with susceptibility to or protection against chronic periodontitis are directly associated with influencing the response of immune cells to periodontopathogens.
Collapse
Affiliation(s)
- Giovana Anovazzi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Marcell Costa de Medeiros
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Suzane Cristina Pigossi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Livia Sertori Finoti
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Rossa
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | | |
Collapse
|
22
|
Comparative metagenomics reveals taxonomically idiosyncratic yet functionally congruent communities in periodontitis. Sci Rep 2016; 6:38993. [PMID: 27991530 PMCID: PMC5172196 DOI: 10.1038/srep38993] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
Abstract
The phylogenetic characteristics of microbial communities associated with periodontitis have been well studied, however, little is known about the functional endowments of this ecosystem. The present study examined 73 microbial assemblages from 25 individuals with generalized chronic periodontitis and 25 periodontally healthy individuals using whole genome shotgun sequencing. Core metabolic networks were computed from taxa and genes identified in at least 80% of individuals in each group. 50% of genes and species identified in health formed part of the core microbiome, while the disease-associated core microbiome contained 33% of genes and only 1% of taxa. Clinically healthy sites in individuals with periodontitis were more aligned with sites with disease than with health. 68% of the health-associated metagenome was dedicated to energy utilization through oxidative pathways, while in disease; fermentation and methanogenesis were predominant energy transfer mechanisms. Expanded functionality was observed in periodontitis, with unique- or over-representation of genes encoding for fermentation, antibiotic resistance, detoxification stress, adhesion, invasion and intracellular resistance, proteolysis, quorum sensing, Type III/IV secretion systems, phages and toxins in the disease-associated core microbiome. However, different species or consortia contributed to these functions in each individual. Several genes, but not species, demonstrated robust discriminating power between health and disease.
Collapse
|
23
|
Teng YTA. Protective and Destructive Immunity in the Periodontium: Part 2—T-cell-mediated Immunity in the Periodontium. J Dent Res 2016; 85:209-19. [PMID: 16498066 DOI: 10.1177/154405910608500302] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
24
|
da Motta RJG, Tirapelli C, Juns da Silva R, Villafuerte KRV, Almeida LY, Ribeiro-Silva A, León JE. Immature, but Not Mature, Dendritic Cells Are More Often Present in Aggressive Periodontitis Than Chronic Periodontitis: An Immunohistochemical Study. J Periodontol 2016; 87:1499-1507. [PMID: 27389962 DOI: 10.1902/jop.2016.150729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dendritic cells (DCs) form a key link between innate and adaptive immune responses. The aim of this study is to analyze presence and distribution of immature (im) and mature (m) DCs in gingival tissue samples obtained from patients diagnosed with aggressive periodontitis (AgP), chronic periodontitis (CP), and clinically healthy periodontium (control group). METHODS Gingival tissue samples obtained from patients with: 1) AgP (aged <35 years); 2) CP (aged ≥35 years); and 3) control group (aged >18 years) (n = 10 per group) were collected. Two-way analysis of variance and posterior Fisher least significant difference test were used to observe differences between the means of cells positively marked for imDC (S100, CD1a, and CD207) and mDC (CD208) immunomarkers. RESULTS imDCs were more numerous in AgP than CP and control groups, being statistically significant only for S100+ cells. Conversely, mDCs were visualized in higher numbers in CP than AgP and control groups (both P <0.05). Considering frequency of immunostained cells, the number of S100+ cells was greater than CD207+ and CD1a+ cells, followed by a lesser number of CD208+ cells, in all groups. CONCLUSIONS Considering that the ability of DCs to regulate immunity is dependent on DC maturation, results suggest that predominance of imDCs appears to be involved in AgP pathogenesis, probably due to lack of ability to induce immune cell activation. Further studies are necessary to elucidate the role of DC maturation in regulating immune responses in periodontal disease.
Collapse
Affiliation(s)
- Raphael J G da Motta
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Tirapelli
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Juns da Silva
- Department of Dental Materials and Prosthodontics, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly R V Villafuerte
- Department of Oral and Maxillofacial Surgery and Periodontology, University of São Paulo
| | - Luciana Y Almeida
- Department of Diagnosis and Surgery, Araraquara Dental School, University Estadual Paulista, São Paulo, Brazil
| | | | - Jorge E León
- Department of Stomatology, University of São Paulo
| |
Collapse
|
25
|
Mahanonda R, Champaiboon C, Subbalekha K, Sa-Ard-Iam N, Rattanathammatada W, Thawanaphong S, Rerkyen P, Yoshimura F, Nagano K, Lang NP, Pichyangkul S. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:715-25. [PMID: 27335500 DOI: 10.4049/jimmunol.1600540] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/23/2016] [Indexed: 01/12/2023]
Abstract
The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis.
Collapse
Affiliation(s)
- Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chantrakorn Champaiboon
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Saranya Thawanaphong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimprapa Rerkyen
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; and
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; and
| | - Niklaus P Lang
- Department of Periodontology, University of Berne, Berne 3012, Switzerland
| | - Sathit Pichyangkul
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
26
|
Abstract
The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.
Collapse
Affiliation(s)
- Kevin A Tompkins
- a Research Unit of Mineralized Tissue, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
27
|
Liyange S, Edgar D, Shields MD, Linden GJ. Gingival Inflammation and Aggressive Periodontitis in a Child with a Specific Antibody Deficiency. DENTAL UPDATE 2016; 43:130-136. [PMID: 27188128 DOI: 10.12968/denu.2016.43.2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exuberant gingival inflammation accompanied by periodontitis is a rare finding in a very young child and may indicate a defect in the host response. Affected children should be referred to appropriate specialists to establish a definitive diagnosis. A 5-year-old girl presented with persistent gingival inflammation and periodontal destruction. Immunological investigations identified specific polysaccharide antibody deficiency which, when treated, resulted in a significant improvement in the gingival condition. This case illustrates the need for integrated management by a wide range of dental and medical specialists. Antibody deficiency is rare but, if not identified and treated effectively, can be associated with chronic ill health and decreased life expectancy. CPD/Clinical Relevance: This article describes a rare case of gingival inflammation accompanied by periodontitis in a very young child secondary to an underlying host antibody deficiency and details the investigation, management and clinical outcomes.
Collapse
|
28
|
Inverse Association of Plasma IgG Antibody to Aggregatibacter actinomycetemcomitans and High C-Reactive Protein Levels in Patients with Metabolic Syndrome and Periodontitis. PLoS One 2016; 11:e0148638. [PMID: 26871443 PMCID: PMC4752452 DOI: 10.1371/journal.pone.0148638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022] Open
Abstract
The association between clinically diagnosed periodontitis, a common chronic oral infection, and metabolic syndrome has been previously reported. The aim of this study was to investigate the association of plasma IgG levels against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia, C-reactive protein, and periodontal status with metabolic syndrome. Plasma IgG levels and C-reactive protein were measured by enzyme-linked immunosorbent assay, and salivary levels of A. actinomycetemcomitans and P. gingivalis were determined by quantitative real-time polymerase chain reaction. Among 127 individuals aged 35–76 years, 57 participants had metabolic syndrome and severe periodontitis, 25 had metabolic syndrome and an absence of severe periodontitis, 17 healthy individuals had severe periodontitis, and 28 healthy individuals were without severe periodontitis. Patients with metabolic syndrome had reduced humoral immune response to A. actinomycetemcomitans (p = 0.008), regardless of their salivary levels or periodontitis status compared with healthy participants. The IgG antibody response to P. gingivalis, regardless of their salivary levels or participants’ health condition, was significantly higher in severe periodontitis patients (p<0.001). Plasma IgG titers for P. intermedia were inconsistent among metabolic syndrome or periodontal participants. Our results indicate that the presence of lower levels of IgG antibodies to A. actinomycetemcomitans (OR = 0.1; 95%CI 0.0–0.7), but not P. gingivalis, a severe periodontitis status (OR = 7.8; 95%CI 1.1–57.0), high C-reactive protein levels (OR = 9.4; 95%CI 1.0–88.2) and body mass index (OR = 3.0; 95%CI 1.7–5.2), are associated with the presence of metabolic syndrome. The role of the decreased IgG antibody response to A. actinomycetemcomitans, increased C-reactive protein levels on the association between periodontal disease and metabolic syndrome in a group of Thai patients is suggested.
Collapse
|
29
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
30
|
Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000 2015; 64:57-80. [PMID: 24320956 DOI: 10.1111/prd.12002] [Citation(s) in RCA: 839] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis of periodontitis involves a complex immune/inflammatory cascade that is initiated by the bacteria of the oral biofilm that forms naturally on the teeth. The susceptibility to periodontitis appears to be determined by the host response; specifically, the magnitude of the inflammatory response and the differential activation of immune pathways. The purpose of this review was to delineate our current knowledge of the host response in periodontitis. The role of innate immunity, the failure of acute inflammation to resolve (thus becoming chronic), the cytokine pathways that regulate the activation of acquired immunity and the cells and products of the immune system are considered. New information relating to regulation of both inflammation and the immune response will be reviewed in the context of susceptibility to, and perhaps control of, periodontitis.
Collapse
|
31
|
Affiliation(s)
- SJ Fokkema
- Dental Hygiene School; University of Applied Sciences Utrecht; Utrecht The Netherlands
- Periodontal Practice Fokkema; ‘s-Hertogenbosch The Netherlands
| |
Collapse
|
32
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
33
|
Lavu V, Venkatesan V, Rao SR. The epigenetic paradigm in periodontitis pathogenesis. J Indian Soc Periodontol 2015; 19:142-9. [PMID: 26015662 PMCID: PMC4439621 DOI: 10.4103/0972-124x.145784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023] Open
Abstract
Epigenome refers to “epi” meaning outside the “genome.” Epigenetics is the field of study of the epigenome. Epigenetic modifications include changes in the promoter CpG Islands, modifications of histone protein structure, posttranslational repression by micro-RNA which contributes to the alteration of gene expression. Epigenetics provides an understanding of the role of gene-environment interactions on disease phenotype especially in complex multifactorial diseases. Periodontitis is a chronic inflammatory disorder that affects the supporting structures of the tooth. The role of the genome (in terms of genetic polymorphisms) in periodontitis pathogenesis has been examined in numerous studies, and chronic periodontitis has been established as a polygenic disorder. The potential role of epigenetic modifications in the various facets of pathogenesis of periodontitis is discussed in this paper based on the available literature.
Collapse
Affiliation(s)
- Vamsi Lavu
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Faculty of Bio-Medical Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Suresh Ranga Rao
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Vernal R, Díaz-Zúñiga J, Melgar-Rodríguez S, Pujol M, Diaz-Guerra E, Silva A, Sanz M, Garcia-Sanz JA. Activation of RANKL-induced osteoclasts and memory T lymphocytes by Porphyromonas gingivalis is serotype dependant. J Clin Periodontol 2015; 41:451-9. [PMID: 24476556 DOI: 10.1111/jcpe.12236] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 01/22/2023]
Abstract
AIM Destructive periodontitis is associated with a Th1-Th17 immune response and activation of RANKL-induced osteoclasts. In addition, Porphyromonas gingivalis K1 and K2 serotypes induce a strong Th1-Th17 response. This study aimed to investigate whether these P. gingivalis serotypes induce higher osteoclasts activation, by increased Th17-associated RANKL production, and an antigen-specific memory T-lymphocyte response. MATERIAL AND METHODS The RANKL production and TRAP(+) osteoclast induction were quantified on naïve T lymphocytes stimulated with dendritic cells primed with the P. gingivalis serotypes. The T-bet, GATA-3, RORC2 and Foxp3 expression was correlated with RANKL production. The frequency of proliferating memory T lymphocytes in response to P. gingivalis serotypes was determined in both periodontitis and healthy subjects. RESULTS T lymphocytes stimulated by K1 or K2-primed dendritic cells elicited higher levels of RANKL and TRAP(+) osteoclasts than cells stimulated with the other serotypes. RANKL positively correlated with RORC2. Whereas periodontitis patients had a higher frequency of memory T lymphocytes responding to K1 or K2, healthy subjects had a higher frequency of memory T lymphocytes responding to K4 or K(-) . CONCLUSIONS P. gingivalis serotypes K1 and K2, but not others, are associated with an increased production of the osteoclastogenesis-related factor RANKL. This important information suggests that these serotypes could elicit a greater bone resorption in vivo and have a role in the periodontitis pathogenesis.
Collapse
Affiliation(s)
- Rolando Vernal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain; Periodontal Biology Laboratory, Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Isaza-Guzmán DM, Cardona-Vélez N, Gaviria-Correa DE, Martínez-Pabón MC, Castaño-Granada MC, Tobón-Arroyave SI. Association study between salivary levels of interferon (IFN)-gamma, interleukin (IL)-17, IL-21, and IL-22 with chronic periodontitis. Arch Oral Biol 2015; 60:91-9. [PMID: 25285903 DOI: 10.1016/j.archoralbio.2014.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate if the salivary levels of IL-17, IL-21, IL-22, and its ratio regarding salivary IFN-γ may be linked with the periodontal clinical status. DESIGN One hundred and five chronic periodontitis (CP) subjects and 44 healthy controls (HC) were recruited. Periodontal status was assessed based on full-mouth clinical periodontal measurements. Cytokine salivary levels were analyzed by ELISA. The association between the analytes with CP was analyzed using a binary logistic regression model. RESULTS A statistically significant increase in salivary levels of IFN-γ and IFN-γ/IL-22 ratio in CP group could be detected, but there was no significant domination of any Th17 cytokine that could be of predictive value for health/disease status. Univariate and binary logistic regression analyses revealed a strong and independent association of IFN-γ salivary levels and IFN-γ/IL-22 ratio with disease status. An interaction effect of ageing on IFN-γ levels also could be noted. CONCLUSION While salivary levels of IFN-γ and IFN-γ/IL-22 ratio may act as strong/independent indicators of the amount and extent of periodontal breakdown, the low detection frequency of Th17 cytokines in saliva samples make these determinations useless for the detection of disease presence and/or its severity.
Collapse
Affiliation(s)
- D M Isaza-Guzmán
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - N Cardona-Vélez
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - D E Gaviria-Correa
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - M C Martínez-Pabón
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - M C Castaño-Granada
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - S I Tobón-Arroyave
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia.
| |
Collapse
|
36
|
Clinical significance of IL-23 regulating IL-17A and/or IL-17F positive Th17 cells in chronic periodontitis. Mediators Inflamm 2014; 2014:627959. [PMID: 25525302 PMCID: PMC4265697 DOI: 10.1155/2014/627959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/05/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE To investigate the expression level and clinical significance of (IL-17A(+) and/or IL-17F(+)) Th17 cells under IL-23 regulation in patients of chronic periodontitis (CP) and healthy controls (HC). MATERIALS AND METHODS The whole peripheral blood samples were collected from 30 CP patients and 25 healthy controls. Flow cytometry was used to test the (IL-17A(+) and/or IL-17F(+)) Th17 expression level. Recombinant human IL-23 (rhIL-23) was used to detect Th17 differentiation and expansion. Correlation coefficient analysis between Th17 expression level and clinical parameters was analyzed by SPSS software. RESULTS Flow cytometry results showed that IL-17A(+)IL-17F(-) and IL-17A(-)IL-17F(+) Th17 were both increased in CP group than in HC group (P < 0.01), while, under recombinant human IL-23 (rhIL-23) stimulation, the number of IL-17A(+)IL-17F(-) Th17 cells was significantly increased in both CP and HC groups (P < 0.01). Interestingly, IL-17A(-)IL-17F(+) Th17 cells were only increased in CP group after rhIL-23 stimulation. Additionally, correlation coefficient analysis showed significant correlation between IL-17A(+)IL-17F(-) Th17 cell and attachment loss or probing depth (P < 0.05). CONCLUSIONS This study indicates that both the IL-17A(+)IL-17F(-) and IL-17A(-)IL-17F(+) Th17 cells may be involved in pathogenesis of periodontitis. The role of these Th17 cells in the disease pathogenesis needs to be further investigated.
Collapse
|
37
|
Li C, Wang X, Tan J, Wang T, Wang Q. The immunomodulatory properties of periodontal ligament stem cells isolated from inflamed periodontal granulation. Cells Tissues Organs 2014; 199:256-65. [PMID: 25471814 DOI: 10.1159/000367986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is currently the main cause of tooth loss and as yet there is no appropriate method for establishing a functional and predictable periodontal regeneration. Tissue engineering involving seed cells provides a new prospect for periodontal regeneration. While periodontal ligament stem cells (PDLSCs) are a good choice for seed cells, it is not always possible to obtain the patients' own PDLSCs. We and others have found a type of stromal cells from inflamed periodontal granulation. These cells displayed similar differentiation properties to PDLSCs. Inflammation has a profound influence on the immunomodulatory properties of mesenchymal stem cells, which may affect therapeutic outcome. In this study, we assessed the immunomodulatory characteristics of these inflamed human (ih)PDLSCs. Along with the similarity in cell surface marker expressions, they also displayed immunomodulatory properties comparable to those in healthy human (hh)PDLSCs. Both hhPDLSCs and ihPDLSCs can suppress the proliferation and secretion of IFN-γ in peripheral blood mononuclear cells by indirect soluble mediators and direct cell-cell contact. Albeit with some quantitative variances, the gene expressions of inducible nitric oxide synthases, indoleamine 2,3 dioxygenase, cyclooxygenase-2, TNF-α-induced protein 6 and IL-10 in ihPDLSCs displayed similar patterns as those in hhPDLSCs. Taken together, our results suggest that ihPDLSCs can provide a promising alternative to hhPDLSCs in terms of evident similarities in immunomodulatory properties as well as their easier accessibility and availability.
Collapse
Affiliation(s)
- Chenghua Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
38
|
Tebloeva LM, Revazova ZE, Fabrikant KG, Dmitrieva LA, Gurevich KG. Differences in immune response to Porphyromonas gingivalis. J Contemp Dent Pract 2014; 15:573-5. [PMID: 25707828 DOI: 10.5005/jp-journals-10024-1581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
About 341 (average age of 38.0 ± 2.5 years) patients with periodontal disease were included in this study. All the patients were not treated for periodontal disease for a period of 6 months prior to this study. All the patients were not on any hormonal therapy. Antibodies to Porphyromonas gingivalis (P. gingivalis) were determined in blood serum by enzyme-linked immunosorbent assay (ELISA) method. Findings from this study suggest immune response to P. gingivalis is more effective in males than in females. Smoking and obesity tends to reduce effective immune response.
Collapse
Affiliation(s)
- Laura M Tebloeva
- Postdoctoral, Department of Periodontology, Moscow State University of Medicine and Dentistry, Moscow, Russia, e-mail:
| | - Zalina E Revazova
- Assistant Professor, Department of Periodontology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Kate G Fabrikant
- Assistant Professor, Department of Healthy Life for Sustainable Development (UNESCO), Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Lidia A Dmitrieva
- Professor, Department of Periodontology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Konstantin G Gurevich
- Professor, Department of Healthy Life for Sustainable Development (UNESCO), Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
39
|
Wu RQ, Zhang DF, Tu E, Chen QM, Chen W. The mucosal immune system in the oral cavity-an orchestra of T cell diversity. Int J Oral Sci 2014; 6:125-32. [PMID: 25105816 PMCID: PMC4170154 DOI: 10.1038/ijos.2014.48] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 02/05/2023] Open
Abstract
The mucosal immune system defends against a vast array of pathogens, yet it exhibits limited responses to commensal microorganisms under healthy conditions. The oral-pharyngeal cavity, the gateway for both the gastrointestinal and respiratory tracts, is composed of complex anatomical structures and is constantly challenged by antigens from air and food. The mucosal immune system of the oral-pharyngeal cavity must prevent pathogen entry while maintaining immune homeostasis, which is achieved via a range of mechanisms that are similar or different to those utilized by the gastrointestinal immune system. In this review, we summarize the features of the mucosal immune system, focusing on T cell subsets and their functions. We also discuss our current understanding of the oral-pharyngeal mucosal immune system.
Collapse
Affiliation(s)
- Rui-Qing Wu
- 1] Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA [2] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dun-Fang Zhang
- 1] Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA [2] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Eric Tu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| |
Collapse
|
40
|
Talwar A, Arun KV, Kumar TSS, Clements J. Plasticity of T helper cell subsets: Implications in periodontal disease. J Indian Soc Periodontol 2014; 17:288-91. [PMID: 24049327 PMCID: PMC3768177 DOI: 10.4103/0972-124x.115637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
T helper (Th) cells have an important role in host defence as well in the pathogenesis of periodontal disease. Th cells differentiate from naive cells into various subsets, each of which is associated with a set of inducing and effector cytokines. Previously, it was thought that this differentiation was an irreversible event. Recent evidence suggest that even differentiated Th cells, retain the flexibility to transform from one lineage to another, a phenomenon referred to as plasticity. This plasticity is thought to be brought about by epigenetic modifications that are regulated by external and internal signals in the micro-environment of these cells. The factors and mechanisms which affect the plasticity of these cells and their potential role in the etio-pathogenesis of periodontal disease has been described in this article.
Collapse
Affiliation(s)
- Avaneendra Talwar
- Department of Periodontics, Ragas Dental College and Hospital, Uthandi, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
41
|
Naiff PF, Ferraz R, Cunha CF, Orlandi PP, Boechat AL, Bertho ÁL, Dos-Santos MC. Immunophenotyping in Saliva as an Alternative Approach for Evaluation of Immunopathogenesis in Chronic Periodontitis. J Periodontol 2014; 85:e111-20. [DOI: 10.1902/jop.2013.130412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Beklen A, Sarp AS, Uckan D, Tsaous Memet G. The function of TLR4 in interferon gamma or interleukin-13 exposed and lipopolysaccharide stimulated gingival epithelial cell cultures. Biotech Histochem 2014; 89:505-12. [PMID: 24773607 DOI: 10.3109/10520295.2014.903299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gingival epithelial cells are part of the first line of host defense against infection. Toll-like receptors (TLRs) serve important immune and nonimmune functions. We investigated how interferon gamma (INF-γ) and interleukin 13 (IL-13) are involved in the TLR4 ligand-induced regulation of interleukin-8 (IL-8) effects on gingival epithelial cells. We used immunohistochemistry to localize TLR4 in ten healthy and ten periodontitis tissue specimens. Gingival epithelial cells then were primed with Th1 cytokine (INF-γ) or Th2 cytokine (IL-13) before stimulation with Escherichia coli-derived lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) was performed to detect the level of IL-8 secretion in cell culture supernatants. Although both healthy and periodontitis gingival tissue samples expressed TLR4, the periodontitis samples showed more intense expression on gingival epithelial cells. Gingival epithelial cell cultures were primed with either INF-γ or IL-13 before stimulation with TLR4 ligand. Supernatants from co-stimulated epithelial cells exhibited IL-8 production in opposite directions, i.e., as one stimulates the release, the other reduces the release. INF-γ significantly increased TLR4 function, whereas IL-13 significantly decreased TLR4 function, i.e., production of IL-8. Pathogen associated molecular pattern-LPS, shared by many different periodonto-pathogenic bacteria, activates the gingival epithelial cells in a TLR-dependent manner. Diminished or increased TLR function in gingival epithelial cells under the influence of different Th cell types may protect or be harmful due to the altered TLR signaling.
Collapse
Affiliation(s)
- A Beklen
- Department of Periodontology, Faculty of Dentistry, Eskisehir Osmangazi University , Eskisehir
| | | | | | | |
Collapse
|
43
|
Abstract
The oral cavity contains distinct mucosal surfaces, each with its own unique distribution of dendritic cell (DC) subsets. In addition to tissue-specific properties, such organization might confer differential immune outcomes guided by tissue-resident DCs, which translate in the lymph node into an overall immune response. This process is further complicated by continual exposure and colonization of the oral cavity with enormous numbers of diverse microbes, some of which might induce destructive immunity. As a central cell type constantly monitoring changes in oral microbiota and orchestrating T-cell function, oral DCs are of major importance in deciding whether to induce immunity or tolerance. In this review, an overview of the phenotype and distribution of DCs in the oral mucosa is provided. In addition, the role of the various oral DC subsets in inducing immunity vs. tolerance, as well as their involvement in several oral pathologies is discussed.
Collapse
|
44
|
Gonzales JR, Groeger S, Johansson A, Meyle J. T helper cells from aggressive periodontitis patients produce higher levels of interleukin-1 beta and interleukin-6 in interaction with Porphyromonas gingivalis. Clin Oral Investig 2013; 18:1835-43. [PMID: 24352581 DOI: 10.1007/s00784-013-1162-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 12/05/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In this study, we analyzed the production of Interleukin-1 beta (IL-1β) and IL-6 by activated CD4+ cells obtained from aggressive periodontitis (AgP) patients in comparison with healthy subjects (HC). MATERIALS AND METHODS CD4+ cells were automatically separated from lymphocytes obtained from peripheral blood of patients with AgP and healthy controls. Cells were activated for 4, 8, and 24 h with three different stimuli: anti-CD3/anti-CD28, phytohemagglutinin (PHA), and Porphyromonas gingivalis (P. gingivalis) outer membrane protein (OMP). Protein levels were measured in supernatants of activated CD4+ cells by a bead-based immunoassay (CBA). In addition, serum antibodies against P. gingivalis were determined. Data were analyzed using U test (p < 0.05). RESULTS T helper cells of AgP patients activated with P. gingivalis OMP produced higher levels of IL-1β and IL-6 in comparison with healthy controls (p < 0.05). Neither the activation with anti-CD3/anti-CD28 nor the activation with PHA showed significantly different production of IL-1β and IL-6 by the cells 25 % of patients and 17 % of controls presented with high serum reactivity to P. gingivalis. CONCLUSION In view of these results, it is possible to conclude that P. gingivalis contributes to the pathogenesis of AgP by inducing high levels of pro-inflammatory cytokines such as IL-1β and IL-6 by peripheral CD4+ T helper cells. CLINICAL RELEVANCE In accordance with the clinical parameters and the immunological data, we suggest that full-mouth disinfection with adjunctive systemic antibiotics might be the anti-infectious non-surgical periodontal treatment of choice in this type of patients. Microbiological analyses at the beginning and at the end of the periodontal treatment are recommended. However, it is necessary to verify these data in longitudinal clinical studies.
Collapse
Affiliation(s)
- Jose Roberto Gonzales
- Department of Periodontology, Justus-Liebig University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany,
| | | | | | | |
Collapse
|
45
|
Wang H, Han Q, Luo Z, Xu C, Liu J, Dan H, Xu Y, Zeng X, Chen Q. Oral lichen planus may enhance the expression of Th17-associated cytokines in local lesions of chronic periodontitis. Clin Oral Investig 2013; 18:1647-54. [PMID: 24306678 DOI: 10.1007/s00784-013-1131-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aims to compare the expression levels of interleukin (IL)-17 and IL-23 in local periodontal tissues from patients with both chronic periodontitis and oral lichen planus (CP-OLP), patients with chronic periodontitis (CP) only, patients with oral lichen planus (OLP) only, and healthy controls (HC). MATERIALS AND METHODS The periodontal tissues were collected from 15 CP-OLP patients, 15 CP patients, 15 OLP patients, and 10 healthy controls. Immunohistochemistry (IHC) and real-time quantitative PCR (qPCR) was performed to investigate the protein and mRNA expression level of IL-17 and IL-23 in periodontal lesions from these four groups. RESULTS IHC statistical analysis showed that the expression level of IL-17- and IL-23p19-positive cells significantly increased in CP-OLP group compared with that in CP (P < 0.01) and OLP groups (P < 0.05), showing intense staining reaction in local lamina propria lesions. Meanwhile, qPCR result showed higher IL-17 mRNA level in CP-OLP compared with that in CP and OLP groups and demonstrated a significant increase than OLP group (P < 0.05). Moreover, it was found that IL-17 mRNA expression level in erosive CP-OLP patients was significantly correlated with probing depth and attachment loss (P < 0.05). CONCLUSIONS This study indicated that there was an increased expression level of IL-17 and IL-23 in periodontal tissues from periodontitis patients with oral lichen planus, which might aggravate the inflammatory response in local lesions. CLINICAL RELEVANCE Oral lichen planus and chronic periodontitis may have interaction in disease pathogenesis, while IL-17 detection in local lesions may be helpful in identifying the disease severity in periodontitis patients with oral lichen planus.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Local and systemic inflammatory responses to experimentally induced gingivitis. DISEASE MARKERS 2013; 35:543-9. [PMID: 24227893 PMCID: PMC3817648 DOI: 10.1155/2013/948569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/10/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022]
Abstract
This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P < 0.001). These results support the concept that gingivitis adds to the systemic inflammatory burden of an individual.
Collapse
|
47
|
Nakajima M, Honda T, Miyauchi S, Yamazaki K. Th2 cytokines efficiently stimulate periostin production in gingival fibroblasts but periostin does not induce an inflammatory response in gingival epithelial cells. Arch Oral Biol 2013; 59:93-101. [PMID: 24370179 DOI: 10.1016/j.archoralbio.2013.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Accepted: 10/13/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study aims to clarify whether gingival fibroblasts produce periostin in response to Th2 cytokines which are elevated in periodontitis lesion and, if so, whether periostin affects the inflammatory response and matrix-protein metabolism. DESIGN Human gingival fibroblasts, periodontal ligament cells and the gingival epithelial cell line epi4 were stimulated with interleukin-4 (IL-4), IL-13, tumour necrosis factor-α (TNF-α) and Porphyromonas gingivalis lipopolysaccharide (LPS). Periostin expression was analysed by real-time polymerase chain-reaction (PCR) and Western blotting. The expression of the IL-4 receptor α-chain was evaluated by immunocytochemistry. The effect of periostin on the production of inflammatory cytokines and the expression of matrix protein-related genes was analysed by real-time PCR and enzyme-linked immunosorbent assay (ELISA). RESULTS While IL-4 and IL-13 significantly induced periostin production in gingival fibroblasts and periodontal ligament cells, no effect was observed in epi4 cells. No stimulatory effect of TNF-α or P. gingivalis LPS on the production of periostin was observed. The effect of periostin on the production of inflammatory cytokines was weak in gingival fibroblasts; however, little or no effect was observed on periodontal ligament cells or epi4 cells. No significant effect of periostin on the expression of matrix protein-related genes was found. CONCLUSION The results suggest that gingival fibroblasts may be a source of periostin in periodontitis lesions but periostin has only a limited role either in the inflammatory response or in matrix-protein metabolism. Thus, the role of periostin in the cellular interaction between epithelial and mesenchymal cells in gingiva may be distinct from that of skin.
Collapse
Affiliation(s)
- Mayuka Nakajima
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyuki Honda
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sayuri Miyauchi
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhisa Yamazaki
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
48
|
Kayal RA. The role of osteoimmunology in periodontal disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:639368. [PMID: 24151615 PMCID: PMC3789307 DOI: 10.1155/2013/639368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/26/2022]
Abstract
Periodontal disease is a pathological condition that involves inflammation of the tooth supporting structures. It occurs in response to the presence of bacterial plaque on the tooth structure. The host defense system, including innate and adaptive immunity, is responsible for combating the pathologic bacteria invading the periodontal tissue. Failure to eradicate the invading pathogens will result in a continuous state of inflammation where inflammatory cells such as lymphocytes, PMNs, and macrophages will continue to produce inflammatory mediators in an effort to destroy the invaders. Unfortunately, these inflammatory mediators have a deleterious effect on the host tissue as well as foreign microbes. One of the effects of these mediators on the host is the induction of matrix degradation and bone resorption through activation of proteases and other inflammatory mediators that activate osteoclasts.
Collapse
Affiliation(s)
- Rayyan A. Kayal
- Department of Oral Basic and Clinical Science, King Abdulaziz University Faculty of Dentistry, P.O. Box 3738, Jeddah 21481, Saudi Arabia
| |
Collapse
|
49
|
Myneni SR, Settem RP, Sharma A. Bacteria take control of tolls and T cells to destruct jaw bone. Immunol Invest 2013; 42:519-31. [DOI: 10.3109/08820139.2013.822761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Liu L, Peng B. The Expression of Macrophage Migration Inhibitory Factor Is Correlated with Receptor Activator of Nuclear Factor Kappa B Ligand in Induced Rat Periapical Lesions. J Endod 2013; 39:984-9. [DOI: 10.1016/j.joen.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 01/02/2023]
|