1
|
Yu LY, Chen JY, Weng HJ, Lin HF, Zhang CJ, Yang LY, Lin JZ, Lin XH, Zhong GX. Cell-free transcription amplification-based split-type electrochemical sensor using enzyme-linked magnetic microbeads for minimal residual leukemia detection. Talanta 2025; 286:127551. [PMID: 39788075 DOI: 10.1016/j.talanta.2025.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Constrained by detecting techniques, patients with acute promyelocytic leukemia (APL) are often confronted with minimal residual disease (MRD) and a high risk of relapse. Thus, a pragmatic and robust method for MRD monitoring is urgently needed. Herein, a novel split-type electrochemical sensor (E-sensor) was developed by integrating nucleic acid sequence-based amplification (NASBA) with enzyme-linked magnetic microbeads (MMBs) for ultra-sensitive detection of the PML/RARα transcript. In this system, NASBA facilitated efficient amplification under isothermal conditions, generating a large amount of RNA amplicons, which mediated the quick binding between horseradish peroxidase (HRP) and MMBs. The separately HRP-linked MMBs were subsequently transferred onto the surface of magnetic glass carbon electrode, producing a remarkably strong electrochemical signal in the presence of the HRP substrate. The proposed split-type E-sensor could detect the PML/RARα transcript with a high sensitivity (a limit detection of 100 aM), a high specificity (single base discrimination) as well as a high stability (a relative standard deviation of 8.3 % for 10 fM target RNA and 6.0 % for 100 fM target RNA). Finally, it could achieve both direct detection of serum cell-free RNA and specific intracellular RNA detection. Owing to its isothermal characteristics, robustness, and suitability for point-of-care testing, this method offers a powerful tool for the early diagnosis of APL and the monitoring of MRD, which holds a great significance for facilitating treatment response assessment and making treatment decisions.
Collapse
Affiliation(s)
- Lu-Ying Yu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jin-Yuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Huan-Jiao Weng
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Huang-Feng Lin
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chui-Ju Zhang
- Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Liang-Yong Yang
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ji-Zhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Guang-Xian Zhong
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, 350122, China; Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Abla O, Ries RE, Triche T, Gerbing RB, Hirsch B, Raimondi S, Cooper T, Farrar JE, Buteyn N, Harmon LM, Wen H, Deshpande AJ, Kolb EA, Gamis AS, Aplenc R, Alonzo T, Meshinchi S. Structural variants involving MLLT10 fusion are associated with adverse outcomes in pediatric acute myeloid leukemia. Blood Adv 2024; 8:2005-2017. [PMID: 38306602 PMCID: PMC11024924 DOI: 10.1182/bloodadvances.2023010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
ABSTRACT MLLT10 gene rearrangements with KMT2A occur in pediatric acute myeloid leukemia (AML) and confer poor prognosis, but the prognostic impact of MLLT10 in partnership with other genes is unknown. We conducted a retrospective study with 2080 children and young adults with AML registered on the Children's Oncology Group AAML0531 (NCT00372593) and AAML1031 trials (NCT01371981). Transcriptome profiling and/or karyotyping were performed to identify leukemia-associated fusions associated with prognosis. Collectively, 127 patients (6.1%) were identified with MLLT10 fusions: 104 (81.9%) with KMT2A::MLLT10, 13 (10.2%) with PICALM::MLLT10, and 10 (7.9%) X::MLLT10: (2 each of DDX3X and TEC), with 6 partners (DDX3Y, CEP164, SCN2B, TREH, NAP1L1, and XPO1) observed in single patients. Patients with MLLT10 (n = 127) demonstrated adverse outcomes, with 5-year event-free survival (EFS) of 18.6% vs 49% in patients without MLLT10 (n = 1953, P < .001), inferior 5-year overall survival (OS) of 38.2% vs 65.7% (P ≤ .001), and a higher relapse risk of 76% vs 38.6% (P < .001). Patients with KMT2A::MLLT10 had an EFS from study entry of 19.5% vs 12.7% (P = .628), and an OS from study entry of 40.4% vs 27.6% (P = .361) in those with other MLLT10 fusion partners. Patients with PICALM::MLLT10 had an EFS of 9.2% vs 20% in other MLLT10- without PICALM (X::MLLT10; P = .788). Patients with PICALM::MLLT10 and X::MLLT10 fusions exhibit a DNA hypermethylation signature resembling NUP98::NSD1 fusions, whereas patients with KMT2A::MLLT10 bear aberrations primarily affecting distal regulatory elements. Regardless of the fusion partner, patients with AML harboring MLLT10 fusions exhibit very high-risk features and should be prioritized for alternative therapeutic interventions.
Collapse
Affiliation(s)
- Oussama Abla
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tim Triche
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI
| | | | - Betsy Hirsch
- Division of Laboratory Medicine, University of Minnesota Medical Center, Minneapolis, MN
| | - Susana Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Todd Cooper
- Division of Hematology-Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Jason E. Farrar
- Department of Pediatrics, Hematology-Oncology Section, Arkansas Children's Research Institute, Little Rock, AR
| | | | | | - Hong Wen
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI
| | | | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders and Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Alan S. Gamis
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children's Mercy Hospitals and Clinics, Kansas City, MO
| | | | - Todd Alonzo
- Department of Translational Genomics, University of Southern California, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology-Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Sato H, Kobayashi T, Kameoka Y, Teshima K, Watanabe A, Yamada M, Yamashita T, Noguchi S, Michisita Y, Fujishima N, Kuroki J, Takahashi N. Prognostic impact of peripheral blood WT1 mRNA dynamics in patients with acute myeloid leukemia treated with venetoclax combination therapy. Int J Clin Oncol 2024; 29:481-492. [PMID: 38334897 DOI: 10.1007/s10147-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Wilms' tumor gene 1 (WT1) mRNA quantification is a useful marker of measurable residual disease in acute myeloid leukemia (AML). However, whether monitoring the WT1 mRNA levels may predict the outcome of venetoclax (VEN) combination therapy in AML is not reported. This study aims to elucidate whether WT1 mRNA dynamics could predict long-term prognosis. METHODS 33 patients with untreated or relapsed/refractory AML evaluated for peripheral blood WT1 dynamics in VEN combination therapy were analyzed. RESULTS The median age was 73 years (range 39-87). Azacitidine was combined with VEN in 91% of patients. Overall, the median overall survival (OS) was 334 days (95% CI 210-482), and the complete remission (CR) plus CR with incomplete hematologic recovery rate was 59%. A 1-log reduction of WT1 mRNA values by the end of cycle 2 of treatment was associated with significantly better OS and event-free survival (EFS) (median OS 482 days vs. 237 days, p = 0.049; median EFS 270 days vs. 125 days, p = 0.02). The negativity of post-treatment WT1 mRNA value during the treatment was associated with significantly better OS and EFS (median OS 482 days vs. 256 days, p = 0.02; median EFS not reached vs. 150 days, p = 0.005). Multivariate analysis confirmed the significance of these two parameters as strong EFS predictors (HR 0.26, p = 0.024 and HR 0.15, p = 0.013, respectively). The increase in WT1 mRNA values was correlated with relapse. CONCLUSION This study demonstrates that WT1 mRNA dynamics can be a useful marker for assessing long-term prognosis of VEN combination therapy for AML.
Collapse
Affiliation(s)
- Honami Sato
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Takahiro Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Yoshihiro Kameoka
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuaki Teshima
- Department of Hematology, Hiraka General Hospital, Yokote, Japan
| | - Atsushi Watanabe
- Department of Hematology, Nephrology and Rheumatology, Omagari Kousei Medical Center, Daisen, Japan
- Department of Hematology, Akita City Hospital, Akita, Japan
| | - Masahiro Yamada
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Department of Hematology, Hiraka General Hospital, Yokote, Japan
- Department of Hematology, Nephrology and Rheumatology, Omagari Kousei Medical Center, Daisen, Japan
| | - Takaya Yamashita
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shinsuke Noguchi
- Department of Hematology, Akita Red Cross Hospital, Akita, Japan
| | | | - Naohito Fujishima
- Department of Hematology, Nephrology and Rheumatology, Nohsiro Kousei Medical Center, Noshiro, Japan
| | - Jun Kuroki
- Department of Internal Medicine, Yuri Kumiai General Hospital, Yurihonjo, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
4
|
Ip BBK, Wong ATC, Law JHY, Au CH, Ma SY, Chim JCS, Liang RHS, Leung AYH, Wan TSK, Ma ESK. Application of droplet digital PCR in minimal residual disease monitoring of rare fusion transcripts and mutations in haematological malignancies. Sci Rep 2024; 14:6400. [PMID: 38493200 PMCID: PMC10944481 DOI: 10.1038/s41598-024-57016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Leukaemia of various subtypes are driven by distinct chromosomal rearrangement or genetic abnormalities. The leukaemogenic fusion transcripts or genetic mutations serve as molecular markers for minimal residual disease (MRD) monitoring. The current study evaluated the applicability of several droplet digital PCR assays for the detection of these targets at RNA and DNA levels (atypical BCR::ABL1 e19a2, e23a2ins52, e13a2ins74, rare types of CBFB::MYH11 (G and I), PCM1::JAK2, KMT2A::ELL2, PICALM::MLLT10 fusion transcripts and CEBPA frame-shift and insertion/duplication mutations) with high sensitivity. The analytical performances were assessed by the limit of blanks, limit of detection, limit of quantification and linear regression. Our data demonstrated serial MRD monitoring for patients at molecular level could become "digitalized", which was deemed important to guide clinicians in treatment decision for better patient care.
Collapse
Affiliation(s)
- Beca B K Ip
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Anthony T C Wong
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Janet Hei Yin Law
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Shing Yan Ma
- Specialist in Haematology & Haematological Oncology, Causeway Bay, Hong Kong
| | - James C S Chim
- Department of Medicine and Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Raymond H S Liang
- Department of Medicine and Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Anskar Y H Leung
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Thomas S K Wan
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Edmond S K Ma
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong.
| |
Collapse
|
5
|
Zhao Y, Guo H, Chang Y. MRD-directed and risk-adapted individualized stratified treatment of AML. Chin J Cancer Res 2023; 35:451-469. [PMID: 37969959 PMCID: PMC10643342 DOI: 10.21147/j.issn.1000-9604.2023.05.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Measurable residual disease (MRD) has been widely recognized as a biomarker for deeply evaluating complete remission (CR), predicting relapse, guiding pre-emptive interventions, and serving as an endpoint surrogate for drug testing. However, despite the emergence of new technologies, there remains a lack of comprehensive understanding regarding the proper techniques, sample materials, and optimal time points for MRD assessment. In this review, we summarized the MRD methods, sample sources, and evaluation frequency according to the risk category of the European Leukemia Net (ELN) 2022. Additionally, we emphasize the importance of properly utilizing and combining these technologies. We have also refined the flowchart outlining each time point for pre-emptive interventions and intervention paths. The evaluation of MRD in acute myeloid leukemia (AML) is sophisticated, clinically applicable, and technology-dependent, and necessitates standardized approaches and further research.
Collapse
Affiliation(s)
- Yijing Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Hanfei Guo
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto 94304, USA
- the First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
6
|
Ma Y, Gan J, Bai Y, Cao D, Jiao Y. Minimal residual disease in solid tumors: an overview. Front Med 2023; 17:649-674. [PMID: 37707677 DOI: 10.1007/s11684-023-1018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingbo Gan
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yinlei Bai
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Ogbue O, Unlu S, Ibodeng GO, Singh A, Durmaz A, Visconte V, Molina JC. Single-Cell Next-Generation Sequencing to Monitor Hematopoietic Stem-Cell Transplantation: Current Applications and Future Perspectives. Cancers (Basel) 2023; 15:cancers15092477. [PMID: 37173944 PMCID: PMC10177286 DOI: 10.3390/cancers15092477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are genetically complex and diverse diseases. Such complexity makes challenging the monitoring of response to treatment. Measurable residual disease (MRD) assessment is a powerful tool for monitoring response and guiding therapeutic interventions. This is accomplished through targeted next-generation sequencing (NGS), as well as polymerase chain reaction and multiparameter flow cytometry, to detect genomic aberrations at a previously challenging leukemic cell concentration. A major shortcoming of NGS techniques is the inability to discriminate nonleukemic clonal hematopoiesis. In addition, risk assessment and prognostication become more complicated after hematopoietic stem-cell transplantation (HSCT) due to genotypic drift. To address this, newer sequencing techniques have been developed, leading to more prospective and randomized clinical trials aiming to demonstrate the prognostic utility of single-cell next-generation sequencing in predicting patient outcomes following HSCT. This review discusses the use of single-cell DNA genomics in MRD assessment for AML/MDS, with an emphasis on the HSCT time period, including the challenges with current technologies. We also touch on the potential benefits of single-cell RNA sequencing and analysis of accessible chromatin, which generate high-dimensional data at the cellular resolution for investigational purposes, but not currently used in the clinical setting.
Collapse
Affiliation(s)
- Olisaemeka Ogbue
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Serhan Unlu
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Gogo-Ogute Ibodeng
- Internal Medicine, Infirmary Health's Thomas Hospital, Fairhope, AL 36607, USA
| | - Abhay Singh
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - John C Molina
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Teixeira A, Carreira L, Abalde-Cela S, Sampaio-Marques B, Areias AC, Ludovico P, Diéguez L. Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review. Cancers (Basel) 2023; 15:cancers15051362. [PMID: 36900154 PMCID: PMC10000116 DOI: 10.3390/cancers15051362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luís Carreira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Anabela C. Areias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| |
Collapse
|
9
|
Measurable Residual Disease and Clonal Evolution in Acute Myeloid Leukemia from Diagnosis to Post-Transplant Follow-Up: The Role of Next-Generation Sequencing. Biomedicines 2023; 11:biomedicines11020359. [PMID: 36830896 PMCID: PMC9953407 DOI: 10.3390/biomedicines11020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
It has now been ascertained that acute myeloid leukemias-as in most type of cancers-are mixtures of various subclones, evolving by acquiring additional somatic mutations over the course of the disease. The complexity of leukemia clone architecture and the phenotypic and/or genotypic drifts that can occur during treatment explain why more than 50% of patients-in hematological remission-could relapse. Moreover, the complexity and heterogeneity of clone architecture represent a hindrance for monitoring measurable residual disease, as not all minimal residual disease monitoring methods are able to detect genetic mutations arising during treatment. Unlike with chemotherapy, which imparts a relatively short duration of selective pressure on acute myeloid leukemia clonal architecture, the immunological effect related to allogeneic hematopoietic stem cell transplant is prolonged over time and must be overcome for relapse to occur. This means that not all molecular abnormalities detected after transplant always imply inevitable relapse. Therefore, transplant represents a critical setting where a measurable residual disease-based strategy, performed during post-transplant follow-up by highly sensitive methods such as next-generation sequencing, could optimize and improve treatment outcome. The purpose of our review is to provide an overview of the role of next-generation sequencing in monitoring both measurable residual disease and clonal evolution in acute myeloid leukemia patients during the entire course of the disease, with special focus on the transplant phase.
Collapse
|
10
|
Ramos Elbal E, Fuster JL, Campillo JA, Galera AM, Cortés MB, Llinares ME, Jiménez I, Plaza M, Banaclocha HM, Galián JA, Blanquer Blanquer M, Martínez Sánchez MV, Muro M, Minguela A. Measurable residual disease study through three different methods can anticipate relapse and guide pre-emptive therapy in childhood acute myeloid leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1446-1454. [PMID: 36598635 DOI: 10.1007/s12094-022-03042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Although outcomes of children with acute myeloid leukemia (AML) have improved over the last decades, around one-third of patients relapse. Measurable (or minimal) residual disease (MRD) monitoring may guide therapy adjustments or pre-emptive treatments before overt hematological relapse. METHODS In this study, we review 297 bone marrow samples from 20 real-life pediatric AML patients using three MRD monitoring methods: multiparametric flow cytometry (MFC), fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR). RESULTS Patients showed a 3-year overall survival of 73% and a 3-year event-free survival of 68%. Global relapse rate was of 25%. All relapses were preceded by the reappearance of MRD detection by: (1) MFC (p = 0.001), (2) PCR and/or FISH in patients with an identifiable chromosomal translocation (p = 0.03) and/or (3) one log increase of Wilms tumor gene 1 (WT1) expression in two consecutive samples (p = 0.02). The median times from MRD detection to relapse were 26, 111, and 140 days for MFC, specific PCR and FISH, and a one log increment of WT1, respectively. CONCLUSIONS MFC, FISH and PCR are complementary methods that can anticipate relapse of childhood AML by weeks to several months. However, in our series, pre-emptive therapies were not able to prevent disease progression. Therefore, more sensitive MRD monitoring methods that further anticipate relapse and more effective pre-emptive therapies are needed.
Collapse
Affiliation(s)
- Eduardo Ramos Elbal
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Luis Fuster
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Antonio Campillo
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Ana María Galera
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Mar Bermúdez Cortés
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - María Esther Llinares
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Irene Jiménez
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Mercedes Plaza
- Pediatric Oncohematology Department, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Helios Martínez Banaclocha
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - José Antonio Galián
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Miguel Blanquer Blanquer
- Haematology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - María Victoria Martínez Sánchez
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Manuel Muro
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Clinic University Hospital Virgen de la Arrixaca and Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120, Murcia, Spain.
| |
Collapse
|
11
|
Karlsson L, Nyvold CG, Soboli A, Johansson P, Palmqvist L, Tierens A, Hasle H, Lausen B, Jónsson ÓG, Jürgensen GW, Ebbesen LH, Abrahamsson J, Fogelstrand L. Fusion transcript analysis reveals slower response kinetics than multiparameter flow cytometry in childhood acute myeloid leukaemia. Int J Lab Hematol 2022; 44:1094-1101. [PMID: 35918824 PMCID: PMC9804713 DOI: 10.1111/ijlh.13935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Analysis of measurable residual disease (MRD) is increasingly being implemented in the clinical care of children and adults with acute myeloid leukaemia (AML). However, MRD methodologies differ and discordances in results lead to difficulties in interpretation and clinical decision-making. The aim of this study was to compare results from reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiparameter flow cytometry (MFC) in childhood AML and describe the kinetics of residual leukaemic burden during induction treatment. METHODS In 15 children who were treated in the NOPHO-AML 2004 trial and had fusion transcripts quantified by RT-qPCR, we compared MFC with RT-qPCR for analysis of MRD during (day 15) and after induction therapy. Eight children had RUNX1::RUNX1T1, one CBFB::MYH11 and six KMT2A::MLLT3. RESULTS When ≥0.1% was used as cut-off for positivity, 10 of 22 samples were discordant. The majority (9/10) were MRD positive with RT-qPCR but MRD negative with MFC, and several such cases showed the presence of mature myeloid cells. Fusion transcript expression was verified in mature cells as well as in CD34 expressing cells sorted from diagnostic samples. CONCLUSIONS Measurement with RT-qPCR suggests slower response kinetics than indicated from MFC, presumably due to the presence of mature cells expressing fusion transcript. The prognostic impact of early measurements with RT-qPCR remains to be determined.
Collapse
Affiliation(s)
- Lene Karlsson
- Department of PediatricsInstitute of Clinical Sciences, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Charlotte Guldborg Nyvold
- Haemodiagnostic Laboratory, Department of HaematologyAarhus University HospitalAarhusDenmark,Haematolology‐Pathology Research LaboratoryResearch Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University HospitalOdenseDenmark
| | - Anastasia Soboli
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden,Department of Laboratory MedicineInstitute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Pegah Johansson
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Lars Palmqvist
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden,Department of Laboratory MedicineInstitute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Anne Tierens
- Laboratory Medicine ProgramUniversity Health Network, Toronto General HospitalTorontoOntarioCanada
| | - Henrik Hasle
- Department of PediatricsAarhus University HospitalAarhusDenmark
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent MedicineRigshospitalet, University of CopenhagenCopenhagenDenmark
| | | | - Gitte Wulff Jürgensen
- Department of Clinical ImmunologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark,Department of ImmunologyOslo University HosptialOsloNorway
| | - Lene Hyldahl Ebbesen
- Haemodiagnostic Laboratory, Department of HaematologyAarhus University HospitalAarhusDenmark
| | - Jonas Abrahamsson
- Department of PediatricsInstitute of Clinical Sciences, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Linda Fogelstrand
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden,Department of Laboratory MedicineInstitute of Biomedicine, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022; 140:1345-1377. [PMID: 35797463 DOI: 10.1182/blood.2022016867] [Citation(s) in RCA: 1401] [Impact Index Per Article: 467.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The 2010 and 2017 editions of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults are widely recognized among physicians and investigators. There have been major advances in our understanding of AML, including new knowledge about the molecular pathogenesis of AML, leading to an update of the disease classification, technological progress in genomic diagnostics and assessment of measurable residual disease, and the successful development of new therapeutic agents, such as FLT3, IDH1, IDH2, and BCL2 inhibitors. These advances have prompted this update that includes a revised ELN genetic risk classification, revised response criteria, and treatment recommendations.
Collapse
|
13
|
Acute myelogenous leukemia – current recommendations and approaches in molecular-genetic assessment. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2022; 60:103-114. [DOI: 10.2478/rjim-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Acute myelogenous leukemia is a multi-step hematological malignancy, affecting function, growth, proliferation and cell cycle of myeloid precursors. Overall assessment of patients with the disease requires among everything else, a comprehensive investigation of the genetic basis through various methods such as cytogenetic and molecular-genetic ones. This clarification provides diagnostic refinement and carries prognostic and predictive value in respect of essential therapeutic choices.
With this review of the literature, we focus on summarizing the latest recommendations and preferred genetic methods, as well as on emphasizing on their general benefits and limitations. Since none of these methods is actually totipotent, we also aim to shed light over the often-difficult choice of appropriate genetic analyses.
Collapse
|
14
|
Simonsen AT, Meggendorfer M, Hansen MH, Nederby L, Koch S, Hansen M, Rosenberg CA, Kern W, Nyvold CG, Aggerholm A, Haferlach T, Ommen HB. Acute myeloid leukemia displaying clonal instability during treatment: implications for measurable residual disease assessments. Exp Hematol 2022; 107:51-59. [PMID: 35122908 DOI: 10.1016/j.exphem.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Next-generation sequencing (NGS) is an excellent methodology for measuring residual disease in acute myeloid leukemia and survey several sub-clones simultaneously. Little experience exists regarding interpretation of differential clonal responses to therapy. We hypothesize that differential clonal response could best be studied in patients with residual disease at the time of response evaluation. We performed targeted panel sequencing of paired diagnostic and first treatment evaluation samples in 69 patients with residual disease by morphology or measurable residual disease (MRD) level >0.02. Five patients displayed a rising clone at the time of evaluation. A representative case showed the rising clone present only in the putative healthy stem cells (CD45lowCD34+CD38-CD123-CD7-) and not in the putative leukemic stem cells (CD34+CD38-CD123+CD7+) cells, thus representing non-malignant clonal hematopoiesis. In contrast, 17/43 evaluable patients displayed a differential response in genes related to the leukemic clone. 26/43 patients displayed a clonal response that followed the overall treatment response. Patients with a differential response had a better event-free survival (EFS) as well as overall survival (OS) than those where the clonal response followed the overall response (log-rank test, EFS P=0.045, OS, P=0.050). This indicates that when following multiple leukemia-related clones the less chemotherapy-responsive clone could, in some cases, have lesser relapse potential, contrary to what is known when using standard mutation or fusion transcript-based disease surveillance. In conclusion, our results confirm the potential of refining MRD assessments by following multiple clones and warrants further studies into the precise interpretations of multi-clone NGS-MRD assays.
Collapse
Affiliation(s)
- Anita T Simonsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marcus H Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark; Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Line Nederby
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Sarah Koch
- Munich Leukemia Laboratory GmbH, Munich, Germany
| | - Maria Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Charlotte G Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Anni Aggerholm
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
15
|
Narlı Özdemir Z, Şahin U, Dalva K, Baltacı MA, Uslu A, Öztürk C, Cengiz Seval G, Toprak SK, Kurt Yüksel M, Topçuoğlu P, Arslan Ö, Özcan M, Beksaç M, İlhan O, Gürman G, Civriz Bozdağ S. Highlighting the Prognostic Importance of Measurable Residual Disease Among Acute Myeloid Leukemia Risk Factors. Turk J Haematol 2021; 38:111-118. [PMID: 33112099 PMCID: PMC8171203 DOI: 10.4274/tjh.galenos.2020.2020.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: The optimal timing of measurable residual disease (MRD) evaluation in acute myeloid leukemia (AML) patients has not been well defined yet. We aimed to investigate the impact of MRD in pre- and post-allogeneic hematopoietic stem cell transplantation (AHSCT) periods on prognostic parameters. Materials and Methods: Seventy-seven AML patients who underwent AHSCT in complete morphological remission were included. MRD analyses were performed by 10-color MFC and 10-4 was defined as positive. Relapse risk and survival outcomes were assessed based on pre- and post-AHSCT MRD positivity. Results: The median age of the patients was 46 (range: 18-71) years, and 41 (53.2%) were male while 36 (46.8%) were female. The median follow-up after AHSCT was 12.2 months (range: 0.2-73.0). The 2-year overall survival (OS) in the entire cohort was 37.0%, with a significant difference between patients who were MRD-negative and MRD-positive before AHSCT, estimated as 63.0% versus 16.0%, respectively (p=0.005). MRD positivity at +28 days after AHSCT was also associated with significantly inferior 2-year OS when compared to MRD negativity (p=0.03). The risk of relapse at 1 year was 2.4 times higher (95% confidence interval: 1.1-5.6; p=0.04) in the pre-AHSCT MRD-positive group when compared to the MRD-negative group regardless of other transplant-related factors, including pre-AHSCT disease status (i.e., complete remission 1 and 2). Event-free survival (EFS) was significantly shorter in patients who were pre-AHSCT MRD-positive (p=0.016). Post-AHSCT MRD positivity was also related to an increased relapse risk. OS and EFS were significantly inferior among MRD-positive patients at +28 days after AHSCT (p=0.03 and p=0.019). Conclusion: Our results indicate the importance of MRD before and after AHSCT independently of other factors.
Collapse
Affiliation(s)
| | - Uğur Şahin
- Medicana International Ankara Hospital, Clinic of Hematology, Ankara, Turkey
| | - Klara Dalva
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Mehmet Akif Baltacı
- Ankara University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Atilla Uslu
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Cemaleddin Öztürk
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | | | - Selami Koçak Toprak
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Meltem Kurt Yüksel
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Pervin Topçuoğlu
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Önder Arslan
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Muhit Özcan
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Meral Beksaç
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Osman İlhan
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Günhan Gürman
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Sinem Civriz Bozdağ
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| |
Collapse
|
16
|
Hoch REE, Cóser VM, Santos IS, de Souza APD. Lymphoid markers predict prognosis of pediatric and adolescent acute myeloid leukemia. Leuk Res 2021; 107:106603. [PMID: 33957373 DOI: 10.1016/j.leukres.2021.106603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Acute Myeloid Leukemia (AML) is a complex and highly aggressive disease. To characterize the prognostic factors of pediatric patients with AML relapse, a retrospective cohort study was performed to collect data from children and adolescents, at a hematological oncology reference center, over 11 years. We selected 51 cases of the disease, diagnosed and treated uniformly, divided into two groups: with complete remission (n = 33; 65 %) and with relapse (n = 18; 35 %). The groups were homogeneous concerning demographic characteristics and hematological parameters at diagnosis. AML M3 was the most common subtype (n = 19; 37 %) and was associated with a good prognosis. The highest rate of relapse was with AML M0 (n = 3 of 5 patients; 60 %). The most predominant gene mutation, FLT3-ITD, did not influence the prognosis in our study. The complete remission group presented a higher mean frequency of positive cells for the granulocytic marker CD13a at diagnosis. In cases with AML relapse, CD36, CD4, CD7, and CD22 were the most expressed markers. Increase incidence of recurrence was associated with CD7 (HR 1.035; p = 0.003), CD4 (HR 1.032, p = 0.001) and CD22 (HR 1.042; p = 0.049). Our results highlight the importance of analyzing immunophenotypic markers to help predict the outcome of AML in children and adolescents.
Collapse
Affiliation(s)
- Rosméri Elaine Essy Hoch
- Laboratory of Clinical and Experimental Immunology, Healthy and Life Science School Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Hematology-Oncology Unit, University Hospital of Santa Maria, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Virgínia Maria Cóser
- Hematology-Oncology Unit, University Hospital of Santa Maria, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Iná S Santos
- Post-Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil; Post-Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Healthy and Life Science School Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Skou AS, Juul-Dam KL, Ommen HB, Hasle H. Peripheral blood molecular measurable residual disease is sufficient to identify patients with acute myeloid leukaemia with imminent clinical relapse. Br J Haematol 2021; 195:310-327. [PMID: 33851435 DOI: 10.1111/bjh.17449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal molecular measurable residual disease (MRD) sampling after completion of therapy serves as a refined tool for identification of imminent relapse of acute myeloid leukaemia (AML) among patients in long-term haematological complete remission. Tracking of increasing quantitative polymerase chain reaction MRD before cytomorphological reappearance of blasts may instigate individual management decisions and has paved the way for development of pre-emptive treatment strategies to substantially delay or perhaps even revert leukaemic regrowth. Traditionally, MRD monitoring is performed using repeated bone marrow aspirations, albeit the current European LeukemiaNet MRD recommendations acknowledge the use of peripheral blood as an alternative source for MRD assessment. Persistent MRD positivity in the bone marrow despite continuous morphological remission is frequent in both core binding factor leukaemias and nucleophosmin 1-mutated AML. In contrast, monthly assessment of MRD in peripheral blood superiorly separates patients with imminent haematological relapse from long-term remitters and may allow pre-emptive therapy of AML relapse.
Collapse
Affiliation(s)
- Anne-Sofie Skou
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Jiang J, Li X, Mao F, Wu X, Chen Y. Small molecular fluorescence dyes for immuno cell analysis. Anal Biochem 2021; 614:114063. [PMID: 33306976 PMCID: PMC8043801 DOI: 10.1016/j.ab.2020.114063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
Many diseases, including cancers, AIDS, diabetes, asthma, Parkinson's, and lymphoma, are associated with the immune cell responses of patients suffering from them. Identifying the underlying immune response in such diseases is critical to correctly diagnose their root cause and determine the correct medications to target that root cause for personal therapy and immunotherapy. This work focuses on small molecular CF dyes to conjugate with antibodies, such as CD4 and CD19, for their application in flow cytometry. The CF dyes enable the expansion of flow cytometry reagent panels to support high dimensional flow cytometry analysis of the resulting emissions of 30-40 fluorescent colors, a record in flow cytometry. The CF dyes can be used along with existing flow cytometry dyes to provide a quick, accurate, and cost-effective method for the diagnosis and immunology treatment of diseases such as minimal residual disease (MRD) after cancer therapy. The CF dyes will also be an effective tool for the clinical studies of immune response to SARS-CoV-2 and the related vaccine development.
Collapse
Affiliation(s)
- Janine Jiang
- Department of Mechanical Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xue Li
- Biotium Inc., 46117 Landing Pkwy, Fremont, CA, 94538, USA
| | - Fei Mao
- Biotium Inc., 46117 Landing Pkwy, Fremont, CA, 94538, USA
| | - Xingyong Wu
- Cytek Biosciences Inc., 46107 Landing Pkwy, Fremont, CA, 94538, USA
| | - Yong Chen
- Department of Mechanical Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Using minimal (measurable) residual disease assessments to guide decision-making for timing of allogeneic transplantation in acute myeloid leukemia. Curr Opin Hematol 2020; 26:413-420. [PMID: 31503019 DOI: 10.1097/moh.0000000000000543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The current review aims to highlight recent and important developments in the detection and value of minimal (measurable) residual disease (MRD) testing in patients with acute myeloid leukemia (AML) and the impact on the timing of allogeneic hematopoietic cell transplantation. RECENT FINDINGS The European LeukemiaNet MRD Working Party recently published guidelines to help standardize testing, utilizing flow cytometry and molecular techniques. The timing of MRD assessments, choice of assay and cutoff of for reporting positive results are all important. Patients known to be MRD-positive pretransplantation have a poor prognosis and consideration should be given to selecting a myeloablative regimen over a reduced intensity regimen (if appropriate) and offering posttransplantation maintenance therapy. SUMMARY It may be best to think of MRD as a dynamic variable, where a rising MRD result is more specific and highly predictive of relapse. It is unclear how MRD results should impact the timing of allogeneic hematopoietic cell transplantation, if at all. There are currently no published randomized studies to help guide the practitioner in this situation, hence decision-making should be individualized.
Collapse
|
20
|
Pettersson L, Chen Y, George AM, Rigo R, Lazarevic V, Juliusson G, Saal LH, Ehinger M. Subclonal patterns in follow-up of acute myeloid leukemia combining whole exome sequencing and ultrasensitive IBSAFE digital droplet analysis. Leuk Lymphoma 2020; 61:2168-2179. [PMID: 32425124 DOI: 10.1080/10428194.2020.1755855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied mutation kinetics in ten relapsing and four non-relapsing patients with acute myeloid leukemia by whole exome sequencing at diagnosis to identify leukemia-specific mutations and monitored selected mutations at multiple time-points using IBSAFE droplet digital PCR. Five to nine selected mutations could identify and track leukemic clones prior to clinical relapse in 10/10 patients at the time-points where measurable residual disease was negative by multicolor flow cytometry. In the non-relapsing patients, the load of mutations gradually declined in response to different therapeutic strategies. Three distinct patterns of relapse were observed: (1) one or more different clones with all monitored mutations reappearing at relapse; (2) one or more separate clones of which one prevailed at relapse; and (3) persistent clonal hematopoiesis with high variant allele frequency and most mutations present at relapse. These pilot results demonstrate that IBSAFE analyses detect leukemic clones missed by flow cytometry with possible clinical implications.HighlightsThe IBSAFE ddPCR MRD method seems applicable on virtually all newly diagnosed AML patients and was more sensitive than flow cytometry.Monitoring a few mutations captured the kinetics of the evolving recurrent leukemia.NPM1-mutation alone may not be a reliable MRD-marker.
Collapse
Affiliation(s)
- Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| | - Yilun Chen
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anthony M George
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert Rigo
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden.,Department of Laboratory Medicine, Stem Cell Center, Lund University, Skane University Hospital, Lund, Sweden
| | - Lao H Saal
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Mats Ehinger
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
21
|
Cloos J, Ossenkoppele GJ, Dillon R. Minimal residual disease and stem cell transplantation outcomes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:617-625. [PMID: 31808862 PMCID: PMC6913494 DOI: 10.1182/hematology.2019000006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Risk classification and tailoring of treatment are essential for improving outcome for patients with acute myeloid leukemia or high-risk myelodysplastic syndrome. Both patient and leukemia-specific characteristics assessed using morphology, cytogenetics, molecular biology, and multicolor flow cytometry are relevant at diagnosis and during induction, consolidation, and maintenance phases of the treatment. In particular, minimal residual disease (MRD) during therapy has potential as a prognostic factor of outcome, determination of response to therapy, and direction of targeted therapy. MRD can be determined by cell surface markers using multicolor flow cytometry, whereas leukemia-specific translocations and mutations are measured using polymerase chain reaction-based techniques and recently using next-generation sequencing. All these methods of MRD detection have their (dis)advantages, and all need to be standardized, prospectively validated, and improved to be used for uniform clinical decision making and a potential surrogate end point for clinical trials testing novel treatment strategies. Important issues to be solved are time point of MRD measurement and threshold for MRD positivity. MRD is used for stem cell transplantation (SCT) selection in the large subgroup of patients with an intermediate risk profile. Patients who are MRD positive will benefit from allo-SCT. However, MRD-negative patients have a better chance of survival after SCT. Therefore, it is debated whether MRD-positive patients should be extensively treated to become MRD negative before SCT. Either way, accurate monitoring of potential residual or upcoming disease is mandatory. Tailoring therapy according to MRD monitoring may be the most successful way to provide appropriate specifically targeted, personalized treatment.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VUMC, Amsterdam, The Netherlands; and
| | - Gert J Ossenkoppele
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VUMC, Amsterdam, The Netherlands; and
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London, United Kingdom
| |
Collapse
|
22
|
Freeman SD, Hourigan CS. MRD evaluation of AML in clinical practice: are we there yet? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:557-569. [PMID: 31808906 PMCID: PMC6913462 DOI: 10.1182/hematology.2019000060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MRD technologies increase our ability to measure response in acute myeloid leukemia (AML) beyond the limitations of morphology. When applied in clinical trials, molecular and immunophenotypic MRD assays have improved prognostic precision, providing a strong rationale for their use to guide treatment, as well as to measure its effectiveness. Initiatives such as those from the European Leukemia Network now provide a collaborative knowledge-based framework for selection and implementation of MRD assays most appropriate for defined genetic subgroups. For patients with mutated-NPM1 AML, quantitative polymerase chain reaction (qPCR) monitoring of mutated-NPM1 transcripts postinduction and sequentially after treatment has emerged as a highly sensitive and specific tool to predict relapse and potential benefit from allogeneic transplant. Flow cytometric MRD after induction is prognostic across genetic risk groups and can identify those patients in the wild-type NPM1 intermediate AML subgroup with a very high risk for relapse. In parallel with these data, advances in genetic profiling have extended understanding of the etiology and the complex dynamic clonal nature of AML, as well as created the opportunity for MRD monitoring using next-generation sequencing (NGS). NGS AML MRD detection can stratify outcomes and has potential utility in the peri-allogeneic transplant setting. However, there remain challenges inherent in the NGS approach of multiplex quantification of mutations to track AML MRD. Although further development of this methodology, together with orthogonal testing, will clarify its relevance for routine clinical use, particularly for patients lacking a qPCR genetic target, established validated MRD assays can already provide information to direct clinical practice.
Collapse
Affiliation(s)
- Sylvie D Freeman
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Yun JW, Yoon J, Jung CW, Lee KO, Kim JW, Kim SH, Kim HJ. Next-generation sequencing reveals unique combination of mutations in cis of CSF3R in atypical chronic myeloid leukemia. J Clin Lab Anal 2019; 34:e23064. [PMID: 31692115 PMCID: PMC7031557 DOI: 10.1002/jcla.23064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background Atypical chronic myeloid leukemia (aCML) is a hematologic disorder characterized by leukocytosis with increased dysplastic neutrophils and their precursors. In CSF3R gene, the activation mutation including T618I is frequently reported in aCML but is rarely accompanied by truncation mutations. Herein, we report a unique aCML patient with two CSF3R mutations (T618I and Y779*) in the same DNA strand. Methods High‐coverage next‐generation sequencing for 40 genes related with myeloid leukemia was performed. Sanger sequencing was performed to confirm CSF3R mutations. To confirm whether two CSF3R mutations are in cis or not, TA cloning was used. Clinical information and bone marrow pathology were reviewed by two hematopathologists. Results In the patient diagnosed with aCML in bone marrow study, two CSF3R mutations, (T618I and Y779*) a SETBP1 mutation (G870S) and an U2AF1 mutation (Q157P), were identified by high‐coverage next‐generation sequencing. The two CSF3R mutations were confirmed to be located in the same DNA strand by TA cloning, indicating that the two mutations are harbored in one malignant clone. The SETBP1 mutation is known to be related with poor prognosis in aCML. Likewise, the patient was refractory to hydroxyurea and showed disease progression. Additionally, we discussed the potential therapeutic targets by reviewing the molecular profile of the patient. Conclusion We believe that the accurate diagnosis and maximum therapeutic chance could be achieved by profiling the mutations and their characteristics.
Collapse
Affiliation(s)
- Jae Won Yun
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Yoon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki-O Lee
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
|
25
|
Next-generation sequencing-based minimal residual disease monitoring in patients receiving allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia or myelodysplastic syndrome. Curr Opin Hematol 2019; 25:425-432. [PMID: 30281033 DOI: 10.1097/moh.0000000000000464] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The monitoring of minimal residual disease (MRD) has important clinical implications in both the pre and postallogeneic stem cell transplant (SCT) setting in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Next-generation sequencing (NGS) is a rapidly improving technology whose application to the monitoring of MRD is an active area of research. We aim to describe existing methods of MRD in AML and MDS, with a focus on the utility of NGS in patients undergoing SCT. RECENT FINDINGS Flow cytometry and quantitative PCR have been recommended by the European Leukemia Net as the preferred methods of MRD in AML and MDS, but these methods have limitations in cases without a disease-defining phenotype and genotype. Clinical trials are currently ongoing to assess the use of NGS in the setting of SCT for MDS and AML. Few studies have so far assessed the optimal method of MRD monitoring in the posttransplant setting. SUMMARY The optimal method for the monitoring of MRD in AML and MDS both pre and post transplant may require more than one technology. NGS holds great promise for the monitoring of MRD, with prospective trials currently ongoing to evaluate its efficacy in this regard.
Collapse
|
26
|
Schuurhuis GJ, Ossenkoppele GJ, Kelder A, Cloos J. Measurable residual disease in acute myeloid leukemia using flow cytometry: approaches for harmonization/standardization. Expert Rev Hematol 2019; 11:921-935. [PMID: 30466339 DOI: 10.1080/17474086.2018.1549479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Measurable residual disease (MRD) in acute myeloid leukemia (AML) is a rapidly evolving area with many institutes embarking on it, both in academic and pharmaceutical settings. However, there is a multitude of approaches to design, perform, and report flow cytometric MRD. Together with the long-term experience needed, this makes flow cytometric MRD in AML nonstandardized and time-consuming. Areas covered: This paper briefly summarizes critical issues, like sample preparation and transport, markers and fluorochromes of choice, but in particular focuses on the main issues, which includes specificity and sensitivity, hereby providing a new model that may circumvent the main disadvantages of the present approaches. New approaches that may add to the value of flow cytometric MRD includes assessment of leukemia stem cells, MRD in peripheral blood, and approaches to use multidimensional image analysis. Expert commentary: MRD in AML requires standardization/harmonization on many aspects, for which the present paper offers possible guidelines.
Collapse
Affiliation(s)
- Gerrit J Schuurhuis
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| | - Gert J Ossenkoppele
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| | - Angèle Kelder
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| | - Jacqueline Cloos
- a Department of Hematology , VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
27
|
Kurtz DM, Esfahani MS, Scherer F, Soo J, Jin MC, Liu CL, Newman AM, Dührsen U, Hüttmann A, Casasnovas O, Westin JR, Ritgen M, Böttcher S, Langerak AW, Roschewski M, Wilson WH, Gaidano G, Rossi D, Bahlo J, Hallek M, Tibshirani R, Diehn M, Alizadeh AA. Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction. Cell 2019; 178:699-713.e19. [PMID: 31280963 DOI: 10.1016/j.cell.2019.06.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Accurate prediction of long-term outcomes remains a challenge in the care of cancer patients. Due to the difficulty of serial tumor sampling, previous prediction tools have focused on pretreatment factors. However, emerging non-invasive diagnostics have increased opportunities for serial tumor assessments. We describe the Continuous Individualized Risk Index (CIRI), a method to dynamically determine outcome probabilities for individual patients utilizing risk predictors acquired over time. Similar to "win probability" models in other fields, CIRI provides a real-time probability by integrating risk assessments throughout a patient's course. Applying CIRI to patients with diffuse large B cell lymphoma, we demonstrate improved outcome prediction compared to conventional risk models. We demonstrate CIRI's broader utility in analogous models of chronic lymphocytic leukemia and breast adenocarcinoma and perform a proof-of-concept analysis demonstrating how CIRI could be used to develop predictive biomarkers for therapy selection. We envision that dynamic risk assessment will facilitate personalized medicine and enable innovative therapeutic paradigms.
Collapse
Affiliation(s)
- David M Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mohammad S Esfahani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Scherer
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joanne Soo
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael C Jin
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Chih Long Liu
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Aaron M Newman
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Andreas Hüttmann
- Department of Hematology, University Hospital Essen, Essen, Germany
| | - Olivier Casasnovas
- Department of Hematology, Hopital F. Mitterrand, CHU Dijon and INSERM 1231, Dijon, France
| | - Jason R Westin
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthais Ritgen
- Department II of Internal Medicine, Campus Kiel, University of Schleswig-Holstein, Kiel, Germany
| | - Sebastian Böttcher
- Department III of Internal Medicine, University Hospital Rostock, Rostock, Germany
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, the Netherlands
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Jasmin Bahlo
- German CLL Study Group, Department I of Internal Medicine and Center of Integrated Oncology Cologne Bonn, University Hospital of Cologne, Cologne, Germany
| | - Michael Hallek
- German CLL Study Group, Department I of Internal Medicine and Center of Integrated Oncology Cologne Bonn, University Hospital of Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Related Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Robert Tibshirani
- Department Statistics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Maximilian Diehn
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Liu H, Wang X, Zhang H, Wang J, Chen Y, Ma T, Shi J, Kang Y, Xi J, Wang M, Zhang M. Dynamic changes in the level of WT1 as an MRD marker to predict the therapeutic outcome of patients with AML with and without allogeneic stem cell transplantation. Mol Med Rep 2019; 20:2426-2432. [PMID: 31257540 DOI: 10.3892/mmr.2019.10440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/14/2019] [Indexed: 11/06/2022] Open
Abstract
Monitoring minimal residue disease (MRD) is an effective approach to evaluate the response to chemotherapy, and it is used to select the ideal therapeutic strategy and to predict the recurrence during therapy for hematological disorders. The Wilm's tumor 1 (WT1) gene, which is highly expressed in >80% of patients with acute myeloid leukemia (AML) and its increased expression level may cause poor clinical outcomes, is a potential MRD marker of hematological neoplasms. In the present study, the expression levels of WT1 and other molecular markers were retrospectively analyzed by reverse transcription‑quantitative PCR in 195 patients with AML. The expression level of WT1 was significantly lower in patients with remission compared with patients with early‑stage and recurrent AML. Moreover, WT1 expression was significantly decreased in patients with RUNX family transcription factor 1‑RUNX1 translocation partner 1 fusion, but higher in patients with promyelocytic leukemia‑retinoic acid receptor α fusion. WT1 expression was significantly reduced during remission. In patients with AML who underwent allogeneic hematopoietic stem cell transplantation (allo‑HSCT), the mortality rate 2 years after allo‑HSCT was significantly lower in patients with low expression level of WT1 compared with subjects presenting high expression level of WT1. Collectively, the upregulation of the expression level of WT1 in combination with the identification of other genetic abnormalities may be used as MRD markers of hematological neoplasms.
Collapse
Affiliation(s)
- Huasheng Liu
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoning Wang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hailing Zhang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jincheng Wang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Chen
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tiantian Ma
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Shi
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ya Kang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jieying Xi
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mengchang Wang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mei Zhang
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
Patkar N, Kakirde C, Bhanshe P, Joshi S, Chaudhary S, Badrinath Y, Ghoghale S, Deshpande N, Kadechkar S, Chatterjee G, Kannan S, Shetty D, Gokarn A, Punatkar S, Bonda A, Nayak L, Jain H, Bagal B, Menon H, Sengar M, Khizer SH, Khattry N, Tembhare P, Gujral S, Subramanian P. Utility of Immunophenotypic Measurable Residual Disease in Adult Acute Myeloid Leukemia-Real-World Context. Front Oncol 2019; 9:450. [PMID: 31263671 PMCID: PMC6584962 DOI: 10.3389/fonc.2019.00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: One of the mainstays of chemotherapy in acute myeloid leukemia (AML) is induction with a goal to achieve morphological complete remission (CR). However, not all patients by this remission criterion achieve long-term remission and a subset relapse. This relapse is explained by the presence of measurable residual disease (MRD). Methods: We accrued 451 consecutive patients of adult AML (from March 2012 to December 2017) after informed consent. All patients received standard chemotherapy. MRD testing was done at post-induction and, if feasible, post-consolidation using 8- and later 10-color FCM. Analysis of MRD was done using a combination of difference from normal and leukemia-associated immunophenotype approaches. Conventional karyotyping and FISH were done as per standard recommendations, and patients were classified into favorable, intermediate, and poor cytogenetic risk groups. The presence of FLT3-ITD, NPM1, and CEBPA mutations was detected by a fragment length analysis-based assay. Results: As compared to Western data, our cohort of patients was younger with a median age of 35 years. There were 62 induction deaths in this cohort (13.7%), and 77 patients (17.1%) were not in morphological remission. The median follow-up was 26.0 months. Poor-risk cytogenetics and the presence of FLT3-ITD were significantly associated with inferior outcome. The presence of post-induction MRD assessment was significantly associated with adverse outcome with respect to OS (p = 0.01) as well as RFS (p = 0.004). Among established genetic subgroups, detection of MRD in intermediate cytogenetic and NPM1 mutated groups was also highly predictive of inferior outcome. On multivariate analysis, immunophenotypic MRD at the end of induction and FLT3-ITD emerged as independent prognostic factors predictive for outcome. Conclusion: This is the first data from a resource-constrained real-world setting demonstrating the utility of AML MRD as well as long-term outcome of AML. Our data is in agreement with other studies that determination of MRD is extremely important in predicting outcome. AML MRD is a very useful guide for guiding post-remission strategies in AML and should be incorporated into routine treatment algorithms.
Collapse
Affiliation(s)
- Nikhil Patkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Chinmayee Kakirde
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Swapnali Joshi
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Shruti Chaudhary
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | | | - Sitaram Ghoghale
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Nilesh Deshpande
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Shraddha Kadechkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Gaurav Chatterjee
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Sadhana Kannan
- Biostatistics, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Dhanalaxmi Shetty
- Department of Cytogenetics, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Anant Gokarn
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sachin Punatkar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Avinash Bonda
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Lingaraj Nayak
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hasmukh Jain
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Bhausaheb Bagal
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Hari Menon
- Haemato-Oncology, CyteCare Cancer Hospital, Bangalore, India
| | - Manju Sengar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Syed Hasan Khizer
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Navin Khattry
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Prashant Tembhare
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | - Sumeet Gujral
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Mumbai, India
| | | |
Collapse
|
30
|
Ossenkoppele G, Schuurhuis GJ, van de Loosdrecht A, Cloos J. Can we incorporate MRD assessment into clinical practice in AML? Best Pract Res Clin Haematol 2019; 32:186-191. [DOI: 10.1016/j.beha.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
|
31
|
Heuser M, Mina A, Stein EM, Altman JK. How Precision Medicine Is Changing Acute Myeloid Leukemia Therapy. Am Soc Clin Oncol Educ Book 2019; 39:411-420. [PMID: 31099617 DOI: 10.1200/edbk_238687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pretreatment somatic mutations influence acute myeloid leukemia (AML) pathogenesis and responses to chemotherapy. Integration of cytogenetic abnormalities and molecular mutations, co-occurring and in isolation, have resulted in a more refined prognostic assessment. In addition, research performed over the last few years has led to the development of novel therapies and new drug approvals in patients with both newly diagnosed and relapsed/refractory (R/R) AML. Here we discuss the use of these newly approved therapies. Advances in AML have also occurred through development of better tools to assess response to treatment. Both multiparameter flow cytometry and polymerase chain reaction can be used to assess for the presence or absence of measurable residual disease (MRD) and increase the sensitivity of response assessment. The role of MRD assessment is gaining relevance and its integration in clinical trials and treatment decision making will be explored in the second half of this article.
Collapse
Affiliation(s)
| | | | - Eytan M Stein
- 3 Memorial Sloan-Kettering Cancer Center and Weil Cornell Medical College, New York, NY
| | | |
Collapse
|
32
|
Shumilov E, Flach J, Joncourt R, Porret N, Wiedemann G, Angelillo‐Scherrer A, Trümper L, Fiedler M, Jeker B, Amstutz U, Pabst T, Bacher U. Critical evaluation of current molecular MRD strategies including NGS for the management of AML patients with multiple mutations. Hematol Oncol 2019; 37:319-322. [DOI: 10.1002/hon.2603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Evgenii Shumilov
- Department of Hematology and Medical OncologyUniversity Medicine Göttingen (UMG) Göttingen Germany
| | - Johanna Flach
- Department of Hematology and OncologyMedical Faculty Mannheim of the Heidelberg University Mannheim Germany
| | - Raphael Joncourt
- University Department of Hematology and Central Hematology LaboratoryInselspital, Bern University Hospital Bern Switzerland
| | - Naomi Porret
- University Department of Hematology and Central Hematology LaboratoryInselspital, Bern University Hospital Bern Switzerland
| | - Gertrud Wiedemann
- University Department of Hematology and Central Hematology LaboratoryInselspital, Bern University Hospital Bern Switzerland
| | - Anne Angelillo‐Scherrer
- University Department of Hematology and Central Hematology LaboratoryInselspital, Bern University Hospital Bern Switzerland
| | - Lorenz Trümper
- Department of Hematology and Medical OncologyUniversity Medicine Göttingen (UMG) Göttingen Germany
| | - Martin Fiedler
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical ChemistryInselspital, Bern University Hospital Bern Switzerland
| | - Barbara Jeker
- Department of Medical OncologyInselspital, Bern University Hospital Bern Switzerland
| | - Ursula Amstutz
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical ChemistryInselspital, Bern University Hospital Bern Switzerland
| | - Thomas Pabst
- Department of Medical OncologyInselspital, Bern University Hospital Bern Switzerland
| | - Ulrike Bacher
- University Department of Hematology and Central Hematology LaboratoryInselspital, Bern University Hospital Bern Switzerland
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical ChemistryInselspital, Bern University Hospital Bern Switzerland
| |
Collapse
|
33
|
The leukemia strikes back: a review of pathogenesis and treatment of secondary AML. Ann Hematol 2019; 98:541-559. [PMID: 30666431 DOI: 10.1007/s00277-019-03606-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Secondary AML is associated with a disproportionately poor prognosis, consistently shown to exhibit inferior response rates, event-free survival, and overall survival in comparison with de novo AML. Secondary AML may arise from the evolution of an antecedent hematologic disorder, or it may arise as a complication of prior cytotoxic chemotherapy or radiation therapy in the case of therapy-related AML. Because of the high frequency of poor-risk cytogenetics and high-risk molecular features, such as alterations in TP53, leukemic clones are often inherently chemoresistant. Standard of care induction had long remained conventional 7 + 3 until its reformulation as CPX-351, recently FDA approved specifically for secondary AML. However, recent data also suggests relatively favorable outcomes with regimens based on high-dose cytarabine or hypomethylating agents. With several investigational agents being studied, the therapeutic landscape becomes even more complex, and the treatment approach involves patient-specific, disease-specific, and therapy-specific considerations.
Collapse
|
34
|
Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, Fiedler M, Novak U, Amstutz U, Pabst T. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J 2018; 8:113. [PMID: 30420667 PMCID: PMC6232163 DOI: 10.1038/s41408-018-0148-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Given the vast phenotypic and genetic heterogeneity of acute and chronic myeloid malignancies, hematologists have eagerly awaited the introduction of next-generation sequencing (NGS) into the routine diagnostic armamentarium to enable a more differentiated disease classification, risk stratification, and improved therapeutic decisions. At present, an increasing number of hematologic laboratories are in the process of integrating NGS procedures into the diagnostic algorithms of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs). Inevitably accompanying such developments, physicians and molecular biologists are facing unexpected challenges regarding the interpretation and implementation of molecular genetic results derived from NGS in myeloid malignancies. This article summarizes typical challenges that may arise in the context of NGS-based analyses at diagnosis and during follow-up of myeloid malignancies.
Collapse
Affiliation(s)
- Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Naomi Porret
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Joncourt
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Fiedler
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
35
|
Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood 2018; 132:1584-1592. [PMID: 30150206 DOI: 10.1182/blood-2018-05-849059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
To study the prognostic relevance of rare genetic aberrations in acute myeloid leukemia (AML), such as t(16;21), international collaboration is required. Two different types of t(16;21) translocations can be distinguished: t(16;21)(p11;q22), resulting in the FUS-ERG fusion gene; and t(16;21)(q24;q22), resulting in RUNX1-core binding factor (CBFA2T3). We collected data on clinical and biological characteristics of 54 pediatric AML cases with t(16;21) rearrangements from 14 international collaborative study groups participating in the international Berlin-Frankfurt-Münster (I-BFM) AML study group. The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort. RUNX1-CBFA2T3 (n = 23) had significantly lower median white blood cell count (12.5 × 109/L, P = .03) compared with the reference cohort. FUS-ERG rearranged AML (n = 31) had no predominant French-American-British (FAB) type, whereas 76% of RUNX1-CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the reference cohort (P = .004). Four-year event-free survival (EFS) of patients with FUS-ERG was 7% (standard error [SE] = 5%), significantly lower compared with the reference cohort (51%, SE = 1%, P < .001). Four-year EFS of RUNX1-CBFA2T3 was 77% (SE = 8%, P = .06), significantly higher compared with the reference cohort. Cumulative incidence of relapse was 74% (SE = 8%) in FUS-ERG, 0% (SE = 0%) in RUNX1-CBFA2T3, compared with 32% (SE = 1%) in the reference cohort (P < .001). Multivariate analysis identified both FUS-ERG and RUNX1-CBFA2T3 as independent risk factors with hazard ratios of 1.9 (P < .0001) and 0.3 (P = .025), respectively. These results describe 2 clinically relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, patients with RUNX1-CBFA2T3 rearranged AML may benefit from stratification in the standard risk treatment, whereas patients with FUS-ERG rearranged AML should be considered high-risk.
Collapse
|
36
|
Clonal heterogeneity of FLT3-ITD detected by high-throughput amplicon sequencing correlates with adverse prognosis in acute myeloid leukemia. Oncotarget 2018; 9:30128-30145. [PMID: 30046393 PMCID: PMC6059024 DOI: 10.18632/oncotarget.25729] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
In acute myeloid leukemia (AML), internal tandem duplications (ITDs) of FLT3 are frequent mutations associated with unfavorable prognosis. At diagnosis, the FLT3-ITD status is routinely assessed by fragment analysis, providing information about the length but not the position and sequence of the ITD. To overcome this limitation, we performed cDNA-based high-throughput amplicon sequencing (HTAS) in 250 FLT3-ITD positive AML patients, treated on German AML Cooperative Group (AMLCG) trials. FLT3-ITD status determined by routine diagnostics was confirmed by HTAS in 242 out of 250 patients (97%). The total number of ITDs detected by HTAS was higher than in routine diagnostics (n = 312 vs. n = 274). In particular, HTAS detected a higher number of ITDs per patient compared to fragment analysis, indicating higher sensitivity for subclonal ITDs. Patients with more than one ITD according to HTAS had a significantly shorter overall and relapse free survival. There was a close correlation between FLT3-ITD mRNA levels in fragment analysis and variant allele frequency in HTAS. However, the abundance of long ITDs (≥75nt) was underestimated by HTAS, as the size of the ITD affected the mappability of the corresponding sequence reads. In summary, this study demonstrates that HTAS is a feasible approach for FLT3-ITD detection in AML patients, delivering length, position, sequence and mutational burden of this alteration in a single assay with high sensitivity. Our findings provide insights into the clonal architecture of FLT3-ITD positive AML and have clinical implications.
Collapse
|
37
|
Buccisano F, Hourigan CS, Walter RB. The Prognostic Significance of Measurable ("Minimal") Residual Disease in Acute Myeloid Leukemia. Curr Hematol Malig Rep 2018; 12:547-556. [PMID: 29027628 DOI: 10.1007/s11899-017-0420-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review was to evaluate recent literature on detection methodologies for, and prognostic significance of, measurable ("minimal") residual disease (MRD) in acute myeloid leukemia (AML). RECENT FINDINGS There is no "one-fits-all" approach to MRD testing in AML. Most exploited to date are methods relying on immunophenotypic aberrancies (identified via multiparameter flow cytometry) or genetic abnormalities (identified via PCR-based assays). Current methods have important shortcomings, including the lack of assay platform standardization/harmonization across laboratories. In parallel to refinements of existing technologies and data analysis/interpretation, new methodologies (e.g., next-generation sequencing-based assays) are emerging that eventually may complement or replace existing ones. This dynamic evolution of MRD testing has complicated comparisons between individual studies. Nonetheless, an ever-growing body of data demonstrates that a positive MRD test at various time points throughout chemotherapy and hematopoietic cell transplantation identifies patients at particularly high risks of disease recurrence and short survival even after adjustment for other risk factors.
Collapse
Affiliation(s)
- Francesco Buccisano
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Selim AG, Moore AS. Molecular Minimal Residual Disease Monitoring in Acute Myeloid Leukemia. J Mol Diagn 2018; 20:389-397. [DOI: 10.1016/j.jmoldx.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
|
39
|
Buccisano F, Dillon R, Freeman SD, Venditti A. Role of Minimal (Measurable) Residual Disease Assessment in Older Patients with Acute Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10070215. [PMID: 29949858 PMCID: PMC6070940 DOI: 10.3390/cancers10070215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Minimal (or measurable) residual (MRD) disease provides a biomarker of response quality for which there is robust validation in the context of modern intensive treatment for younger patients with Acute Myeloid Leukemia (AML). Nevertheless, it remains a relatively unexplored area in older patients with AML. The lack of progress in this field can be attributed to two main reasons. First, physicians have a general reluctance to submitting older adults to intensive chemotherapy due to their frailty and to the unfavourable biological disease profile predicting a poor outcome following conventional chemotherapy. Second, with the increasing use of low-intensity therapies (i.e., hypomethylating agents) differing from conventional drugs in mechanism of action and dynamics of response, there has been concomitant skepticism that these schedules can produce deep hematological responses. Furthermore, age dependent differences in disease biology also contribute to uncertainty on the prognostic/predictive impact in older adults of certain genetic abnormalities including those validated for MRD monitoring in younger patients. This review examines the evidence for the role of MRD as a prognosticator in older AML, together with the possible pitfalls of MRD evaluation in older age.
Collapse
Affiliation(s)
- Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College, London SE1 9RT, UK.
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
40
|
Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv 2018; 2:1356-1366. [PMID: 29895626 PMCID: PMC5998930 DOI: 10.1182/bloodadvances.2018016378] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
Mounting evidence indicates that the presence of measurable ("minimal") residual disease (MRD), defined as posttherapy persistence of leukemic cells at levels below morphologic detection, is a strong, independent prognostic marker of increased risk of relapse and shorter survival in patients with acute myeloid leukemia (AML) and can be used to refine risk-stratification and treatment response assessment. Because of the association between MRD and relapse risk, it has been postulated that testing for MRD posttreatment may help guide postremission treatment strategies by identifying high-risk patients who might benefit from preemptive treatment. This strategy, which remains to be formally tested, may be particularly attractive with availability of agents that could be used to specifically eradicate MRD. This review examines current methods of MRD detection, challenges to adopting MRD testing in routine clinical practice, and recent recommendations for MRD testing in AML issued by the European LeukemiaNet MRD Working Party. Inclusion of MRD as an end point in future randomized clinical trials will provide the data needed to move toward standardizing MRD assays and may provide a more accurate assessment of therapeutic efficacy than current morphologic measures.
Collapse
|
41
|
Kriegsmann K, Löffler H, Eckstein V, Schulz R, Kräker S, Braun U, Luft T, Hegenbart U, Schönland S, Dreger P, Krämer A, Ho AD, Müller-Tidow C, Hundemer M. CD7 is expressed on a subset of normal CD34-positive myeloid precursors. Eur J Haematol 2018; 101:318-325. [PMID: 29797671 DOI: 10.1111/ejh.13100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To improve monitoring of myeloid neoplasms by flow cytometry-based minimal residual disease (MRD) analysis, we analyzed the significance of leukemia-associated immunophenotype (LAIP) markers in 44 patients. METHODS In a pilot study cohort, peripheral blood or bone marrow samples from 13 patients with myeloid neoplasms and one case of B lymphoblastic leukemia in complete hematologic remission after allogeneic bone marrow or stem cell transplantation were subjected to selection for leukemia-specific phenotypes by fluorescence-activated cell sorting using individual marker combinations, followed by PCR-based chimerism analysis. RESULTS The feasibility of this method could be demonstrated, with selection being successful in 12 cases, including two cases where mixed chimerism was found exclusively in sorted cells. Interestingly, four specimens displayed full donor chimerism in cells expressing the presumably aberrant combination CD34+ /CD7+ . Further analyses, including assessment of an independent cohort of 25 patients not affected by neoplastic bone marrow infiltration, revealed that normal myeloid precursors usually include a population coexpressing CD34, CD13, CD33, and CD7. CONCLUSION We conclude that the combination CD34+ /CD7+ might not be suitable as an LAIP for MRD diagnostics and that a subset of normal myeloid precursors in the bone marrow expresses CD7.
Collapse
Affiliation(s)
- Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Harald Löffler
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Volker Eckstein
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Renate Schulz
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Sandra Kräker
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Ute Braun
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Alwin Krämer
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Shumilov E, Flach J, Kohlmann A, Banz Y, Bonadies N, Fiedler M, Pabst T, Bacher U. Current status and trends in the diagnostics of AML and MDS. Blood Rev 2018; 32:508-519. [PMID: 29728319 DOI: 10.1016/j.blre.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Diagnostics of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) have recently been experiencing extensive modifications regarding the incorporation of next-generation sequencing (NGS) strategies into established diagnostic algorithms, classification and risk stratification systems, and minimal residual disease (MRD) detection. Considering the increasing arsenal of targeted therapies (e.g. FLT3 or IDH1/IDH2 inhibitors) for AML, timely and comprehensive molecular mutation screening has arrived in daily practice. Next-generation flow strategies allow for immunophenotypic minimal residual disease (MRD) monitoring with very high sensitivity. At the same time, standard diagnostic tools such as cytomorphology or conventional cytogenetics remain cornerstones for the diagnostic workup of myeloid malignancies. Herein, we summarize the most recent advances and new trends for the diagnostics of AML and MDS, discuss the difficulties, which accompany the integration of these new methods and their results into daily routine, and aim to define the role hemato-oncologists may play in this new diagnostic era.
Collapse
Affiliation(s)
- Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Kohlmann
- Precision Medicine and Genomics, Innovative Medicines and Early Development, AstraZeneca, Cambridge, UK
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, Inselspital, Bern, Bern University Hospital, University of Bern, Switzerland
| | - Martin Fiedler
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Ulrike Bacher
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
43
|
Ferret Y, Boissel N, Helevaut N, Madic J, Nibourel O, Marceau-Renaut A, Bucci M, Geffroy S, Celli-Lebras K, Castaigne S, Thomas X, Terré C, Dombret H, Preudhomme C, Renneville A. Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group. Haematologica 2018; 103:822-829. [PMID: 29472349 PMCID: PMC5927984 DOI: 10.3324/haematol.2017.183525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Assessment of minimal residual disease has emerged as a powerful prognostic factor in acute myeloid leukemia. In this study, we investigated the potential of IDH1/2 mutations as targets for minimal residual disease assessment in acute myeloid leukemia, since these mutations collectively occur in 15–20% of cases of acute myeloid leukemia and now represent druggable targets. We employed droplet digital polymerase chain reaction assays to quantify IDH1R132, IDH2R140, and IDH2R172 mutations on genomic DNA in 322 samples from 103 adult patients with primary IDH1/2 mutant acute myeloid leukemia and enrolled on Acute Leukemia French Association (ALFA) - 0701 or -0702 clinical trials. The median IDH1/2 mutant allele fraction in bone marrow samples was 42.3% (range, 8.2 – 49.9%) at diagnosis of acute myeloid leukemia, and below the detection limit of 0.2% (range, <0.2 – 39.3%) in complete remission after induction therapy. In univariate analysis, the presence of a normal karyotype, a NPM1 mutation, and an IDH1/2 mutant allele fraction <0.2% in bone marrow after induction therapy were statistically significant predictors of longer disease-free survival. In multivariate analysis, these three variables remained significantly predictive of disease-free survival. In 7/103 (7%) patients, IDH1/2 mutations persisted at high levels in complete remission, consistent with the presence of an IDH1/2 mutation in pre-leukemic hematopoietic stem cells. Five out of these seven patients subsequently relapsed or progressed toward myelodysplastic syndrome, suggesting that patients carrying the IDH1/2 mutation in a pre-leukemic clone may be at high risk of hematologic evolution.
Collapse
Affiliation(s)
- Yann Ferret
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France.,INSERM, UMR-S 1172, Cancer Research Institute of Lille, Paris, France.,University of Lille, F-59000, Paris, France
| | - Nicolas Boissel
- Hematology Department, Saint-Louis Hospital, AP-HP, Paris, France.,EA3518, Institut Universitaire d'Hématologie (IUH), University 7 Paris Diderot, Paris, France
| | - Nathalie Helevaut
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France
| | - Jordan Madic
- Circulating Biomarkers Laboratory, Curie Institute, Paris, France
| | - Olivier Nibourel
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France.,INSERM, UMR-S 1172, Cancer Research Institute of Lille, Paris, France.,University of Lille, F-59000, Paris, France
| | - Alice Marceau-Renaut
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France.,INSERM, UMR-S 1172, Cancer Research Institute of Lille, Paris, France.,University of Lille, F-59000, Paris, France
| | - Maxime Bucci
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France
| | - Sandrine Geffroy
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France
| | - Karine Celli-Lebras
- Acute Leukemia French Association (ALFA) coordination, Saint-Louis Hospital, AP-HP, Paris, France
| | | | - Xavier Thomas
- Hematology Department, Lyon Sud Hospital, Pierre Benite, France
| | - Christine Terré
- Cytogenetic Laboratory, Versailles Hospital, Le Chesnay, France
| | - Hervé Dombret
- Hematology Department, Saint-Louis Hospital, AP-HP, Paris, France.,EA3518, Institut Universitaire d'Hématologie (IUH), University 7 Paris Diderot, Paris, France
| | - Claude Preudhomme
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France.,INSERM, UMR-S 1172, Cancer Research Institute of Lille, Paris, France.,University of Lille, F-59000, Paris, France
| | - Aline Renneville
- Hematology Laboratory, Biology and Pathology Center, CHRU of Lille, France .,INSERM, UMR-S 1172, Cancer Research Institute of Lille, Paris, France.,University of Lille, F-59000, Paris, France
| |
Collapse
|
44
|
Smetana K, Otevřelová P, Kuželová K, Zápotocký M. To the Nuclear Region Occupied by Nucleolar Bodies in Human Leukaemic Myeloblasts of Kasumi 1 and K 562 Lineages. Folia Biol (Praha) 2018; 64:182-185. [PMID: 30938675 DOI: 10.14712/fb2018064050182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Previous observation demonstrated that measured nucleolar and nuclear diameters and the resulting calculated ratio might facilitate estimation of the approximate size of the nuclear region occupied by the nucleolar bodies. The size of nuclear regions occupied by nucleolar bodies decreased during the differentiation and maturation of leukaemic lymphocytes, but was constant for each differentiation or maturation stage. The present study was undertaken to provide more information on the approximate size of the nuclear regions occupied by nucleolar bodies in leukaemic granulocytic progenitors. Myeloblasts of established Kasumi 1 and K 562 cell lineages originating from human myeloid leukaemias were convenient models for such study because they represented only one and early differentiation stage of granulocytic progenitors. According to the results, the maximal and mean nucleolar body : maximal and mean nuclear diameter ratios in myeloblasts without heavy nuclear alterations were stable and not markedly influenced by the anti-leukaemic treatment or aging. Thus, the roughly estimated size of nuclear regions occupied by nucleolar bodies in these cells appeared to be similar and stable regardless of aging or anti-leukaemic treatment. In contrast, the anti-leukaemic treatment or aging in such myeloblasts induced marked reduction of the nucleolar biosynthetic activity reflected by the decreased number of nucleolar fibrillar centres.
Collapse
Affiliation(s)
- K Smetana
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - P Otevřelová
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - K Kuželová
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - M Zápotocký
- Department of Paediatric Haematology and Oncology of the Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
45
|
Cao JT, Mo HM, Wang Y, Zhao K, Zhang TT, Wang CQ, Xu KL, Han ZH. Dihydroartemisinin-induced apoptosis in human acute monocytic leukemia cells. Oncol Lett 2017; 15:3178-3184. [PMID: 29435054 DOI: 10.3892/ol.2017.7644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Dihydroartemisinin (DHA) is a derivative of artemisinin. The present study aimed to investigate whether DHA induces apoptosis in the THP-1 human acute monocytic leukemia cell line (AMoL), and to identify the relative molecular mechanisms. The results of the present study demonstrated that the viability of THP-1 cells were inhibited by DHA in a dose- and time-dependent manner, which was accompanied by morphological characteristics associated with apoptosis. After 24 h of 200 µM DHA treatment, the proportion of apoptotic cells was significantly increased compared with the untreated controls (P<0.01). In addition, DHA downregulated the levels of B-cell lymphoma (Bcl)-2, protein kinase B (Akt)1, Akt2 and Akt3 gene expression, and increased the expression of the Bcl-2-associated X protein apoptosis regulator. The protein expression of phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) was also decreased, and the protein expression level of cleaved caspase-3 was increased following treatment with DHA. Therefore, DHA may induce apoptosis in the AMoL THP-1 cell line via currently unknown underlying molecular mechanisms, including the downregulation of ERK and Akt, and the activation of caspase-3.
Collapse
Affiliation(s)
- Jia-Tian Cao
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Hui-Min Mo
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yue Wang
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Kai Zhao
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Tian-Tian Zhang
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Chang-Qian Wang
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Kai-Lin Xu
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhi-Hua Han
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| |
Collapse
|
46
|
Lagacé K, Barabé F, Hébert J, Cellot S, Wilhelm BT. Identification of novel biomarkers for MLL- translocated acute myeloid leukemia. Exp Hematol 2017; 56:58-63. [DOI: 10.1016/j.exphem.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
|
47
|
Should patients with acute myeloid leukemia and measurable residual disease be transplanted in first complete remission? Curr Opin Hematol 2017; 24:132-138. [PMID: 27930388 DOI: 10.1097/moh.0000000000000315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Measurable ('minimal') residual disease in acute myeloid leukemia during first complete morphologic remission (MRD CR1) identifies patients with particularly high relapse risk and short survival. Here, we examine the evidence regarding optimal postremission treatment strategy for such patients. RECENT FINDINGS With chemotherapy alone or chemotherapy/autologous hematopoietic cell transplantation (HCT), disease recurrence appears inevitable in patients with MRD CR1. Nonrandomized studies indicate that allogeneic HCT improves outcomes over chemotherapy and/or autologous HCT, although relapse risks remain substantial. Emerging data suggest that myeloablative cord blood HCT may overcome the negative impact of MRD to a greater degree than other transplants, but the relative contributions of intensified conditioning and stem cell source to this effect are unknown. SUMMARY Available evidence supports the recommendation to consider allogeneic HCT for all acute myeloid leukemia patients in MRD CR1. Whether cord blood transplants should be prioritized deserves further investigation. To what degree outcomes of MRD CR1 patients could be improved by treatment intensification during induction, postremission therapy and/or before transplantation to revert the patient into an MRD state is currently unknown, as is the value of post-transplant preemptive therapies. These remain areas worthy of investigation, preferably in the setting of controlled clinical trials.
Collapse
|
48
|
Sweet K, Lancet J. State of the Art Update and Next Questions: Acute Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:703-709. [PMID: 29110833 DOI: 10.1016/j.clml.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023]
Abstract
As our general understanding regarding the complex nature of acute myeloid leukemia (AML) is expanding, so is our ability to translate this biological data into clinically relevant information. The use of whole genome and whole exome sequencing has begun to shed light on the importance of a variety of somatic mutations that are frequently identified in AML. In turn, this has allowed the field to incorporate mutational data into prognostic classifications which can guide treatment decisions. Furthermore, minimal residual disease (MRD) monitoring in AML is more commonplace as the prognostic relevance of MRD at various time points during treat is becoming clear. Many novel treatments have recently been approved, or are expected to gain approval in the near future, and this is opening the door to a more personalized approach to the management of AML.
Collapse
|
49
|
Outcome and Minimal Residual Disease Monitoring in Patients with t(16;21) Acute Myelogenous Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2017; 24:163-168. [PMID: 28939454 DOI: 10.1016/j.bbmt.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/01/2017] [Indexed: 01/01/2023]
Abstract
Patients with t(16;21) acute myelogenous leukemia (AML) who receive chemotherapy have poor outcomes. The treatment efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) must be identified, and the usefulness of minimal residual disease (MRD) monitoring requires evaluation. Fourteen consecutive patients with t(16;21) AML undergoing allo-HSCT at our institution were included in this study. Translocation liposarcoma- ETS-related gene (TLS-ERG) transcript levels were serially monitored for a median of 15 months (range, 3-51 months) after allo-HSCT. Eight patients relapsed, 7 patients died from relapse-related causes, and 1 patient died from a non-relapse-related cause. The 2-year cumulative incidence rates of relapse, disease-free survival, and overall survival after HSCT were 66.2%, 30.8%, and 46.2%, respectively. Of the 3 patients who received an HLA-matched sibling transplant, 2 relapsed, and 1 (33.3%) was in hematologic complete remission (CR) but died of nonrelapse mortality, whereas 5 of 11 patients (45.5%) who received haploidentical transplantation were in CR and were alive. Two of 6 patients with undetectable TLS-ERG at the time of allo-HSCT relapsed, at 14 and 15 months, and 3 of 4 PCR-positive patients relapsed, at a median of 10 months after HSCT. Four patients with continually low post-HSCT TLS-ERG levels (mostly <.01%) remained alive and in CR. The TLS-ERG levels of all 8 patients who relapsed were significantly increased before the relapse, exceeding 1.0% in all 7 patients who experienced hematologic relapse. In total, 7 patients received modified donor lymphocyte infusion (DLI), and 1 patient received IFN-α. All 7 patients with a TLS-ERG level >5.0% at the time of intervention experienced an increase or a brief decrease in TLS-ERG level, followed by an increase, and 6 relapsed, whereas the TLS-ERG level of 1 patient with a TLS-ERG level <1.0% at intervention decreased to undetectable. Therefore, t(16;21) AML is an indication for allo-HSCT. Among the HSCT recipients, 30.8% responded to treatment with CR. TLS-ERG transcript levels reflect MRD and might predict relapse and guide effective intervention.
Collapse
|
50
|
Roloff GW, Lai C, Hourigan CS, Dillon LW. Technical Advances in the Measurement of Residual Disease in Acute Myeloid Leukemia. J Clin Med 2017; 6:jcm6090087. [PMID: 28925935 PMCID: PMC5615280 DOI: 10.3390/jcm6090087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Outcomes for those diagnosed with acute myeloid leukemia (AML) remain poor. It has been widely established that persistent residual leukemic burden, often referred to as measurable or minimal residual disease (MRD), after induction therapy or at the time of hematopoietic stem cell transplant (HSCT) is highly predictive for adverse clinical outcomes and can be used to identify patients likely to experience clinically evident relapse. As a result of inherent genetic and molecular heterogeneity in AML, there is no uniform method or protocol for MRD measurement to encompass all cases. Several techniques focusing on identifying recurrent molecular and cytogenetic aberrations or leukemia-associated immunophenotypes have been described, each with their own strengths and weaknesses. Modern technologies enabling the digital quantification and tracking of individual DNA or RNA molecules, next-generation sequencing (NGS) platforms, and high-resolution imaging capabilities are among several new avenues under development to supplement or replace the current standard of flow cytometry. In this review, we outline emerging modalities positioned to enhance MRD detection and discuss factors surrounding their integration into clinical practice.
Collapse
Affiliation(s)
- Gregory W Roloff
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Catherine Lai
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Christopher S Hourigan
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Laura W Dillon
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|