1
|
Sharma R, Modi U, Kumar R, Sharma C, Srivastav AK, Bhatia D, Solanki R. Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy. BIOMATERIALS ADVANCES 2025; 171:214235. [PMID: 39978287 DOI: 10.1016/j.bioadv.2025.214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Cancer remains a significant global health challenge, driving the development of advanced platforms for highly targeted and efficient drug delivery. Early-stage nanocarriers, such as synthetic polymeric and inorganic materials, face limitations in biocompatibility and biodegradability. In contrast, bioinspired nanocarriers derived from natural biomacromolecules mimic biological processes and present a promising alternative due to their biocompatibility, biodegradability and non-toxicity. The effectiveness of these drug delivery systems is influenced by factors such as size, shape, surface properties, morphology, functionalization, and preparation methods. Various biomacromolecule-inspired nanocarriers such as protein-based, lipid-based, carbohydrate-based and nucleic acid-based are now at the forefront of research. This review highlights the properties, advantages and limitations of different bioinspired materials. We also explore cutting-edge approaches for cancer therapy using these nanocarriers with recent in-vitro, in-vivo and patent evidence. Finally, we address the challenges and potential solutions associated with bioinspired nanocarriers, proposing future directions. Overall, this review explores nature-inspired drug delivery systems that have paved the way for advancements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Rahul Kumar
- Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chirag Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
2
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Shi H, Xu Y, Song G, Qiu T. ADH1B regulates tumor stemness by activating the cAMP/PKA/CREB1 signaling axis to inhibit recurrence and metastasis of lung adenocarcinoma. Biochem Biophys Res Commun 2025; 760:151681. [PMID: 40157295 DOI: 10.1016/j.bbrc.2025.151681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer remains the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for approximately 85 % of cases. Despite advancements in diagnostics and therapies, tumor metastasis and drug-resistant recurrence present significant clinical challenges. This study evaluates the prognostic role of ADH1B in lung adenocarcinoma (LUAD) metastasis and recurrence. Analysis of tissue samples from 46 LUAD patients revealed that lower ADH1B expression correlates with increased metastasis and poorer overall survival. Kaplan-Meier survival analysis demonstrated that elevated ADH1B levels are significantly associated with longer overall survival and recurrence-free survival. In vitro experiments indicated that ADH1B overexpression inhibits proliferation, migration, and invasion in A549 and H1299 cell lines. Additionally, ADH1B expression was negatively correlated with tumor stemness markers, indicating its role in suppressing stem cell characteristics. Mechanistically, ADH1B activates the cAMP/PKA/CREB1 signaling pathway, enhancing SOX1 expression and inhibiting the ERK pathway, which contributes to reduced tumor stemness. In vivo studies confirmed that ADH1B overexpression decreases stem cell populations and tumor growth in xenograft models. Our findings suggest that ADH1B functions as a critical regulator of LUAD progression, with its low expression acting as a marker of poor prognosis while promoting metastasis and tumor stemness. This research identifies ADH1B as a potential therapeutic target, offering novel strategies to address the challenges of metastasis and recurrence in LUAD.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Tianzhu Qiu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Peng S, Hou X, Liu J, Huang F. Advances in polymer nanomaterials targeting cGAS-STING pathway for enhanced cancer immunotherapy. J Control Release 2025; 381:113560. [PMID: 40023225 DOI: 10.1016/j.jconrel.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has been recognized as a promising target for cancer immunotherapy. Although various STING agonists have been developed, their clinical applications are still severely impeded by various issues, such as non-specific accumulation, adverse effects, rapid clearance, etc. In recent years, the emergence of nanomaterials has profoundly revolutionized STING agonists delivery, which promote tumor-targeted delivery, boost the immunotherapeutic effects and reduce systemic toxicity of STING agonists. In particular, polymer nanomaterials possess inherent advantages including controllable structure, tunable function and degradability. These properties afford them the capacity to serve as delivery vehicles for small-molecule STING agonists. Furthermore, the superior characteristics of polymer nanomaterials can enable their utilization as a novel STING agonist to stimulate anti-tumor immunity. In this review, the molecular mechanisms of cGAS-STING pathway activation are discussed. The recent development of small-molecules STING agonists is described. Then polymer nanomaterials are discussed as carriers for STING agonists in cancer immunotherapy, including polymersomes, polymer micelles, polymer capsules, and polymer nanogels. Additionally, polymer nanomaterials are identified as a novel class of STING agonists for efficient cancer immunotherapy, encompassing both polymer materials and polymer-STING agonists conjugates. The review also presents the combination of polymer-based cGAS-STING immunotherapy with chemotherapy, radiotherapy, phototherapy (both photodynamic and photothermal), chemodynamic therapy, and other therapeutic strategies. Furthermore, the discussion highlights recent advancements targeting the cGAS-STING pathway in clinically approved polymer nanomaterials and corresponding potent innovations. Finally, the potential challenges and perspectives of polymer nanomaterials for activating cGAS-STING pathway are outlined, emphasizing the critical scientific issue and hoping to offer guidance for their clinical translation.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
5
|
Coelho MO, Quintas ST, Sarmento B, De Wever O, Castro F. Engineered dendritic cells-derived extracellular vesicles for cancer immunotherapy. J Control Release 2025; 381:113620. [PMID: 40088976 DOI: 10.1016/j.jconrel.2025.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Extracellular vesicles (EVs) have emerged as a cell-free therapeutic approach, garnering increasing attention for their potential to enhance the safety and efficacy of immunotherapy. This interest is primarily driven by the biocompatibility and cell/tissue tropism inherent to EVs, but also due to their reconfigurable content. This, termed as cargo, may comprise bioactive molecules as proteins, lipids, and nucleic acids that play a pivotal role in mediating intercellular communication. In particular, dendritic cells-derived extracellular vesicles (DC-EVs) facilitate the transfer of critical components, like antigens and immune-regulatory factors, and due to the expression of major histocompatibility complexes and co-stimulatory molecules on their surface can activate T cells, thereby modulating the immune response. Additionally, DC-EVs can be engineered to transport tumor-specific antigens, cytokines, or other agents in order to strength their immunotherapeutic potential, and even be used in vaccines formulation. In this review, the latest advancements in engineering DC-EVs to improve their immunotherapeutic potential is discussed in detail, while also addressing current challenges associated with DC-EVs therapies.
Collapse
Affiliation(s)
- Margarida Oliveira Coelho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal; IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Olivier De Wever
- CRIG - Cancer Research Institute Ghent, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; LECR - Laboratory Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200- 180 Porto, Portugal.
| |
Collapse
|
6
|
Liu L, Tu B, Sun Y, Liao L, Lu X, Liu E, Huang Y. Nanobody-based drug delivery systems for cancer therapy. J Control Release 2025; 381:113562. [PMID: 39993634 DOI: 10.1016/j.jconrel.2025.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Targeted delivery can elevate the local drug concentration within tumor tissues, while minimizing drug distribution to normal tissues, thus enhancing the effectiveness of anti-tumor medications and reducing adverse effects and systemic toxicities. Nanobodies, the novel molecular pattern of antibodies characterized by their small size, high stability, strong specificity, and low immunogenicity, have been extensively applied in targeted drug delivery for tumor therapy. This review discusses structural disparities and functional advantages of nanobodies compared to other antibody fragments and full-length antibody. It also highlights nanobody applications in targeted tumor therapy, focusing on their use in modifying delivery systems, e.g., liposomes, EVs, micelles, albumin nanoparticles, gold nanoparticles, polymeric nanoparticles, and as nanobody-drug conjugates. This review delves into the methods applied for integrating nanobodies into different drug delivery carriers, in order to provide useful information for researchers developing nanobody-based targeted drug delivery systems.
Collapse
Affiliation(s)
- Lin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bin Tu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yao Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lingling Liao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaoling Lu
- College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yongzhuo Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| |
Collapse
|
7
|
Sharif M, Irfan M, Kousar K, Mamurova A, Duarte-Peña L, Hernández-Parra H, Cortés H, Peña-Corona SI, Khan K, Habtemariam S, Leyva-Gómez G, Sharifi-Rad J. Unlocking the biological potential of methyl antcinate A: a new frontier in cancer and inflammation application. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4727-4745. [PMID: 39630281 DOI: 10.1007/s00210-024-03544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/14/2024] [Indexed: 04/11/2025]
Abstract
Antrodia camphorata is a valued and scarce parasitic mushroom that exclusively proliferates on the inner cavity wall of the endangered tree Cinnamomum kanehirai Hay (Lauraceae), endemic to Taiwan. Historically, this fungus has been utilized in traditional medicine to treat liver cancer, diarrhea, abdominal pain, hypertension, and food and drug intoxication, among other ailments. Literature searches were performed in scientific databases. The results were compiled from peer-reviewed studies; the search was refreshed through January 2024 to incorporate the most recent research. In vitro studies have revealed that Antrodia camphorata possesses various pharmacological properties that prevent cancer, reduce inflammation, and improve liver function. This medicinal mushroom contains unique ergostane-type triterpenoids known as antcins, which exhibit numerous pharmacological properties. Seven naturally occurring methyl analogs of antcins have been identified so far. In this article, we reviewed and analyzed the properties of methyl antcinate A (MAA), a constituent of Antrodia camphorata and methyl derivative of antcin A. MAA has demonstrated important anti-apoptotic, anti-inflammatory, and gastro-protective properties, as well as significant anti-tumor, anti-cancer, and cytotoxic activities. The anti-cancer effect of MAA in various cancers is attributed to its ability to modulate signaling cascades in apoptotic pathways. A significant challenge is to initiate preclinical and clinical trials to assess its anti-tumor action in vivo, as this data is currently missing. Additionally, future research on the structure-activity relationship of antcins and their derivatives is expected to support their development as therapeutic agents for clinical use.
Collapse
Affiliation(s)
- Maria Sharif
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Irfan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan
| | - Kafila Kousar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Lorena Duarte-Peña
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, UK
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Zhang K, Zhao T, Riaz F, Li Y, Wei P, Fang X, Zhou Z, Kou W, Pan F. Neuritin-specific antibody impedes the Treg-mediated suppression of anti-tumor immunity and enhances response to anti-PD1. Mol Immunol 2025; 181:148-159. [PMID: 40153952 DOI: 10.1016/j.molimm.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Regulatory T cells (Tregs) and effector T cells play critical roles in tumor immunity, with Tregs suppressing immune responses and contributing to an immunosuppressive tumor microenvironment (TME). Neuritin-1 (Nrn), a neuropeptide, has been identified to enhance Treg expansion. However, its role in T cell biology and tumor development remains unclear. We demonstrated that Nrn is highly expressed in the in-vitro-induced Tregs (iTregs). Functionally, Nrn promoted iTreg differentiation in a dose-dependent manner, while Nrn deletion or anti-Nrn antibody treatment significantly inhibited iTreg differentiation. Additionally, Nrn suppressed IL-2 transcription and secretion in T cells, impairing T cell activation and pro-inflammatory cytokine production. Treg-specific Nrn knockout mice exhibited reduced B16 melanoma tumor growth, decreased Treg infiltration, and increased effector T cell infiltration. Conversely, overexpression of Nrn accelerated B16 melanoma tumor progression by enhancing Treg-mediated suppression. Importantly, we developed the first anti-Nrn antibody, which effectively reduced tumour growth, decreased Treg infiltration, and enhanced effector T-cell activity. Importantly, anti-Nrn synergistically worked with anti-PD1 and improved the anti-PD1 response by reducing Tregs and increasing effector function in tumor-infiltrated T cells, resulting in enhanced tumor regression. Our findings identify Nrn as a critical regulator of Treg differentiation and effector T cell suppression, contributing to tumor progression. Targeting Nrn alone or combined with anti-PD1 therapy represents a promising strategy to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Kaimin Zhang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taowen Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fraooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), China
| | - Yikui Li
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wei
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, 1416, Section 1, Chenglong Avenue, Chengdu 610066, China
| | - Xiang Fang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyi Zhou
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, 1416, Section 1, Chenglong Avenue, Chengdu 610066, China.
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), China.
| |
Collapse
|
9
|
Mukherjee S, Banik SK, Chakraborty S, Das T, Choudhury MD, Tripathi A. Bryophyllum pinnatum Induces p53-Dependent Apoptosis of Colorectal Cancer Cells via Increased Intracellular ROS and G2/M Cell-Cycle Arrest In Vitro and Validated in Silico by Molecular Docking. Cell Biol Int 2025; 49:534-554. [PMID: 39992739 DOI: 10.1002/cbin.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Chemotherapy, radiotherapy and surgical treatments of cancer having several limitations and toxic side-effects, have led researchers to focus towards development of alternative natural plant-based therapeutics that can reduce disease severity. The present research work is mainly focussed towards identifying molecular mechanisms of apoptosis of colorectal cancer cells (HCT116) by perennial herb Bryophyllum pinnatum leaf-extract via both in vitro experimentations and in silico analysis. B. pinnatum leaf extract induced highest cytotoxicity at lowest dose (IC50:0.01 mg/mL) against HCT116 cells with 49.5% (p < 0.0001) cellular death, in comparison to other cancer cell lines. It has arrested HCT116 cell populations at G2/M cell-cycle phase and led to 10 folds (p < 0.0001) and 5.5 folds (p < 0.0001) increased intracellular ROS production in treated groups. ROS production might have led to significant 34.23% and 21.03% (p < 0.0001) apoptosis in treated cells, proved in vitro and in silico, with significant upregulation of p53 (p < 0.0001), BAX (p = 0.0252), CASPASE3 (p < 0.0001) and downregulation of BCL2 (p = 0.0058), leading to increased nuclear p53 (p = 0.0002) accumulation in treated cells, suggesting that the leaf-extract might have induced p53-dependent apoptosis of colorectal cancer cells. The phyto-extract also possess significant gene-modulatory potential as evident from qRT-PCR analysis of oncogenes and tumor suppressor genes. Leaf's bioactive phyto-constituents were elucidated by GC-MS and HPLC-ESI/MS analysis. In silico STITCH analysis provided significant network interactions between these bioactive phyto-compounds and studied proteins. Further Molecular Docking studies revealed strong binding between such docked complexes. Also, predicted major bioactive phyto-constituents of B. pinnatum leaf-extract such as Quercetin, Morin and β-Sitosterol have induced significant (p < 0.0001) apoptosis and increased intracellular ROS, validating their in silico interactions with studied proteins of HCT116 cells. All these studies together demonstrated ability of B. pinnatum to be used as a suitable natural phyto-therapeutic agent for development of chemo-preventive medications against colorectal cancer.
Collapse
Affiliation(s)
- Sumoyee Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical, Medicine, Kolkata, India
| | - Sheuli Kangsa Banik
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | | | | | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical, Medicine, Kolkata, India
| |
Collapse
|
10
|
El-Adl K, Ghobashy MM, Ismail AFM, El-Morsy A, Shoman NA. Radiation-induced nanogel engineering based on pectin for pH-responsive rutin delivery for cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5249-5271. [PMID: 39540896 PMCID: PMC11985661 DOI: 10.1007/s00210-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
This research investigates the formulation of a nanogel complex using pectin and poly(acrylic acid) (PAAc) to encapsulate rutin. The nanogel's pH-responsive behavior and its potential as a targeted drug delivery platform are investigated. The gamma irradiation-induced crosslinking mechanism is elucidated, highlighting its role in creating a stable three-dimensional network structure within the polymer matrix. Fourier transform infrared spectroscopy analysis sheds light on the molecular interactions within rutin and the nanogel-rutin complex. The pH-responsive behavior of the nanogel is explored, showcasing its ability to release rutin selectively in response to pH variations and displaying high physical and chemical stability. Transmission electron microscopy imaging provides visual insights into nanogel morphology and interactions. The cumulative drug content from the nanogel was 86.14 ± 2.61%. The pH-dependent release profile of the nanogel was examined, demonstrating selective rutin release in response to varying pH levels. Cytotoxicity studies were conducted against four human cancer cell lines-HepG2, A549, MCF-7, and HCT-116 showing significant reductions in IC50 values, indicating enhanced therapeutic efficacy. Additionally, molecular docking studies revealed strong binding interactions of rutin with VEGFR-2 and EGFRT790M. Our nanogel compound 5 significantly reduced the IC50 values for HepG2, A549, MCF-7, and HCT-116 cells by 58.19%, 81.29%, 71.81%, and 67.16%, respectively. Furthermore, it lowered the IC50 values for VEGFR-2 and EGFRT790M by 29.66% and 68.18%, respectively.
Collapse
Affiliation(s)
- Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, P.O. Cairo, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Nabil A Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
11
|
G P, Singh M, Gupta PK, Shukla R. Synergy of Microfluidics and Nanomaterials: A Revolutionary Approach for Cancer Management. ACS APPLIED BIO MATERIALS 2025; 8:2716-2734. [PMID: 40100776 DOI: 10.1021/acsabm.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cancer affects millions of individuals every year and is the second most common cause of death. Various therapeutic strategies are explored for the management of cancer including radiation therapy and chemotherapy with or without surgical procedures. However, the drawbacks like poor cancer cell targeting and higher toxicity for healthy cells need the advancement of the therapeutic strategy. The exploration of nanomedicine achieves targeted distribution, and the adoption of microfluidics technology for the preparation of the nanoparticulate system has enhanced the efficacy and uniformity of the nanocarriers. The overview of the existing designs of the microfluidics device assisted in the preparation of the nanoparticles, and various nanodelivery systems formulated using the microfluidic device including liposomes, lipidic nanocarriers, quantum dots, polymeric nanoparticles, and metallic nanocarriers are discussed in this review. Further, the challenges associated with the fabrication of the microfluidics device and the fabrication of microfluidics device-based nanoparticles are detailed here.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Mansi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Bio-Science and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
12
|
Atalay BR, Başkan ÖM, Ercan S, Aydın E, Ayaz F, Aydemir E. Immunomodulatory effects of alexidine dihydrochloride on mammalian macrophages through the modulation of the JNK pathway. Immunol Res 2025; 73:73. [PMID: 40257573 DOI: 10.1007/s12026-025-09631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
A plethora of the cancer drugs with high therapeutic potential cannot pass the clinical trials because of their immunotoxic activities. In this study, we tested the immunomodulatory and immunostimulatory effects of the anticancer agent alexidine dihydrochloride on J774.2 macrophage cell lines in vitro. The production levels of the pro-inflammatory cytokines (TNF-α, IL-6, GM-CSF, IL-12p40) were measured and compared by ELISA method. The activated (phosphorylated) JNK protein levels were measured by flow cytometer and the possible related intracellular signaling pathway was examined in this way. According to our results, alexidine dihydrochloride has an anti-inflammatory effect on the LPS-stimulated macrophage cell lines, as evidenced by reduced cytokine production compared to controls. Furthermore, its intracellular mechanism of action was found to be mediated partially through JNK signaling pathways. These findings suggest that alexidine dihydrochloride, while being an effective anticancer agent, may also modulate immune responses by dampening excessive inflammation. In this study, determining the anti-inflammatory effect of alexidine dihydrochloride on the immune system will seriously shed light on the role of this anticancer agent in future clinical studies and will provide a serious basis. In summary, the effects of the most drug-active ingredients on the inflammatory response in immune system cells have not been fully tested, and this creates the problem of many drugs failing in clinical studies or lack of knowledge on their side effects. Our study aimed to determine the effect of alexidine dihydrochloride, used as an anticancer agent, on the inflammatory response in J774.2 macrophage cell lines. Future studies with more immune system cells and a wider analysis of the intracellular signaling pathways will be informative about the immunotoxicity of the drug molecule. Future research involving a broader range of immune cell types and a more comprehensive analysis of intracellular signaling pathways will help clarify the immunotoxicity profile of this anticancer agent.
Collapse
Affiliation(s)
- Begüm Rana Atalay
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, 34010, Türkiye
| | - Ömer Mete Başkan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, 34010, Türkiye
| | - Semanur Ercan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, 34010, Türkiye
| | - Ece Aydın
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, 34010, Türkiye
| | - Furkan Ayaz
- Department of Pharmacy, Faculty of Pharmacy, Biruni University, Istanbul, 34010, Türkiye.
| | - Esra Aydemir
- Department of Pharmacy, Faculty of Pharmacy, Biruni University, Istanbul, 34010, Türkiye.
| |
Collapse
|
13
|
Al-Theyab NS, Bakheit AH, Lahmidi S, Alanazi MM, Ali AM, Azzaoui K, Essassi EM, Mague JT, Hefnawy M, Alanazi MM, Alanazi AS. In Silico and in vitro evaluation of the anticancer effect of a 1,5-Benzodiazepin-2-One derivative (3b) revealing potent dual inhibition of HER2 and HDAC1. Sci Rep 2025; 15:13424. [PMID: 40251368 PMCID: PMC12008195 DOI: 10.1038/s41598-025-97786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Benzodiazepines are widely recognized for their therapeutic benefits in the treatment of anxiety and insomnia. However, in the pursuit of innovative anticancer agents, they have gained attention as a possible pharmacophore. One of those promising anticancer benzodiazepines is 3b which was demonstrated to exert good antiproliferative effects. To investigate the anticancer effect of 3b, in silico prediction of the possible targets were performed. Then, the predicted targets were investigated through in vitro study. Furthermore, 3b was evaluated for its effects on cell cycle suppression and induction of apoptosis. Molecular docking was used to study the possible types of interactions while molecular dynamics simulations were conducted to estimate the protein-ligand complex's stability and dynamic behavior. Results demonstrated that 3b is a potent dual inhibitor of HER2 and HDAC1 with IC50 values of 0.023 and 0.041 nM, respectively. Moreover, 3b was found to suppress cell cycle progression in G2/M phase and induce early and late apoptosis in HepG2 cancer cells. Further analysis of apoptotic markers revealed an induction of Caspase 3 and BAX proapoptotic proteins along with a suppression of the antiapoptotic protein (Bcl-2). Molecular docking of 3b into the active site of HER2 and HDAC1 displayed significant types of interactions with active sites of these target proteins while molecular dynamics simulations demonstrated the overall structural stability of HER2 and HDAC1 is maintained or even enhanced upon ligand binding. In conclusion, 3b is a powerful anticancer agent that exerts its effects by inhibiting HDAC1 and HER2, resulting in cell cycle arrest and cancer cell death through apoptosis. Nonetheless, additional investigations are needed to explore its mechanisms and therapeutic efficacy in more detail.
Collapse
Affiliation(s)
- Nada S Al-Theyab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmad H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sanae Lahmidi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Awadh M Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalil Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fes, 30000, Morocco
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, Eco-Campus, Fes-Meknes Road, Fes, 30030, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Mohamad Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Mater Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
14
|
Zhu S, Li J, Sun H, Liang J, Qiu Z, Zhou X, Wang W, Wei D, Zhong L. A biotin guided Pt IV amphiphilic prodrug synergized with CDK4/6 inhibition for enhanced tumor targeted therapy. NANOSCALE 2025; 17:9907-9913. [PMID: 40136056 DOI: 10.1039/d5nr00218d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Platinum-based chemotherapy has been the first-line treatment for advanced bladder cancer for decades, but its durability and safety remain important challenges. Targeted delivery and other precision medicine bring hope to fight cancer. In this study, we present a novel targeted therapy utilizing a biotin receptor-targeting lipid PtIV prodrug amphiphile, which encapsulates a CDK4/6 inhibitor into BPtIV@Rib. CDK4/6 inhibitors have the potential to combat breast cancer and enhance sensitivity to cisplatin, thereby improving its therapeutic efficacy. Our findings demonstrate that BPtIV@Rib also exhibits excellent bladder tumor-targeting capability, resulting in increased accumulation of Pt and ribociclib (Rib) at the tumor site. The combination of PtIV and Rib leads to substantial tumor growth suppression while minimizing synergistic toxicity compared to conventional therapies. In conclusion, this combination therapy represents a promising strategy for enhanced targeted treatment of bladder cancer, potentially improving patient outcomes while reducing adverse effects.
Collapse
Affiliation(s)
- Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiaxu Li
- College of Chemistry and Materials, Graduate School, Nanning Normal University, Nanning 530001, People's Republic of China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hao Sun
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| | - Jian Liang
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| | - Zhi Qiu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiaoguang Zhou
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Lei Zhong
- Department of Breast Surgery, Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China.
| |
Collapse
|
15
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
16
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
17
|
Italiya KS, Mullins-Dansereau V, Geoffroy K, Gilchrist VH, Alain T, Bourgeois-Daigneault MC, Yu F. Ultrasound and Microbubble Mediated Delivery of Virus-Sensitizing Drugs Improves In Vitro Oncolytic Virotherapy Against Breast Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00089-4. [PMID: 40234152 DOI: 10.1016/j.ultrasmedbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025]
Abstract
OBJECTIVE Oncolytic virotherapy is an emerging form of cancer treatment that uses replication-competent viruses to kill cancer cells. However, as for other cancer therapies, oncolytic viruses are not effective against all cancers and there is a need to further improve treatment efficacy while maintaining low toxicity. Viral sensitizers are drugs that potentiate viral replication in tumor cells. While various studies have shown their synergy with oncolytic virotherapy, the risks associated with systemic toxicities that vary according to the drug used limit the clinical translation of the approach. In this study, we used an ultrasound and image-guided approach in which we loaded viral-sensitizing drugs onto microbubbles which are then cavitated by ultrasound to deliver the encapsulated drugs to tumor cells, which improves in vitro oncolytic virotherapy efficacy in the 4T1 breast cancer model. METHODS In this study, we loaded two viral sensitizers, paclitaxel and volasertib, onto lipid microbubbles and comprehensively characterized their effect on the infection of 4T1 murine mammary carcinoma cells by oncolytic Vesicular stomatitis virus in vitro. RESULTS We synthesized lipid microbubbles with high and moderate encapsulation efficiency for paclitaxel (83.7%) and volasertib (28.6%), respectively. Stability assessments demonstrated excellent retention in various conditions, highlighting their potential for in vivo use. In vitro studies confirmed their acoustic responsiveness essential for controlled drug release at targeted sites. Paclitaxel and volasertib release from viral sensitizer-loaded microbubbles following ultrasound-triggered cavitation significantly increased viral replication (57-fold, p < 0.0001 and 27-fold, p < 0.01, respectively), as well as tumor cell killing compared to virus-infected untreated cells. CONCLUSION Altogether, our data show that drug-loaded microbubble cavitation and free drugs both sensitize cancer cells to oncolytic viruses to equivalent levels. These findings provide a proof of concept for the use of ultrasound-guided microbubble drug delivery in combination with oncolytic virotherapy.
Collapse
Affiliation(s)
- Kishan Shamjibhai Italiya
- Imaging and Engineering axis, CRCHUM, Montreal, Quebec, Canada; Cancer axis and Institut du cancer de Montréal, CRCHUM, Montreal, Quebec, Canada
| | - Victor Mullins-Dansereau
- Cancer axis and Institut du cancer de Montréal, CRCHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Immunopathology axis, CRCHUM, Montreal, Quebec, Canada
| | - Karen Geoffroy
- Cancer axis and Institut du cancer de Montréal, CRCHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Immunopathology axis, CRCHUM, Montreal, Quebec, Canada
| | - Victoria Heather Gilchrist
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer axis and Institut du cancer de Montréal, CRCHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Immunopathology axis, CRCHUM, Montreal, Quebec, Canada
| | - François Yu
- Imaging and Engineering axis, CRCHUM, Montreal, Quebec, Canada; Cancer axis and Institut du cancer de Montréal, CRCHUM, Montreal, Quebec, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Zandona A, Jurić M, Jean L, Renard PY, Katalinić M. Assessment of cytotoxic properties of tetrahydroisoquinoline oximes in breast, prostate and glioblastoma cancer cells. Drug Chem Toxicol 2025:1-8. [PMID: 40226887 DOI: 10.1080/01480545.2025.2491534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Tetrahydroisoquinoline (THIQ) oximes have been investigated as antidotes for poisoning by toxic organophosphorus compounds. Recent studies have shown that some THIQ oximes induce cytotoxic effects and trigger apoptosis in various cell types. Since this pathway activation is desirable for anticancer drugs, we further explored the effects of three selected THIQ oximes on well-known cancer cell models: breast (MDA-MB-231 and MCF-7), prostate (PC-3) cancer and malignant glioblastoma (U251). The tested THIQ oximes were cytotoxic to breast cancer cells and, to a lesser extent, to glioblastoma cells, but not to PC-3 cells at concentrations up to 200 µM within a 24-h exposure period. The MCF-7 cells exhibited the highest sensitivity, with all three oximes affecting it in a time-dependent manner (IC50 from 7-74 µM). While the membrane integrity of affected cells was maintained after treatment with the tested THIQ oximes, they disrupted mitochondrial membrane potential and activated caspase 9 indicating triggering of the mitochondria-mediated apoptosis. Overall, these findings suggest that the THIQ oxime scaffold could be a foundation for developing targeted therapies, especially for breast cancer, and other derivatives may be worthier of exploration.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Matea Jurić
- Depatment of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ludovic Jean
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMen Institute UMR 6064, Rouen, France
- Université Paris Cité, CNRS, INSERM, CiTCoM, Paris, France
| | - Pierre-Yves Renard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMen Institute UMR 6064, Rouen, France
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
19
|
Canak HN, Bas K, Yağmur EA, Karakurt S. Mesobuthus eupeus venom modulates colorectal carcinoma signaling pathways and induces apoptosis. Med Oncol 2025; 42:163. [PMID: 40229568 PMCID: PMC11996983 DOI: 10.1007/s12032-025-02689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Colorectal cancer (CRC) is a significant global health concern, often challenging to treat effectively with conventional methods and burdened by adverse effects. Scorpion venoms offer a unique avenue for exploration, given their ability to disrupt the cell cycle, inhibit growth, and trigger apoptosis. This study delves into the impact of Mesobuthus eupeus (M. eupeus) scorpion venom on the proliferation and progression of colorectal cancer at the molecular level. The total protein concentration in the venom (607.5 µg/mL) also emphasized the rich composition and potential for therapeutic applications. The study reveals that M. eupeus venom effectively reduced the proliferation of DLD-1 and HT-29 colorectal cancer cells in a dose-dependent manner with IC50 values of 4.32 and 7.61 µg/mL, respectively. The venom also impedes cell migration, diminishes colony formation, and triggers apoptosis in the cancer cells. The venom also induced early and late apoptosis in the two cancer cell lines. The human colorectal cancer and apoptotic pathways were clarified at the molecular level using pathway panels, which revealed that 16 genes involved in colorectal cancer increased while 23 decreased. In the HT-29 cell line, 57 genes increased, and 1 decreased following venom treatment. Besides, the mRNA expression of 19 genes involved in the apoptotic pathway was increased, while 22 were reduced in DLD-1 cells. This study underscores the potential of M. eupeus venom as a natural therapeutic approach in the quest for cancer treatments.
Collapse
Affiliation(s)
- Havva Nur Canak
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye
| | - Kemal Bas
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye
| | - Ersen Aydın Yağmur
- Department of Plant and Animal Production, Alasehir Vocational High School, Manisa Celal Bayar University, Manisa, Türkiye
| | - Serdar Karakurt
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye.
| |
Collapse
|
20
|
Alibrahem W, Helu NK, Oláh C, Prokisch J. Potential of Carbon Nanodots (CNDs) in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:560. [PMID: 40214605 PMCID: PMC11990490 DOI: 10.3390/nano15070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Carbon Nanodots (CNDs) are characterized by their nanoscale size (<10 nm), biocompatibility, stability, fluorescence, and photoluminescence, making them a promising candidate for cancer therapy. The difference in the methods of synthesis of CNDs, whether top-down or bottom-up, affects the formation, visual, and surface characteristics of CNDs, which are crucial for their biomedical and pharmaceutical applications. The urgent need for innovative therapeutic strategies from CNDs is due to the limitations and barriers posed by conventional therapies including drug resistance and cytotoxicity. Nano-loaded chemotherapy treatments are highly effective and can enhance the solubility and targeted delivery of chemotherapeutic agents, generate reactive oxygen species (ROS) to induce cancer cell cytotoxicity, and regulate intracellular signaling pathways. Their ability to be designed for cellular uptake and exact intracellular localization further improves their therapeutic potential. In addition to working on drug delivery, CNDs are highlighted for their dual functionality in imaging and therapy, which allows real-time observing of treatment efficacy. Despite the development of these treatments and the promising results for the future, challenges still exist in cancer treatment.
Collapse
Affiliation(s)
- Walaa Alibrahem
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Nihad Kharrat Helu
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Csaba Oláh
- Mathias Institute, University of Tokaj, Eötvös Str. 7, 3950 Sárospatak, Hungary;
- Neurosurgery Department, Borsod County University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| | - József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| |
Collapse
|
21
|
Ragab SS. Signature of click chemistry in advanced techniques for cancer therapeutics. RSC Adv 2025; 15:10583-10601. [PMID: 40190630 PMCID: PMC11970365 DOI: 10.1039/d5ra01196e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Click chemistry has made a revolution in the field of chemical biology owing to its high efficiency, specificity, and mild reaction conditions. The copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted [3 + 2] azide-alkyne cycloaddition (SPAAC) stand out as the most popular click reactions that construct a stable triazole ring by reacting an azide with an alkyne. These two reactions represent an ideal choice for biological applications due to its specificity, reliability, and biocompatibility. As a powerful modular synthetic approach for creating new molecular entities, it has seen increasing use in anticancer drug discovery. The present "state of the art" focuses mainly on the signature of click chemistry (CuAAC and SPAAC) in advanced techniques for cancer therapeutics, which includes cancer immunotherapy, antibody-drug conjugates, development of proteolysis-targeting chimeras, targeted dual-agent combination therapy for cancer, exosome modification for cancer therapy, and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Sherif Shaban Ragab
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre El-Buhouth St, P.O. 12622, Dokki Giza Egypt
| |
Collapse
|
22
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Agrawal S, Narang S, Shahi Y, Mukherjee S. Inhibitors of inflammasome (NLRP3) signaling pathway as promising therapeutic candidates for oral cancer. Biochim Biophys Acta Gen Subj 2025; 1869:130800. [PMID: 40180112 DOI: 10.1016/j.bbagen.2025.130800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Inflammasomes are complex protein assemblies responsible for regulating the development and release of proinflammatory cytokines like interleukin-1beta (IL-1β) and interleukin-18 (IL-18) against the intracellular triggers. Among these, the Nod-like receptor protein 3 (NLRP3) inflammasome stands out as the most extensively studied and well-characterized member, implicated in numerous pathological conditions. A systematic literature search was conducted on the PubMed such as PubMed, Scopus, Google Scholar database to identify peer-reviewed publications pertaining to the role of NLRP3 in oral cancer pathogenesis and its inhibitors for targeted therapy. Recent research highlights the emerging significance of the NLRP3 inflammasome in tumorigenesis, garnering attention as a potential target for anticancer therapies. This review delves into the involvement of NLRP3 in cancer development and progression, providing an in-depth overview of its activation (and inhibition) and its impact on oral cancer pathogenesis. The manuscript provides a detailed review of the natural and synthetic compounds inhibiting the NLRP3 signaling pathway, which might act as therapeutic lead molecules in oral cancer. This holds promise to overcome targeted and effective treatment options the development of novel drugs targeting the NLRP3 inflammasome-mediated mechanisms in oral cancer.
Collapse
Affiliation(s)
- Shreya Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Shatakshi Narang
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Yadvendra Shahi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India; Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India.
| |
Collapse
|
24
|
Madera G, Hodge A, Roskelly L, Greenbaum C. What Is the Impact of Novel Systemic Anticancer Therapy on Acute Oncology Education and Service Delivery? Semin Oncol Nurs 2025; 41:151842. [PMID: 39986898 DOI: 10.1016/j.soncn.2025.151842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVES To discuss the importance of educating healthcare professionals about oncological emergencies linked to novel systemic anticancer therapy (SACT) and the impact on acute oncology (AO) services. METHODS This discussion is based on clinical expertise and informed by current literature. RESULTS Novel SACT, such as immune-checkpoint inhibitors, have more complex toxicity profiles and can be challenging to recognize and treat. An increasing prevalence of toxicity is expected as new drugs are developed and the numbers of patients living with and beyond cancer expand; more data are required to capture the full extent of this. There are knowledge gaps within the healthcare workforce, particularly outside oncology-specialist settings. Focused research in this area will provide direction for targeted educational interventions. CONCLUSIONS Insufficient SACT education is a safety issue; severe toxicities can be fatal but initial symptoms can be subtle and may be missed. We argue that emergency care pathways can help to streamline the appropriate management of patients with SACT toxicity, but awareness of AO issues remains "everyone's business." Continuing clinical education is key to maintaining awareness of newly developed SACT. AO service models may vary, but AO competence assessment passports can provide a standardized method of evidencing AO knowledge and skills. IMPLICATIONS FOR NURSING PRACTICE Oncology nurses, as a highly specialized and knowledgeable part of the healthcare workforce, are key in supporting interprofessional education. By using existing cancer nursing frameworks, this can support the implementation of the AO Passports. The learning and development of AO services in the UK can be transferred internationally.
Collapse
Affiliation(s)
- Gina Madera
- Medical Oncology/Networked Services, The Christie NHS Foundation Trust, Manchester, UK.
| | - Ali Hodge
- Immunotherapy and Acute Oncology, Cancer Services Division, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Lara Roskelly
- Macmillan Acute Oncology Team, Cancer Division, Frimley Health NHS Foundation Trust, UK
| | - Clare Greenbaum
- Workforce and Education, Greater Manchester Cancer Alliance, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
25
|
Li Z, Wang D, Zhu X. Roles of LncRNA ARSR in tumor proliferation, drug resistance, and lipid and cholesterol metabolism. Clin Transl Oncol 2025; 27:1356-1365. [PMID: 39251493 DOI: 10.1007/s12094-024-03700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Cancer is one of the most serious diseases that threaten human life and health. Among all kinds of diseases, the mortality rate of malignant tumors is the second highest, second only to cardio-cerebrovascular diseases. Cancer treatment typically involves imaging, surgery, and pathological analysis. When patients are identified as carcinoma by the above means, there are often problems of distant metastasis, delayed treatment, and drug tolerance, indicating that patients have some poor prognosis and overall survival. Hence, the development of novel molecular biomarkers is of great clinical importance. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, lncRNA have attracted widespread attention for their roles in tumor development. In this review, we comprehensively summarize the up-to-date knowledge of lncARSR on diverse cancer types which mainly focuses on tumor proliferation, drug tolerance, and lipid and cholesterol metabolism, highlighting the potential of lncARSR as a diagnostic and prognostic biomarker and even a therapeutic target. In our final analysis, we provide a synthesized overview of the directions for future inquiry into lncARSR, and we are eager to witness the advancement of research that will elucidate the multifaceted nature of this lncRNA.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
26
|
Yücel Y, Şeker FS, Erden BA, Özdemir M, Tekin Ç, Çalışkan E, Tekin S, Koran K, Biryan F. The First Chalcone Derivatives of Valine-Based Spiro-Cyclotriphosphazenes: In Vitro Cytotoxic Properties, Molecular Docking and DNA Damage Mechanism Studies. J Biochem Mol Toxicol 2025; 39:e70233. [PMID: 40127203 PMCID: PMC11932576 DOI: 10.1002/jbt.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Cancer treatment requires novel compounds with potent cytotoxic and genotoxic properties to effectively target cancer cells. In this study, new hybrid cyclotriphosphazene compounds were synthesized, characterized, and evaluated for their biological activity. Cytotoxicity against A2780 and Caco-2 cancer cell lines was assessed via the MTT assay, while genotoxic effects at 60-70% cell viability were examined using the Comet assay. Apoptotic cells were identified through TUNEL analyses, and reactive oxygen species levels were measured. Results showed that these compounds significantly reduced cell viability through DNA damage mechanisms. At high doses (50-100 µM), BV, BVK1, BVK2, and BVK4 decreased A2780 cell viability by 30-65%, whereas VPA had a milder effect (15-25%). In Caco-2 cells, viability was reduced by 10-35%. The compounds exhibited varying cytotoxicity across different cancer cell lines, reflecting cancer cell heterogeneity. Significant DNA damage, including changes in tail length, tail density, and tail moment, was observed in A2780 cells, confirming cell death via DNA damage. Molecular docking analyses further supported the potential of cyclotriphosphazene compounds (BV and BVK2) as targeted cancer inhibitors. Molecular docking revealed BVK2's high selectivity for Bcl-2, mutant p53, and VEGFR2. BVK2 and BV demonstrate strong binding affinities with key cancer-related targets, indicating their potential as multi-targeted inhibitors that regulate apoptosis, cell cycle control, and angiogenesis, making them promising candidates for targeted cancer therapy.
Collapse
Affiliation(s)
- Yunus Yücel
- Faculty of Science, Department of ChemistryFırat UniversityElazigTurkey
| | | | - Büşra Aksoy Erden
- Department of Biotechnology, Faculty of ScienceBartin UniversityBartinTurkey
| | - Mücahit Özdemir
- Department of ChemistryMarmara UniversityKadikoyIstanbulTurkey
| | - Çiğdem Tekin
- İnönü Üniversitesi, Tıp Fakültesi, Halk Sağlığı A.D.MalatyaTurkey
| | - Eray Çalışkan
- Department of ChemistryBingol UniversityBingölTurkey
| | - Suat Tekin
- İnönü Üniversitesi, Tıp Fakültesi, FizyolojiMalatyaTurkey
| | - Kenan Koran
- Faculty of Science, Department of ChemistryFırat UniversityElazigTurkey
| | - Fatih Biryan
- Faculty of Science, Department of ChemistryFırat UniversityElazigTurkey
| |
Collapse
|
27
|
Chota A, Abrahamse H, George BP. Chemotoxic and phototoxic effects of liposomal co-delivery of green synthesized silver nanoparticles and ZnPcS 4 for enhanced photodynamic therapy in MCF-7 breast cancer cells: An in vitro study. Biomed Pharmacother 2025; 185:117986. [PMID: 40090284 DOI: 10.1016/j.biopha.2025.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
Breast cancer remains a significant challenge in oncology, despite notable advances in treatment methods. Traditional therapies such as surgery, chemotherapy, radiation, and hormonal treatments have long been used to manage breast cancer. However, often patients experience treatment failure, resulting in disease recurrence and progression. Therefore, this study explores the therapeutic potential of green-synthesized silver nanoparticles (AgNPs), using the root methanol (MeOH) extract of the African medicinal plant Dicoma anomala (D. anomala) as a reducing agent, to combat breast cancer. AgNPs were synthesized using a bottom-up approach and later modified with liposomes (Lip) loaded with the photosensitizer zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) through the thin film hydration method. Prior to in vitro cell culture studies, UV-Vis spectroscopy was used to study the in vitro drug release kinetics of nanoparticles (NPs) at pH 5.8 and 7.4 respectively. After a 24 h treatment period, MCF-7 breast cancer cells were evaluated for cell cytotoxicity using lactate dehydrogenase Cyto-Tox96® Non-Radioactive Cytotoxicity Assay Kit LDH and cell viability using the CellTiter-Glo® ATP luminescence assay kit. Cell death studies were analyzed using an inverted light microscope for morphological changes, fluorescence microscopy for reactive oxygen species (ROS) detection and Live/Dead cell viability, human p53 protein analysis using enzyme-linked immunosorbent assay (ELISA), apoptotic and anti-apoptotic protein analysis by immunofluorescence, and gene expression analysis using real-time reverse transcription polymerase chain reaction (RT-PCR) assay. The experiments were conducted in quadruplicate (n = 4), and the results were analyzed using IBM SPSS statistical software version 27, with a 95 % confidence interval. The synthesized NPs and nanocomplexes, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, demonstrated significant cytotoxicity and therapeutic potential against MCF-7 breast cancer cells. Notably, apoptosis was induced, primarily through the activation of the intrinsic pathway. Given the difficult prognosis associated with breast cancer, these findings highlight the promise of liposomal nanoformulations (NFs) in cancer photodynamic therapy (PDT), supporting further investigation in in vivo settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Tak YW, Kim J, Chung H, Lee SB, Park IJ, Lee SW, Jo MW, Lee JW, Baek S, Lee Y. Analysis of Metabolic and Quality-of-Life Factors in Patients With Cancer for a New Approach to Classifying Walking Habits: Secondary Analysis of a Randomized Controlled Trial. J Med Internet Res 2025; 27:e52694. [PMID: 40168661 PMCID: PMC12000789 DOI: 10.2196/52694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/28/2024] [Accepted: 11/20/2024] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND As the number of people diagnosed with cancer continues to increase, self-management has become crucial for patients recovering from cancer surgery or undergoing chemotherapy. Technology has emerged as a key tool in supporting self-management, particularly through interventions that promote physical activity, which is important for improving health outcomes and quality of life for patients with cancer. Despite the growing availability of digital tools that facilitate physical activity tracking, high-level evidence of their long-term effectiveness remains limited. OBJECTIVE This study aimed to investigate the effect of long-term physical activity on patients with cancer by categorizing them into active and inactive groups based on step count time-series data using the mobile health intervention, the Walkon app (Swallaby Co, Ltd.). METHODS Patients with cancer who had previously used the Walkon app in a previous randomized controlled trial were chosen for this study. Walking step count data were acquired from the app users. Biometric measurements, including BMI, waist circumference, blood sugar levels, and body composition, along with quality of life (QOL) questionnaire responses (European Quality of Life 5 Dimensions 5 Level version and Health-related Quality of Life Instrument with 8 Items), were collected during both the baseline and 6-month follow-up at an outpatient clinic. To analyze step count patterns over time, the concept of sample entropy was used for patient clustering, distinguishing between the active walking group (AWG) and the inactive walking group (IWG). Statistical analysis was performed using the Shapiro-Wilk test for normality, with paired t tests for parametric data, Wilcoxon signed-rank tests for nonparametric data, and chi-square tests for categorical variables. RESULTS The proposed method effectively categorized the AWG (n=137) and IWG (n=75) based on step count trends, revealing significant differences in daily (4223 vs 5355), weekly (13,887 vs 40,247), and monthly (60,178 vs 174,405) step counts. Higher physical activity levels were observed in patients with breast cancer and younger individuals. In terms of biometric measurements, only waist circumference (P=.01) and visceral fat (P=.002) demonstrated a significant improvement exclusively within the AWG. Regarding QOL measurements, aspects such as energy (P=.01), work (P<.003), depression (P=.02), memory (P=.01), and happiness (P=.05) displayed significant improvements solely in the AWG. CONCLUSIONS This study introduces a novel methodology for categorizing patients with cancer based on physical activity using step count data. Although significant improvements were noted in the AWG, particularly in QOL and specific physical metrics, differences in 6-month change between the AWG and IWG were statistically insignificant. These findings highlight the potential of digital interventions in improving outcomes for patients with cancer, contributing valuable insights into cancer care and self-management. TRIAL REGISTRATION Clinical Research Information Service by Korea Centers for Diseases Control and Prevention, Republic of Korea KCT0005447; https://tinyurl.com/3zc7zvzz.
Collapse
Affiliation(s)
- Yae Won Tak
- Department of Information Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junetae Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, Republic of Korea
| | | | - Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - In Ja Park
- Devision of Colorectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Woo Jo
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Preventive Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seunghee Baek
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yura Lee
- Department of Information Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Obulapuram R, Narapaka PK, Esuru C, Singh M, Dhingra S. Association of GI symptoms with health-related quality of life in cancer patients undergoing chemotherapy: a prospective study. Support Care Cancer 2025; 33:336. [PMID: 40167835 DOI: 10.1007/s00520-025-09400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE Chemotherapy, a primary cancer treatment, often leads to debilitating gastrointestinal (GI) side effects, significantly impacting health-related quality of life (HRQoL). This study investigates the prevalence and impact of gastrointestinal (GI) symptoms on HRQoL in cancer patients undergoing chemotherapy in Bihar, India. METHODS This prospective observational study enrolled 246 chemotherapy patients (≥ 18 years) over 9 months. GI symptoms and HRQoL were assessed using the Gastrointestinal Symptom Rating Scale (GSRS) and Short Form-36 (SF-36) questionnaires. Data analysis employed SPSS v.27, with t-tests determining significant associations. RESULTS Mild GI symptoms were prevalent (72.8% reported mild pain; 84.6% reported mild heartburn), while severe nausea (81.7%) and diarrhea (56.1%) were notable. A significant correlation existed between symptom severity and HRQoL decline (t = 15.35, p < 0.01). Severe symptoms substantially reduced HRQoL, particularly in pain (from 498.2 to 464.2), heartburn (from 493.6 to 483.4), nausea (from 497.2 to 492.1), diarrhea (from 494.9 to 473.3), and constipation (from 487.8 to 467.7), with declines in QoL scores ranging from 4.6 to 34.0 points across symptom categories, indicating a significant impact on patients' quality of life. CONCLUSION GI symptoms significantly impair HRQoL in cancer patients undergoing chemotherapy, affecting physical functioning, emotional well-being, social interactions, energy levels, and overall health. A multidisciplinary approach, incorporating psychological support and social rehabilitation, is crucial for managing symptoms and enhancing patient well-being.
Collapse
Affiliation(s)
- Ramadevi Obulapuram
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Dist. Vaishali, Bihar, India
| | - Pavan Kumar Narapaka
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Dist. Vaishali, Bihar, India
| | - Chindu Esuru
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Dist. Vaishali, Bihar, India
| | - Manisha Singh
- Department of Medical Oncology, Mahavir Cancer Sansthan and Research Centre (MCSRC), Patna, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Dist. Vaishali, Bihar, India.
| |
Collapse
|
30
|
Julaeha E, Mulyawan FE, Anwar FM, Akili AWR, Permadi N, Darwati, Kurnia D, Herlina T. Coumarins from Citrus aurantiifolia (Christm.) Swingle Peel with Potential Cytotoxic Activity Against MCF-7 Breast Cancer Cell Line: In Vitro and In Silico Studies. Onco Targets Ther 2025; 18:441-452. [PMID: 40183117 PMCID: PMC11967363 DOI: 10.2147/ott.s506978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Aim Breast cancer remains a prevalent and challenging health issue for women globally. In the pursuit of more effective and less harmful therapies, researchers have focused on natural compounds, especially phenolic compounds found in various plants and fruits. Purpose This study aims to explore the potency of coumarin compounds from Citrus aurantiifolia (Christm.) Swingle peel as alternative treatment for breast cancer through in vitro and in silico studies. Methods Three coumarins were isolated from C. aurantiifolia peel through multiple steps of column chromatograph. Their cytotoxic activities against the MCF-7 breast cancer cell line were evaluated using the MTT assay. Additionally, in silico studies, including molecular docking and molecular dynamics simulations, were conducted to evaluate the interactions of the most potent compound with estrogen receptor alpha (ERα). Results Chemical investigation of C. aurantiifolia peel led to the isolation of three compounds: 5-geranyloxy-7-methoxycoumarin (1), 5-geranyloxypsoralen (2), and 8-geranyloxypsoralen (3). Cytotoxic assays revealed that compound 2 exhibited the highest cytotoxic potency against MCF-7 breast cancer cell line with an IC50 of 138.51 ± 14.44 µg/mL, followed by compounds 1 and 3 with IC50 values of 204.69 ± 22.91 and 478.15 ± 34.85 µg/mL, respectively. Molecular docking studies against estrogen receptor alpha (ERα) showed that 5-geranyloxypsoralen (2) had a lower docking score (-10.63 kcal/mol) compared to estradiol (-9.99 kcal/mol). Molecular dynamics simulation revealed the binding stability ERα-Compound 2 complex as evidence from the root mean square deviation (RMSD) of 2.964 ± 0.460 Å. Furthermore, pharmacokinetic predictions suggested that 5-geranyloxypsoralen may possess favourable pharmacokinetic properties, highlighting its potential as a therapeutic agent. Conclusion The study highlights the potential of coumarin compounds from C. aurantiifolia peel as an alternative treatment for breast cancer, particularly 5-geranyloxypsoralen could be a promising therapeutic agent in breast cancer treatment, warranting further investigation.
Collapse
Affiliation(s)
- Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Faryanti Eka Mulyawan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Feby Marlia Anwar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung, West Java, 40132, Indonesia
| | - Darwati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
31
|
El Halawany M, Sharaky M, Aziz D. Stearyl amine tailored spanlastics embedded within tetronic ® nanogel for boosting the repurposed anticancer potential of mebendazole: formulation, in vitro profiling, cytotoxicity assessment, and in vivo permeation analysis. Daru 2025; 33:17. [PMID: 40156679 PMCID: PMC11954785 DOI: 10.1007/s40199-025-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Mebendazole (MBZ) is an anthelmintic drug that was repurposed as an anti-cancer agent. OBJECTIVES This study aimed at formulating MBZ into stearylamine tailored spanlastics dispersed in nanogel for enhancing MBZ anti-tumor efficacy against skin cancer. METHODS MBZ spanlastics were prepared by thin film hydration using 21 × 31 factorial design. The formulation variables were the total amount (mg) of Span 60 and Tween 80 in the formulations and the ratio between Span 60 and Tween 80. RESULTS Optimal spanlastics formulation was composed of 400 mg of Span 60 and Tween 80 in a ratio of 2:1 and showed EE% of 78 ± 2.9% and PS of 284.00 ± 35.36 nm. Stearylamine (20 mg) was added to the optimized formulation and showed acceptable positive charge (zeta potential = 47.53 ± 1.50 mV). It was dispersed in 30% Tetronic®1107 solution to form a nanogel. MBZ nanogel was assessed for their cytotoxic effect on cell proliferation against human malignant melanoma and epidermoid carcinoma cell lines and showed 38.70 ± 1.70% and 48.60 ± 0.50% (respectively) cell proliferation compared to the control group (100%). Finally, its permeation through Wistar rat skin was tested. CONCLUSION SA-spanlastics nanogel holds potential as an effective nanocarrier for boosting MBZ anti-cancer efficacy.
Collapse
Affiliation(s)
- Mai El Halawany
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street 11562, Cairo, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr El-Ainy Street 11562, Cairo, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6Th October City 12573, Giza, Egypt
| | - Diana Aziz
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street 11562, Cairo, Egypt.
| |
Collapse
|
32
|
Pandey P, Ramniwas S, Baldaniya L, Lakhanpal S, Mahmood D, Chaudhary K, Pandey S, Choi M, Choi J, Kim HJ, Ahn CH, Park MN, Khan F, Kim B. An Updated Review of Molecular Mechanisms Implicated with the Anticancer Potential of Diosgenin and Its Nanoformulations. Drug Des Devel Ther 2025; 19:2205-2227. [PMID: 40160969 PMCID: PMC11952048 DOI: 10.2147/dddt.s502322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/01/2025] [Indexed: 04/02/2025] Open
Abstract
Dietary components have gained broader recognition in preventing and managing numerous human carcinomas. Plant-derived natural compounds offer several benefits, including their limited toxicity and multi-targeted agents in modulating deregulated oncogenic pathways, including PI3K/AKT, NF-κB/STAT3, and HIF-1α, and hence, they emerged as better chemotherapeutic alternatives. Diosgenin (phytosteroidal saponin) and its nanoformulations have been extensively reported to impact cancer progression and metastasis. Research has indicated that diosgenin and its nanoformulations possess significant anticancer potential with improved bioavailability. However, novelty of this review relies on compiling the updated anticancer role of diosgenin and its nanoformulations in modulating numerous oncogenic targets associated with carcinogenesis and metastasis. Diosgenin has also been utilized with traditional therapies to enhance the sensitivity of cancerous cells towards normal chemotherapeutic processes. More focus should be given to gain detailed insights about the mechanisms associated with the anticancer potential of diosgenin and its nanoformulations, which can further potentiate its candidature in developing efficient cancer therapies. However, more preclinical studies are warranted to exploit the anticancer efficacy of this plant-based compound in an efficient manner.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh, Baddi, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre of Research and Development, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Shivam Pandey
- Department of Life Sciences, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo Jeong Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Chi-Hoon Ahn
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
33
|
Attia YM, Tadros SA, Fahim SA, Badr DM. Role of noncoding RNA as a pacemaker in cancer stem cell regulation: a review article. J Egypt Natl Canc Inst 2025; 37:9. [PMID: 40122959 DOI: 10.1186/s43046-025-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Accumulated evidence supported the crucial role of a tiny population of cells within the tumor called cancer stem cells (CSCs) in cancer origination, and proliferation. Additionally, these cells are distinguished by their self-renewal, differentiation, and therapeutic resistance capabilities. Interestingly, many studies recorded dysregulation of different types of noncoding RNAs, such as microRNA (miRNA) and long non-coding RNA (LncRNA), in cancer cells as well as CSCs. Moreover, several studies also supported the regulation of the transcription factors and signaling pathways required for CSC progression by these noncoding RNAs. However, the exact biological functions of all these noncoding RNAs are not well understood yet. These findings are of great interest, implying usage of noncoding RNA as therapeutic tool to target these cells. In this review, we provide an insight into how noncoding RNAs regulate CSCs and how this correlation is manipulated to develop new therapies to eradicate cancer cells successfully.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123october University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Doaa M Badr
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
34
|
Al Jayoush AR, Haider M, Khan SA, Hussain Z. Hyaluronic acid-functionalized nanomedicines for CD44-receptors-mediated targeted cancer therapy: A review of selective targetability and biodistribution to tumor microenvironment. Int J Biol Macromol 2025; 308:142486. [PMID: 40139601 DOI: 10.1016/j.ijbiomac.2025.142486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Cancer is a leading cause of death globally, driven by late diagnoses, aggressive progression, and multidrug resistance (MDR). Advances in nanotechnology are tackling these challenges, paving the way for transformative cancer treatments. Hyaluronic acid (HA)-based nanoparticles (NPs) have emerged as promising platforms due to their biocompatibility, biodegradability, and natural targeting capabilities via CD44 (cluster of differentiation 44) receptors. Functionalizing NPs with HA enhances cellular uptake through CD44, improves pharmacokinetics, tumor localization, and anticancer efficacy while reducing systemic toxicity. This review provides a comprehensive overview of HA-based NPs, highlighting their potential to address limitations in cancer treatment and inspire further innovation. The targeting efficiency of HA-based NPs can be further optimized by integrating passive (e.g., PEGylation), active (e.g., ligand conjugation), and stimuli-responsive mechanisms (e.g., pH, redox, light, enzyme activity, and temperature sensitivity). These NPs also enable therapeutic combinations, such as co-delivery of chemotherapeutics with gene therapies (e.g., siRNA) and integration of photothermal and photodynamic therapies, alongside immune checkpoint inhibitors, amplifying therapeutic synergy. Despite promising preclinical results, challenges such as scalability, stability, long-term safety, ethical and regulatory hurdles, and high costs persist. Nonetheless, HA-based NPs represent a cutting-edge approach, combining biocompatibility, precision targeting, and multimodal functionality to combat cancer effectively, while mitigating side effects.
Collapse
Affiliation(s)
- Alaa Raad Al Jayoush
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saeed Ahmad Khan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
35
|
Heymann D, Muñoz-Garcia J, Babuty A, Audéon A, Ollivier E, Papy-Garcia D, Chantepie S, Zykwinska A, Sinquin C, Colliec-Jouault S. A new promising anticancer agent: A glycosaminoglycan-mimetic derived from the marine bacterial infernan exopolysaccharide. Int J Biol Macromol 2025; 308:142074. [PMID: 40118403 DOI: 10.1016/j.ijbiomac.2025.142074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Marine microorganisms are a promising source of innovative compounds for medical applications. The present study aimed to investigate anticancer potential of oversulfated low molecular weight derivatives, named OSIDs, prepared from infernan, a marine bacterial exopolysaccharide. In order to identify a lead, OSIDs with different sulfate contents and molecular weights were firstly evaluated in vitro in a large series of human and murine tumor cell lines. Among all derivatives tested, OSID4 was the most effective, showing a significant dose-dependent inhibitory effect on the viability of cancer cells. OSID4 was then able to significantly slow down progression of lung and melanoma tumor growth in immunocompetent tumor-bearing mouse models. In immunodeficient mice bearing a human lung carcinoma, a notable inhibitory effect of OSID4, comparable to doxorubicin, was observed. In combination with doxorubicin, OSID4 did not exhibit any drug interaction. The activity of OSID4 was confirmed by its modulatory effect on the transcriptomic profile of human lung cancer cells. Finally, toxicity and pharmacokinetic parameters disclosed that OSID4 presented no toxicity and no bleeding risk. In conclusion, by combining its notable anticancer and moderate anticoagulant activities, OSID4 may be promising for treatment of cancers associated with a high risk of thromboembolic events.
Collapse
Affiliation(s)
- Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, F44322 Nantes, France; Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France; University of Sheffield, School of Medicine and Population Health, S102RX Sheffield, UK.
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, UMR6286, US2B, F44322 Nantes, France; Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France
| | - Antoine Babuty
- Nantes Université, CNRS, UMR6286, US2B, F44322 Nantes, France; Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France; CHU de Nantes, Department of Hemostasis, F-44201 Nantes, France
| | - Antoine Audéon
- Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France; SATT Ouest Valorisation, F-44201 Nantes, France
| | - Emilie Ollivier
- Institut de cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, F-44805 Saint Herblain, France
| | - Dulce Papy-Garcia
- Université Paris Est Créteil (UPEC), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), F-94010 Créteil, France
| | - Sandrine Chantepie
- Université Paris Est Créteil (UPEC), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), F-94010 Créteil, France
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | | |
Collapse
|
36
|
Bhole R, Shinkar J, Labhade S, Karwa P, Kapare H. MED12 dysregulation: insights into cancer and therapeutic resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04006-0. [PMID: 40105922 DOI: 10.1007/s00210-025-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
MED12, a critical subunit of the mediator (MED) complex, plays a central role in transcriptional regulation by bridging signal-dependent transcription factors and RNA polymerase II. Dysregulation of MED12, often through mutation, has emerged as a significant driver in various cancers, including uterine leiomyomas, breast cancer (B.C.), and prostate cancer (P.C.). These mutations disrupt normal transcriptional processes by impairing the mediator complex's ability to properly regulate gene expression, which activates oncogenic pathways such as Wnt/β-catenin and TGF-β signaling, promoting tumorigenesis and drug resistance. Specifically, mutations in the MED12 gene lead to altered interactions with the transcriptional machinery, fostering aberrant activation of oncogenic networks. MED12 alterations have also been implicated in chemoresistance, particularly to therapies targeting EGFR, ALK, and BRAF, highlighting its role as a barrier to effective treatment. This review explores the mechanisms underlying MED12 dysregulation, its impact on cancer progression, and its association with therapeutic resistance. By examining its potential as a predictive biomarker and a therapeutic target, the article underscores the importance of MED12 in advancing precision oncology. Understanding MED12-mediated mechanisms offers insights into overcoming therapeutic resistance and paves the way for innovative, personalized cancer treatments.
Collapse
Affiliation(s)
- Ritesh Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India.
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Jagruti Shinkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Sonali Labhade
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Pawan Karwa
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Harshad Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| |
Collapse
|
37
|
Mukherjee A, Sarkar R. Unlocking the microbial treasure trove: advances in Streptomyces derived secondary metabolites in the battle against cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04001-5. [PMID: 40100372 DOI: 10.1007/s00210-025-04001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Streptomyces is widely recognized as the "biological factory" of specialized metabolites comprising a huge variety of bioactive molecules with diverse chemical properties. The potential of this Gram-positive soil bacteria to produce such diversified secondary metabolites with significant biological properties positions them as an ideal candidate for anticancer drug discovery. Some of the Streptomyces-derived secondary metabolites include siderophores (enterobactin, desferrioxamine), antibiotics (xiakemycin, dinactin) pigments (prodigiosin, melanin), and enzymes (L-methioninase, L-asperginase, cholesterol oxidase) which exhibit a pronounced anticancer effect on both in vitro and in vivo system. These secondary metabolites are endowed with antiproliferative, pro-apoptotic, antimetastatic, and antiangiogenic properties, presenting several promising characteristics that make them suitable candidates in the battle against this deadly disease. In this comprehensive review, we have dived deep and explored their history of discovery, their role as anticancer agents, underlying mechanisms, the approaches for the discovery of anticancer molecules from the secondary metabolites of Streptomyces (isolation of Streptomyces, characterization of bacterial strain, screening for anticancer activity and determination of in vitro and in vivo toxicity, structure-activity relationship studies, clinical translation, and drug development studies). The hurdles and challenges associated with this process and their future prospect were also illustrated. This review highlights the efficacy of Streptomyces as a "microbial treasure island" for novel anticancer agents, which warrants sustained research and exploration in this field to disclose more molecules from Streptomyces that are unidentified and to translate the clinical application of these secondary metabolites for cancer patients.
Collapse
Affiliation(s)
- Adrija Mukherjee
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Ruma Sarkar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India.
| |
Collapse
|
38
|
Sharma D, Czarnota GJ. Using ultrasound and microbubble to enhance the effects of conventional cancer therapies in clinical settings. Cancer Metastasis Rev 2025; 44:39. [PMID: 40088396 PMCID: PMC11910443 DOI: 10.1007/s10555-025-10255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
It has been demonstrated in preclinical research that the administration of microbubbles with ultrasound can augment the proapoptotic sphingolipid pathway and enhance chemotherapy or radiation therapy-induced vascular endothelial disruption resulting in enhanced tumor cell death. Specifically, ultrasound-stimulated microbubbles (USMB) can increase blood vessel permeability facilitating the release of therapeutic substances in the target area. USMB can also serve as a potential radiation enhancing therapy as USMB exposure increases tumor cell death significantly as observed in preclinical models. Clinical studies have found the combination of USMB and these existing cancer therapies to be safe and also to be associated with greater tumor responses. USMB-based treatment can be applicable in a clinical setting using either ultrasound imaging or magnetic resonance imaging (MRI) guidance for precise treatment. In the latter, the ultrasound device is integrated into the MRI system platform for sonication to facilitate microbubble stimulation. In this review, we concisely present findings related to USMB and existing cancer therapies (chemotherapy and radiation therapy) in clinical trial settings. The possible underlying mechanism involved in USMB-enhanced chemotherapy or radiotherapy enhancement is also discussed. Lastly, the study concludes with some limitations and an examination of the future direction of these combined therapies.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Barros M, Sáez JA, Arroyo P, Vicente Ros-Lis J, Dolores Garrido M, Martínez-Máñez R, Carmen Terencio M, Carmen Montesinos M, Gaviña P. Nitroreductase-responsive gated mesoporous silica nanocarriers for hypoxia-targeted drug delivery. Int J Pharm 2025; 672:125326. [PMID: 39954972 DOI: 10.1016/j.ijpharm.2025.125326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Hypoxia, i.e., low oxygen concentration at the tissue level, is a common feature of most solid tumors, and is responsible for their enhanced aggressiveness and resistance to chemotherapy, radiotherapy and photodynamic therapy. Hypoxic microenvironments are also characterized by the overexpression of various reductase enzymes such as nitroreductases. Herein, we report a hypoxia-responsive hybrid nanomaterial consisting of mesoporous silica nanoparticles, loaded with the chemotherapy drug doxorubicin, and functionalized on their surface with a self-immolative gatekeeper responsive to nitroreductases, for the controlled release of the cargo. Thus, under bioreductive conditions, elicited by the presence of nitroreductase and NADH, the reduction of the nitroaromatic containing molecular gate induces a self-immolative elimination leading to the disintegration of the gatekeeper and the delivery of the doxorubicin from inside the pores. The nitroreductase-responsive nanocarrier has been tested in vitro with A549 cells, that are known to express nitroreductase, to demonstrate its effectiveness as drug carrier for doxorubicin release, showing great potential for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Mariana Barros
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain
| | - José A Sáez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain; Departamento de Química Orgánica, Universitat de València, C/ Doctor Moliner 50 46100, Burjassot, Valencia, Spain
| | - Pau Arroyo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain; Departamento de Química Orgánica, Universitat de València, C/ Doctor Moliner 50 46100, Burjassot, Valencia, Spain
| | - J Vicente Ros-Lis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain
| | - M Dolores Garrido
- Institut de Ciència dels Materials (ICMUV), Universitat de València, C/ Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3 46100, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106 46026, Valencia, Spain
| | - M Carmen Terencio
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain; Departamento de Farmacología, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain
| | - M Carmen Montesinos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain; Departamento de Farmacología, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Valencia, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de Valencia - Universitat Politècnica de València, C/ Doctor Moliner, 50, Burjassot 46100, Valencia, Spain; Departamento de Química Orgánica, Universitat de València, C/ Doctor Moliner 50 46100, Burjassot, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
40
|
Li J, Shi X, Zhang H, Lin X, Zheng S, Chen W, Zhou Y, Liang Z. Clinical Validation of a Targeted RNA-Sequencing Assay for Driver Gene Alteration Detection in Non-Small Cell Lung Cancer. Mol Diagn Ther 2025:10.1007/s40291-025-00774-w. [PMID: 40087257 DOI: 10.1007/s40291-025-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND AND OBJECTIVE With the increasing number of diagnostic biomarkers associated with tumor diagnosis, targeted therapy, and immunotherapy, access to clinical pathological specimens of an appropriate size for analysis is becoming a problem. Conventional high-throughput sequencing assays for non-small cell lung cancer (NSCLC) often necessitate the extraction of separate DNA and RNA samples to achieve precise detection of various mutation types. This study aimed to employ RNA-next-generation sequencing (NGS) technology to simultaneously detect different types of mutations in NSCLC samples, including single nucleotide variations, insertions and deletions, fusions/rearrangements, and exon skipping, thereby addressing the issue of limited sample availability. METHODS Two hundred and twenty cases of formalin-fixed paraffin-embedded NSCLC clinical specimens were retrospectively included for targeted RNA sequencing based on the principle of probe hybridization capture. Lung cancer tissue samples with different storage times were compared for success in DNA-NGS and RNA-NGS assays. The clinical detection performance of RNA-NGS was evaluated by comparing its results to those of DNA-NGS and clinical assays. Samples with inconsistent results were further verified by immunohistochemistry, amplification refractory mutation system-polymerase chain reaction, or droplet digital polymerase chain reaction. RESULTS DNA-NGS exhibited an overall success rate of 91.82% in all samples, while RNA-NGS achieved an overall success rate of 92.73%. However, the success rate declined with longer storage times. Compared with DNA-NGS, targeted RNA sequencing for single nucleotide variation/insertion and deletion detection achieved a sensitivity of 93.75%, a specificity of 100%, and an overall concordance of 97.86%. Compared with the validated results, it achieved a sensitivity of 97.96%, a specificity of 99.28%, an and overall concordance of 98.93% in fusion/rearrangement and Met exon skipping detection, which was superior to DNA-NGS. Compared to clinical testing, this assay demonstrated a sensitivity of 93.33%, a specificity of 100%, and an overall concordance rate of 97.93%. CONCLUSIONS This study substantiates that the targeted RNA-sequencing assay, based on probe hybridization capture, represents a superior detection technology platform for the application of drug targeting. It expeditiously and reliably provides all the requisite biomarkers for current NSCLC targeted therapies in a single-sample testing workflow, facilitating rapid clinical diagnosis and the formulation of rational treatment plans by clinicians.
Collapse
Affiliation(s)
- Ji Li
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Xiaojing Lin
- Zhenyue Biotechnology Jiangsu Co., Ltd., Taizhou, Jiangsu, China
| | - Shan Zheng
- Zhenyue Biotechnology Jiangsu Co., Ltd., Taizhou, Jiangsu, China
| | - Weizhi Chen
- Zhenyue Biotechnology Jiangsu Co., Ltd., Taizhou, Jiangsu, China
| | - Yang Zhou
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, 1 Shuai Fu Community, Dongcheng District, Beijing, 100000, China.
| |
Collapse
|
41
|
Zahid A, Khurshid A, Rehman SU, Hassan SMU, Akhtar R. Enhanced Intracellular Delivery of Curcumin Using Polymeric Nanocarriers: A Natural Photosensitizing Agent for Anti-Cancer Photodynamic Therapy. J Fluoresc 2025:10.1007/s10895-025-04179-0. [PMID: 40056323 DOI: 10.1007/s10895-025-04179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/10/2025]
Abstract
Curcumin ranks among the extensively investigated Phytocompounds with a wide array of therapeutic properties. It has bioactive and photoactive properties that enhance its potential as an anti-cancer agent. However, poor solubility and low bioavailability are associated with it which hinders its applications. To address the limitations related to free curcumin (CUR), the present study focuses on the synthesis of curcumin-loaded poly lactic-co-glycolic acid nanoparticles (CUR NPs). The single emulsion solvent evaporation technique was used to synthesize CUR NPs with an average size of 187 nm and a zeta potential of -13.3 mV. Photophysical properties, drug loading efficiency, and drug release profile of synthesized CUR NPs were studied. Confocal fluorescence imaging was employed to study the cellular uptake of both formulations of CUR. The In-vitro investigation was conducted using BT-474 human breast cancer cells to evaluate the dark and phototoxic effect of both variants of curcumin (free CUR and CUR NPs). The cytotoxicity was quantified through half-maximal inhibitory concentration (IC50) obtained after conducting in-vitro dark and phototoxic experiments. The study revealed that CUR NPs showed better cytotoxic responses compared to the free CUR. During the phototoxic study, CUR NPs exhibit improved efficacy in the presence of light. The CUR NPs effectively deliver curcumin to enhance its potential in photodynamic therapy against cancer.
Collapse
Affiliation(s)
- Aleena Zahid
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| | - Ahmat Khurshid
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shakeel Ur Rehman
- Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Syed Mujtaba Ul Hassan
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ribqa Akhtar
- Department of Virology and Immunology, National Institute of Health, Park Road, Islamabad, Pakistan
| |
Collapse
|
42
|
Tiwari A, Yadav P, Shah AA, Rana R, Yadav P, Mishra K, Tripathi S, Kothuri N, Verma S, Kashyap A, Jaiswal S, Verma S, Mugale MN, Chourasia MK. Designing pegylated dextran sheathed doxorubicin loaded iron nanoparticles against premenopausal breast cancer. Int J Biol Macromol 2025; 307:141874. [PMID: 40064263 DOI: 10.1016/j.ijbiomac.2025.141874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
Premenopausal women, often iron-deficient, face a heightened risk of breast cancer. Magnetic nanoparticles (MNPs) show promise for cancer therapy but are limited by challenges in pharmacokinetics, biocompatibility, and magnetic property stability, leading to reduced efficacy and resistance. To overcome these hurdles, a double-shelled magnetic nanoparticle (DOX-RA-MNP) system was developed for pH-sensitive delivery of Retinoic acid and Doxorubicin using an immunomodulatory polymeric approach. Optimized by using a QbD framework, the formulation demonstrated ideal size, polydispersity index, zeta potential, and enhanced doxorubicin loading. The formulation depicted sustained drug release with enhanced release at tumor pH. In vitro studies on MDA-MB-231 cells revealed improved cytotoxicity, cellular uptake, G2 phase cell cycle arrest, mitochondrial membrane depolarization, and PgP protein inhibition. In in vivo, the system showed significant tumor regression, favorable pharmacokinetics, biodistribution, and safety, with lower hemolysis and improved survival rates. The biochemical studies provide insights about the role of ferroptosis increasing reactive oxygen species (ROS) level and immunomodulatory effects. Further, the lower hemolysis and enhanced survival of animals confirmed safety of the developed formulation. These findings suggest the DOX-RA-MNP system effectively targets and localizes drugs, reducing toxicity and offering a potent strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Amrendra Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pavan Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naresh Kothuri
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kashyap
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srishty Jaiswal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shobhit Verma
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Madhav N Mugale
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
43
|
Qaderi K, Shahmoradi A, Thyagarajan A, Sahu RP. Impact of targeting the platelet-activating factor and its receptor in cancer treatment. Mil Med Res 2025; 12:10. [PMID: 40033370 PMCID: PMC11877967 DOI: 10.1186/s40779-025-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
The lipid mediator platelet-activating factor (PAF) and its receptor (PAFR) signaling play critical roles in a wide range of physiological and pathophysiological conditions, including cancer growth and metastasis. The ability of PAFR to interact with other oncogenic signaling cascades makes it a promising target for cancer treatment. Moreover, numerous natural and synthetic compounds, characterized by diverse pharmacological activities such as anti-inflammatory and anti-tumor effects, have been explored for their potential as PAF and PAFR antagonists. In this review, we provide comprehensive evidence regarding the PAF/PAFR signaling pathway, highlighting the effectiveness of various classes of PAF and PAFR inhibitors and antagonists across multiple cancer models. Notably, the synergistic effects of PAF and PAFR antagonists in enhancing the efficacy of chemotherapy and radiation therapy in several experimental cancer models are also discussed. Overall, the synthesis of literature review indicates that targeting the PAF/PAFR axis represents a promising approach for cancer treatment and also exerts synergy with chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Kimya Qaderi
- Department of Molecular and Cell Biology, College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, 66177-13446, Kurdistan, Iran
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
44
|
Bithi SA, Al Hasan MS, Bhuia MS, Mia E, Yana NT, Hasan AMW, Uddin MB, Sayeed MA, Emon Y, Hasan R, Chowdhury R, Islam MT. Botanical sources, biopharmaceutical profile, anticancer effects with mechanistic insight, toxicological and clinical evidence of prunetin: a literature review. Med Oncol 2025; 42:87. [PMID: 40029540 DOI: 10.1007/s12032-025-02646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Prunetin (PRU), a naturally occurring flavonoid, has gained recognition for its wide-ranging therapeutic benefits, though its anticancer properties have yet to be extensively reviewed. This study explores the potential of PRU in targeting critical molecular pathways involved in tumor progression, including oxidative stress, apoptosis, cell cycle regulation, and metastasis. Data were compiled from reputable sources, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings emphasize PRU's ability to mitigate oxidative stress, promote apoptosis, and regulate the cell cycle in cancer cells. Its anti-inflammatory and anti-angiogenic properties further enhance its effectiveness against cancer. Mechanistic studies reveal that PRU suppresses oncogenic pathways such as PI3K/Akt/mTOR (Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin) while activating tumor-suppressor mechanisms. Experimental models show that PRU effectively inhibits cancer cell proliferation and metastasis. Additionally, PRU exhibits favorable pharmacokinetics, demonstrating high intestinal absorption (95.5%), good Caco-2 permeability, and metabolism via CYP1A2, CYP2C19, CYP2C9, and CYP3A4, though it has poor blood-brain barrier (BBB) permeability and limited aqueous solubility, posing challenges for systemic bioavailability. Beyond its anticancer properties, PRU displays broad pharmacological relevance, including anti-inflammatory, cardioprotective, neuroprotective, anti-obesity, and osteoprotective effects, mediated through pathways, such as NF-κB, MAPK, and AMPK. Toxicological studies indicate a favorable safety profile, with low cytotoxicity in normal cells and no significant toxicity at high doses in preclinical models. While clinical evidence on PRU remains limited, studies on structurally related isoflavones suggest promising therapeutic potential, necessitating further clinical trials to establish its efficacy and safety in humans.
Collapse
Affiliation(s)
- Sumaya Akter Bithi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Ali Mohamod Wasaf Hasan
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | | | - Md Abu Sayeed
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Yasin Emon
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh.
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
45
|
Khairnar SI, Kulkarni YA, Singh K. Cardioprotective effect of chelidonic acid against doxorubicin-induced cardiac toxicity in rats. Rev Port Cardiol 2025; 44:141-153. [PMID: 39216530 DOI: 10.1016/j.repc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES The current study evaluates the effect of chelidonic acid on doxorubicin-induced cardiac toxicity. Chelidonic acid (CA) is a natural pyran-skeleton heterocyclic compound found in rhizomes of the perennial plant, celandine (Chelidonium majus). METHODS Wistar rats were given an intraperitoneal injection of doxorubicin (1.25 mg/kg, cumulative dose of 20 mg/kg) four times per week for a duration of four weeks to induce cardiotoxicity. CA treatment (10, 20, and 40 mg/kg orally for four weeks) was started together with doxorubicin. RESULTS CA treatment reduced myocardial damage and improved cardiac dysfunction in doxorubicin-treated rats. It improved blood pressure, restored ST wave height and normalized the QTc interval compared to the rats treated only with doxorubicin. Administration of CA for four weeks reduced left ventricular end-diastolic pressure. Moreover, CA treatment decreased the level of cardiac markers such as creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and cardiac troponin-T. Masson's trichrome, hematoxylin, and eosin staining of heart tissue revealed that CA attenuated the deleterious effects of doxorubicin and prevented further damage and fibrosis in rats. CONCLUSION The study findings confirm that CA treatment can protect the myocardium against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India.
| |
Collapse
|
46
|
Sheykhhasan M, Ahmadieh-Yazdi A, Heidari R, Chamanara M, Akbari M, Poondla N, Yang P, Malih S, Manoochehri H, Tanzadehpanah H, Mahaki H, Fayazi Hosseini N, Dirbaziyan A, Al-Musawi S, Kalhor N. Revolutionizing cancer treatment: The power of dendritic cell-based vaccines in immunotherapy. Biomed Pharmacother 2025; 184:117858. [PMID: 39955851 DOI: 10.1016/j.biopha.2025.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
In the modern time, cancer immunotherapies have increasingly become vital treatment options, joining long-established methods like surgery, chemotherapy, and radiotherapy treatment. Central to this emerging approach are dendritic cells (DCs), which boast a remarkable ability for antigen presentation. This ability is being leveraged to modulate T and B cell immunity, offering a groundbreaking strategy for tackling cancer. However, the percentage of patients experiencing meaningful benefits from this treatment remains relatively low, underscoring the ongoing necessity for further research and development in this field. This review offers a comprehensive analysis of the present-day progress in dendritic cell (DC)-based vaccines and recent efforts to enhance their efficacy. We explore the intricacies of DC function, from antigen capture to T cell stimulation, and discuss the outcomes of both preclinical and clinical trials across various cancer types. While the results are promising, the real-world application of DC-based vaccines is still nascent, posing multiple challenges that need to be overcome. These obstacles include optimizing the methods for DC generation and antigen loading, overcoming the immunosuppressive nature of the tumor microenvironment, and enhancing specificities of the immunologic response through personalized vaccines. The review concludes by emphasizing prospective opportunities for future research and emphasizing the critical need for extensive clinical trials. These trials are essential to validate the effectivity of DC-based vaccines and solidify their role in the broader spectrum of cancer immunotherapy options.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Heidari
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran; Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Student research committee, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College & Hospital, Chennai, India
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Basic Science Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Dirbaziyan
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
47
|
Kawaguchi S, Nishisho T, Toki S, Takeuchi M, Tamaki S, Sairyo K. Blue Light Emitting Diode Suppresses Sarcoma Cell Proliferation via the Endogenous Apoptotic Pathway Without Damaging Normal Cells. Cancer Med 2025; 14:e70770. [PMID: 40125803 PMCID: PMC11931449 DOI: 10.1002/cam4.70770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The development of novel therapies for sarcoma is urgently required because most sarcomas are refractory to adjuvant therapy and the treatment options are limited. Although antitumor effects of blue light (BL) have been reported for several malignant tumors, its impact on various sarcomas remains unknown. In this study, we examined the antitumor effects of BL on several kinds of bone and soft tissue sarcomas. METHODS We used human osteosarcoma, undifferentiated pleomorphic sarcoma, liposarcoma, and myxofibrosarcoma cell lines, as well as a human dermal fibroblast cell line as normal cells. We continuously irradiated these cells with BL in an incubator. RESULTS BL inhibited cell proliferation in sarcoma cells, but hardly affected normal cells. BL increased intracellular reactive oxygen species (ROS) levels in sarcoma cells, but not in normal cells. Interestingly, oxidative stress occurred after BL irradiation in both sarcoma and normal cells. In addition, apoptosis, autophagy, and mitochondrial dysfunction, which were induced by ROS, occurred in sarcoma cells. In undifferentiated pleomorphic sarcoma cells, BL caused cell death through activation of the endogenous apoptotic pathway, and autophagy counteracted the apoptosis. CONCLUSION Our results indicate that BL might specifically kill sarcoma cells without injuring normal cells and may become a new treatment option for sarcoma.
Collapse
Affiliation(s)
- Shinji Kawaguchi
- Department of Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Toshihiko Nishisho
- Department of Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Shunichi Toki
- Department of Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Makoto Takeuchi
- Department of Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Shunsuke Tamaki
- Department of Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| |
Collapse
|
48
|
Klg A, Priyadharshini B, Vasugi S, Dilipan E. Exploring the therapeutic potential of biosynthetic enzymes in cancer treatment: Innovations and implications. Int J Biol Macromol 2025; 292:139171. [PMID: 39732247 DOI: 10.1016/j.ijbiomac.2024.139171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Cancer remains a major global health concern due to several factors. These include the difficulty in accessing effective drugs, the high toxicity of available treatments, and the emergence of resistance to therapy. As a result, alternative strategies, such as the use of microbial enzymes, have gained attention as potential solutions to these challenges. Microbial enzymes have shown promise in inhibiting the uncontrolled growth of tumor cells through various mechanisms. In this comprehensive review, our objective is to emphasize the importance of pivotal microbial enzymes in fighting cancer and their ability to hinder the growth of tumors or cancer cells. The review article serves as a scientific roadmap for researchers, clinicians, and industry stakeholders exploring the therapeutic potential of biosynthetic enzymes in cancer treatment. It emphasizes the quest for effective and sustainable cancer therapies, presenting the possibility of personalized treatments with fewer side effects than traditional therapies.
Collapse
Affiliation(s)
- Afeeza Klg
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Boopathy Priyadharshini
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Suresh Vasugi
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Elangovan Dilipan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
49
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Jiang M, Zhang K, Meng J, Xu L, Liu Y, Wei R. Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system. Int J Cancer 2025; 156:898-913. [PMID: 39474936 DOI: 10.1002/ijc.35241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Meng
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Linhua Xu
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|