1
|
Yi Y, Kim B, Kim M, Ko YH, Kim JH, Lim MH. Zn(ii)-driven impact of monomeric transthyretin on amyloid-β amyloidogenesis. Chem Sci 2025:d4sc08771b. [PMID: 39911331 PMCID: PMC11793109 DOI: 10.1039/d4sc08771b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Extracellular accumulation of amyloid-β (Aβ) peptides in the brain plays a significant role in the development of Alzheimer's disease (AD). While the co-localization and interaction of proteins and metal ions with Aβ in extracellular milieu are established, their precise pathological associations remain unclear. Here we report the impact of Zn(ii) on the anti-amyloidogenic properties of monomeric transthyretin (M-TTR), which coexists spatially with Aβ and Zn(ii) in extracellular fluids. Our findings demonstrate the Zn(ii)-promoted ternary complex formation involving M-TTR, Aβ, and Zn(ii) as well as M-TTR's proteolytic activity towards Aβ. These interactions decrease the inhibitory effect of M-TTR on the primary nucleation process of Aβ as well as its ability to improve cell viability upon treatment of Aβ. This study unveils the variable activities of M-TTR towards Aβ, driven by Zn(ii), providing insights into how metal ions influence the entanglement of M-TTR in the Aβ-related pathology linked to AD.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Bokyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Young Ho Ko
- Center for van der Waals Quantum Solids, Institute for Basic Science Pohang 37673 Republic of Korea
| | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Ramadhani A, Tanaka A, Minagawa K, Takehara S, Yamada T, Sone H, Kaneko N, Nohno K, Ogawa H. Exploring the Changes in Mild Cognitive Impairment Blood-Based Biomarkers after Local Antibiotic Periodontal Treatment in Diabetic Patients: Secondary Analysis of Data from a Randomized Controlled Trial. Eur J Dent 2024. [PMID: 39750521 DOI: 10.1055/s-0044-1795115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES This article investigates the changes in blood-based biomarkers associated with mild cognitive impairment (MCI) risk in type 2 diabetic patients following local antibiotic periodontal treatment. MATERIALS AND METHODS A secondary analysis of data from a 24-week randomized controlled trial was conducted, involving 27 patients with type 2 diabetes mellitus and periodontitis. Participants received periodontal treatment biweekly from baseline until the 6th week of the study. Sixteen patients were assigned to an intervention group and received local antibiotic periodontal treatment (Periofol 2%). The outcomes were periodontal inflammation score, which was measured using periodontal inflamed surface area, the inflammation markers levels (tumor necrosis factor-α, C-reactive protein, and interleukin [IL]-6), and MCI risk score, which was assessed using protein plasma analysis through blood test. The evaluations were performed at baseline and week 24th in both groups. The changes in periodontal inflammation scores, inflammation parameters, and MCI risk in baseline and week 24th were analyzed. STATISTICAL ANALYSIS The Wilcoxon signed-rank test was used for within-group analysis and the Mann-Whitney U test was utilized for between-group analysis. RESULTS Periodontal parameters were improved in both groups (p < 0.05). IL-6, complement C3, and alpha-2-antiplasmin levels were significantly decreased in the intervention group (p < 0.05). In between-group comparisons, there was a significant difference between the control and intervention groups in apolipoprotein A1, apolipoprotein C1, and alpha-1-B glycoprotein levels in week 24th (p < 0.05). CONCLUSION Even though the periodontal status showed significant improvement after being given local antibiotic periodontal treatment, the changes in MCI risk proteins plasma remained unclear.
Collapse
Affiliation(s)
- Aulia Ramadhani
- Division of Preventive Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Azusa Tanaka
- Niigata Public Health and Sanitation Center, Niigata, Japan
| | - Kumiko Minagawa
- Division of Preventive Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sachiko Takehara
- Division of Preventive Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takaho Yamada
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Noboru Kaneko
- Division of Preventive Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaname Nohno
- Department of Oral Health and Welfare, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Ogawa
- Division of Preventive Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Jang S, Chorna N, Rodríguez-Graciani KM, Inyushin M, Fossati S, Javadov S. The Effects of Amyloid-β on Metabolomic Profiles of Cardiomyocytes and Coronary Endothelial Cells. J Alzheimers Dis 2023; 93:307-319. [PMID: 36970904 DOI: 10.3233/jad-221199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND An increasing number of experimental and clinical studies show a link between Alzheimer's disease and heart diseases such as heart failure, ischemic heart disease, and atrial fibrillation. However, the mechanisms underlying the potential role of amyloid-β (Aβ) in the pathogenesis of cardiac dysfunction in Alzheimer's disease remain unknown. We have recently shown the effects of Aβ 1 - 40 and Aβ 1 - 42 on cell viability and mitochondrial function in cardiomyocytes and coronary artery endothelial cells. OBJECTIVE In this study, we investigated the effects of Aβ 1 - 40 and Aβ 1 - 42 on the metabolism of cardiomyocytes and coronary artery endothelial cells. METHODS Gas chromatography-mass spectrometry was used to analyze metabolomic profiles of cardiomyocytes and coronary artery endothelial cells treated with Aβ 1 - 40 and Aβ 1 - 42. In addition, we determined mitochondrial respiration and lipid peroxidation in these cells. RESULTS We found that the metabolism of different amino acids was affected by Aβ 1 - 42 in each cell type, whereas the fatty acid metabolism is consistently disrupted in both types of cells. Lipid peroxidation was significantly increased, whereas mitochondrial respiration was reduced in both cell types in response to Aβ 1 - 42. CONCLUSION This study revealed the disruptive effects of Aβ on lipid metabolism and mitochondria function in cardiac cells.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | | | - Mikhail Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
| |
Collapse
|
5
|
Ko YA, Billheimer JT, Lyssenko NN, Kueider-Paisley A, Wolk DA, Arnold SE, Leung YY, Shaw LM, Trojanowski JQ, Kaddurah-Daouk RF, Kling MA, Rader DJ. ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer's disease. Alzheimers Res Ther 2022; 14:194. [PMID: 36572909 PMCID: PMC9791777 DOI: 10.1186/s13195-022-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/06/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) shares risk factors with cardiovascular disease (CVD) and dysregulated cholesterol metabolism is a mechanism common to both diseases. Cholesterol efflux capacity (CEC) is an ex vivo metric of plasma high-density lipoprotein (HDL) function and inversely predicts incident CVD independently of other risk factors. Cholesterol pools in the central nervous system (CNS) are largely separate from those in blood, and CNS cholesterol excess may promote neurodegeneration. CEC of cerebrospinal fluid (CSF) may be a useful measure of CNS cholesterol trafficking. We hypothesized that subjects with AD and mild cognitive impairment (MCI) would have reduced CSF CEC compared with Cognitively Normal (CN) and that CSF apolipoproteins apoA-I, apoJ, and apoE might have associations with CSF CEC. METHODS We retrieved CSF and same-day ethylenediaminetetraacetic acid (EDTA) plasma from 108 subjects (40 AD; 18 MCI; and 50 CN) from the Center for Neurodegenerative Disease Research biobank at the Perelman School of Medicine, University of Pennsylvania. For CSF CEC assays, we used N9 mouse microglial cells and SH-SY5Y human neuroblastoma cells, and the corresponding plasma assay used J774 cells. Cells were labeled with [3H]-cholesterol for 24 h, had ABCA1 expression upregulated for 6 h, were exposed to 33 μl of CSF, and then were incubated for 2.5 h. CEC was quantified as percent [3H]-cholesterol counts in medium of total counts medium+cells, normalized to a pool sample. ApoA-I, ApoJ, ApoE, and cholesterol were also measured in CSF. RESULTS We found that CSF CEC was significantly lower in MCI compared with controls and was poorly correlated with plasma CEC. CSF levels of ApoJ/Clusterin were also significantly lower in MCI and were significantly associated with CSF CEC. While CSF ApoA-I was also associated with CSF CEC, CSF ApoE had no association with CSF CEC. CSF CEC is significantly and positively associated with CSF Aβ. Taken together, ApoJ/Clusterin may be an important determinant of CSF CEC, which in turn could mitigate risk of MCI and AD risk by promoting cellular efflux of cholesterol or other lipids. In contrast, CSF ApoE does not appear to play a role in determining CSF CEC.
Collapse
Affiliation(s)
- Yi-An Ko
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| | - Jeffrey T. Billheimer
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| | - Nicholas N. Lyssenko
- grid.264727.20000 0001 2248 3398Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| | - Alexandra Kueider-Paisley
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27708 USA
| | - David A. Wolk
- grid.25879.310000 0004 1936 8972Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Steven E. Arnold
- grid.38142.3c000000041936754XDepartment of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Yuk Yee Leung
- grid.25879.310000 0004 1936 8972Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Leslie M. Shaw
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - John Q. Trojanowski
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| | - Rima F. Kaddurah-Daouk
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27708 USA ,grid.26009.3d0000 0004 1936 7961Duke Institute for Brain Sciences, Duke University, Durham, NC 27708 USA ,grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, Durham, NC 27708 USA
| | - Mitchel A. Kling
- grid.262671.60000 0000 8828 4546Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, 42 E. Laurel Rd., Suite 1800, Stratford, NJ 08084 USA ,grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
| | - Daniel J. Rader
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| |
Collapse
|
6
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
7
|
Krance SH, Wu CY, Chan ACY, Kwong S, Song BX, Xiong LY, Ouk M, Chen MH, Zhang J, Yung A, Stanley M, Herrmann N, Lanctôt KL, Swardfager W. Endosomal-Lysosomal and Autophagy Pathway in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 88:1279-1292. [PMID: 35754279 DOI: 10.3233/jad-220360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The endosomal-lysosomal and autophagy (ELA) pathway may be implicated in the progression of Alzheimer's disease (AD); however, findings thus far have been inconsistent. OBJECTIVE To systematically summarize differences in endosomal-lysosomal and autophagy proteins in the cerebrospinal fluid (CSF) of people with AD and healthy controls (HC). METHODS Studies measuring CSF concentrations of relevant proteins in the ELA pathway in AD and healthy controls were included. Standardized mean differences (SMD) with 95% confidence intervals (CI) between AD and healthy controls in CSF concentrations of relevant proteins were meta-analyzed using random-effects models. RESULTS Of 2,471 unique studies, 43 studies were included in the systematic review and meta-analysis. Differences in ELA protein levels in the CSF between AD and healthy controls were observed, particularly in lysosomal membrane (LAMP-1: NAD/NHC = 348/381, SMD [95% CI] = 0.599 [0.268, 0.930], I2 = 72.8% ; LAMP-2: NAD/NHC = 401/510, SMD [95% CI] = 0.480 [0.134, 0.826], I2 = 78.7%) and intra-lysosomal proteins (GM2A: NAD/NHC = 390/420, SMD [95% CI] = 0.496 [0.039, 0.954], I2 = 87.7% ; CTSB: NAD/NHC = 485/443, SMD [95% CI] = 0.201 [0.029, 0.374], I2 = 28.5% ; CTSZ: NAD/NHC = 535/820, SMD [95% CI] = -0.160 [-0.305, -0.015], I2 = 24.0%) and in proteins involved in endocytosis (AP2B1:NAD/NHC = 171/205, SMD [95% CI] = 0.513 [0.259, 0.768], I2 = 27.4% ; FLOT1: NAD/NHC = 41/45, SMD [95% CI] = -0.489 [-0.919, -0.058], I2 <0.01). LC3B, an autophagy marker, also showed a difference (NAD/NHC = 70/59, SMD [95% CI] = 0.648 [0.180, 1.116], I2 = 38.3%)), but overall there was limited evidence suggesting differences in proteins involved in endosomal function and autophagy. CONCLUSION Dysregulation of proteins in the ELA pathway may play an important role in AD pathogenesis. Some proteins within this pathway may be potential biomarkers for AD.
Collapse
Affiliation(s)
- Saffire H Krance
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Alison C Y Chan
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Kwong
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Bing Xin Song
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Y Xiong
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ming Hui Chen
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jane Zhang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Yung
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Meagan Stanley
- Western Libraries, University of Western Ontario, London, Ontario, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,University Health Network KITE Toronto Rehabilitation Institute, Toronto, Ontario, Canada.,Toronto Dementia Research Alliance, Toronto, Ontario, Canada
| | - Walter Swardfager
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,University Health Network KITE Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
9
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
10
|
Weller AE, Ferraro TN, Doyle GA, Reiner BC, Crist RC, Berrettini WH. Single Nucleus Transcriptome Data from Alzheimer's Disease Mouse Models Yield New Insight into Pathophysiology. J Alzheimers Dis 2022; 90:1233-1247. [PMID: 36213995 DOI: 10.3233/jad-220391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND 5XFAD humanized mutant mice and Trem2 knockout (T2KO) mice are two mouse models relevant to the study of Alzheimer's disease (AD)-related pathology. OBJECTIVE To determine hippocampal transcriptomic and polyadenylation site usage alterations caused by genetic mutations engineered in 5XFAD and T2KO mice. METHODS Employing a publicly available single-nucleus RNA sequencing dataset, we used Seurat and Sierra analytic programs to identify differentially expressed genes (DEGs) and differential transcript usage (DTU), respectively, in hippocampal cell types from each of the two mouse models. We analyzed cell type-specific DEGs further using Ingenuity Pathway Analysis (IPA). RESULTS We identified several DEGs in both neuronal and glial cell subtypes in comparisons of wild type (WT) versus 5XFAD and WT versus T2KO mice, including Ttr, Fth1, Pcsk1n, Malat1, Rpl37, Rtn1, Sepw1, Uba52, Mbp, Arl6ip5, Gm26917, Vwa1, and Pgrmc1. We also observed DTU in common between the two comparisons in neuronal and glial subtypes, specifically in the genes Prnp, Rbm4b, Pnisr, Opcml, Cpne7, Adgrb1, Gabarapl2, Ubb, Ndfip1, Car11, and Stmn4. IPA identified three statistically significant canonical pathways that appeared in multiple cell types and that overlapped between 5XFAD and T2KO comparisons to WT, including 'FXR/RXR Activation', 'LXR/RXR Activation', and 'Acute Phase Response Signaling'. CONCLUSION DEG, DTU, and IPA findings, derived from two different mouse models of AD, highlight the importance of energy imbalance and inflammatory processes in specific hippocampal cell types, including subtypes of neurons and glial cells, in the development of AD-related pathology. Additional studies are needed to further characterize these findings.
Collapse
Affiliation(s)
- Andrew E Weller
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas N Ferraro
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Glenn A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Araghi M, Shipley MJ, Anand A, Mills NL, Kivimaki M, Singh-Manoux A, Tabák A, Sabia S, Brunner EJ. Serum transthyretin and risk of cognitive decline and dementia: 22-year longitudinal study. Neurol Sci 2021; 42:5093-5100. [PMID: 33770310 PMCID: PMC9136660 DOI: 10.1007/s10072-021-05191-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Serum transthyretin (TTR) may be an early biomarker for Alzheimer's disease and related disorders (ADRD). We investigated associations of TTR measured at baseline with cognitive decline and incident ADRD and whether TTR trajectories differ between ADRD cases and non-cases, over 22 years before diagnosis. A total of 6024 adults aged 45-69 in 1997-1999 were followed up until 2019. TTR was assessed three times, and 297 cases of dementia were recorded. Higher TTR was associated with higher cognitive function at baseline; however, TTR was unrelated to subsequent change in cognitive function. TTR at baseline did not predict ADRD risk (hazard ratio per SD TTR (4.8 mg/dL) = 0.97; 95% confidence interval: 0.94-1.00). Among those later diagnosed with ADRD, there was a marginally steeper downward TTR trajectory than those free of ADRD over follow-up (P=0.050). Our findings suggest TTR is not neuroprotective. The relative decline in TTR level in the preclinical stage of ADRD is likely to be a consequence of disease processes.
Collapse
Affiliation(s)
- Marzieh Araghi
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| | - Martin J Shipley
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Atul Anand
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Adam Tabák
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, Budapest, Hungary
- Department of Public Health, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Séverine Sabia
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Eric J Brunner
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| |
Collapse
|
12
|
Endres K. Apolipoprotein A1, the neglected relative of Apolipoprotein E and its potential role in Alzheimer's disease. Neural Regen Res 2021; 16:2141-2148. [PMID: 33818485 PMCID: PMC8354123 DOI: 10.4103/1673-5374.310669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
Lipoproteins are multi-molecule assemblies with the primary function of transportation and processing of lipophilic substances within aqueous bodily fluids (blood, cerebrospinal fluid). Nevertheless, they also exert other physiological functions such as immune regulation. In particular, neurons are both sensitive to uncontrolled responses of the immune system and highly dependent on a controlled and sufficient supply of lipids. For this reason, the role of certain lipoproteins and their protein-component (apolipoproteins, Apo's) in neurological diseases is perceivable. ApoE, for example, is well-accepted as one of the major risk factors for sporadic Alzheimer's disease with a protective allele variant (ε2) and a risk-causing allele variant (ε4). ApoA1, the major protein component of high-density lipoproteins, is responsible for transportation of excess cholesterol from peripheral tissues to the liver. The protein is synthesized in the liver and intestine but also can enter the brain via the choroid plexus and thereby might have an impact on brain lipid homeostasis. This review focuses on the role of ApoA1 in Alzheimer's disease and discusses whether its role within this neurodegenerative disorder is specific or represents a general neuroprotective mechanism.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| |
Collapse
|
13
|
Shnayder NA, Sharavii VB, Petrova MM, Moskaleva PV, Pozhilenkova EA, Kaskaeva DS, Tutynina OV, Popova TE, Garganeeva NP, Nasyrova RF. Candidate Genes and Proteomic Biomarkers of Serum and Urine in Medication-Overuse Headache. Int J Mol Sci 2021; 22:9024. [PMID: 34445731 PMCID: PMC8396559 DOI: 10.3390/ijms22169024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic headache is a topical problem of neurology, psychiatry and general practice. The medication-overuse headache (MOH) is one of the leading pathologies in the structure of chronic headache. However, early diagnosis of the MOH is challenging. We analyzed potential proteomic biomarkers of serum and urine in patients with MOH. METHODS We searched PubMed, Springer, Scopus, Web of Science, ClinicalKey, and Google Scholar databases for English publications over the past 10 years using keywords and their combinations. RESULTS We found and analyzed seven studies that met the search criteria for the purpose of the review, including 24 serum proteomic biomarkers and 25 urine proteomic biomarkers of MOH. Moreover, the candidate genes and locus of the studied serum (vitamin D-binding protein, lipocalin-type prostaglandin D2 synthase, apolipoprotein E, etc.) and urine proteomic biomarkers (uromodulin, alpha-1-microglobulin, zinc-alpha-2-glycoprotein, etc.) of MOH are presented in this review. CONCLUSIONS The serum and urine proteomic biomarkers of MOH can potentially help with the identification of patients with MOH development. Due to the relevance of the problem, the authors believe that further investigation of the MOH proteomic biomarkers in different ethnic and racial groups of patients with primary headache is necessary. In addition, it is important to investigate whether medications of different drug classes influence the levels of serum and urine proteomic biomarkers.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- The Center of Personalized Psychiatry and Neurology, V. M. Bekhterev National Medical Research Center for Neurology and Psychiatry, 192019 Saint-Petersburg, Russia;
- The Center of Collective Usage “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (P.V.M.); (E.A.P.); (D.S.K.); (O.V.T.)
| | - Victoria B. Sharavii
- The International School Medicine of the Future, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Marina M. Petrova
- The Center of Collective Usage “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (P.V.M.); (E.A.P.); (D.S.K.); (O.V.T.)
| | - Polina V. Moskaleva
- The Center of Collective Usage “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (P.V.M.); (E.A.P.); (D.S.K.); (O.V.T.)
| | - Elena A. Pozhilenkova
- The Center of Collective Usage “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (P.V.M.); (E.A.P.); (D.S.K.); (O.V.T.)
| | - Darya S. Kaskaeva
- The Center of Collective Usage “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (P.V.M.); (E.A.P.); (D.S.K.); (O.V.T.)
| | - Olga. V. Tutynina
- The Center of Collective Usage “Molecular and Cell Technologies”, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (P.V.M.); (E.A.P.); (D.S.K.); (O.V.T.)
| | - Tatiana E. Popova
- The Yakutsk Scientific Center for Complex Medicine Problems, The Department of Epidemiology of Non-Infectious Diseases, 677018 Yakutsk, Russia;
| | - Natalia P. Garganeeva
- The Department of General Medical Practice and Polyclinic Therapy, The Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- The Center of Personalized Psychiatry and Neurology, V. M. Bekhterev National Medical Research Center for Neurology and Psychiatry, 192019 Saint-Petersburg, Russia;
| |
Collapse
|
14
|
Uddin MS, Kabir MT, Jakaria M, Sobarzo-Sánchez E, Barreto GE, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Exploring the Potential of Neuroproteomics in Alzheimer's Disease. Curr Top Med Chem 2021; 20:2263-2278. [PMID: 32493192 DOI: 10.2174/1568026620666200603112030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is progressive brain amyloidosis that damages brain regions associated with memory, thinking, behavioral and social skills. Neuropathologically, AD is characterized by intraneuronal hyperphosphorylated tau inclusions as neurofibrillary tangles (NFTs), and buildup of extracellular amyloid-beta (Aβ) peptide as senile plaques. Several biomarker tests capturing these pathologies have been developed. However, for the full clinical expression of the neurodegenerative events of AD, there exist other central molecular pathways. In terms of understanding the unidentified underlying processes for the progression and development of AD, a complete comprehension of the structure and composition of atypical aggregation of proteins is essential. Presently, to aid the prognosis, diagnosis, detection, and development of drug targets in AD, neuroproteomics is elected as one of the leading essential tools for the efficient exploratory discovery of prospective biomarker candidates estimated to play a crucial role. Therefore, the aim of this review is to present the role of neuroproteomics to analyze the complexity of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Abooshahab R, Dass CR. The biological relevance of pigment epithelium-derived factor on the path from aging to age-related disease. Mech Ageing Dev 2021; 196:111478. [PMID: 33812881 DOI: 10.1016/j.mad.2021.111478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/07/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenously produced protein that contributes to cell growth arrest, and reduced levels of PEDF are associated with the progression of cellular senescence and the aging process. However, the mechanisms underlying PEDF regulation of these events are not completely clear. Increased PEDF activity may induce anti-aging processes, suggesting the potential therapeutic value of PEDF as an anti-aging and age-related disease. In this review, we recapitulate the molecular and cellular mechanisms of aging following the characteristics and specific roles of the PEDF in cell cycle arrest and its relevance to cellular senescence and aging pathways. In this context, the discovery and fluctuations of PEDF in age-related diseases are summarised. In light of the importance of PEDF in cellular senescence and aging processes, better comprehension of the mechanism(s) of PEDF in the regulation of cell cycle and the aging process can conceivably facilitate the development of therapeutic strategies for diseases that occur with aging.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
16
|
Woo HI, Park J, Lim SW, Kim DK, Lee SY. Alteration of transthyretin and thyroxine-binding globulin in major depressive disorder: multiple reaction monitoring-based proteomic analysis. J Transl Med 2021; 19:34. [PMID: 33451315 PMCID: PMC7811235 DOI: 10.1186/s12967-021-02702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background Major depressive disorder (MDD), common mental disorder, lacks objective diagnostic and prognosis biomarkers. The objective of this study was to perform proteomic analysis to identify proteins with changed expression levels after antidepressant treatment and investigate differences in protein expression between MDD patients and healthy individuals. Methods A total of 111 proteins obtained from literature review were subjected to multiple reaction monitoring (MRM)-based protein quantitation. Finally, seven proteins were quantified for plasma specimens of 10 healthy controls and 78 MDD patients (those at baseline and at 6 weeks after antidepressant treatment of either selective serotonin reuptake inhibitors (SSRIs) or mirtazapine). Results Among 78 MDD patients, 35 patients were treated with SSRIs and 43 patients were treated with mirtazapine. Nineteen (54.3%) and 16 (37.2%) patients responded to SSRIs and mirtazapine, respectively. Comparing MDD patients with healthy individuals, alteration of transthyretin was observed in MDD (P = 0.026). A few differences were observed in protein levels related to SSRIs treatment, although they were not statistically significant. Plasma thyroxine-binding globulin (TBG) was different between before and after mirtazapine treatment only in responders (P = 0.007). Conclusions In proteomic analysis of plasma specimens from MDD patients, transthyretin and TBG levels were altered in MDD and changed after antidepressant treatment.
Collapse
Affiliation(s)
- Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shinn-Won Lim
- SAIHST, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea. .,Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. [PMID: 32527923 PMCID: PMC7116154 DOI: 10.1126/science.aaz5626] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.
Collapse
Affiliation(s)
- Laura Pellegrini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
18
|
Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer's disease pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:72. [PMID: 32517787 PMCID: PMC7285604 DOI: 10.1186/s13195-020-00634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Background Heme and iron homeostasis is perturbed in Alzheimer’s disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts. Methods Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures. Results Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment. Conclusions In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Collapse
|
19
|
Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Llanos-González E, Aguilera García C, Alcaín FJ, Lindberg I, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer's disease. Clin Proteomics 2020; 17:21. [PMID: 32518535 PMCID: PMC7273668 DOI: 10.1186/s12014-020-09276-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During the last two decades, over 100 proteomics studies have identified a variety of potential biomarkers in CSF of Alzheimer's (AD) patients. Although several reviews have proposed specific biomarkers, to date, the statistical relevance of these proteins has not been investigated and no peptidomic analyses have been generated on the basis of specific up- or down- regulation. Herein, we perform an analysis of all unbiased explorative proteomics studies of CSF biomarkers in AD to critically evaluate whether proteins and peptides identified in each study are consistent in distribution; direction change; and significance, which would strengthen their potential use in studies of AD pathology and progression. METHODS We generated a database containing all CSF proteins whose levels are known to be significantly altered in human AD from 47 independent, validated, proteomics studies. Using this database, which contains 2022 AD and 2562 control human samples, we examined whether each protein is consistently present on the basis of reliable statistical studies; and if so, whether it is over- or under-represented in AD. Additionally, we performed a direct analysis of available mass spectrometric data of these proteins to generate an AD CSF peptide database with 3221 peptides for further analysis. RESULTS Of the 162 proteins that were identified in 2 or more studies, we investigated their enrichment or depletion in AD CSF. This allowed us to identify 23 proteins which were increased and 50 proteins which were decreased in AD, some of which have never been revealed as consistent AD biomarkers (i.e. SPRC or MUC18). Regarding the analysis of the tryptic peptide database, we identified 87 peptides corresponding to 13 proteins as the most highly consistently altered peptides in AD. Analysis of tryptic peptide fingerprinting revealed specific peptides encoded by CH3L1, VGF, SCG2, PCSK1N, FBLN3 and APOC2 with the highest probability of detection in AD. CONCLUSIONS Our study reveals a panel of 27 proteins and 21 peptides highly altered in AD with consistent statistical significance; this panel constitutes a potent tool for the classification and diagnosis of AD.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Cristina Aguilera García
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
20
|
de Diego-Otero Y, Giráldez-Pérez RM, Lima-Cabello E, Heredia-Farfan R, Calvo Medina R, Sanchez-Salido L, Pérez Costillas L. Pigment epithelium-derived factor (PEDF) and PEDF-receptor in the adult mouse brain: Differential spatial/temporal localization pattern. J Comp Neurol 2020; 529:141-158. [PMID: 32427349 DOI: 10.1002/cne.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Research Unit, International Institute of Innovation and Attention to Neurodevelopment and Language, Málaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Cordoba, Edificio Charles Darwin, Córdoba, Spain
| | - Elena Lima-Cabello
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Raúl Heredia-Farfan
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Rocío Calvo Medina
- Pediatric Clinic Unit. Regional University Hospital, Hospital Materno-Infantil Avd, Arroyo de los Angeles, Málaga, Spain
| | - Lourdes Sanchez-Salido
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Lucía Pérez Costillas
- Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Psychiatry and Physiotherapy Department, University of Malaga. Medical School, Málaga, Spain
| |
Collapse
|
21
|
Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, Cascella R, Dobson CM, Vendruscolo M, Knowles TPJ, Chiti F. Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules 2020; 21:1112-1125. [PMID: 32011129 PMCID: PMC7997117 DOI: 10.1021/acs.biomac.9b01475] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Alzheimer’s
disease is associated with the deposition of
the amyloid-β peptide (Aβ) into extracellular senile plaques
in the brain. In vitro and in vivo observations have indicated that
transthyretin (TTR) acts as an Aβ scavenger in the brain, but
the mechanism has not been fully resolved. We have monitored the aggregation
process of Aβ40 by thioflavin T fluorescence, in
the presence or absence of different concentrations of preformed seed
aggregates of Aβ40, of wild-type tetrameric TTR (WT-TTR),
and of a variant engineered to be stable as a monomer (M-TTR). Both
WT-TTR and M-TTR were found to inhibit specific steps of the process
of Aβ40 fibril formation, which are primary and secondary
nucleations, without affecting the elongation of the resulting fibrils.
Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aβ40 oligomers formed in the aggregation reaction and inhibit
their conversion into the shortest fibrils able to elongate. Using
biophysical methods, TTR was found to change some aspects of its overall
structure following such interactions with Aβ40 oligomers,
as well as with oligomers of Aβ42, while maintaining
its overall topology. Hence, it is likely that the predominant mechanism
by which TTR exerts its protective role lies in the binding of TTR
to the Aβ oligomers and in inhibiting primary and secondary
nucleation processes, which limits both the toxicity of Aβ oligomers
and the ability of the fibrils to proliferate.
Collapse
Affiliation(s)
- Seyyed Abolghasem Ghadami
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Sean Chia
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Simone Ruggeri
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Georg Meisl
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Johnny Habchi
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| |
Collapse
|
22
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
23
|
Stoye NM, Jung P, Guilherme MDS, Lotz J, Fellgiebel A, Endres K. Apolipoprotein A1 in Cerebrospinal Fluid Is Insufficient to Distinguish Alzheimer's Disease from Other Dementias in a Naturalistic, Clinical Setting. J Alzheimers Dis Rep 2020; 4:15-19. [PMID: 32206754 PMCID: PMC7081088 DOI: 10.3233/adr-190165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is the major protein component of the high-density lipoprotein and involved in cholesterol transport. Disruption of cholesterol homeostasis has been identified as a contributing factor for Alzheimer’s disease (AD). Moreover, polymorphisms of ApoA1 have been associated with higher risk of disease onset and cognitive decline. Therefore, ApoA1 has been suggested as a biomarker in AD. Here, we tested a small cohort of AD and non-AD dementia patients and measured levels of ApoA1 in cerebrospinal fluid. Our results indicate that ApoA1 might not be applicable to distinguish AD from other forms of dementia.
Collapse
Affiliation(s)
- Nicolai Maximilian Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Patrick Jung
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Johannes Lotz
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
24
|
What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals (Basel) 2019; 12:ph12040144. [PMID: 31554244 PMCID: PMC6958331 DOI: 10.3390/ph12040144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
This review provides a synopsis of the published literature over the past two years on the heme-binding protein hemopexin (HPX), with some background information on the biochemistry of the HPX system. One focus is on the mechanisms of heme-driven pathology in the context of heme and iron homeostasis in human health and disease. The heme-binding protein hemopexin is a multi-functional protectant against hemoglobin (Hb)-derived heme toxicity as well as mitigating heme-mediated effects on immune cells, endothelial cells, and stem cells that collectively contribute to driving inflammation, perturbing vascular hemostasis and blood–brain barrier function. Heme toxicity, which may lead to iron toxicity, is recognized increasingly in a wide range of conditions involving hemolysis and immune system activation and, in this review, we highlight some newly identified actions of heme and hemopexin especially in situations where normal processes fail to maintain heme and iron homeostasis. Finally, we present preliminary data showing that the cytokine IL-6 cross talks with activation of the c-Jun N-terminal kinase pathway in response to heme-hemopexin in models of hepatocytes. This indicates another level of complexity in the cell responses to elevated heme via the HPX system when the immune system is activated and/or in the presence of inflammation.
Collapse
|
25
|
Naveed M, Mubeen S, Khan A, Ibrahim S, Meer B. Plasma Biomarkers: Potent Screeners of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2019; 34:290-301. [PMID: 31072117 PMCID: PMC10852434 DOI: 10.1177/1533317519848239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), a neurological disorder, is as a complex chronic disease of brain cell death that usher to cognitive decline and loss of memory. Its prevalence differs according to risk factors associated with it and necropsy performs vital role in its definite diagnosis. The stages of AD vary from preclinical to severe that proceeds to death of patient with no availability of treatment. Biomarker may be a biochemical change that can be recognized by different emerging technologies such as proteomics and metabolomics. Plasma biomarkers, 5-protein classifiers, are readily being used for the diagnosis of AD and can also predict its progression with a great accuracy, specificity, and sensitivity. In this review, upregulation or downregulation of few plasma proteins in patients with AD has also been discussed, when juxtaposed with control, and thus serves as potent biomarker in the diagnosis of AD.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Shamsa Mubeen
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Abeer Khan
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sehrish Ibrahim
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Bisma Meer
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
26
|
Contu L, Carare RO, Hawkes CA. Knockout of apolipoprotein A-I decreases parenchymal and vascular β-amyloid pathology in the Tg2576 mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2019; 45:698-714. [PMID: 31002190 DOI: 10.1111/nan.12556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
AIMS Apolipoprotein A-I (apoA-I), the principal apolipoprotein associated with high-density lipoproteins in the periphery, is also found at high concentrations in the cerebrospinal fluid. Previous studies have reported either no impact or vascular-specific effects of apoA-I knockout (KO) on β-amyloid (Aβ) pathology. However, the putative mechanism(s) by which apoA-I may influence Aβ deposition is unknown. METHODS We evaluated the effect of apoA-I deletion on Aβ pathology, Aβ production and clearance from the brain in the Tg2576 mouse model of Alzheimer's disease (AD). RESULTS Contrary to previous reports, deletion of the APOA1 gene significantly reduced concentrations of insoluble Aβ40 and Aβ42 and reduced plaque load in both the parenchyma and blood vessels of apoA-I KO × Tg2576 mice compared to Tg2576 animals. This was not due to decreased Aβ production or alterations in Aβ species. Levels of soluble clusterin/apoJ were significantly higher in neurons of apoA-I KO mice compared to both wildtype (WT) and apoA-I KO × Tg2576 mice. In addition, clearance of Aβ along intramural periarterial drainage pathways was significantly higher in apoA-I KO mice compared to WT animals. CONCLUSION These data suggest that deletion of apoA-I is associated with increased clearance of Aβ and reduced parenchymal and vascular Aβ pathology in the Tg2576 model. These results suggest that peripheral dyslipidaemia can modulate the expression of apolipoproteins in the brain and may influence Aβ clearance and aggregation in AD.
Collapse
Affiliation(s)
- L Contu
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| | - R O Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C A Hawkes
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| |
Collapse
|
27
|
Safe coordinated trafficking of heme and iron with copper maintain cell homeostasis: modules from the hemopexin system. Biometals 2019; 32:355-367. [PMID: 31011852 DOI: 10.1007/s10534-019-00194-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Studies with patients, animal models of human disease and hemopexin null mice have shown that the heme-binding protein hemopexin is vital for the protection of a variety of cell types and tissues against heme toxicity. The presence of hemopexin in all biological fluids examined to date indicates wide roles in abrogating heme toxicity in human tissues; and, thus, is clinically relevant. Heme-hemopexin endocytosis leads to coordinated trafficking of heme, iron and copper as heme traffics from endosomes to heme oxygenases (HOs) in the smooth endoplasmic reticulum and to the nucleus. This is safe redox-metal trafficking, without oxidative stress, as iron released from heme catabolism by HOs as well as copper taken up with heme-hemopexin move through the cell. To our knowledge, this coordinated metal trafficking has been described only for the hemopexin system and differs from the cell's response to non-protein bound heme, which can be toxic. We propose that defining how cells respond to heme-hemopexin endocytosis, a natural cytoprotective system, will aid our understanding of how cells adapt as they safely respond to increases in heme, Fe(II) and copper. This is relevant for many genetic hemolytic diseases and conditions, stroke and hemorrhage as well as neurodegeneration. Such analyses will help to define a pattern of events that can be utilized to characterize how dysfunctional redox and transition metal handling is linked to the development of pathology in disease states such as Alzheimer's disease when metal homeostasis is not restored; and potentially provide novel targets and approaches to improve therapies.
Collapse
|
28
|
Lim HR, Kim SY, Jeon EH, Kim YL, Shin YM, Koo TS, Park SJ, Hong KB, Choi S. A highly sensitive fluorescent probe that quantifies transthyretin in human plasma as an early diagnostic tool of Alzheimer's disease. Chem Commun (Camb) 2019; 55:10424-10427. [DOI: 10.1039/c9cc04172a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A robust and simple fluorescent assay for the quantification of TTR in human plasma was developed by utilizing an indole-based fluorophore.
Collapse
Affiliation(s)
- Hye Rim Lim
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| | - Seo Yun Kim
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| | - Eun Hee Jeon
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| | - Yun Lan Kim
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| | - Yu Mi Shin
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences
- Gachon University
- Incheon 406-799
- Republic of Korea
| | - Ki Bum Hong
- New Drug Development Center (NDDC)
- Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)
- Daegu 701-310
- Republic of Korea
| | - Sungwook Choi
- Graduate School of New Drug Discovery and Development
- Chungnam National University
- Daejon
- Republic of Korea
| |
Collapse
|
29
|
Gangishetti U, Christina Howell J, Perrin RJ, Louneva N, Watts KD, Kollhoff A, Grossman M, Wolk DA, Shaw LM, Morris JC, Trojanowski JQ, Fagan AM, Arnold SE, Hu WT. Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:98. [PMID: 30253800 PMCID: PMC6156847 DOI: 10.1186/s13195-018-0426-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 11/21/2022]
Abstract
Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by neuropathologic changes involving beta-amyloid (Aβ), tau, neuronal loss, and other associated biological events. While levels of cerebrospinal fluid (CSF) Aβ and tau peptides have enhanced the antemortem detection of AD-specific changes, these two markers poorly reflect the severity of cognitive and functional deficits in people with altered Aβ and tau levels. While multiple previous studies identified non-Aβ, non-tau proteins as candidate neurodegenerative markers to inform the A/T/N biomarker scheme of AD, few have advanced beyond association with clinical AD diagnosis. Here we analyzed nine promising neurodegenerative markers in a three-centered cohort using independent assays to identify candidates most likely to complement Aβ and tau in the A/T/N framework. Methods CSF samples from 125 subjects recruited at the three centers were exchanged such that each of the nine previously identified biomarkers can be measured at one of the three centers. Subjects were classified according to cognitive status and CSF AD biomarker profiles as having normal cognition and normal CSF (n = 31), normal cognition and CSF consistent with AD (n = 13), mild cognitive impairment and normal CSF (n = 13), mild cognitive impairment with CSF consistent with AD (n = 23), AD dementia (n = 32; CSF consistent with AD), and other non-AD dementia (n = 13; CSF not consistent with AD). Results Three biomarkers were identified to differ among the AD stages, including neurofilament light chain (NfL; p < 0.001), fatty acid binding protein 3 (Fabp3; p < 0.001), and interleukin (IL)-10 (p = 0.033). Increased NfL levels were most strongly associated with the dementia stage of AD, but increased Fabp3 levels were more sensitive to milder AD stages and correlated with both CSF tau markers. IL-10 levels did not correlate with tau biomarkers, but were associated with rates of longitudinal cognitive decline in mild cognitive impairment due to AD (p = 0.006). Prefreezing centrifugation did not influence measured CSF biomarker levels. Conclusion CSF proteins associated with AD clinical stages and progression can complement Aβ and tau markers to inform neurodegeneration. A validated panel inclusive of multiple biomarker features (etiology, stage, progression) can improve AD phenotyping along the A/T/N framework.
Collapse
Affiliation(s)
- Umesh Gangishetti
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - J Christina Howell
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA.,Department of Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Richard J Perrin
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Pathology, Washington University, St. Louis, MO, USA
| | - Natalia Louneva
- Department of Pathology, Washington University, St. Louis, MO, USA
| | - Kelly D Watts
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - Alexander Kollhoff
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA
| | - Murray Grossman
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Penn FTD Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University, St. Louis, MO, USA
| | - John Q Trojanowski
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University, St. Louis, MO, USA
| | - Steven E Arnold
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA.,Present Address: Massachusetts General Hospital, Boston, MA, USA
| | - William T Hu
- Department of Neurology, Emory University, 615 Michael Street, 505F, Atlanta, GA, 30322, USA. .,Department of Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
30
|
Saitou K, Ochiai R, Kozuma K, Sato H, Koikeda T, Osaki N, Katsuragi Y. Effect of Chlorogenic Acids on Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018; 10:nu10101337. [PMID: 30241302 PMCID: PMC6213760 DOI: 10.3390/nu10101337] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Chlorogenic acids (CGAs) have been attracting interest of late, owing to their health benefits. Here, we performed a randomized, double-blind, placebo-controlled trial to investigate whether CGAs improved cognitive function in humans. (2) Methods: Thirty-eight healthy participants were assigned to either the CGA group, which was given CGA-added beverage daily for 16 weeks, or the placebo group. Cognitive functions were assessed using the Japanese version of the CNS Vital Signs (Cognitrax). (3) Results: The CGA group showed significant increase in the Cognitrax domain scores for motor speed, psychomotor speed, and executive function compared with the placebo group, as well as an improvement in the shifting attention test scores. In blood analysis, the CGA group showed increased levels of apolipoprotein A1 and transthyretin, both of which are putative biomarkers for early-stage cognitive decline. (4) Conclusions: These results suggest that CGAs may improve some cognitive functions, which would help in the efficient performance of complex tasks.
Collapse
Affiliation(s)
- Katsuyoshi Saitou
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | - Ryuji Ochiai
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | - Kazuya Kozuma
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | - Hirotaka Sato
- Development Research-Health Care/Household, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | - Takashi Koikeda
- Shiba Pales Clinic, 1-9-10 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan.
| | - Noriko Osaki
- Biological Science Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | - Yoshihisa Katsuragi
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| |
Collapse
|
31
|
Mitochondrial Targeting in Neurodegeneration: A Heme Perspective. Pharmaceuticals (Basel) 2018; 11:ph11030087. [PMID: 30231533 PMCID: PMC6161291 DOI: 10.3390/ph11030087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has achieved an increasing interest in the field of neurodegeneration as a pathological hallmark for different disorders. The impact of mitochondria is related to a variety of mechanisms and several of them can co-exist in the same disease. The central role of mitochondria in neurodegenerative disorders has stimulated studies intended to implement therapeutic protocols based on the targeting of the distinct mitochondrial processes. The review summarizes the most relevant mechanisms by which mitochondria contribute to neurodegeneration, encompassing therapeutic approaches. Moreover, a new perspective is proposed based on the heme impact on neurodegeneration. The heme metabolism plays a central role in mitochondrial functions, and several evidences indicate that alterations of the heme metabolism are associated with neurodegenerative disorders. By reporting the body of knowledge on this topic, the review intends to stimulate future studies on the role of heme metabolism in neurodegeneration, envisioning innovative strategies in the struggle against neurodegenerative diseases.
Collapse
|
32
|
Mangrolia P, Murphy RM. Retinol-Binding Protein Interferes with Transthyretin-Mediated β-Amyloid Aggregation Inhibition. Biochemistry 2018; 57:5029-5040. [PMID: 30024734 PMCID: PMC6530574 DOI: 10.1021/acs.biochem.8b00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to Alzheimer's disease. On the basis of in vitro and transgenic animal studies, transthyretin (TTR) is hypothesized to provide neuroprotection against Aβ toxicity by binding to Aβ and inhibiting its aggregation. TTR is a homotetrameric protein that circulates in blood and cerebrospinal fluid; its normal physiological role is as a carrier for thyroxine and retinol-binding protein (RBP). RBP forms a complex with retinol, and the holoprotein (hRBP) binds with high affinity to TTR. In this study, the role of TTR ligands in TTR-mediated inhibition of Aβ aggregation was investigated. hRBP strongly reduced the ability of TTR to inhibit Aβ aggregation. The effect was not due to competition between Aβ and hRBP for binding to TTR, as Aβ bound equally well to TTR-hRBP complexes and TTR. hRBP is known to stabilize the TTR tetrameric structure. We show that Aβ partially destabilizes TTR and that hRBP counteracts this destabilization. Taken together, our results support a mechanism wherein TTR-mediated inhibition of Aβ aggregation requires not only TTR-Aβ binding but also destabilization of TTR quaternary structure.
Collapse
Affiliation(s)
- Parth Mangrolia
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Johansson P, Almqvist EG, Bjerke M, Wallin A, Johansson JO, Andreasson U, Blennow K, Zetterberg H, Svensson J. Reduced Cerebrospinal Fluid Concentration of Apolipoprotein A-I in Patients with Alzheimer’s Disease. J Alzheimers Dis 2017; 59:1017-1026. [DOI: 10.3233/jad-170226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Per Johansson
- Department of Neuropsychiatry, Skaraborg Central Hospital, Falköping, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik G. Almqvist
- Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
| | - Maria Bjerke
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Jan-Ove Johansson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Johan Svensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
| |
Collapse
|
34
|
Chen R, Chen CP, Preston JE. Effects of transthyretin on thyroxine and β-amyloid removal from cerebrospinal fluid in mice. Clin Exp Pharmacol Physiol 2017; 43:844-50. [PMID: 27220110 DOI: 10.1111/1440-1681.12598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Abstract
Transthyretin (TTR) is a binding protein for the thyroid hormone thyroxine (T4 ), retinol and β-amyloid peptide. TTR aids the transfer of T4 from the blood to the cerebrospinal fluid (CSF), but also prevents T4 loss from the blood-CSF barrier. It is, however, unclear whether TTR affects the clearance of β-amyloid from the CSF. This study aimed to investigate roles of TTR in β-amyloid and T4 efflux from the CSF. Eight-week-old 129sv male mice were anaesthetized and their lateral ventricles were cannulated. Mice were infused with artificial CSF containing (125) I-T4 /(3) H-mannitol, or (125) I-Aβ40/(3) H-inulin, in the presence or absence of TTR. Mice were decapitated at 2, 4, 8, 16, 24 minutes after injection. The whole brain was then removed and divided into different regions. The radioactivities in the brain were determined by liquid scintillation counting. At baseline, the net uptake of (125) I-T4 into the brain was significantly higher than that of (125) I-Aβ40, and the half time for efflux was shorter ((125) I-T4 , 5.16; (3) H-mannitol, 7.44; (125) I-Aβ40, 8.34; (3) H-inulin, 10.78 minutes). The presence of TTR increased the half time for efflux of (125) I-T4 efflux, and caused a noticeable increase in the uptake of (125) I-T4 and (125) I-Aβ40 in the choroid plexus, whilst uptakes of (3) H-mannitol and (3) H-inulin remained similar to control experiments. This study indicates that thyroxine and amyloid peptide effuse from the CSF using different transporters. TTR binds to thyroxine and amyloid peptide to prevent the loss of thyroxine from the brain and redistribute amyloid peptide to the choroid plexus.
Collapse
Affiliation(s)
- Ruoli Chen
- Institute of Pharmaceutical Science, King's College London, London, UK.,Institute of Science and Technology of Medicine, School of Pharmacy, Keele University, Staffordshire, UK
| | - Carl P Chen
- Institute of Pharmaceutical Science, King's College London, London, UK.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan County, Taiwan, China
| | - Jane E Preston
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
35
|
Zhu ZH, Fu Y, Weng CH, Zhao CJ, Yin ZQ. Proteomic profiling of early degenerative retina of RCS rats. Int J Ophthalmol 2017; 10:878-889. [PMID: 28730077 DOI: 10.18240/ijo.2017.06.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/06/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To identify the underlying cellular and molecular changes in retinitis pigmentosa (RP). METHODS Label-free quantification-based proteomics analysis, with its advantages of being more economic and consisting of simpler procedures, has been used with increasing frequency in modern biological research. Dystrophic RCS rats, the first laboratory animal model for the study of RP, possess a similar pathological course as human beings with the diseases. Thus, we employed a comparative proteomics analysis approach for in-depth proteome profiling of retinas from dystrophic RCS rats and non-dystrophic congenic controls through Linear Trap Quadrupole - orbitrap MS/MS, to identify the significant differentially expressed proteins (DEPs). Bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation and upstream regulatory analysis, were then performed on these retina proteins. Finally, a Western blotting experiment was carried out to verify the difference in the abundance of transcript factor E2F1. RESULTS In this study, we identified a total of 2375 protein groups from the retinal protein samples of RCS rats and non-dystrophic congenic controls. Four hundred thirty-four significantly DEPs were selected by Student's t-test. Based on the results of the bioinformatics analysis, we identified mitochondrial dysfunction and transcription factor E2F1 as the key initiation factors in early retinal degenerative process. CONCLUSION We showed that the mitochondrial dysfunction and the transcription factor E2F1 substantially contribute to the disease etiology of RP. The results provide a new potential therapeutic approach for this retinal degenerative disease.
Collapse
Affiliation(s)
- Zhi-Hong Zhu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yan Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Chuan-Huang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cong-Jian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
36
|
Hahl P, Hunt R, Bjes ES, Skaff A, Keightley A, Smith A. Identification of oxidative modifications of hemopexin and their predicted physiological relevance. J Biol Chem 2017; 292:13658-13671. [PMID: 28596380 DOI: 10.1074/jbc.m117.783951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
Hemopexin protects against heme toxicity in hemolytic diseases and conditions, sepsis, and sickle cell disease. This protection is sustained by heme-hemopexin complexes in biological fluids that resist oxidative damage during heme-driven inflammation. However, apo-hemopexin is vulnerable to inactivation by reactive nitrogen (RNS) and oxygen species (ROS) that covalently modify amino acids. The resultant nitration of amino acids is considered a specific effect reflecting biological events. Using LC-MS, we discovered low endogenous levels of tyrosine nitration in the peptide YYCFQGNQFLR in the heme-binding site of human hemopexin, which was similarly nitrated in rabbit and rat hemopexins. Immunoblotting and selective reaction monitoring were used to quantify tyrosine nitration of in vivo samples and when hemopexin was incubated in vitro with nitrating nitrite/myeloperoxidase/glucose oxidase. Significantly, heme binding by hemopexin declined as tyrosine nitration proceeded in vitro Three nitrated tyrosines reside in the heme-binding site of hemopexin, and we found that one, Tyr-199, interacts directly with the heme ring D propionate. Investigating the oxidative modifications of amino acids after incubation with tert-butyl hydroperoxide and hypochlorous acid in vitro, we identified additional covalent oxidative modifications on four tyrosine residues and one tryptophan residue of hemopexin. Importantly, three of the four modified tyrosines, some of which have more than one modification, cluster in the heme-binding site, supporting a hierarchy of vulnerable amino acids. We propose that during inflammation, apo-hemopexin is nitrated and oxidated in niches of the body containing activated RNS- and ROS-generating immune and endothelial cells, potentially impairing hemopexin's protective extracellular antioxidant function.
Collapse
Affiliation(s)
- Peter Hahl
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Rachel Hunt
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Edward S Bjes
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Andrew Skaff
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Andrew Keightley
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Ann Smith
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| |
Collapse
|
37
|
Alzheimer's disease: Elevated pigment epithelium-derived factor in the cerebrospinal fluid is mostly of systemic origin. J Neurol Sci 2017; 375:123-128. [DOI: 10.1016/j.jns.2017.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/07/2016] [Accepted: 01/16/2017] [Indexed: 01/25/2023]
|
38
|
Slot RE, Van Harten AC, Kester MI, Jongbloed W, Bouwman FH, Teunissen CE, Scheltens P, Veerhuis R, van der Flier WM. Apolipoprotein A1 in Cerebrospinal Fluid and Plasma and Progression to Alzheimer’s Disease in Non-Demented Elderly. J Alzheimers Dis 2017; 56:687-697. [DOI: 10.3233/jad-151068] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Rosalinde E.R. Slot
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Argonde C. Van Harten
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Maartje I. Kester
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Wesley Jongbloed
- Department of Clinical Chemistry, Neurochemistry Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - Femke H. Bouwman
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert Veerhuis
- Department of Clinical Chemistry, Neurochemistry Laboratory, VU University Medical Center, Amsterdam, The Netherlands
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M. van der Flier
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Kitamura Y, Usami R, Ichihara S, Kida H, Satoh M, Tomimoto H, Murata M, Oikawa S. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer's disease. Neurol Res 2017; 39:231-238. [PMID: 28107809 DOI: 10.1080/01616412.2017.1281195] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is the most common cause of dementia in elderly persons. Since the pathology of AD develops slowly from a preclinical or early phase into a fully expressed clinical syndrome, at the time of diagnosis the disease has been progressing for many years. To facilitate the early diagnosis of AD, we performed protein profiling of blood in patients with mild AD as defined by the Functional Assessment Staging (FAST) scale. METHODS Plasma samples from mild AD patients and healthy controls were analyzed using two-dimensional differential gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF/MS) followed by peptide mass fingerprinting. RESULTS Three downregulated proteins were identified: apolipoprotein A-1, alpha-2-HS-glycoprotein, and afamin. Two proteins, including apolipoprotein A-4 and fibrinogen gamma chain, were upregulated in mild AD patients. DISCUSSION Our results suggest that altered expression levels of these proteins in plasma may yield candidate biomarkers for the early diagnosis of AD. ABBREVIATIONS AD, Alzheimer's disease; FAST, Functional Assessment Staging; 2D-DIGE, two-dimensional differential gel electrophoresis; MALDI-TOF/TOF/MS, matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry; CSF, cerebrospinal fluid; Aβ, amyloid beta; MMSE, Mini Mental State Examination; MRI, magnetic resonance imaging; NINCDS-ADRDA, National Institute for Neurological Diseases and Stroke/Alzheimer's Disease and Related Disorders Association; CHAPS, 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate; DTT, dithiothreitol; SDS-PAGE, SDS-polyacrylamide gel electrophoresis; DIA, differential in-gel analysis; BVA, biological variation analysis; CBB, Coomassie brilliant blue; 2DE, two-dimensional gel electrophoresis; TFA, trifluoroacetic acid; ACTH, adrenocorticotropic hormone; Apo A-1, apolipoprotein A-1; AHSG, alpha-2-HS-glycoprotein; Apo A-4, apolipoprotein A-4; MCI, mild cognitive impairment.
Collapse
Affiliation(s)
- Yuki Kitamura
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Ryoko Usami
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Sahoko Ichihara
- b Graduate School of Regional Innovation Studies , Mie University , Tsu , Japan
| | - Hirotaka Kida
- c Department of Dementia Prevention and Therapeutics , Mie University Graduate School of Medicine , Tsu , Japan
| | - Masayuki Satoh
- c Department of Dementia Prevention and Therapeutics , Mie University Graduate School of Medicine , Tsu , Japan
| | - Hidekazu Tomimoto
- c Department of Dementia Prevention and Therapeutics , Mie University Graduate School of Medicine , Tsu , Japan.,d Department of Neurology , Mie University Graduate School of Medicine , Tsu , Japan
| | - Mariko Murata
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| | - Shinji Oikawa
- a Department of Environmental and Molecular Medicine , Mie University Graduate School of Medicine , Tsu , Japan
| |
Collapse
|
40
|
Pate KM, Murphy RM. Cerebrospinal Fluid Proteins as Regulators of Beta-amyloid Aggregation and Toxicity. Isr J Chem 2017; 57:602-612. [PMID: 29129937 DOI: 10.1002/ijch.201600078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid disorders, such as Alzheimer's, are almost invariably late-onset diseases. One defining diagnostic feature of Alzheimer's disease is the deposition of beta-amyloid as extracellular plaques, primarily in the hippocampus. This raises the question: are there natural protective agents that prevent beta-amyloid from depositing, and is it loss of this protection that leads to onset of disease? Proteins in cerebrospinal fluid (CSF) have been suggested to act as just such natural protective agents. Here, we describe some of the early evidence that led to this suggestion, and we discuss, in greater detail, two CSF proteins that have garnered the bulk of the attention.
Collapse
Affiliation(s)
- Kayla M Pate
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| |
Collapse
|
41
|
Robinson RAS, Amin B, Guest PC. Multiplexing Biomarker Methods, Proteomics and Considerations for Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:21-48. [DOI: 10.1007/978-3-319-52479-5_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Wang J, Cunningham R, Zetterberg H, Asthana S, Carlsson C, Okonkwo O, Li L. Label-free quantitative comparison of cerebrospinal fluid glycoproteins and endogenous peptides in subjects with Alzheimer's disease, mild cognitive impairment, and healthy individuals. Proteomics Clin Appl 2016; 10:1225-1241. [DOI: 10.1002/prca.201600009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Jingxin Wang
- Neuroscience Training Program; University of Wisconsin-Madison; Madison WI USA
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Mölndal Sweden
- Department of Molecular Neuroscience; UCL Institute of Neurology; Queen Square London UK
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Geriatric Research Education and Clinical Center; Wm. S. Middleton Veterans Hospital; Madison WI USA
- Wisconsin Alzheimer's Institute; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Disease Research Center; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Geriatric Research Education and Clinical Center; Wm. S. Middleton Veterans Hospital; Madison WI USA
- Wisconsin Alzheimer's Institute; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Ozioma Okonkwo
- Neuroscience Training Program; University of Wisconsin-Madison; Madison WI USA
- Wisconsin Alzheimer's Disease Research Center; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Geriatric Research Education and Clinical Center; Wm. S. Middleton Veterans Hospital; Madison WI USA
- Wisconsin Alzheimer's Institute; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Lingjun Li
- Neuroscience Training Program; University of Wisconsin-Madison; Madison WI USA
- School of Pharmacy; University of Wisconsin-Madison; Madison WI USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI USA
- School of Life Sciences; Tianjin University; Tianjin China
| |
Collapse
|
43
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
44
|
Costa AR, Marcelino H, Gonçalves I, Quintela T, Tomás J, Duarte AC, Fonseca AM, Santos CRA. Sex Hormones Protect Against Amyloid-β Induced Oxidative Stress in the Choroid Plexus Cell Line Z310. J Neuroendocrinol 2016; 28. [PMID: 27328988 DOI: 10.1111/jne.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 11/27/2022]
Abstract
The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood on the basal side and the cerebrospinal fluid (CSF) on the apical side. It is a relevant source of many polypeptides secreted to the CSF with neuroprotective functions and also participates in the elimination and detoxification of brain metabolites, such as β-amyloid (Aβ) removal from the CSF through transporter-mediated influx. The CP is also a target tissue for sex hormones (SHs) that have recognised neuroprotective effects against a variety of insults, including Aβ toxicity and oxidative stress in the central nervous system. The present study aimed to understand how SHs modulate Aβ-induced oxidative stress in a CP cell line (Z310 cell line) by analysing the effects of Aβ1-42 on oxidative stress, mitochondrial function and apoptosis, as well as by assessing how 17β-oestradiol (E2 ) and 5α-dihydrotestosterone (DHT) modulated these effects and the cellular uptake of Aβ1-42 by CP cells. Our findings show that E2 and DHT treatment reduce Aβ1-42 -induced oxidative stress and the internalisation of Aβ1-42 by CP epithelial cells, highlighting the importance of considering the background of SHs and therefore sex-related differences in Aβ metabolism and clearance by CP cells.
Collapse
Affiliation(s)
- A R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - H Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A M Fonseca
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
45
|
Laiterä T, Kurki MI, Pursiheimo JP, Zetterberg H, Helisalmi S, Rauramaa T, Alafuzoff I, Remes AM, Soininen H, Haapasalo A, Jääskeläinen JE, Hiltunen M, Leinonen V. The Expression of Transthyretin and Amyloid-β Protein Precursor is Altered in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. J Alzheimers Dis 2016; 48:959-68. [PMID: 26444765 DOI: 10.3233/jad-150268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is a dementing condition in which Alzheimer's disease (AD)-related amyloid-β (Aβ) plaques are frequently observed in the neocortex. iNPH patients with prominent Aβ pathology show AD-related alterations in amyloid-β protein precursor (AβPP) processing resulting from increased γ-secretase activity. OBJECTIVES Our goal was to assess potential alterations in the global gene expression profile in the brain of iNPH patients as compared to non-demented controls and to evaluate the levels of the identified targets in the cerebrospinal fluid (CSF) of iNPH patients. METHODS The genome-wide expression profile of ~35,000 probes was assessed in the RNA samples obtained from 22 iNPH patients and eight non-demented control subjects using a microarray chip. The soluble levels of sAβPPα, sAβPPβ, and transthyretin (TTR) were measured from the CSF of 102 iNPH patients using ELISA. RESULTS After correcting the results for multiple testing, significant differences in the expression of TTR and A βPP were observed between iNPH and control subjects. The mRNA levels of TTR were on average 17-fold lower in iNPH samples compared to control samples. Conversely, the expression level of A βPP was on average three times higher in iNPH samples as compared to control samples. Interestingly, the expression of α-secretase (ADAM10) was also increased in iNPH patients. In the lumbar CSF samples, soluble TTR levels showed a significant positive correlation with sAβPPα and sAβPPβ, but TTR levels did not predict the brain pathology or the shunt response. CONCLUSIONS These findings suggest differences in the expression profile of key factors involved in AD-related cellular events in the brain of iNPH patients.
Collapse
Affiliation(s)
- Tiina Laiterä
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mitja I Kurki
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine - Pathology, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne M Remes
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juha E Jääskeläinen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
46
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
47
|
Paglia G, Stocchero M, Cacciatore S, Lai S, Angel P, Alam MT, Keller M, Ralser M, Astarita G. Unbiased Metabolomic Investigation of Alzheimer's Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism. J Proteome Res 2016; 15:608-18. [PMID: 26717242 DOI: 10.1021/acs.jproteome.5b01020] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of adult dementia. Yet the complete set of molecular changes accompanying this inexorable, neurodegenerative disease remains elusive. Here we adopted an unbiased lipidomics and metabolomics approach to surveying frozen frontal cortex samples from clinically characterized AD patients (n = 21) and age-matched controls (n = 19), revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, we incorporated the novel molecular information into the known biochemical pathways and compared it with the results of a metabolomics meta-analysis of previously published AD research. We found six metabolic pathways of the central metabolism as well as glycerophospholipid metabolism predominantly altered in AD brains. Using targeted metabolomics approaches and MS imaging, we confirmed a marked dysregulation of mitochondrial aspartate metabolism. The altered metabolic pathways were further integrated with clinical data, showing various degrees of correlation with parameters of dementia and AD pathology. Our study highlights specific, altered biochemical pathways in the brains of individuals with AD compared with those of control subjects, emphasizing dysregulation of mitochondrial aspartate metabolism and supporting future venues of investigation.
Collapse
Affiliation(s)
- Giuseppe Paglia
- Center for Biomedicine, European Academy of Bolzano/Bozen , Via Galvani 31, 39100 Bolzano, Italy.,Center for Systems Biology, University of Iceland , Sturlugata 8, IS 101 Reykjavik, Iceland
| | - Matteo Stocchero
- S-IN Soluzioni Informatiche S.r.l. , via G. Ferrari 14, 36100 Vicenza, Italy
| | - Stefano Cacciatore
- Institute of Reproductive and Developmental Biology, Imperial College London , London SW7 2AZ, United Kingdom
| | - Steven Lai
- Waters Corporation , Milford, Massachusetts 01757, United States
| | - Peggi Angel
- Protea Biosciences Group, Incorporated Morgantown, West Virginia 26505, United States
| | - Mohammad Tauqeer Alam
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Markus Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.,Mill Hill Laboratory, The Francis Crick Institute , The Ridgeway, London NW1 7AA, United Kingdom
| | - Giuseppe Astarita
- Waters Corporation , Milford, Massachusetts 01757, United States.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , Washington, District of Columbia 20007, United States
| |
Collapse
|
48
|
Siebel AL, Heywood SE, Kingwell BA. HDL and glucose metabolism: current evidence and therapeutic potential. Front Pharmacol 2015; 6:258. [PMID: 26582989 PMCID: PMC4628107 DOI: 10.3389/fphar.2015.00258] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022] Open
Abstract
High-density lipoprotein (HDL) and its principal apolipoprotein A-I (ApoA-I) have now been convincingly shown to influence glucose metabolism through multiple mechanisms. The key clinically relevant observations are that both acute HDL elevation via short-term reconstituted HDL (rHDL) infusion and chronically raising HDL via a cholesteryl ester transfer protein (CETP) inhibitor reduce blood glucose in individuals with type 2 diabetes mellitus (T2DM). HDL may mediate effects on glucose metabolism through actions in multiple organs (e.g., pancreas, skeletal muscle, heart, adipose, liver, brain) by three distinct mechanisms: (i) Insulin secretion from pancreatic beta cells, (ii) Insulin-independent glucose uptake, (iii) Insulin sensitivity. The molecular mechanisms appear to involve both direct HDL signaling actions as well as effects secondary to lipid removal from cells. The implications of glucoregulatory mechanisms linked to HDL extend from glycemic control to potential anti-ischemic actions via increased tissue glucose uptake and utilization. Such effects not only have implications for the prevention and management of diabetes, but also for ischemic vascular diseases including angina pectoris, intermittent claudication, cerebral ischemia and even some forms of dementia. This review will discuss the growing evidence for a role of HDL in glucose metabolism and outline related potential for HDL therapies.
Collapse
Affiliation(s)
- Andrew L Siebel
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute , Melbourne, VIC, Australia
| | - Sarah Elizabeth Heywood
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute , Melbourne, VIC, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute , Melbourne, VIC, Australia
| |
Collapse
|
49
|
High Resolution Discovery Proteomics Reveals Candidate Disease Progression Markers of Alzheimer's Disease in Human Cerebrospinal Fluid. PLoS One 2015; 10:e0135365. [PMID: 26270474 PMCID: PMC4535975 DOI: 10.1371/journal.pone.0135365] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 07/21/2015] [Indexed: 11/21/2022] Open
Abstract
Disease modifying treatments for Alzheimer’s disease (AD) constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle. Cerebrospinal fluid (CSF) biochemical markers such as total tau, p-tau and Ab42 are well established markers of AD; however, global quantitative biochemical changes in CSF in AD disease progression remain largely uncharacterized. Here we applied a high resolution open discovery platform, dMS, to profile a cross-sectional cohort of lumbar CSF from post-mortem diagnosed AD patients versus those from non-AD/non-demented (control) patients. Multiple markers were identified to be statistically significant in the cohort tested. We selected two markers SME-1 (p<0.0001) and SME-2 (p = 0.0004) for evaluation in a second independent longitudinal cohort of human CSF from post-mortem diagnosed AD patients and age-matched and case-matched control patients. In cohort-2, SME-1, identified as neuronal secretory protein VGF, and SME-2, identified as neuronal pentraxin receptor-1 (NPTXR), in AD were 21% (p = 0.039) and 17% (p = 0.026) lower, at baseline, respectively, than in controls. Linear mixed model analysis in the longitudinal cohort estimate a decrease in the levels of VGF and NPTXR at the rate of 10.9% and 6.9% per year in the AD patients, whereas both markers increased in controls. Because these markers are detected by mass spectrometry without the need for antibody reagents, targeted MS based assays provide a clear translation path for evaluating selected AD disease-progression markers with high analytical precision in the clinic.
Collapse
|
50
|
Conti A, Alessio M. Comparative Proteomics for the Evaluation of Protein Expression and Modifications in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:117-52. [PMID: 26315764 DOI: 10.1016/bs.irn.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Together with hypothesis-driven approaches, high-throughput differential proteomic analysis performed primarily not only in human cerebrospinal fluid and serum but also on protein content of other tissues (blood cells, muscles, peripheral nerves, etc.) has been used in the last years to investigate neurodegenerative diseases. Even if the goal for these analyses was mainly the discovery of neurodegenerative disorders biomarkers, the characterization of specific posttranslational modifications (PTMs) and the differential protein expression resulted in being very informative to better define the pathological mechanisms. In this chapter are presented and discussed the positive aspects and challenges of the outcomes of some of our investigations on neurological and neurodegenerative disease, in order to highlight the important role of protein PTMs studies in proteomics-based approaches.
Collapse
Affiliation(s)
- Antonio Conti
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|