1
|
Chen HK, Lan QW, Li YJ, Xin Q, Luo RQ, Wang JJ. Association between Dietary Potassium Intake and Nonalcoholic Fatty Liver Disease and Advanced Hepatic Fibrosis in U.S. Adults. Int J Endocrinol 2024; 2024:5588104. [PMID: 39040973 PMCID: PMC11262871 DOI: 10.1155/2024/5588104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction The correlation between potassium and nonalcoholic fatty liver disease (NAFLD) is currently still poorly understood. We conducted this study to explore the correlation between dietary potassium intake and NAFLD, as well as advanced hepatic fibrosis (AHF). The study also sought to identify any potential interactions. Methods The data employed in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) program, encompassing a period from 2007 to 2018. Employing the multiple logistic regression analysis, we evaluated the association of dietary potassium intake with NAFLD and AHF. Subsequently, stratification analysis, based on demographic variables, was constructed so as to assess the stability of the results. In addition, potential interaction effects were assessed by interaction tests. Results A total of 9443 participants were included in the analysis. The mean age of the participants was 50.4 years, and their daily mean dietary potassium and vitamin C intake was 2556.49 mg and 82.93 mg, respectively. Following comprehensive statistical analyses, the findings indicated a negative correlation between dietary potassium intake and both NAFLD and AHF. Participants in Q4 group with dietary potassium intake exhibited a 31% and 42% reduction in the odds of developing NAFLD and AHF, respectively, in comparison to Q1 group. An interaction effect of dietary vitamin C intake was observed in the association between dietary potassium intake and NAFLD. The results imply that high dietary vitamin C intake augment the inverse relationship between dietary potassium intake and NAFLD. Conclusion Dietary potassium intake was found to have an inverse association with the odds of both NAFLD and AHF. The association between dietary potassium intake and NAFLD was amplified by the presence of vitamin C in the diet.
Collapse
Affiliation(s)
- Hao-Kai Chen
- Department of Infectious DiseasesThe Second Affiliated HospitalGuangzhou Medical University, Guangzhou, China
- The Third School of Clinical MedicineGuangzhou Medical University, Guangzhou, China
| | - Qi-Wen Lan
- Department of Infectious DiseasesThe Second Affiliated HospitalGuangzhou Medical University, Guangzhou, China
- The Second School of Clinical MedicineGuangzhou Medical University, Guangzhou, China
| | - Yu-Jia Li
- Department of Infectious DiseasesThe Second Affiliated HospitalGuangzhou Medical University, Guangzhou, China
- The Third School of Clinical MedicineGuangzhou Medical University, Guangzhou, China
| | - Qing Xin
- Department of Infectious DiseasesThe Second Affiliated HospitalGuangzhou Medical University, Guangzhou, China
- The Third School of Clinical MedicineGuangzhou Medical University, Guangzhou, China
| | - Run-Qi Luo
- Department of Infectious DiseasesThe Second Affiliated HospitalGuangzhou Medical University, Guangzhou, China
| | - Jun-Jie Wang
- Department of Infectious DiseasesThe Second Affiliated HospitalGuangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
4
|
Wang Y, Wu M, Xiang L, Liu S, Luo G, Lin Q, Xiao L. Association of Dietary Vitamin C Consumption with Serum Klotho Concentrations. Foods 2023; 12:4230. [PMID: 38231677 DOI: 10.3390/foods12234230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Klotho is widely recognized as a protein that combats aging and possesses antioxidative characteristics, which have been implicated in the pathophysiology of numerous diseases. There is emerging evidence suggesting that the consumption of dietary nutrients, particularly those rich in antioxidants, could be associated with serum Klotho concentrations. Dietary vitamin C is one of the critical nutrients that possesses antioxidant properties. Nonetheless, the association between dietary vitamin C consumption and serum Klotho concentrations remains unclear. OBJECTIVE Aiming to evaluate the relationship between serum Klotho concentrations and dietary vitamin C consumption among Americans aged 40 to 79, we conducted a population-based study. METHODS From the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016, a grand total of 11,282 individuals who met the criteria were selected as eligible participants for the study. Serum Klotho concentrations were measured using an ELISA kit that is commercially available. Trained interviewers evaluated the consumption of dietary vitamin C in the diet through a 24-hour dietary recall technique. A generalized linear model was used to evaluate the correlation between the consumption of dietary vitamin C in the diet and serum Klotho concentrations. Further examination was conducted using restricted cubic spline (RCS) analysis to explore the non-linear correlation between dietary vitamin C consumption in the diet and serum Klotho concentrations. RESULTS After accounting for possible confounding factors, serum Klotho concentrations rose by 1.17% (95% confidence interval (CI): 0.37%, 1.99%) with every standard deviation (SD) rise in dietary vitamin C consumption. With the first quintile of dietary vitamin C consumption as a reference, the percentage change of serum Klotho concentrations in the fifth quintile of dietary vitamin C consumption was 3.66% higher (95% CI: 1.05%, 6.32%). In older, normal-weight, and male participants, the subgroup analysis revealed a stronger correlation between dietary vitamin C consumption and serum Klotho concentrations. Analysis of RCS showed a linear positive association between dietary vitamin C consumption and the levels of serum Klotho concentrations. CONCLUSION The findings of this research indicate a strong and positive correlation between dietary vitamin C consumption and serum Klotho concentrations among the general adult population in the United States. Further studies are needed to validate the present findings and to explore specific mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mingyang Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lu Xiang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Si Liu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Qian Lin
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Aghaei F, Wong A, Zargani M, Sarshin A, Feizolahi F, Derakhshan Z, Hashemi M, Arabzadeh E. Effects of swimming exercise combined with silymarin and vitamin C supplementation on hepatic inflammation, oxidative stress, and histopathology in elderly rats with high-fat diet-induced liver damage. Nutrition 2023; 115:112167. [PMID: 37611505 DOI: 10.1016/j.nut.2023.112167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES The aim of this study was to demonstrate that swimming exercise combined with silymarin and vitamin C supplementation improves hepatic inflammation, oxidative stress, and liver histopathology in elderly rats with high-fat diet-induced liver damage. METHODS Forty elderly male Wistar rats were randomly assigned to five groups (n = 8 in each): a normal diet (control), a high-fat diet (HFD), HFD + silymarin and vitamin C supplementation (HFD+Sup), HFD + swimming exercise (HFD+Exe), and HFD+Sup+Exe group (HFD+Sup+Exe). The non-alcoholic fatty liver model was induced for 6 wk in the HFD groups. After 6 wk of consuming an HFD, a daily supplemental gavage was administered to rats as an intervention along with HFD in the supplement groups for 8 wk. Moreover, rats in the exercise groups were subjected to swimming exercise training 5 d/wk for the same period. RESULTS The combination of swimming training and supplementation caused significant decreases in liver inflammatory biomarkers tumor necrosis factor-α and interleukin-1β while increasing total antioxidant capacity and peroxisome proliferator-activated receptor α (P < 0.05). CONCLUSION In elderly rats with liver injury caused by an HFD, the combination of exercise and silymarin with vitamin C supplementation effectively reduced oxidative stress, liver inflammation, fat accumulation, and regulated liver enzymes.
Collapse
Affiliation(s)
- Fariba Aghaei
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Zhila Derakhshan
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammadreza Hashemi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023; 64:12555-12573. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
7
|
Barrea L, Verde L, Savastano S, Colao A, Muscogiuri G. Adherence to Mediterranean Diet: Any Association with NAFLD? Antioxidants (Basel) 2023; 12:1318. [PMID: 37507858 PMCID: PMC10376004 DOI: 10.3390/antiox12071318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is considered one of the main determinants in the pathophysiology of non-alcoholic fatty liver disease (NAFLD) and obesity. The alterations of oxidant/antioxidant balance are related to chronic impairment of metabolism leading to mitochondrial dysfunction. Increased oxidative stress also triggers hepatocytes stress pathways, leading to inflammation and contributing to the progression of non-alcoholic steatohepatitis (NASH). Currently, the first-line therapeutic treatment of NAFLD is based on lifestyle interventions, suggesting the Mediterranean Diet (MD) as a preferable nutritional approach due to its antioxidant properties. However, it is still debated if adherence to MD could have a role in determining the risk of developing NAFLD directly or indirectly through its effect on weight. We enrolled 336 subjects (aged 35.87 ± 10.37 years; BMI 31.18 ± 9.66 kg/m2) assessing anthropometric parameters, lifestyle habits, metabolic parameters (fasting plasma glucose, fasting plasma insulin, triglycerides (TG), total cholesterol, low-density (LDL) and high-density lipoprotein (HDL) cholesterol, alanine transaminase (ALT), aspartate aminotransferase (AST), and γ-glutamyltransferase (γGT), cardio-metabolic indices [Homeostatic Model Assessment Insulin Resistance (HoMA-IR), visceral adipose index (VAI) and fatty liver index (FLI)] and adherence to MD [with the PREvención con DIetaMEDiterránea (PREDIMED) questionnaire]. Subjects with NAFLD had significantly higher anthropometric parameters, cardio-metabolic indices and lower adherence to MD than subjects without NAFLD. In a multiple regression analysis, PREDIMED score was the main predictor of FLI (p < 0.001) and came in first, followed by HoMA-IR, while VAI was not a predictor. A PREDIMED score value of <6 could serve as a threshold to identify patients who are more likely to have NAFLD (p < 0.001). In conclusion, high adherence to MD resulted in a lower risk of having NAFLD. Adherence to MD could have a direct role on the risk of developing NAFLD, regardless of visceral adipose tissue.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Centro Direzionale Isola F2, Via Porzio, 80143 Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131 Naples, Italy
| |
Collapse
|
8
|
Xu Y, Zheng H, Nilcham P, Bucur O, Vogt F, Slabu I, Liehn EA, Rusu M. Vitamin C Regulates the Profibrotic Activity of Fibroblasts in In Vitro Replica Settings of Myocardial Infarction. Int J Mol Sci 2023; 24:8379. [PMID: 37176085 PMCID: PMC10179686 DOI: 10.3390/ijms24098379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular collagen remodeling is one of the central mechanisms responsible for the structural and compositional coherence of myocardium in patients undergoing myocardial infarction (MI). Activated primary cardiac fibroblasts following myocardial infarction are extensively investigated to establish anti-fibrotic therapies to improve left ventricular remodeling. To systematically assess vitamin C functions as a potential modulator involved in collagen fibrillogenesis in an in vitro model mimicking heart tissue healing after MI. Mouse primary cardiac fibroblasts were isolated from wild-type C57BL/6 mice and cultured under normal and profibrotic (hypoxic + transforming growth factor beta 1) conditions on freshly prepared coatings mimicking extracellular matrix (ECM) remodeling during healing after an MI. At 10 μg/mL, vitamin C reprogramed the respiratory mitochondrial metabolism, which is effectively associated with a more increased accumulation of intracellular reactive oxygen species (iROS) than the number of those generated by mitochondrial reactive oxygen species (mROS). The mRNA/protein expression of subtypes I, III collagen, and fibroblasts differentiations markers were upregulated over time, particularly in the presence of vitamin C. The collagen substrate potentiated the modulator role of vitamin C in reinforcing the structure of types I and III collagen synthesis by reducing collagen V expression in a timely manner, which is important in the initiation of fibrillogenesis. Altogether, our study evidenced the synergistic function of vitamin C at an optimum dose on maintaining the equilibrium functionality of radical scavenger and gene transcription, which are important in the initial phases after healing after an MI, while modulating the synthesis of de novo collagen fibrils, which is important in the final stage of tissue healing.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Pakhwan Nilcham
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
| | - Octavian Bucur
- “Victor Babes” National Institute of Pathology, Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 1 Boston Place, Ste 2600, Boston, MA 02108, USA
| | - Felix Vogt
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- “Victor Babes” National Institute of Pathology, Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
| | - Mihaela Rusu
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
9
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
10
|
Jiang Y, Cao H, Chen X, Yu G, Song C, Duan H, Tian F, Wan H, Shen J. Associations of serum folate and vitamin C levels with metabolic dysfunction-associated fatty liver disease in US adults: A nationwide cross-sectional study. Front Public Health 2022; 10:1022928. [PMID: 36388270 PMCID: PMC9643688 DOI: 10.3389/fpubh.2022.1022928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 01/28/2023] Open
Abstract
Background Clinical research results on the relationship between folate and non-alcoholic fatty liver disease are contradictory. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a recently proposed concept. Evidence about the relationship between serum folate and MAFLD, especially considering the status of serum vitamin C, is scarce. This study was aimed to investigate the association of serum folate levels with the prevalence of MAFLD, and further to analyze the potential impact of serum vitamin C status on their association. Methods Totally 2,797 participants from National Health and Nutrition Examination Survey (NHANES) 2017-2018 were included. Vibration-controlled transient elastography was used to detect liver steatosis and fibrosis. Participants were divided in groups based on the tertiles of serum folate or vitamin C, and the serum folate or vitamin C level in T1 was low. Logistic regression analysis in the complex sample module was performed to illustrate the association of serum folate levels with the prevalence of MAFLD. Stratification analysis by serum vitamin C status was performed as well. Results Compared with the serum folate levels of T1 group, participants in the T3 group had 47.9% lower risk of MAFLD [OR = 0.521 (95% CI: 0.401-0.677)]. However, when participants were stratified by serum vitamin C levels, there was no association between the serum folate levels and MAFLD in the T1 or T2 group. Among participants in the T3 group of vitamin C status, participants in the T3 group of serum folate had a 63.6% lower risk of MAFLD compared with the T1 group [OR = 0.364 (95% CI: 0.147-0.903)]. Conclusions High serum folate level is associated with lower prevalence of MAFLD, especially in participants with sufficient vitamin C.
Collapse
Affiliation(s)
- Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Huanyi Cao
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Feng Tian
- Health Management Division, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China,Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,Heng Wan
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China,Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,*Correspondence: Jie Shen
| |
Collapse
|
11
|
Peng H, Wang M, Pan L, Cao Z, Yao Z, Chen Q, Li Y, Wang Y, Lv W. Associations of serum multivitamin levels with the risk of non-alcoholic fatty liver disease: A population-based cross-sectional study in U.S. adults. Front Nutr 2022; 9:962705. [PMID: 36172527 PMCID: PMC9511103 DOI: 10.3389/fnut.2022.962705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamins were closely associated with non-alcoholic fatty liver disease (NAFLD) development, but no study had explored the association of serum multivitamin levels with NAFLD risk. We assessed the association between serum levels of both single-vitamin and multivitamins (VA, VB6, VB9, VB12, VC, VD, and VE) and the risk of NAFLD, using the database of National Health and Nutrition Examination Survey (NHANES) (cycles 2003–2004 and 2005–2006). We employed multivariable logistic regression and weighted quantile sum (WQS) regression models to explore the association of serum multivitamin levels with NAFLD. Among all 2,294 participants, 969 participants with NAFLD were more likely to be male, older, less educated, or have hypertension/high cholesterol/diabetes. After adjustment of covariates, serum VC/VD/VB6/VB9 levels were negatively correlated with NAFLD risk, while serum VA/VE levels were positively correlated with NAFLD risk. In the WQS model, elevated serum VA/VE levels and lowered serum VC/VD/VB6 levels were linearly associated with increased NAFLD risk. There was a non-linear relationship between serum VB9/VB12 levels and NAFLD risk. There were evident associations between serum multivitamin levels and reduced NAFLD risk, which was mainly driven by VD/VB9/VC. In conclusion, our findings suggested that serum multivitamin levels were significantly associated with the risk of NAFLD.
Collapse
Affiliation(s)
- Hongye Peng
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hongye Peng,
| | - Miyuan Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Pan
- Phase 1 Clinical Trial Center, Deyang People’s Hospital, Deyang, China
| | - Zhengmin Cao
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziang Yao
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuye Chen
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanbo Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Wang
- Phase 1 Clinical Trial Center, Deyang People’s Hospital, Deyang, China
| | - Wenliang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wenliang Lv,
| |
Collapse
|
12
|
Baker J, Putnam N, Kozlowski RE, Anderson M, Bird Z, Chmielewski J, Meske J, Steinshouer N, Kozlowski MR. Effects of chronic, daily exposures to low intensity blue light on human retinal pigment epithelial cells: Implications for the use of personal electronic devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
13
|
Prescription Drugs and Mitochondrial Metabolism. Biosci Rep 2022; 42:231068. [PMID: 35315490 PMCID: PMC9016406 DOI: 10.1042/bsr20211813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central to the physiology and survival of nearly all eukaryotic cells and house diverse metabolic processes including oxidative phosphorylation, reactive oxygen species buffering, metabolite synthesis/exchange, and Ca2+ sequestration. Mitochondria are phenotypically heterogeneous and this variation is essential to the complexity of physiological function among cells, tissues, and organ systems. As a consequence of mitochondrial integration with so many physiological processes, small molecules that modulate mitochondrial metabolism induce complex systemic effects. In the case of many common prescribed drugs, these interactions may contribute to drug therapeutic mechanisms, induce adverse drug reactions, or both. The purpose of this article is to review historical and recent advances in the understanding of the effects of prescription drugs on mitochondrial metabolism. Specific 'modes' of xenobiotic-mitochondria interactions are discussed to provide a set of qualitative models that aid in conceptualizing how the mitochondrial energy transduction system may be affected. Findings of recent in vitro high-throughput screening studies are reviewed, and a few candidate drug classes are chosen for additional brief discussion (i.e. antihyperglycemics, antidepressants, antibiotics, and antihyperlipidemics). Finally, recent improvements in pharmacokinetic models that aid in quantifying systemic effects of drug-mitochondria interactions are briefly considered.
Collapse
|
14
|
Licata A, Zerbo M, Como S, Cammilleri M, Soresi M, Montalto G, Giannitrapani L. The Role of Vitamin Deficiency in Liver Disease: To Supplement or Not Supplement? Nutrients 2021; 13:nu13114014. [PMID: 34836267 PMCID: PMC8620546 DOI: 10.3390/nu13114014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past few years, growing interest has been shown for the impact of dietary requirements and nutritional factors on chronic diseases. As a result, nutritional programs have been reinforced by public health policies. The precise role of micronutrients in chronic liver disease is currently receiving particular attention since abnormalities in vitamin levels are often detected. At present, treatment programs are focused on correcting vitamin deficiencies, which are frequently correlated to higher rates of comorbidities with poor outcomes. The literature reviewed here indicates that liver diseases are often related to vitamin disorders, due to both liver impairment and abnormal intake. More specific knowledge about the role of vitamins in liver disease is currently emerging from various results and recent evidence. The most significant benefits in this area may be observed when improved vitamin intake is combined with a pharmacological treatment that may also affect the progression of the liver disease, especially in the case of liver tumors. However, further studies are needed.
Collapse
Affiliation(s)
- Anna Licata
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
- Correspondence: ; Tel.: +39-091-655-2280; Fax: +39-091-655-2156
| | - Maddalena Zerbo
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Silvia Como
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Marcella Cammilleri
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Maurizio Soresi
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Giuseppe Montalto
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Lydia Giannitrapani
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
- Institute for Biochemical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
15
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
16
|
Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants (Basel) 2021; 10:antiox10101563. [PMID: 34679698 PMCID: PMC8533511 DOI: 10.3390/antiox10101563] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary components have an important role on the structure and function of host gut microbial communities. Even though, various dietary components, such as carbohydrates, fats, proteins, fibers, and vitamins, have been studied in depth for their effect on gut microbiomes, little attention has been paid regarding the impact of several food antioxidants on the gut microbiome. The long-term exposure to reactive oxygen species (ROS) can cause microbial dysbiosis which leads to numerous intestinal diseases such as microbiota dysbiosis, intestinal injury, colorectal cancers, enteric infections, and inflammatory bowel diseases. Recently, it has been shown that the food derived antioxidant compounds might protect the host from intestinal oxidative stress via modulating the composition of beneficial microbial species in the gut. The present review summarizes the impact of food antioxidants including antioxidant vitamins, dietary polyphenols, carotenoids, and bioactive peptides on the structure as well as function of host gut microbial communities. Several in vitro, animal model, and clinical studies indicates that food antioxidants might modify the host gut microbial communities and their health status. However, still further clarification is needed as to whether changes in certain microbial species caused by food additives may lead to changes in metabolism and immune function.
Collapse
|
17
|
Chang M, Xu G, Xiong C, Yang X, Yan S, Tao Y, Li H, Li Y, Yao S, Zhao Y. Alpha-lipoic acid attenuates silica-induced pulmonary fibrosis by improving mitochondrial function via AMPK/PGC1α pathway activation in C57BL/6J mice. Toxicol Lett 2021; 350:121-132. [PMID: 34252510 DOI: 10.1016/j.toxlet.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Silicosis is characterized by pulmonary interstitial fibrosis that arises as a result of chronic exposure to silica. The few available treatments only delay its progression. As α-lipoic acid (ALA) has been shown to have various beneficial effects, including mitoprotective, antioxidant, and anti-inflammatory effects, we hypothesized that it may exhibit therapeutic effects in pulmonary fibrosis. Therefore, in the present study, we used a murine model of silicosis to investigate whether supplementation with exogenous ALA could attenuate silica-induced pulmonary fibrosis by improving mitochondrial function. ALA was administered to the model mice via continuous intragastric administration for 28 days, and then the antioxidant and mitoprotective effects of ALA were evaluated. The results showed that ALA decreased the production of reactive oxygen species, protected mitochondria from silica-induced dysfunction, and inhibited extracellular matrix deposition. ALA also decreased hyperglycemia and hyperlipidemia. Activation of the mitochondrial AMPK/PGC1α pathway might be responsible for these ALA-mediated anti-fibrotic effects. Exogenous ALA blocked oxidative stress by activating NRF2. Taken together, these findings demonstrate that exogenous ALA effectively prevents the progression of silicosis in a murine model, likely by stimulating mitochondrial biogenesis and endogenous antioxidant responses. Therefore, ALA can potentially delay the progression of silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
18
|
Raza S, Tewari A, Rajak S, Sinha RA. Vitamins and non-alcoholic fatty liver disease: A Molecular Insight ⋆. LIVER RESEARCH 2021; 5:62-71. [PMID: 34221537 PMCID: PMC7611112 DOI: 10.1016/j.livres.2021.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising rapidly across the globe. NAFLD pathogenesis is largely driven by an imbalance in hepatic energy metabolism and at present, there is no approved drug for its treatment. The liver plays a crucial role in micronutrient metabolism and deregulation of this micronutrient metabolism may contribute to the pathogenesis of NAFLD. Vitamins regulate several enzymatic processes in the liver, and derangement in vitamin metabolism is believed to play a critical role in NAFLD progression. The anti-oxidant activities of vitamin C and E have been attributed to mitigate hepatocyte injury, and alterations in the serum levels of vitamin D, vitamin B12 and folate have shown a strong correlation with NAFLD severity. This review aims to highlight the role of these vitamins, which represent promising therapeutic targets for the management of NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Corresponding author: Dr. Rohit A. Sinha (), Dr. Sana Raza ()
| | | | | | - Rohit A. Sinha
- Corresponding author: Dr. Rohit A. Sinha (), Dr. Sana Raza ()
| |
Collapse
|
19
|
Ibrahim Fouad G, R Mousa M. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats. Mol Cell Biochem 2021; 476:3433-3448. [PMID: 33973131 DOI: 10.1007/s11010-021-04173-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Amiodarone (AMD) is a widely used antiarrhythmic drug prescribed to treat cardiac tachyarrhythmias; however, AMD has been reported to provoke pulmonary fibrosis (PF) and hepatotoxicity. This study aimed to investigate the influence of alpha lipoic acid (ALA) on AMD-induced PF and hepatotoxicity in male Wistar rats. AMD administration resulted in elevated lung contents of hydroxyproline (Hyp), malondialdehyde (MDA), and increased serum levels of transforming growth factor beta-1 (TGF-β1), interferon-γ (IFN-γ), alanine amino transaminase (ALT), aspartate amino transaminase (AST), total cholesterol (TC), and glucose. On the other side, lung content of glutathione reduced (GSH) and serum levels of total anti-oxidant capacity (TAC) were significantly decreased. Histopathologically, AMD caused PF, produced a mild hepatic injury, and increased expression of alpha smooth muscle actin (α-SMA). Treatment with ALA produced a significant reversal of the oxidative stress, fibrosis, and inflammation parameters with reductions in α-SMA expressions, leading to amelioration of histopathological lesions. ALA might provide supportive therapy in AMD-receiving cardiovascular patients.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
20
|
Fiorani M, Guidarelli A, Cantoni O. Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants. Int J Radiat Biol 2020; 97:1055-1062. [PMID: 31976796 DOI: 10.1080/09553002.2020.1721604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
PREMISE Mitochondria represent critical sites for reactive oxygen species (ROS) production, which dependent on concentration is responsible for the regulation of both physiological and pathological processes. PURPOSE Antioxidants in mitochondria regulate the redox balance, prevent mitochondrial damage and dysfunction and maintain a physiological ROS-dependent signaling. The aim of the present review is to provide critical elements for addressing this issue in the context of various pharmacological approaches using antioxidants targeted or non-targeted to mitochondria. Furthermore, this review focuses on the mitochondrial antioxidant effects of ascorbic acid (AA), providing clues on the complexities associated with the cellular uptake and subcellular distribution of the vitamin. CONCLUSIONS Antioxidants that are not specifically targeted to mitochondria fail to accumulate in significant amounts in critical sites of mitochondrial ROS production and may eventually interfere with the ensuing physiological signaling. Mitochondria-targeted antioxidants are more effective, but are expected to interfere with the mitochondrial ROS-dependent physiologic signaling. AA promotes multiple beneficial effects in mitochondria. The complex regulation of vitamin C uptake in these organelles likely contributes to its versatile antioxidant response, thereby providing a central role to the vitamin for adequate control of mitochondrial dysfunction associated with increased mitochondrial ROS production.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
21
|
Li Z, Chen QQ, Lam CWK, Guo JR, Zhang WJ, Wang CY, Wong VKW, Yao MC, Zhang W. Investigation into perturbed nucleoside metabolism and cell cycle for elucidating the cytotoxicity effect of resveratrol on human lung adenocarcinoma epithelial cells. Chin J Nat Med 2020; 17:608-615. [PMID: 31472898 DOI: 10.1016/s1875-5364(19)30063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 01/15/2023]
Abstract
In an effort to understand the molecular events contributing to the cytotoxicity activity of resveratrol (RSV), we investigated its effects on human lung adenocarcinoma epithelial cell line A549 at different concentrations. Cellular nucleoside metabolic profiling was determined by an established liquid chromatography-mass spectrometry method in A549 cells. RSV resulted in significant decreases and imbalances of deoxyribonucleoside triphosphates (dNTPs) pools suppressing subsequent DNA synthesis. Meanwhile, RSV at high concentration caused significant cell cycle arrest at S phase, in which cells required the highest dNTPs supply than other phases for DNA replication. The inhibition of DNA synthesis thus blocked subsequent progression through S phase in A549 cells, which may partly contribute to the cytotoxicity effect of RSV. However, hydroxyurea (HU), an inhibitor of RNR activity, caused similar dNTPs perturbation but no S phase arrest, finally no cytotoxicity effect. Therefore, we believed that the dual effect of high concentration RSV, including S phase arrest and DNA synthesis inhibition, was required for its cytotoxicity effect on A549 cells. In summary, our results provided important clues to the molecular basis for the anticancer effect of RSV on epithelial cells.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Qian-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Wei-Jia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
22
|
AlBasher G, Abdel-Daim MM, Almeer R, Ibrahim KA, Hamza RZ, Bungau S, Aleya L. Synergistic antioxidant effects of resveratrol and curcumin against fipronil-triggered oxidative damage in male albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6505-6514. [PMID: 31873888 DOI: 10.1007/s11356-019-07344-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Fipronil (FPN), a phenylpyrazole insecticide, has been receiving increased attention owing to its toxicity, which is largely mediated through its effects on antioxidant systems. The present study was undertaken to assess the effects of resveratrol (RSV) and curcumin (CUR) on oxidative damage induced by FPN. Forty mature male Wistar rats were randomized into five groups (n = 8 per group): the first group was the control; the second was administered FPN (10 mg/kg); and the third, fourth, and fifth were co-treated with RSV (10 mg/kg), CUR (200 mg/kg), and their combination, respectively, 2 h prior to FPN administration. All animals were dosed via oral gavage for 4 weeks. FPN significantly (p < 0.05) elevated the sera of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyl transferase (GGT), urea, creatinine, and cholesterol levels, whereas serum total protein, albumin, and triglyceride levels were significantly (p < 0.05) decreased, compared to those of the control group. Reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were decreased (p < 0.05) in the FPN-treated group compared to those in the control group; however, malondialdehyde (MDA) and nitric oxide (NO) levels were markedly increased (p < 0.05) in the hepatic, renal, and brain tissues. Co-treatment with RSV or CUR alleviated (p ˂ 0.05) the increased lipid peroxidation and changes in enzymatic/nonenzymatic antioxidants induced by FPN; all these variables mostly returned to normal levels with the combined of RSV and CUR treatment. In conclusion, RSV and/or CUR relieved and synergistically reversed the FPN-induced tissue oxidative injury, probably by improving the antioxidant defenses via their free radical scavenging and antioxidant characteristics.
Collapse
Affiliation(s)
- Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Reham Z Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| |
Collapse
|
23
|
Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucinska-Wieckowska A, Oliveira PJ. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem 2019; 26:3376-3406. [PMID: 28554320 DOI: 10.2174/0929867324666170529101810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/23/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are cytoplasmic double-membraned organelles that are involved in a myriad of key cellular regulatory processes. The loss of mitochondrial function is related to the pathogenesis of several human diseases. Over the last decades, an increasing number of studies have shown that dietary polyphenols can regulate mitochondrial redox status, and in some cases, prevent or delay disease progression. This paper aims to review the role of four dietary polyphenols - resveratrol, curcumin, epigallocatechin-3-gallate nd quercetin - in molecular pathways regulated by mitochondria and their potential impact on human health. Cumulative evidence showed that the aforementioned polyphenols improve mitochondrial functions in different in vitro and in vivo experiments. The mechanisms underlying the polyphenols' beneficial effects include, among others, the attenuation of oxidative stress, the regulation of mitochondrial metabolism and biogenesis and the modulation of cell-death signaling cascades, among other mitochondrial-independent effects. The understanding of the chemicalbiological interactions of dietary polyphenols, namely with mitochondria, may have a huge impact on the treatment of mitochondrial dysfunction-related disorders.
Collapse
Affiliation(s)
- José Teixeira
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal.,CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| | - Daniel Chavarria
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169- 007, Portugal
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park - Cantanhede, University of Coimbra, Portugal
| |
Collapse
|
24
|
Olivares-Marin IK, González-Hernández JC, Madrigal-Perez LA. Resveratrol cytotoxicity is energy-dependent. J Food Biochem 2019; 43:e13008. [PMID: 31385323 DOI: 10.1111/jfbc.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022]
Abstract
Resveratrol is a phytochemical that may promote health. However, it has also been reported to be a toxic compound. The molecular mechanism by which resveratrol acts remains unclear. The inhibition of the oxidative phosphorylation (OXPHOS) pathway appears to be the molecular mechanism of resveratrol. Taking this into account, we propose that the cytotoxic properties of resveratrol depend on the energy (e.g., carbohydrates, lipids, and proteins) availability in the cells. In this regard, in a condition with low energy accessibility, resveratrol could enhance ATP starvation to lethal levels. In contrast, when cells are supplemented with high quantities of energy and resveratrol, the inhibition of OXPHOS might produce a low-energy environment, mimicking the beneficial effects of caloric restriction. This review suggests that investigating a possible complex relationship between caloric intake and the differential effects of resveratrol on OXPHOS may be justified. PRACTICAL APPLICATIONS: A low-calorie diet accompanied by significant levels of resveratrol might modify cellular bioenergetics, which could impact cellular viability and enhance the anti-cancer properties of resveratrol.
Collapse
Affiliation(s)
| | | | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| |
Collapse
|
25
|
Lu J, Zheng Y, Yang J, Zhang J, Cao W, Chen X, Fang S. Resveratrol alleviates inflammatory injury and enhances the apoptosis of fibroblast‑like synoviocytes via mitochondrial dysfunction and ER stress in rats with adjuvant arthritis. Mol Med Rep 2019; 20:463-472. [PMID: 31180523 PMCID: PMC6580038 DOI: 10.3892/mmr.2019.10273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
Resveratrol, a bioactive compound predominantly found in grapes and red wine, provides a wide range of properties that are beneficial for health, including anticancer and anti-inflammatory activities. Previously published studies have addressed the potential therapeutic effects of resveratrol on rheumatoid arthritis (RA); however, the subcellular mechanism remains to be fully elucidated. In the present study, the therapeutic effects of resveratrol on adjuvant arthritis (AA) in Sprague-Dawley rats were investigated, and the mechanisms of resveratrol-induced apoptosis in fibroblast-like synoviocytes (FLSs) were further examined. Based on the findings, resveratrol treatment over a 12-day period led to a reduction in paw swelling and arthritis scores at the macroscopic level, and an attenuation of inflammatory cell infiltration and synovial hyperplasia, upon a histopathological examination of the AA rats. Furthermore, the administration of resveratrol triggered decreases in the expression of interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor-α (TNF-α) and an increase in the expression of IL-10, alleviating inflammatory injury in AA rats in a dose-dependent manner. In addition, resveratrol was revealed to induce the apoptosis of FLSs when administered with 5 µM H2O2 as determined by elevated levels of Bax, caspase-3, caspase-12 and C/EBP-homologous protein, and the downregulation of B-cell lymphoma 2 (Bcl-2), suggesting that resveratrol is able to induce apoptosis in FLSs via the mitochondrial pathway and endoplasmic reticulum (ER) stress in a milieu containing 5 µM H2O2. Furthermore, JC-1 was used as a fluorescent probe to detect the mitochondrial membrane potential (Δψm), and resveratrol was shown to reduce the Δψm in FLSs in the presence of 5 µM H2O2. However, resveratrol was not able to trigger intracellular calcium overload, although it did suppress ATP- and thapsigargin-induced calcium release from the ER. In conclusion, the present study revealed that resveratrol was able to alleviate inflammatory injury in AA rats, triggering the apoptosis of FLSs via the mitochondrial pathway and ER stress. These results provide a theoretical basis for future treatments using resveratrol for RA.
Collapse
Affiliation(s)
- Jinsen Lu
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yongshun Zheng
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiazhao Yang
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Junqiang Zhang
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Cao
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shiyuan Fang
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
26
|
Valdecantos MP, Pérez-Matute P, Prieto-Hontoria P, Moreno-Aliaga MJ, Martínez JA. Impact of dietary lipoic acid supplementation on liver mitochondrial bioenergetics and oxidative status on normally fed Wistar rats. Int J Food Sci Nutr 2019; 70:834-844. [PMID: 30764676 DOI: 10.1080/09637486.2019.1572716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to examine the effects of α-lipoic acid (α-LA) on liver mitochondrial bioenergetics and oxidative status for 8 weeks in normal-healthy animals. A pair-fed group was included to differentiate between α-LA direct effects and those changes due to reduced food intake. α-LA decreased body weight gain, liver weight and insulin levels with no differences compared to its pair-fed group. α-LA significantly reduced energy efficiency, the activity of the electron transport chain complexes and induced a lower efficiency of oxidative phosphorylation with reduced ATP production. α-LA supplementation directly decreased plasma triglycerides (TGs), free fatty acids and ketone bodies levels. A significant reduction in hepatic TG content was also observed. A significant up-regulation of Cpt1a, Acadl and Sirt3, all β-oxidation genes, along with a significant deacetylation of the forkhead transcription factor 3a (FOXO3A) was found in α-LA-treated animals. Thus, α-LA along with a standard chow diet has direct actions on lipid metabolism and liver by modulating mitochondrial function in normal-weight rats. These results should be taken into account when α-LA is administered or recommended to a healthy population.
Collapse
Affiliation(s)
- M P Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM) , Madrid , Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III , Madrid , Spain.,Department of Nutrition, Food Science and Physiology, University of Navarra , Pamplona , Spain
| | - P Pérez-Matute
- Department of Nutrition, Food Science and Physiology, University of Navarra , Pamplona , Spain.,Department of Infectious Diseases, Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR) , Logroño, Spain
| | - P Prieto-Hontoria
- Department of Nutrition, Food Science and Physiology, University of Navarra , Pamplona , Spain
| | - M J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra , Pamplona , Spain.,Centre for Nutrition Research, University of Navarra , Pamplona , Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn) , Madrid , Spain.,IdiSNA, Navarra's Health Research Institute , Pamplona , Spain
| | - J A Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra , Pamplona , Spain.,Centre for Nutrition Research, University of Navarra , Pamplona , Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn) , Madrid , Spain.,IdiSNA, Navarra's Health Research Institute , Pamplona , Spain.,IMDEA Food Institute, CEI UAM + CSIC , Madrid , Spain
| |
Collapse
|
27
|
Ji S, Zheng Z, Liu S, Ren G, Gao J, Zhang Y, Li G. Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. Exp Cell Res 2018; 370:292-302. [DOI: 10.1016/j.yexcr.2018.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
|
28
|
McConnell DD, McGreevy JW, Williams MN, Litofsky NS. Do Anti-Oxidants Vitamin D 3, Melatonin, and Alpha-Lipoic Acid Have Synergistic Effects with Temozolomide on Cultured Glioblastoma Cells? MEDICINES (BASEL, SWITZERLAND) 2018; 5:E58. [PMID: 29925764 PMCID: PMC6023526 DOI: 10.3390/medicines5020058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
Background: Cancer patients often take over-the-counter anti-oxidants as primary treatment or in combination with chemotherapy. Data about such use in glioblastoma is limited. Methods: Cultured U87-MG cells, a primary glioblastoma cell line (MU1454), U87-MG derived stem-like cells (scU87), and MU1454 derived stem-like cell lines (scMU1454) were pre-treated with one of three anti-oxidants—Vitamin D₃, Melatonin, and alpha-lipoic acid (LA)—for 72 h, followed by a 72 h treatment with temozolomide (TMZ). MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assessed cell proliferation. DCFDA Cellular ROS Detection Assay and Glutathione peroxidase (GP×1) activity assessed the anti-oxidant effect of TMZ +/− an anti-oxidant drug. Results: Vitamin D₃ did not affect MU1454, but had slight TMZ synergism for U87-MG. Melatonin 1 mM decreased U87-MG and MU1454 cell proliferation. As pretreatment to TMZ, melatonin 1 mM and 50 nM significantly reduced proliferation. LA 1 mM had a significant effect alone or with TMZ on U87-MG and MU1454. LA 250 uM also reduced proliferation by almost 50%. Melatonin and LA significantly enhanced the responsiveness of scMU1454 to TMZ, while Melatonin 50 nM exerted similar effects on scU87. The anti-oxidants were associated with generally decreased reactive oxygen species and limited GP×1 effects. Conclusions: Anti-oxidants may have synergistic effects with TMZ. LA offers the most promise, followed by melatonin.
Collapse
Affiliation(s)
- Diane D McConnell
- Division of Neurological Surgery, University of Missouri-Columbia School of Medicine, One Hospital Drive, MC 321, Columbia, MO 65212, USA.
| | - Joe W McGreevy
- Division of Neurological Surgery, University of Missouri-Columbia School of Medicine, One Hospital Drive, MC 321, Columbia, MO 65212, USA.
| | - Macy N Williams
- Division of Neurological Surgery, University of Missouri-Columbia School of Medicine, One Hospital Drive, MC 321, Columbia, MO 65212, USA.
| | - N Scott Litofsky
- Division of Neurological Surgery, University of Missouri-Columbia School of Medicine, One Hospital Drive, MC 321, Columbia, MO 65212, USA.
| |
Collapse
|
29
|
Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World J Gastroenterol 2018; 24:2083-2094. [PMID: 29785077 PMCID: PMC5960814 DOI: 10.3748/wjg.v24.i19.2083] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease, and is characterized by a wide spectrum of fat-liver disorders that can result in severe liver disease and cirrhosis. Inflammation and oxidative stress are the major risk factors involved in the pathogenesis of NAFLD. Currently, there is no consensus concerning the pharmacological treatment of NAFLD. However, lifestyle interventions based on exercise and a balanced diet for quality and quantity, are considered the cornerstone of NAFLD management. Mediterranean diet (MD), rich in polyunsaturated fats, polyphenols, vitamins and carotenoids, with their anti-inflammatory and anti-oxidant effects, has been suggested to be effective in preventing cardiovascular risk factors. In adults, MD has also been demonstrated to be efficacious in reducing the risk of metabolic syndrome. However, few studies are available on the effects of the MD in both adult and pediatric subjects with NAFLD. Thus, the aims of the present narrative review are to analyze the current clinical evidence on the impact of MD in patients with NAFLD, and to summarize the main mechanisms of action of MD components on this condition.
Collapse
Affiliation(s)
- Caterina Anania
- Policlinico Umberto I Hospital, Sapienza University of Rome, Rome 00161, Italy
| | | | - Francesca Olivero
- Policlinico Umberto I Hospital, Sapienza University of Rome, Rome 00161, Italy
| | - Lucia Pacifico
- Policlinico Umberto I Hospital, Sapienza University of Rome, Rome 00161, Italy
| | - Claudio Chiesa
- Institute of Translational Pharmacology, National Research Council, Rome 00133, Italy
| |
Collapse
|
30
|
Romo-Hualde A, Huerta AE, González-Navarro CJ, Ramos-López O, Moreno-Aliaga MJ, Martínez JA. Untargeted metabolomic on urine samples after α-lipoic acid and/or eicosapentaenoic acid supplementation in healthy overweight/obese women. Lipids Health Dis 2018; 17:103. [PMID: 29743087 PMCID: PMC5941619 DOI: 10.1186/s12944-018-0750-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/19/2018] [Indexed: 12/28/2022] Open
Abstract
Background Eicosapentaenoic acid (EPA) and α-lipoic acid (α-LA) have been investigated for their beneficial effects on obesity and cardiovascular risk factors. In the current research, the goal was to evaluate metabolomic changes following the dietary supplementation of these two lipids, alone or combined in healthy overweight/obese sedentary women following an energy-restricted diet. For this purpose, an untargeted metabolomics approach was conducted on urine samples using liquid chromatography coupled with time of flight mass spectrometry (HPLC-TOF-MS). Methods This is a short-term double blind placebo-controlled study with a parallel nutritional design that lasted 10 weeks. Participants were assigned to one of the 4 experimental groups [Control, EPA (1.3 g/d), α-LA (0.3 g/d) and EPA+α-LA (1.3 g/d + 0.3 g/d)]. All intervention groups followed an energy-restricted diet of 30% less than total energy expenditure. Clinically relevant biochemical measurements were analyzed. Urine samples (24 h) were collected at baseline and after 10 weeks. Untargeted metabolomic analysis on urine samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were performed for the pattern recognition and characteristic metabolites identification. Results Urine samples were scattered in the PCA scores plots in response to the supplementation with α-LA. Totally, 28 putative discriminant metabolites in positive ionization, and 6 in negative ionization were identified among groups clearly differentiated according to the α-LA administration. Remarkably is the presence of an ascorbate intermediate metabolite (one of the isomers of trihydroxy-dioxohexanoate, or dihydroxy–oxohexanedionate) in the groups supplemented with α-LA. This fact might be associated with antioxidant properties of both α-LA and ascorbic acid. Correlations between phenotypical parameters and putative metabolites of provided additional information on whether there is a direct or inverse relationship between them. Especially interesting are the negative correlation between ascorbate intermediate metabolite and asymmetric dimethylarginine (ADMA) and the positive one between superoxide dismutase (SOD) and α-LA supplementation. Conclusions This metabolomic approach supports that the beneficial effects of α-LA administration on body weight reduction may be partly explained by the antioxidant properties of this organosulfur carboxylic acid mediated by isomers of trihydroxy-dioxohexanoate, or dihydroxy–oxohexanedionate. Trial registration Clinicaltrials.gov NCT01138774. Electronic supplementary material The online version of this article (10.1186/s12944-018-0750-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Ana E Huerta
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | | | - Omar Ramos-López
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | - María J Moreno-Aliaga
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain. .,Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain. .,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain. .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain. .,Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain.
| |
Collapse
|
31
|
Isocaloric Dietary Changes and Non-Alcoholic Fatty Liver Disease in High Cardiometabolic Risk Individuals. Nutrients 2017; 9:nu9101065. [PMID: 28954437 PMCID: PMC5691682 DOI: 10.3390/nu9101065] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) incorporates an extensive spectrum of histologic liver abnormalities, varying from simple triglyceride accumulation in hepatocytes non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), and it is the most frequent chronic liver disease in the industrialized world. Beyond liver related complications such as cirrhosis and hepatocellular carcinoma, NAFLD is also an emerging risk factor for type 2 diabetes and cardiovascular disease. Currently, lifestyle intervention including strategies to reduce body weight and to increase regular physical activity represents the mainstay of NAFLD management. Total caloric intake plays a very important role in both the development and the treatment of NAFLD; however, apart from the caloric restriction alone, modifying the quality of the diet and modulating either the macro- or micronutrient composition can also markedly affect the clinical evolution of NAFLD, offering a more realistic and feasible treatment alternative. The aim of the present review is to summarize currently available evidence from randomized controlled trials on the effects of different nutrients including carbohydrates, lipids, protein and other dietary components, in isocaloric conditions, on NAFLD in people at high cardiometabolic risk. We also describe the plausible mechanisms by which different dietary components could modulate liver fat content.
Collapse
|
32
|
Zeng YH, Zhou LY, Chen QZ, Li Y, Shao Y, Ren WY, Liao YP, Wang H, Zhu JH, Huang M, He F, Wang J, Wu K, He BC. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol Rep 2017; 38:456-464. [DOI: 10.3892/or.2017.5662] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
|
33
|
Arpag H, Gül M, Aydemir Y, Atilla N, Yiğitcan B, Cakir T, Polat C, Þehirli Ö, Sayan M. Protective Effects of Alpha-Lipoic Acid on Methotrexate-Induced Oxidative Lung Injury in Rats. J INVEST SURG 2017; 31:107-113. [PMID: 28340320 DOI: 10.1080/08941939.2017.1296513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Oxidative stress is one of the major causes of methotrexate induced lung injury (MILI). Alpha-lipoic acid (ALA), which occurs naturally in human food, has antioxidative and anti-inflammatory activities. The aim of this study was to research the potential protective role of ALA on MILI in rats. METHODS Twenty one rats were randomly subdivided into three groups: control (group I), methotrexate (MTX) treated (group II), and MTX+ALA treated (group III). Lung injury was performed with a single dose of MTX (20 mg/kg) to groups 2 and 3. On the sixth day, animals in all groups were sacrificed by decapitation and lung tissue and blood samples were removed for histological examination and also measurement the levels of interleukin-1-beta (IL-1β), malondialdehyde (MDA), glutathione (GSH), tumour necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and sodium potassium-adenosine triphosphatase (Na+/K+ATPase). RESULTS In MTX group tissue GSH, Na+/K+ATPase activities were lower, tissue MDA, MPO and plasma IL-1?, TNF-? were significantly higher than the other groups. Histopathological examination showed that lung injury was less severe in group 2 according to group 3. CONCLUSIONS Oxidative damage of MTX in rat lung is partially reduced when combined with ALA.
Collapse
Affiliation(s)
- Huseyin Arpag
- a Department of Chest Disease , Kahramanmaras Sutcu Imam University Medical Faculty , Kahramanmaras , Turkey
| | - Mehmet Gül
- b Department of Histology , Malatya Inonu University Medical Faculty , Malatya , Turkey
| | - Yusuf Aydemir
- c Department of Chest Diseases , Sakarya University Medical Faculty , Sakarya , Turkey
| | - Nurhan Atilla
- a Department of Chest Disease , Kahramanmaras Sutcu Imam University Medical Faculty , Kahramanmaras , Turkey
| | - Birgül Yiğitcan
- b Department of Histology , Malatya Inonu University Medical Faculty , Malatya , Turkey
| | - Tugrul Cakir
- d Department of General Surgery , Antalya Education and Research Hospital , Antalya , Turkey
| | - Cemal Polat
- e Department of Biochemistry , Public Health Laboratuary , Kütahya , Turkey
| | - Özer Þehirli
- f Department of Pharmacology , Marmara University Medicine Faculty, Istanbul, Turkey and Near East University Faculty of Denstry , Nicosia , North Cyprus
| | - Muhammet Sayan
- g Department of Thoracic Surgery , Kahramanmaras Sutcu Imam University , Kahramanmaras , Turkey
| |
Collapse
|
34
|
Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochim Biophys Acta Gen Subj 2016; 1861:431-440. [PMID: 27760368 DOI: 10.1016/j.bbagen.2016.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND The polyphenol resveratrol (RSV) is found in the skin of red grapes and has been reported to exhibit anticancer properties. The antitumor effects of RSV in the gastrointestinal tract have gained considerable interest due to the high exposure of this tissue to this dietary compound. One of the hallmarks of cancer cells is their particular metabolism mainly relying on glycolysis for ATP production rather than mitochondrial oxidative phosphorylation. Although RSV has been described to act as a calorie-restriction mimetic, modulating energy metabolism in normal tissues, little efforts have been done to study the effects of this polyphenol in the metabolism of cancer cells. Taking this into account, the aim of this study was to explore metabolic effects of this polyphenol in colon cancer. METHODS Oxygen consumption, ATP levels, Western blotting and other molecular biology techniques were carried out to characterize the metabolic signature of RSV in SW620 colon cancer cells. RESULTS Paradoxically, the cytotoxic effects of RSV were associated with an increase in oxygen consumption supported by mitochondrial biogenesis and increased fatty acid oxidation. This partial reversion of the Warburg effect was followed by hyperpolarization of mitochondrial membrane and ROS production, leading to an increased apoptosis. CONCLUSIONS Our results propose that the anticancer mechanisms of RSV could reside in targeting cancer cell metabolism, promoting mitochondrial electron transport chain overload and, ultimately, increasing ROS production. GENERAL SIGNIFICANCE These results shed new light into the anticancer mechanism of RSV supporting the ability of this compound in potentiating the effects of chemotherapy.
Collapse
|
35
|
Association between Dietary Vitamin C Intake and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Middle-Aged and Older Adults. PLoS One 2016; 11:e0147985. [PMID: 26824361 PMCID: PMC4732670 DOI: 10.1371/journal.pone.0147985] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become one of the most prevalent chronic liver disease all over the world. The objective of this study was to evaluate the association between dietary vitamin C intake and NAFLD. METHOD Subjects were diagnosed with NAFLD by abdominal ultrasound examination and the consumption of alcohol was less than 40g/day for men or less than 20g/day for women. Vitamin C intake was classified into four categories according to the quartile distribution in the study population: ≤74.80 mg/day, 74.81-110.15 mg/day, 110.16-146.06 mg/day, and ≥146.07 mg/day. The energy and multi-variable adjusted odds ratio (OR), as well as their corresponding 95% confidence interval (CI), were used to determine the relationship between dietary vitamin C intake and NAFLD through logistic regression. RESULT The present cross-sectional study included 3471 subjects. A significant inverse association between dietary vitamin C intake and NAFLD was observed in the energy-adjusted and the multivariable model. The multivariable adjusted ORs (95%CI) for NAFLD were 0.69 (95%CI: 0.54-0.89), 0.93 (95%CI: 0.72-1.20), and 0.71 (95%CI: 0.53-0.95) in the second, third and fourth dietary vitamin C intake quartiles, respectively, compared with the lowest (first) quartile. The relative odds of NAFLD was decreased by 0.71 times in the fourth quartile of dietary vitamin C intake compared with the lowest quartile. After stratifying data by sex or the status of obesity, the inverse association remained valid in the male population or non-obesity population, but not in the female population or obesity population. CONCLUSION There might be a moderate inverse association between dietary vitamin C intake and NAFLD in middle-aged and older adults, especially for the male population and non-obesity population.
Collapse
|
36
|
de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta Gen Subj 2016; 1860:727-45. [PMID: 26802309 DOI: 10.1016/j.bbagen.2016.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. SCOPE OF REVIEW This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. MAJOR CONCLUSIONS Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. GENERAL SIGNIFICANCE An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Zohreh Hajheydari
- Department of Dermatology, Boo Ali Sina (Avicenna) Hospital, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J. Multiplicity of effects and health benefits of resveratrol. Medicina (B Aires) 2016; 52:148-55. [DOI: 10.1016/j.medici.2016.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
|
38
|
Pshenichnyuk SA, Komolov AS. Dissociative Electron Attachment to Resveratrol as a Likely Pathway for Generation of the H2 Antioxidant Species Inside Mitochondria. J Phys Chem Lett 2015; 6:1104-1110. [PMID: 26262957 DOI: 10.1021/acs.jpclett.5b00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The electron-attaching properties of polyphenolic compound resveratrol were studied in vacuo by means of dissociative electron attachment (DEA) spectroscopy and in silico using density functional theory calculations. The most intense fragments generated by DEA to isolated resveratrol at thermal electron energy are semiquinone anions and neutral hydrogen molecules. On the basis of the present experimental and theoretical data, a new molecular mechanism for the antioxidant activity of resveratrol is presented. It is suggested that the activity of resveratrol in living cells is driven by dissociative attachment of electrons "leaked" from the respiratory chain to this polyphenolic molecule, followed by the formation of the H2 antioxidant species inside mitochondria and participation in mitochondrial energy biogenesis.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- †Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, Prospeκt Oktyabrya 151, 450075 Ufa, Russia
- ‡Physics Faculty, St. Petersburg State University, Uljanovskaja 1, 198504 St. Petersburg, Russia
| | - Alexei S Komolov
- ‡Physics Faculty, St. Petersburg State University, Uljanovskaja 1, 198504 St. Petersburg, Russia
| |
Collapse
|
39
|
Fang L, Gao H, Zhang W, Zhang W, Wang Y. Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. Int J Clin Exp Med 2015; 8:3219-3226. [PMID: 26064211 PMCID: PMC4443045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
The role of resveratrol in cerebral ischemia/reperfusion injury is not well understood. The aim of this study was to investigate whether resveratrol modulates inflammation and oxidative stress in cerebral ischemia/reperfusion injury in mice. Rats were subjected to 2 h of transient middle cerebral artery occlusion (MCAO), followed by 24 h of reperfusion. Rats were randomly exposed to sham operation group, MCAO group and MCAO+ resveratrol group. The results demonstrated that compared to I/R, resveratrol reduced cerebral infarction area, brain water content, neuronal apoptosis, myeloperoxidase (MPO) levels, and cerebral TNF-α production. Our results suggested that resveratrol has protective effects against cerebral I/R injury in rats, which may be attributed to attenuating inflammation and apoptosis induced by cerebral ischemia reperfusion.
Collapse
Affiliation(s)
- Liqun Fang
- Department of Neurology, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China
| | - Hongmei Gao
- Department of Neurology, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China
| | - Weina Zhang
- Department of Neurology, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China
| | - Wenjie Zhang
- Department of Neurology, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China
| | - Yanan Wang
- Department of Neurology, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Ipsen DH, Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency promote fatty liver disease development? Nutrients 2014; 6:5473-99. [PMID: 25533004 PMCID: PMC4276979 DOI: 10.3390/nu6125473] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/05/2014] [Accepted: 11/15/2014] [Indexed: 02/06/2023] Open
Abstract
Obesity and the subsequent reprogramming of the white adipose tissue are linked to human disease-complexes including metabolic syndrome and concurrent non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). The dietary imposed dyslipidemia promotes redox imbalance by the generation of excess levels of reactive oxygen species and induces adipocyte dysfunction and reprogramming, leading to a low grade systemic inflammation and ectopic lipid deposition, e.g., in the liver, hereby promoting a vicious circle in which dietary factors initiate a metabolic change that further exacerbates the negative consequences of an adverse life-style. Large epidemiological studies and findings from controlled in vivo animal studies have provided evidence supporting an association between poor vitamin C (VitC) status and propagation of life-style associated diseases. In addition, overweight per se has been shown to result in reduced plasma VitC, and the distribution of body fat in obesity has been shown to have an inverse relationship with VitC plasma levels. Recently, a number of epidemiological studies have indicated a VitC intake below the recommended daily allowance (RDA) in NAFLD-patients, suggesting an association between dietary habits, disease and VitC deficiency. In the general population, VitC deficiency (defined as a plasma concentration below 23 μM) affects around 10% of adults, however, this prevalence is increased by an adverse life-style, deficiency potentially playing a broader role in disease progression in specific subgroups. This review discusses the currently available data from human surveys and experimental models in search of a putative role of VitC deficiency in the development of NAFLD and NASH.
Collapse
Affiliation(s)
- David Højland Ipsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870 Copenhagen, Denmark.
| | - Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870 Copenhagen, Denmark.
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C, 1870 Copenhagen, Denmark.
| |
Collapse
|
41
|
Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 2014; 4:831-78. [PMID: 25257998 PMCID: PMC4192695 DOI: 10.3390/metabo4030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|
42
|
Kütter MT, Romano LA, Ventura-Lima J, Tesser MB, Monserrat JM. Antioxidant and toxicological effects elicited by alpha-lipoic acid in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:70-6. [PMID: 24704542 DOI: 10.1016/j.cbpc.2014.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/27/2022]
Abstract
Lipoic acid (LA) is a disulfide-containing compound derived from octanoic acid that is synthesized in mitochondria. This molecule acts as a co-factor for mitochondrial enzymes that catalyze oxidative decarboxylation reactions. Several antioxidant properties of LA enable it to be considered as an "ideal antioxidant", having diverse benefits that allow it to deal with environmental or biological stress. Some of the effects induced by LA in aquatic organisms render it suitable for use in aquaculture. However, it is necessary to determine the appropriate dose(s) to be used with different species and even organs to maximize the beneficial antioxidant and detoxifying effects and to minimize the pro-oxidant toxic effects. This review analyzes and compiles existing data from aquatic organisms in which both benefits and drawbacks of LA have been described.
Collapse
Affiliation(s)
- M T Kütter
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil
| | - L A Romano
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Oceanografia (IO), Laboratório de Patologia e Imunologia de Organismos Aquáticos, FURG, Brasil
| | - J Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Ciências Biológicas (ICB), FURG, Brasil
| | - M B Tesser
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Oceanografia (IO), Laboratório de Nutrição de Organismos Aquáticos, FURG, Brazil
| | - J M Monserrat
- Programa de Pós-Graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS, C.P. 474, CEP 96.200-970, Brasil; Instituto de Ciências Biológicas (ICB), FURG, Brasil.
| |
Collapse
|
43
|
Saleh MC, Connell BJ, Rajagopal D, Khan BV, Abd-El-Aziz AS, Kucukkaya I, Saleh TM. Co-administration of resveratrol and lipoic acid, or their synthetic combination, enhances neuroprotection in a rat model of ischemia/reperfusion. PLoS One 2014; 9:e87865. [PMID: 24498217 PMCID: PMC3909267 DOI: 10.1371/journal.pone.0087865] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
The present study demonstrates the benefits of combinatorial antioxidant therapy in the treatment of ischemic stroke. Male Sprague-Dawley rats were anaesthetised and the middle cerebral artery (MCA) was occluded for 30 minutes followed by 5.5 hours of reperfusion. Pretreatment with resveratrol 30 minutes prior to MCA occlusion resulted in a significant, dose-dependent decrease in infarct volume (p<0.05) compared to vehicle-treated animals. Neuroprotection was also observed when resveratrol (2 × 10(-3) mg/kg; iv) was administered within 60 minutes following the return of blood flow (reperfusion). Pretreatment with non-neuroprotective doses of resveratrol (2 × 10(-6) mg/kg) and lipoic acid (LA; 0.005 mg/kg) in combination produced significant neuroprotection as well. This neuroprotection was also observed when resveratrol and LA were administered 15 minutes following the onset of MCA occlusion. Subsequently, we synthetically combined resveratrol and LA in both a 1 ∶ 3 (UPEI-200) and 1 ∶ 1 (UPEI-201) ratio, and screened these new chemical entities in both permanent and transient ischemia models. UPEI-200 was ineffective, while UPEI-201 demonstrated significant, dose-dependent neuroprotection. These results demonstrate that combining subthreshold doses of resveratrol and LA prior to ischemia-reperfusion can provide significant neuroprotection likely resulting from concurrent effects on multiple pathways. The additional protection observed in the novel compound UPEI 201 may present opportunities for addressing ischemia-induced damage in patients presenting with transient ischemic episodes.
Collapse
Affiliation(s)
- Monique C. Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | - Barry J. Connell
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | | | - Bobby V. Khan
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
- Carmel BioSciences Inc., Atlanta, Georgia, United States of America
| | - Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | - Tarek M. Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
- * E-mail:
| |
Collapse
|
44
|
Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid Redox Signal 2013; 19:2084-104. [PMID: 23642093 DOI: 10.1089/ars.2013.5382] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Despite continuous advances in the prevention of cardiovascular disease (CVD), critical issues associated with an unhealthy lifestyle remain an increasing cause of morbidity and mortality in industrialized countries. RECENT ADVANCES A growing body of literature supports a specific role for vitamin C in a number of reactions that are associated with vascular function and control including, for example, nitric oxide bioavailability, lipid metabolism, and vascular integrity. CRITICAL ISSUES A large body of epidemiological evidence supports a relationship between poor vitamin C status and increased risk of developing CVD, and the prevalence of deficiency continues to be around 10%-20% of the general Western population although this problem could easily and cheaply be solved by supplementation. However, large intervention studies using vitamin C have not found a beneficial effect of supplementation. This review outlines the proposed mechanism by which vitamin C deficiency worsens CVD progression. In addition, it discusses problems with the currently available literature, including the discrepancies between the large intervention studies and the experimental and epidemiological literature. FUTURE DIRECTIONS Increased insights into vitamin C deficiency-mediated CVD progression will enable the design of future randomized controlled trials that are better suited to test the efficacy of vitamin C in disease prevention as well as the identification of high-risk individuals which could possibly benefit from supplementation.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Frederiksberg, Denmark
| | | |
Collapse
|
45
|
Soiferman D, Ayalon O, Weissman S, Saada A. The effect of small molecules on nuclear-encoded translation diseases. Biochimie 2013; 100:184-91. [PMID: 24012549 DOI: 10.1016/j.biochi.2013.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/25/2013] [Indexed: 01/18/2023]
Abstract
The five complexes of the mitochondrial respiratory chain (MRC) supply most organs and tissues with ATP produced by oxidative phosphorylation (OXPHOS). Inherited mitochondrial diseases affecting OXPHOS dysfunction are heterogeneous; symptoms may present at any age and may affect a wide range of tissues, with many diseases giving rise to devastating multisystemic disorders resulting in neonatal death. Combined respiratory chain deficiency with normal complex II accounts for a third of all respiratory deficiencies; mutations in nuclear-encoded components of the mitochondrial translation machinery account for many cases. Although mutations have been identified in over 20 such genes and our understanding of the mitochondrial translation apparatus is increasing, to date no definitive cure for these disorders exists. We evaluated the effect of seven small molecules with reported therapeutic potential in fibroblasts of four patients with combined respiratory complex disorders, each harboring a known mutation in a different nuclear-encoded component of the mitochondrial translation machinery: EFTs, GFM1, MRPS22 and TRMU. Six mitochondrial parameters were screened as follows; growth in glucose-free medium, reactive oxygen species (ROS) production, ATP content, mitochondrial content, mitochondrial membrane potential and complex IV activity. It was clearly evident that each patient displayed an individual response and there was no universally beneficial compound. AICAR increased complex IV activity in GFM1 cells and increased ATP content in MRPS22 fibroblasts but was detrimental to TRMU, who benefitted from bezafibrate. Two antioxidants, ascorbate and N-acetylcysteine (NAC), significantly improved cell growth, ATP content and mitochondrial membrane potential and decreased levels of intracellular reactive oxygen species (ROS) in EFTs fibroblasts. This study presents an expanded repertoire of assays that can be performed using the microtiter screening system with a small number of patients' fibroblasts and highlights some therapeutic options while providing additional evidence for the importance of personalized medicine in mitochondrial disorders.
Collapse
Affiliation(s)
- Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oshrat Ayalon
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Weissman
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
46
|
Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: Investigation of the role of gender. Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2012.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Valdecantos MP, Pérez-Matute P, González-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martínez JA. Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity (Silver Spring) 2012; 20:1974-83. [PMID: 22327056 DOI: 10.1038/oby.2012.32] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatosis is an important hepatic complication of obesity linked to mitochondrial dysfunction and oxidative stress. Lipoic acid (LA) has been reported to have beneficial effects on mitochondrial function and to attenuate oxidative stress. The sirtuin (SIRT) family has been demonstrated to play an important role in the regulation of mitochondrial function and in the activation of antioxidant defenses. In this study, we analyzed the potential protective effect of LA supplementation, via the modulation of mitochondrial defenses through the SIRT pathway, against oxidative stress associated with high-fat feeding. Wistar rats were fed a standard diet (control group (C), n = 10), a high-fat diet (obese group (OB), n = 10) and a high-fat diet supplemented with LA (OLIP, n = 10). A group pair-fed to the latter group (pair-fed OLIP group (PFO), n = 6) was also included. LA prevented hepatic triglyceride (TG) accumulation (-68.2%) and liver oxidative damage (P < 0.01) through the inhibition of hydroperoxide (H(2)O(2)) production (P < 0.001) and the stimulation of mitochondrial antioxidant defenses. LA treatment upregulated manganese superoxide dismutase (SOD2) (60.6%) and glutathione peroxidase (GPx) (100.2%) activities, and increased the reduced glutathione (GSH): oxidized glutathione (GSSG) ratio and UCP2 mRNA levels (P < 0.001-P < 0.01). Moreover, this molecule reduced oxidative damage in mitochondrial DNA (mtDNA) and increased mitochondrial copy number (P < 0.001- P < 0.01). LA treatment decreased the acetylation levels of Forkhead transcription factor 3a (Foxo3a) and PGC1β (P < 0.001- P < 0.01) through the stimulation of SIRT3 and SIRT1 (P < 0.001). In summary, our results demonstrate that the beneficial effects of LA supplementation on hepatic steatosis could be mediated by its ability to restore the oxidative balance by increasing antioxidant defenses through the deacetylation of Foxo3a and PGC1β by SIRT1 and SIRT3.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Quintero P, González-Muniesa P, García-Díaz DF, Martínez JA. Effects of hyperoxia exposure on metabolic markers and gene expression in 3T3-L1 adipocytes. J Physiol Biochem 2012; 68:663-9. [PMID: 22535284 DOI: 10.1007/s13105-012-0169-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 12/31/2022]
Abstract
Adipose tissue often becomes poorly oxygenated in obese subjects. This feature may provide cellular mechanisms involving chronic inflammation processes such as the release of pro-inflammatory cytokines and macrophage infiltration. In this context, the purpose of the present study was to determine whether a hyperoxia exposure on mature adipocytes may influence the expression of some adipokines and involve favorable changes in specific metabolic variables. Thus, 3T3-L1 adipocytes (14 days differentiated) were treated with 95 % oxygen for 24 h. Cell viability, intra and extracellular reactive oxygen species (ROS) content, glucose uptake, as well as lactate and glycerol concentrations were measured in the culture media. Also, mRNA levels of hypoxia-inducible factor (HIF)-1α, leptin, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, peroxisome proliferator-activated receptor (PPAR)-γ, adiponectin, and angiopoietin-related protein (ANGPTL)4 were analyzed. Hyperoxia treatment increased intra and extracellular ROS content, reduced glucose uptake and lactate release and increased glycerol release. Additionally, a higher oxygen tension led to an upregulation of the expression of IL-6, MCP-1, and PPAR-γ, while ANGPTL4 was downregulated in the hyperoxia group with respect to control. The present data shows that hyperoxia treatment seems to produce an inflammatory response due to the release of ROS and the upregulation of pro-inflammatory adipokines, such as IL-6 and MCP-1. On the other hand, hyperoxia may have an indirect effect on insulin sensitivity due to the upregulation of PPAR-γ signaling as well as a possible modulation of both glucose and lipid metabolic markers. To our knowledge, this is the first study analyzing the effect of hyperoxia in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- P Quintero
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
49
|
Lipoic acid administration prevents nonalcoholic steatosis linked to long-term high-fat feeding by modulating mitochondrial function. J Nutr Biochem 2012; 23:1676-84. [PMID: 22464149 DOI: 10.1016/j.jnutbio.2011.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/20/2011] [Accepted: 11/30/2011] [Indexed: 12/18/2022]
Abstract
Nonalcoholic steatosis is an important hepatic complication of obesity linked to mitochondrial dysfunction and insulin resistance. Furthermore, lipoic acid has been reported to have beneficial effects on mitochondrial function. In this study, we analyzed the potential protective effect of lipoic acid supplementation against the development of nonalcoholic steatosis associated with a long-term high-fat diet feeding and the potential mechanism of this effect. Wistar rats were fed on a standard diet (n=10), a high-fat diet (n=10) and a high-fat diet supplemented with lipoic acid (n=10). A group pair-fed to the latter group (n=6) was also included. Lipoic acid prevented hepatic triglyceride accumulation and liver damage in rats fed a high-fat diet (-68%±11.3% vs. obese group) through the modulation of genes involved in lipogenesis and mitochondrial β-oxidation and by improving insulin sensitivity. Moreover, this molecule showed an inhibitory action on electron transport chain complexes activities (P<.01-P<.001) and adenosine triphosphate synthesis (P<.05), and reduced significantly energy efficiency. By contrast, lipoic acid induced an increase in mitochondrial copy number and in Ucp2 gene expression (P<.001 vs. obese). In summary, this investigation demonstrated the ability of lipoic acid to prevent nonalcoholic steatosis induced by a high-fat intake. Finally, the novelty and importance of this study are the finding of how lipoic acid modulates some of the mitochondrial processes involved in energy homeostasis. The reduction in mitochondrial energy efficiency could also explain, at least in part, the beneficial effects of lipoic acid not only in fatty liver but also in preventing excessive body weight gain.
Collapse
|
50
|
Li Z, Pang L, Fang F, Zhang G, Zhang J, Xie M, Wang L. Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2. Brain Res 2012; 1450:116-24. [PMID: 22410291 DOI: 10.1016/j.brainres.2012.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 01/25/2023]
Abstract
A number of studies have demonstrated that resveratrol (Res), a natural polyphenol compound found in plants, shows potent neuroprotective, anti-inflammatory and antioxidant effects; however, its ability to prevent ischemia-induced brain damage remains unclear. Here we tested whether Res played a neuroprotective role in a rat brain ischemia model induced by middle cerebral artery occlusion (MCAO). Adult male rats were randomly assigned into four experimental groups: sham operation (sham), ischemia treatment (MCAO), Res-treated MCAO (Res+MCAO) and Res alone group (Res+sham). The brain damage size and hippocampal apoptotic neurons in each rat were evaluated by triphenyltetrazolium chloride (TTC) staining and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining, respectively. Long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in the hippocampus was assessed with extracellular recording. The expression of apoptosis-related proteins, i.e., Bcl-2 and Bax, in the hippocampus was detected by western blot. Our results revealed that Res treatment significantly reduced brain infarct volume of MCAO rats as compared to MCAO rats without Res treatment. A significant increase in TUNEL-positive neurons in the hippocampal CA1 region was visualized in the MCAO rats as compared to that of the sham group, but this increase was attenuated with Res treatment. Functionally, extracellular recordings revealed that MCAO operation impaired LTP in the hippocampal CA1 region and the basal synaptic transmission between the Schaffer collaterals, whereas Res treatment rescued the impaired LTP and facilitated synaptic transmission in the CA1 region of the MCAO rats. Res treatment increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the MCAO rats. The findings suggest that Res can attenuate the deleterious effects of focal cerebral ischemia/reperfusion-induced brain injury and function as a potential neuroprotective agent. The neuroprotective qualities of Res, based on our data, may be attributable to the up-regulation of Bcl-2 expression and down-regulation of Bax expression.
Collapse
Affiliation(s)
- Zhen Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|