1
|
Borba JB, Salazar-Alvarez LC, Ferreira L, Silva-Mendonça S, Silva MFBD, Sanches IH, Clementino LDC, Magalhães ML, Rimoldi A, Calit J, Santana S, Prudêncio M, Cravo PV, Bargieri DY, Cassiano GC, Costa FTM, Andrade CH. Innovative Multistage ML-QSAR Models for Malaria: From Data to Discovery. ACS Med Chem Lett 2024; 15:1386-1395. [PMID: 39140064 PMCID: PMC11318017 DOI: 10.1021/acsmedchemlett.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Malaria presents a significant challenge to global public health, with around 247 million cases estimated to occur annually worldwide. The growing resistance of Plasmodium parasites to existing therapies underscores the urgent need for new and innovative antimalarial drugs. This study leveraged artificial intelligence (AI) to tackle this complex challenge. We developed multistage Machine Learning Quantitative Structure-Activity Relationship (ML-QSAR) models to effectively analyze large datasets and predict the efficacy of chemical compounds against multiple life cycle stages of Plasmodium parasites. We then selected 16 compounds for experimental evaluation, six of which showed at least dual-stage inhibitory activity and one inhibited all life cycle stages tested. Moreover, explainable AI (XAI) analysis provided insights into critical molecular features influencing model predictions, thereby enhancing our understanding of compound interactions. This study not only empowers the development of advanced predictive AI models but also accelerates the identification and optimization of potential antiplasmodial compounds.
Collapse
Affiliation(s)
- Joyce
V. B. Borba
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, Goiás 74605-170, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, 74605-170, Goiás Brazil
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Luis Carlos Salazar-Alvarez
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
| | - Letícia
Tiburcio Ferreira
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
| | - Sabrina Silva-Mendonça
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, Goiás 74605-170, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, 74605-170, Goiás Brazil
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Meryck Felipe Brito da Silva
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, Goiás 74605-170, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, 74605-170, Goiás Brazil
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Igor H. Sanches
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, Goiás 74605-170, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, 74605-170, Goiás Brazil
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Leandro da Costa Clementino
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
| | - Marcela Lucas Magalhães
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
| | - Aline Rimoldi
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
| | - Juliana Calit
- Department
of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, São Paulo Brazil
| | - Sofia Santana
- Instituto
de Medicina Molecular Jão Lobo Antunes, Faculdade de Medicina
da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto
de Medicina Molecular Jão Lobo Antunes, Faculdade de Medicina
da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Pedro V. Cravo
- Global
Health and Tropical Medicine, Associate Laboratory in Translation
and Innovation Towards Global Health, Instituto de Higiene e Medicina
Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Daniel Y. Bargieri
- Department
of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, São Paulo Brazil
| | - Gustavo C. Cassiano
- Global
Health and Tropical Medicine, Associate Laboratory in Translation
and Innovation Towards Global Health, Instituto de Higiene e Medicina
Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Fabio T. M. Costa
- Laboratory
of Tropical Diseases − Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and
Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil
- Global
Health and Tropical Medicine, Associate Laboratory in Translation
and Innovation Towards Global Health, Instituto de Higiene e Medicina
Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Carolina Horta Andrade
- Laboratory
for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, Goiás 74605-170, Brazil
- Center
for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, 74605-170, Goiás Brazil
- Center
for the Research and Advancement in Fragments and Molecular Targets
(CRAFT), School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
2
|
Gomes F, Ribeiro AC, Sanches GS, Borges HS, Takahashi LAU, Daniel-Ribeiro CT, Tedesco AC, Nascimento JWL, Carvalho LJM. A nanochitosan-D-galactose formulation increases the accumulation of primaquine in the liver. Antimicrob Agents Chemother 2024; 68:e0091523. [PMID: 38517190 PMCID: PMC11064505 DOI: 10.1128/aac.00915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/25/2024] [Indexed: 03/23/2024] Open
Abstract
Primaquine is the mainstream antimalarial drug to prevent Plasmodium vivax relapses. However, this drug can induce hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency. Nanostructure formulations of primaquine loaded with D-galactose were used as a strategy to target the drug to the liver and decrease the hemolytic risks. Nanoemulsion (NE-Pq) and nanochitosan (NQ-Pq) formulations of primaquine diphosphate containing D-galactose were prepared and characterized by their physicochemistry properties. Pharmacokinetic and biodistribution studies were conducted using Swiss Webster mice. A single dose of 10 mg/kg of each nanoformulation or free primaquine solution was administered by gavage to the animals, which were killed at 0.5, 1, 2, 4, 8, and 24 hours. Blood samples and tissues were collected, processed, and analyzed by high-performance liquid chromatography. The nanoformulation showed sizes around 200 nm (NE-Pq) and 400 nm (NQ-Pq) and physicochemical stability for over 30 days. Free primaquine solution achieved higher primaquine Cmax in the liver than NE-Pq or NQ-Pq at 0.5 hours. However, the half-life and mean residence time (MRT) of primaquine in the liver were three times higher with the NQ-Pq formulation than with free primaquine, and the volume distribution was four times higher. Conversely, primaquine's half-life, MRT, and volume distribution in the plasma were lower for NQ-Pq than for free primaquine. NE-Pq, on the other hand, accumulated more in the lungs but not in the liver. Galactose-coated primaquine nanochitosan formulation showed increased drug targeting to the liver compared to free primaquine and may represent a promising strategy for a more efficient and safer radical cure for vivax malaria.
Collapse
Affiliation(s)
- F. Gomes
- Laboratory of Malaria Research, Oswaldo Cruz Institute (IOC/Fiocruz), Reference Center for Malaria Research, Diagnosis and Training, Rio de Janeiro, Brazil
| | - A. C. Ribeiro
- Laboratory of Malaria Research, Oswaldo Cruz Institute (IOC/Fiocruz), Reference Center for Malaria Research, Diagnosis and Training, Rio de Janeiro, Brazil
- Department of Pharmacology (LaFaCE) - ICB, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - G. S. Sanches
- Laboratory of Malaria Research, Oswaldo Cruz Institute (IOC/Fiocruz), Reference Center for Malaria Research, Diagnosis and Training, Rio de Janeiro, Brazil
| | - H. S. Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L. A. U. Takahashi
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - C. T. Daniel-Ribeiro
- Laboratory of Malaria Research, Oswaldo Cruz Institute (IOC/Fiocruz), Reference Center for Malaria Research, Diagnosis and Training, Rio de Janeiro, Brazil
| | - A. C. Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J. W. L. Nascimento
- Department of Pharmacology (LaFaCE) - ICB, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - L. J. M. Carvalho
- Laboratory of Malaria Research, Oswaldo Cruz Institute (IOC/Fiocruz), Reference Center for Malaria Research, Diagnosis and Training, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Andrade AO, Santos NAC, Bastos AS, Pontual JDC, Araújo CS, Lima AS, Martinez LN, Ferreira AS, Aguiar ACC, Teles CBG, Guido RVC, Santana RA, Lopes SCP, Medeiros JF, Rizopoulos Z, Vinetz JM, Campo B, Lacerda MVG, Araújo MS. Optimization of Plasmodium vivax infection of colonized Amazonian Anopheles darlingi. Sci Rep 2023; 13:18207. [PMID: 37875508 PMCID: PMC10598059 DOI: 10.1038/s41598-023-44556-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Obtaining Plasmodium vivax sporozoites is essential for in vitro culture of liver stage parasites, not only to understand fundamental aspects of parasite biology, but also for drug and vaccine development. A major impediment to establish high-throughput in vitro P. vivax liver stage assays for drug development is obtaining sufficient numbers of sporozoites. To do so, female anopheline mosquitoes have to be fed on blood from P. vivax-infected patients through an artificial membrane-feeding system, which in turns requires a well-established Anopheles colony. In this study we established conditions to provide a robust supply of P. vivax sporozoites. Adding a combination of serum replacement and antibiotics to the membrane-feeding protocol was found to best improve sporozoite production. A simple centrifugation method appears to be a possible tool for rapidly obtaining purified sporozoites with a minimal loss of yield. However, this method needs to be better defined since sporozoite viability and hepatocyte infection were not evaluated.
Collapse
Affiliation(s)
- Alice O Andrade
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Saúde Publica, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Najara Akira C Santos
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Alessandra S Bastos
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - José Daniel C Pontual
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Cristiane S Araújo
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais - PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Analice S Lima
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Faculdades Integradas Aparício Carvalho (FIMCA), Porto Velho, Rondônia, Brazil
| | - Leandro N Martinez
- Programa de Pós-Graduação em Saúde Publica, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
- Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz (PBML), Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Amália S Ferreira
- Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz (PBML), Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Anna Caroline C Aguiar
- Departamento de Biociência, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Carolina B G Teles
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
- Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz (PBML), Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | - Rafael V C Guido
- São Carlos Institute of Physics, University of Sao Paulo, São Carlos, São Paulo, Brazil
| | - Rosa A Santana
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Stefanie C P Lopes
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Jansen F Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Alexander von Humboldt Institute of Tropical Medicine and Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Marcus Vinicius G Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Maisa S Araújo
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM)/Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais - PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.
| |
Collapse
|
4
|
Moore BR, Salman S, Tobe R, Benjamin J, Yadi G, Kasian B, Laman M, Robinson LJ, Page-Sharp M, Betuela I, Batty KT, Manning L, Mueller I, Davis TME. Short-course, high-dose primaquine regimens for the treatment of liver-stage vivax malaria in children. Int J Infect Dis 2023; 134:114-122. [PMID: 37269941 DOI: 10.1016/j.ijid.2023.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVES To assess the pharmacokinetics, safety, and tolerability of two high-dose, short-course primaquine (PQ) regimens compared with standard care in children with Plasmodium vivax infections. METHODS We performed an open-label pediatric dose-escalation study in Madang, Papua New Guinea (Clinicaltrials.gov NCT02364583). Children aged 5-10 years with confirmed blood-stage vivax malaria and normal glucose-6-phosphate dehydrogenase activity were allocated to one of three PQ treatment regimens in a stepwise design (group A: 0.5 mg/kg once daily for 14 days, group B: 1 mg/kg once daily for 7 days, and group C: 1 mg/kg twice daily for 3.5-days). The study assessments were completed at each treatment time point and fortnightly for 2 months after PQ administration. RESULTS Between August 2013 and May 2018, 707 children were screened and 73 met the eligibility criteria (15, 40, and 16 allocated to groups A, B, and C, respectively). All children completed the study procedures. The three regimens were safe and generally well tolerated. The pharmacokinetic analysis indicated that an additional weight adjustment of the conventionally recommended milligram per kilogram PQ doses is not necessary to ensure the therapeutic plasma concentrations in pediatric patients. CONCLUSIONS A novel, ultra-short 3.5-day PQ regimen has potential benefits for improving the treatment outcomes in children with vivax malaria that warrants further investigation in a large-scale clinical trial.
Collapse
Affiliation(s)
- Brioni R Moore
- Curtin Medical School, Curtin University, Perth, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; Medical School, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia.
| | - Sam Salman
- Medical School, The University of Western Australia, Perth, Australia; Clinical Pharmacology and Toxicology Unit, PathWest, Perth, Australia
| | - Roselyn Tobe
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - John Benjamin
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Gumul Yadi
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Bernadine Kasian
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | | | - Inoni Betuela
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Kevin T Batty
- Curtin Medical School, Curtin University, Perth, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Laurens Manning
- Medical School, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | - Timothy M E Davis
- Medical School, The University of Western Australia, Perth, Australia
| |
Collapse
|
5
|
Dembele L, Diakite O, Sogore F, Kedir S, Tandina F, Maiga M, Abate A, Golassa L, Djimde AA. Ethiopian Plasmodium vivax hypnozoites formation dynamics and their susceptibility to reference antimalarial drugs. BMC Infect Dis 2023; 23:405. [PMID: 37312065 DOI: 10.1186/s12879-023-08381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
One of the key obstacles to malaria elimination is largely attributed to Plasmodium vivax's ability to form resilient hypnozoites in the host liver that cause relapsing infections. As a result, interruption of P. vivax transmission is difficult. P. vivax transmission occurs in Duffy-positive individuals and have been mainly thought to be absent in Africa. However, increasing studies using molecular tools detected P. vivax among Duffy-negative individuals in various African countries. Studies on the African P. vivax has been severely limited because most of malaria control program focus mainly on falciparum malaria. In addition, there is a scarcity of laboratory infrastructures to overcome the biological obstacles posed by P. vivax. Herein, we established field transmission of Ethiopian P. vivax for routine sporozoite supply followed by liver stage infection in Mali. Furthermore, we evaluated local P. vivax hypnozoites and schizonts susceptibilities to reference antimalarial drugs. The study enabled the assessment of local African P. vivax hypnozoite production dynamics. Our data displayed the ability of the African P. vivax to produce hypnozoite forms ex-vivo at different rates per field isolate. We report that while tafenoquine (1µM) potently inhibited both hypnozoites and schizont forms; atovaquone (0.25µM) and the phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691 (0.5µM) showed no activity against hypnozoites forms. Unlike hypnozoites forms, P. vivax schizont stages were fully susceptible to both atovaquone (0.25µM) and the (PI4K)-specific inhibitor KDU691 (0.5µM). Together, the data revealed the importance of the local platform for further biological investigation and implementation of drug discovery program on the African P. vivax clinical isolates.
Collapse
Affiliation(s)
- Laurent Dembele
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali.
| | - Ousmaila Diakite
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Soriya Kedir
- Adama Regional Laboratory, Oromia Region Health Bureau, Adama, Ethiopia
| | - Fatalmoudou Tandina
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abdoulaye A Djimde
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali.
| |
Collapse
|
6
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
7
|
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop Med Infect Dis 2023; 8:278. [PMID: 37235326 PMCID: PMC10223033 DOI: 10.3390/tropicalmed8050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enhanced therapeutic efficacy achieved in treating Plasmodium vivax malaria with an 8-aminoquinoline (8-AQ) drug such as primaquine (PQ) together with a partner drug such as chloroquine (CQ) is usually explained as CQ inhibiting asexual parasites in the bloodstream and PQ acting against liver stages. However, PQ's contribution, if any, to inactivating non-circulating, extra-hepatic asexual forms, which make up the bulk of the parasite biomass in chronic P. vivax infections, remains unclear. In this opinion article, I suggest that, considering its newly described mode of action, PQ might be doing something of which we are currently unaware.
Collapse
Affiliation(s)
- Miles B. Markus
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
8
|
Anwar MN, Hickson RI, Mehra S, Price DJ, McCaw JM, Flegg MB, Flegg JA. Optimal Interruption of P. vivax Malaria Transmission Using Mass Drug Administration. Bull Math Biol 2023; 85:43. [PMID: 37076740 PMCID: PMC10115738 DOI: 10.1007/s11538-023-01153-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
Plasmodium vivax is the most geographically widespread malaria-causing parasite resulting in significant associated global morbidity and mortality. One of the factors driving this widespread phenomenon is the ability of the parasites to remain dormant in the liver. Known as 'hypnozoites', they reside in the liver following an initial exposure, before activating later to cause further infections, referred to as 'relapses'. As around 79-96% of infections are attributed to relapses from activating hypnozoites, we expect it will be highly impactful to apply treatment to target the hypnozoite reservoir (i.e. the collection of dormant parasites) to eliminate P. vivax. Treatment with radical cure, for example tafenoquine or primaquine, to target the hypnozoite reservoir is a potential tool to control and/or eliminate P. vivax. We have developed a deterministic multiscale mathematical model as a system of integro-differential equations that captures the complex dynamics of P. vivax hypnozoites and the effect of hypnozoite relapse on disease transmission. Here, we use our multiscale model to study the anticipated effect of radical cure treatment administered via a mass drug administration (MDA) program. We implement multiple rounds of MDA with a fixed interval between rounds, starting from different steady-state disease prevalences. We then construct an optimisation model with three different objective functions motivated on a public health basis to obtain the optimal MDA interval. We also incorporate mosquito seasonality in our model to study its effect on the optimal treatment regime. We find that the effect of MDA interventions is temporary and depends on the pre-intervention disease prevalence (and choice of model parameters) as well as the number of MDA rounds under consideration. The optimal interval between MDA rounds also depends on the objective (combinations of expected intervention outcomes). We find radical cure alone may not be enough to lead to P. vivax elimination under our mathematical model (and choice of model parameters) since the prevalence of infection eventually returns to pre-MDA levels.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Roslyn I Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, and College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- CSIRO, Townsville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - David J Price
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mark B Flegg
- School of Mathematics, Monash University, Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
9
|
Prabhu SR, Ware AP, Umakanth S, Hande M, Mahabala C, Saadi AV, Satyamoorthy K. Erythrocyte miRNA-92a-3p interactions with PfEMP1 as determinants of clinical malaria. Funct Integr Genomics 2023; 23:93. [PMID: 36941394 PMCID: PMC10027640 DOI: 10.1007/s10142-023-01028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Based on the recently added high throughput analysis data on small noncoding RNAs in modulating disease pathophysiology of malaria, we performed an integrative computational analysis for exploring the role of human-host erythrocytic microRNAs (miRNAs) and their influence on parasite survival and host homeostasis. An in silico analysis was performed on transcriptomic datasets accessed from PlasmoDB and Gene Expression Omnibus (GEO) repositories analyzed using miRanda, miRTarBase, mirDIP, and miRDB to identify the candidate miRNAs that were further subjected to network analysis using MCODE and DAVID. This was followed by immune infiltration analysis and screening for RNA degradation mechanisms. Seven erythrocytic miRNAs, miR-451a, miR-92a-3p, miR-16-5p, miR-142-3p, miR-15b-5p, miR-19b-3p, and miR-223-3p showed favourable interactions with parasite genes expressed during blood stage infection. The miR-92a-3p that targeted the virulence gene PfEMP1 showed drastic reduction during infection. Performing pathway analysis for the human-host gene targets for the miRNA identified TOB1, TOB2, CNOT4, and XRN1 genes that are associated to RNA degradation processes, with the exoribonuclease XRN1, highly enriched in the malarial samples. On evaluating the role of exoribonucleases in miRNA degradation further, the pattern of Plasmodium falciparum_XRN1 showed increased levels during infection thus suggesting a defensive role for parasite survival. This study identifies miR-92a-3p, a member of C13orf25/ miR-17-92 cluster, as a novel miRNA inhibitor of the crucial parasite genes responsible for symptomatic malaria. Evidence for a plausible link to chromosome 13q31.3 loci controlling the epigenetic disease regulation is also suggested.
Collapse
Affiliation(s)
- Sowmya R Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. TMA Pai Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath Hande
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chakrapani Mahabala
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Marreiros IM, Marques S, Parreira A, Mastrodomenico V, Mounce BC, Harris CT, Kafsack BF, Billker O, Zuzarte-Luís V, Mota MM. A non-canonical sensing pathway mediates Plasmodium adaptation to amino acid deficiency. Commun Biol 2023; 6:205. [PMID: 36810637 PMCID: PMC9942083 DOI: 10.1038/s42003-023-04566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Eukaryotes have canonical pathways for responding to amino acid (AA) availability. Under AA-limiting conditions, the TOR complex is repressed, whereas the sensor kinase GCN2 is activated. While these pathways have been highly conserved throughout evolution, malaria parasites are a rare exception. Despite auxotrophic for most AA, Plasmodium does not have either a TOR complex nor the GCN2-downstream transcription factors. While Ile starvation has been shown to trigger eIF2α phosphorylation and a hibernation-like response, the overall mechanisms mediating detection and response to AA fluctuation in the absence of such pathways has remained elusive. Here we show that Plasmodium parasites rely on an efficient sensing pathway to respond to AA fluctuations. A phenotypic screen of kinase knockout mutant parasites identified nek4, eIK1 and eIK2-the last two clustering with the eukaryotic eIF2α kinases-as critical for Plasmodium to sense and respond to distinct AA-limiting conditions. Such AA-sensing pathway is temporally regulated at distinct life cycle stages, allowing parasites to actively fine-tune replication and development in response to AA availability. Collectively, our data disclose a set of heterogeneous responses to AA depletion in malaria parasites, mediated by a complex mechanism that is critical for modulating parasite growth and survival.
Collapse
Affiliation(s)
- Inês M. Marreiros
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sofia Marques
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Parreira
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vincent Mastrodomenico
- grid.164971.c0000 0001 1089 6558Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Bryan C. Mounce
- grid.164971.c0000 0001 1089 6558Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA ,grid.164971.c0000 0001 1089 6558Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Chantal T. Harris
- grid.5386.8000000041936877XDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY USA ,grid.5386.8000000041936877XImmunology & Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Björn F. Kafsack
- grid.5386.8000000041936877XDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY USA
| | - Oliver Billker
- grid.12650.300000 0001 1034 3451Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, Umeå, S-90187 Sweden
| | - Vanessa Zuzarte-Luís
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria M. Mota
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Gomes P, Guido RVC. Editorial: Antimalarial chemotherapy in the XXIst century. Front Pharmacol 2022; 13:1118683. [PMID: 36618927 PMCID: PMC9811607 DOI: 10.3389/fphar.2022.1118683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, Porto, Portugal,*Correspondence: Rafael V. C. Guido, ; Paula Gomes,
| | - Rafael V. C. Guido
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil,*Correspondence: Rafael V. C. Guido, ; Paula Gomes,
| |
Collapse
|
12
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
13
|
Kamiya T, Paton DG, Catteruccia F, Reece SE. Targeting malaria parasites inside mosquitoes: ecoevolutionary consequences. Trends Parasitol 2022; 38:1031-1040. [PMID: 36209032 PMCID: PMC9815470 DOI: 10.1016/j.pt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Proof-of-concept studies demonstrate that antimalarial drugs designed for human treatment can also be applied to mosquitoes to interrupt malaria transmission. Deploying a new control tool is ideally undertaken within a stewardship programme that maximises a drug's lifespan by minimising the risk of resistance evolution and slowing its spread once emerged. We ask: what are the epidemiological and evolutionary consequences of targeting parasites within mosquitoes? Our synthesis argues that targeting parasites inside mosquitoes (i) can be modelled by readily expanding existing epidemiological frameworks; (ii) provides a functionally novel control method that has potential to be more robust to resistance evolution than targeting parasites in humans; and (iii) could extend the lifespan and clinical benefit of antimalarials used exclusively to treat humans.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France; HRB Clinical Research Facility, National University of Ireland, Galway, Ireland; Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Douglas G Paton
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sarah E Reece
- Institute of Ecology and Evolution, and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Dong Y, Sonawane Y, Maher SP, Zeeman AM, Chaumeau V, Vantaux A, Cooper CA, Chiu FCK, Ryan E, McLaren J, Chen G, Wittlin S, Witkowski B, Nosten F, Sriraghavan K, Kyle DE, Kocken CHM, Charman SA, Vennerstrom JL. Metabolic, Pharmacokinetic, and Activity Profile of the Liver Stage Antimalarial (RC-12). ACS OMEGA 2022; 7:12401-12411. [PMID: 35449901 PMCID: PMC9016807 DOI: 10.1021/acsomega.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The catechol derivative RC-12 (WR 27653) (1) is one of the few non-8-aminoquinolines with good activity against hypnozoites in the gold-standard Plasmodium cynomolgi-rhesus monkey (Macaca mulatta) model, but in a small clinical trial, it had no efficacy against Plasmodium vivax hypnozoites. In an attempt to better understand the pharmacokinetic and pharmacodynamic profile of 1 and to identify potential active metabolites, we now describe the phase I metabolism, rat pharmacokinetics, and in vitro liver-stage activity of 1 and its metabolites. Compound 1 had a distinct metabolic profile in human vs monkey liver microsomes, and the data suggested that the O-desmethyl, combined O-desmethyl/N-desethyl, and N,N-didesethyl metabolites (or a combination thereof) could potentially account for the superior liver stage antimalarial efficacy of 1 in rhesus monkeys vs that seen in humans. Indeed, the rate of metabolism was considerably lower in human liver microsomes in comparison to rhesus monkey microsomes, as was the formation of the combined O-desmethyl/N-desethyl metabolite, which was the only metabolite tested that had any activity against liver-stage P. vivax; however, it was not consistently active against liver-stage P. cynomolgi. As 1 and all but one of its identified Phase I metabolites had no in vitro activity against P. vivax or P. cynomolgi liver-stage malaria parasites, we suggest that there may be additional unidentified active metabolites of 1 or that the exposure of 1 achieved in the reported unsuccessful clinical trial of this drug candidate was insufficient to kill the P. vivax hypnozoites.
Collapse
Affiliation(s)
- Yuxiang Dong
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yogesh Sonawane
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven P. Maher
- Center
for Tropical and Emerging Global Diseases, University of Georgia, 370 Coverdell
Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Anne-Marie Zeeman
- Department
of Parasitology, Biomedical Primate Research
Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Victor Chaumeau
- Shoklo
Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit,
Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Road, Mae Sot, Tak 63110, Thailand
- Centre for
Tropical Medicine and Global Health, Nuffield Department of Medicine
Research building, University of Oxford
Old Road Campus, Oxford OX3 7DQ, U.K.
| | - Amélie Vantaux
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, P.O. Box 983, Phnom
Penh 120 210, Cambodia
| | - Caitlin A. Cooper
- Center
for Tropical and Emerging Global Diseases, University of Georgia, 370 Coverdell
Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Francis C. K. Chiu
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Eileen Ryan
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jenna McLaren
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gong Chen
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sergio Wittlin
- Department
of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
| | - Benoît Witkowski
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, P.O. Box 983, Phnom
Penh 120 210, Cambodia
| | - François Nosten
- Shoklo
Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit,
Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Road, Mae Sot, Tak 63110, Thailand
- Centre for
Tropical Medicine and Global Health, Nuffield Department of Medicine
Research building, University of Oxford
Old Road Campus, Oxford OX3 7DQ, U.K.
| | - Kamaraj Sriraghavan
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Dennis E. Kyle
- Center
for Tropical and Emerging Global Diseases, University of Georgia, 370 Coverdell
Center, 500 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Clemens H. M. Kocken
- Department
of Parasitology, Biomedical Primate Research
Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands
| | - Susan A. Charman
- Centre
for Drug Candidate Optimisation, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jonathan L. Vennerstrom
- College
of Pharmacy, University of Nebraska Medical
Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
15
|
Abd-Rahman AN, Zaloumis S, McCarthy JS, Simpson JA, Commons RJ. Scoping Review of Antimalarial Drug Candidates in Phase I and II Drug Development. Antimicrob Agents Chemother 2022; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
Affiliation(s)
| | - Sophie Zaloumis
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - James S. McCarthy
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Julie A. Simpson
- Biostatistics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Internal Medical Services, Ballarat Health Services, Ballarat, Victoria, Australia
| |
Collapse
|
16
|
Tafenoquine exposure assessment, safety, and relapse prevention efficacy in children with Plasmodium vivax malaria: open-label, single-arm, non-comparative, multicentre, pharmacokinetic bridging, phase 2 trial. THE LANCET CHILD & ADOLESCENT HEALTH 2022; 6:86-95. [PMID: 34871570 DOI: 10.1016/s2352-4642(21)00328-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
|
17
|
Chen Y, Yang WH, Chen HF, Huang LM, Gao JY, Lin CW, Wang YC, Yang CS, Liu YL, Hou MH, Tsai CL, Chou YZ, Huang BY, Hung CF, Hung YL, Wang WJ, Su WC, Kumar V, Wu YC, Chao SW, Chang CS, Chen JS, Chiang YP, Cho DY, Jeng LB, Tsai CH, Hung MC. Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2. J Biol Chem 2022; 298:101658. [PMID: 35101449 PMCID: PMC8800562 DOI: 10.1016/j.jbc.2022.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139–144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.
Collapse
Affiliation(s)
- Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan; Drug Development Center, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Wen-Hao Yang
- Drug Development Center, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Yan Gao
- Drug Development Center, China Medical University, Taichung, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Chuan Wang
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chia-Shin Yang
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Hui Hou
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chia-Ling Tsai
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yi-Zhen Chou
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bao-Yue Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chian-Fang Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Lin Hung
- Program of Digital Health Innovation, China Medical University, Taichung, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Vathan Kumar
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yu-Chieh Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shih-Wei Chao
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chih-Shiang Chang
- Drug Development Center, China Medical University, Taichung, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - Yu-Ping Chiang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Drug Development Center, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
18
|
Maher SP, Vantaux A, Chaumeau V, Chua ACY, Cooper CA, Andolina C, Péneau J, Rouillier M, Rizopoulos Z, Phal S, Piv E, Vong C, Phen S, Chhin C, Tat B, Ouk S, Doeurk B, Kim S, Suriyakan S, Kittiphanakun P, Awuku NA, Conway AJ, Jiang RHY, Russell B, Bifani P, Campo B, Nosten F, Witkowski B, Kyle DE. Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Sci Rep 2021; 11:19905. [PMID: 34620901 PMCID: PMC8497498 DOI: 10.1038/s41598-021-99152-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.
Collapse
Affiliation(s)
- Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Adeline C Y Chua
- Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Julie Péneau
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Mélanie Rouillier
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Zaira Rizopoulos
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Sivchheng Phal
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Eakpor Piv
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Chantrea Vong
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sreyvouch Phen
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Chansophea Chhin
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Baura Tat
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sivkeng Ouk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Bros Doeurk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sangrawee Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
| | - Nana Akua Awuku
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Amy J Conway
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd Suite 402, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd Suite 402, Tampa, FL, 33612, USA
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Pablo Bifani
- Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Brice Campo
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
da Silva de Barros AO, Portilho FL, Dos Santos Matos AP, Ricci-Junior E, Alencar LMR, Dos Santos CC, Paumgartten FJR, Iram SH, Mazier D, Franetich JF, Alexis F, Santos-Oliveira R. Preliminary studies on drug delivery of polymeric primaquine microparticles using the liver high uptake effect based on size of particles to improve malaria treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112275. [PMID: 34474834 DOI: 10.1016/j.msec.2021.112275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Malaria is the most common parasitic disease around the world, especially in tropical and sub-tropical regions. This parasitic disease can have a rapid and severe evolution. It is transmitted by female anopheline mosquitoes. There is no reliable vaccine or diagnostic test against malaria; instead, Artesunate is used for the treatment of severe malaria and Artemisinin is used for uncomplicated falciparum malaria. However, these treatments are not efficient against severe malaria and improvements are needed. Primaquine (PQ) is one of the most widely used antimalarial drugs. It is the only available drug to date for combating the relapsing form of malaria. Nevertheless, it has severe side effects. Particle drug-delivery systems present the ability to enhance the therapeutic properties of drugs and decrease their side effects. Here, we report the development of Polymeric Primaquine Microparticles (PPM) labeled with 99mTc for therapeutic strategy against malaria infection. The amount of primaquine encapsulated into the PPM was 79.54%. PPM presented a mean size of 929.47 ± 37.72 nm, with a PDI of 0.228 ± 0.05 showing a homogeneous size for the microparticles and a monodispersive behavior. Furthermore, the biodistribution test showed that primaquine microparticles have a high liver accumulation. In vivo experiments using mice show that the PPM treatments resulted in partial efficacy and protection against the development of the parasite compared to free Primaquine. These results suggest that microparticles drug delivery systems of primaquine could be a possible approach for malaria prevention and treatment.
Collapse
Affiliation(s)
- Aline Oliveira da Silva de Barros
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nano-radiopharmacy, Rio de Janeiro 21941906, Brazil
| | - Filipe Leal Portilho
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nano-radiopharmacy, Rio de Janeiro 21941906, Brazil
| | | | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, School of Pharmacy, Rio de Janeiro 21941901, Brazil
| | | | - Clenilton Costa Dos Santos
- Federal University of Maranhão, Laboratory of Biophysics and Nanosystems, São Luis do Maranhão 65080805, Brazil
| | | | - Surtaj H Iram
- Department of Chemistry and Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris 75005, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris 75005, France
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nano-radiopharmacy, Rio de Janeiro 21941906, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro 23070200, Brazil.
| |
Collapse
|
20
|
Chiappino-Pepe A, Pandey V, Billker O. Genome reconstructions of metabolism of Plasmodium RBC and liver stages. Curr Opin Microbiol 2021; 63:259-266. [PMID: 34461385 DOI: 10.1016/j.mib.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/18/2022]
Abstract
Genome scale metabolic models (GEMs) offer a powerful means of integrating genome and biochemical information on an organism to make testable predictions of metabolic functions at different conditions and to systematically predict essential genes that may be targeted by drugs. This review describes how Plasmodium GEMs have become increasingly more accurate through the integration of omics and experimental genetic data. We also discuss how GEMs contribute to our increasing understanding of how Plasmodium metabolism is reprogrammed between life cycle stages.
Collapse
Affiliation(s)
- Anush Chiappino-Pepe
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vikash Pandey
- Department of Molecular Biology, Umeå University, Umeå, 90187, Sweden; The Laboratory for Molecular Infection Medicine Sweden, Umeå, 90187, Sweden
| | - Oliver Billker
- Department of Molecular Biology, Umeå University, Umeå, 90187, Sweden; The Laboratory for Molecular Infection Medicine Sweden, Umeå, 90187, Sweden
| |
Collapse
|
21
|
Dembele L, Aniweh Y, Diallo N, Sogore F, Sangare CPO, Haidara AS, Traore A, Diakité SAS, Diakite M, Campo B, Awandare GA, Djimde AA. Plasmodium malariae and Plasmodium falciparum comparative susceptibility to antimalarial drugs in Mali. J Antimicrob Chemother 2021; 76:2079-2087. [PMID: 34021751 DOI: 10.1093/jac/dkab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.
Collapse
Affiliation(s)
- Laurent Dembele
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Volta Road, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Nouhoum Diallo
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Cheick Papa Oumar Sangare
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Aboubecrin Sedhigh Haidara
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Aliou Traore
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Seidina A S Diakité
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Volta Road, Legon, Accra, Ghana
| | - Mahamadou Diakite
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Brice Campo
- Medicines for Malaria Venture (MMV) ICC Building Entrance G, 3rd floor Route de Pré-Bois 20 Post Box 1826 CH-1215, Geneva 15, Switzerland
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Volta Road, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Abdoulaye A Djimde
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| |
Collapse
|
22
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
23
|
Mohanty AK, de Souza C, Harjai D, Ghavanalkar P, Fernandes M, Almeida A, Walke J, Manoharan SK, Pereira L, Dash R, Mascarenhas A, Gomes E, Thita T, Chery L, Anvikar AR, Kumar A, Valecha N, Rathod PK, Patrapuvich R. Optimization of Plasmodium vivax sporozoite production from Anopheles stephensi in South West India. Malar J 2021; 20:221. [PMID: 34006297 PMCID: PMC8129701 DOI: 10.1186/s12936-021-03767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. METHODS Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. RESULTS Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. CONCLUSIONS Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.
Collapse
Affiliation(s)
- Ajeet Kumar Mohanty
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India.
| | - Charles de Souza
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India
| | - Deepika Harjai
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India
| | | | - Mezia Fernandes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anvily Almeida
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jayashri Walke
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Suresh Kumar Manoharan
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ligia Pereira
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Dash
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anjali Mascarenhas
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India.,Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Thanyapit Thita
- Drug Research Unit for Malaria (DRUM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anupkumar R Anvikar
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Ashwani Kumar
- Field Unit, National Institute of Malaria Research, Campal, Goa, 403001, India.,ICMR-Vector Control Research Centre, Medical Complex, VCRC Road, Indra Nagar, Priyadarshini Nagar, Puducherry, 605006, India
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | | | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria (DRUM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
24
|
Pessanha de Carvalho L, Kreidenweiss A, Held J. Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action. Molecules 2021; 26:2304. [PMID: 33921170 PMCID: PMC8071546 DOI: 10.3390/molecules26082304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.
Collapse
Affiliation(s)
- Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| |
Collapse
|
25
|
De SL, May S, Shah K, Slawinski M, Changrob S, Xu S, Barnes SJ, Chootong P, Ntumngia FB, Adams JH. Variable immunogenicity of a vivax malaria blood-stage vaccine candidate. Vaccine 2021; 39:2668-2675. [PMID: 33840564 DOI: 10.1016/j.vaccine.2021.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/25/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Relapsing malaria caused by Plasmodium vivax is a neglected tropical disease and an important cause of malaria worldwide. Vaccines to prevent clinical disease and mosquito transmission of vivax malaria are needed to overcome the distinct challenges of this important public health problem. In this vaccine immunogenicity study in mice, we examined key variables of responses to a P. vivax Duffy binding protein vaccine, a leading candidate to prevent the disease-causing blood-stages. Significant sex-dependent differences were observed in B cell (CD80+) and T cell (CD8+) central memory subsets, resulting in significant differences in functional immunogenicity and durability of anti-DBP protective efficacy. These significant sex-dependent differences in inbred mice were in the CD73+CD80+ memory B cell, H2KhiCD38hi/lo, and effector memory subsets. This study highlights sex and immune genes as critical variables that can impact host responses to P. vivax antigens and must be taken into consideration when designing clinical vaccine studies.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Samuel May
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Keshav Shah
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Michelle Slawinski
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Siriruk Changrob
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Shulin Xu
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States.
| |
Collapse
|
26
|
Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M, Rajasekaran P, Yang ASP, Erickson S, Ioannidis L, Arandjelovic P, Mackiewicz L, Allison C, Silke J, Pellegrini M, Boddey JA. Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Rep 2021; 30:4343-4354.e4. [PMID: 32234472 DOI: 10.1016/j.celrep.2020.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Collapse
Affiliation(s)
- Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ryan W J Steel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sara Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arandjelovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Pasini EM, Kocken CHM. Parasite-Host Interaction and Pathophysiology Studies of the Human Relapsing Malarias Plasmodium vivax and Plasmodium ovale Infections in Non-Human Primates. Front Cell Infect Microbiol 2021; 10:614122. [PMID: 33680982 PMCID: PMC7925837 DOI: 10.3389/fcimb.2020.614122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria remains a serious health concern across the globe. Historically neglected, non-Falciparum human malarias were put back on the agenda by a paradigm shift in the fight against malaria from malaria control to malaria eradication. Here, we review the modeling of the relapsing parasites Plasmodium vivax (P. vivax) and Plasmodium ovale (P. ovale) in non-human primates with a specific focus on the contribution of these models to our current understanding of the factors that govern parasite-host interactions in P. vivax and P. ovale parasite biology and pathophysiology.
Collapse
Affiliation(s)
- Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
28
|
Voorberg-van der Wel A, Kocken CHM, Zeeman AM. Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Front Cell Infect Microbiol 2021; 10:606033. [PMID: 33585277 PMCID: PMC7878928 DOI: 10.3389/fcimb.2020.606033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies of liver stage malaria parasite-host interactions have provided exciting new insights on the cross-talk between parasite and its mammalian (predominantly rodent) host. We review the latest state of the art and and zoom in on new technologies that will provide the tools necessary to investigate host-parasite interactions of relapsing parasites. Interactions between hypnozoites and hepatocytes are particularly interesting because the parasite can remain in a quiescent state for prolonged periods of time and triggers for reactivation have not been irrefutably identified. If we learn more about the cross-talk between hypnozoite and host we may be able to identify factors that encourage waking up these dormant parasite reservoirs and help to achieve the total eradication of malaria.
Collapse
Affiliation(s)
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
29
|
Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Sci Rep 2021; 11:2121. [PMID: 33483532 PMCID: PMC7822874 DOI: 10.1038/s41598-021-81486-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration–response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.
Collapse
|
30
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
31
|
Huang Z, Li R, Tang T, Ling D, Wang M, Xu D, Sun M, Zheng L, Zhu F, Min H, Boonhok R, Ding Y, Wen Y, Chen Y, Li X, Chen Y, Liu T, Han J, Miao J, Fang Q, Cao Y, Tang Y, Cui J, Xu W, Cui L, Zhu J, Wong G, Li J, Jiang L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov 2020; 6:93. [PMID: 33311461 PMCID: PMC7733455 DOI: 10.1038/s41421-020-00215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.
Collapse
Affiliation(s)
- Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ruoxi Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Tongke Tang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dazheng Ling
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Dandan Xu
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Maoxin Sun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lulu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Feng Zhu
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hui Min
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rachasak Boonhok
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Yuhao Wen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicong Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yuxi Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Jiping Han
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Miao
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui 233030, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jie Cui
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University, Chongqing 400038, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Gary Wong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
32
|
Abstract
BACKGROUND Plasmodium vivax (P vivax) is a focus of malaria elimination. It is important because P vivax and Plasmodium falciparum infection are co-endemic in some areas. There are asymptomatic carriers of P vivax, and the treatment for P vivax and Plasmodium ovale malaria differs from that used in other types of malaria. Rapid diagnostic tests (RDTs) will help distinguish P vivax from other malaria species to help treatment and elimination. There are RDTs available that detect P vivax parasitaemia through the detection of P vivax-specific lactate dehydrogenase (LDH) antigens. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting P vivax malaria infection in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria; and to identify which types and brands of commercial tests best detect P vivax malaria. SEARCH METHODS We undertook a comprehensive search of the following databases up to 30 July 2019: Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Science Citation Index Expanded (SCI-EXPANDED) and Conference Proceedings Citation Index-Science (CPCI-S), both in the Web of Science. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction (PCR)) in blood samples from patients attending ambulatory health facilities with symptoms suggestive of malaria in P vivax-endemic areas. DATA COLLECTION AND ANALYSIS For each included study, two review authors independently extracted data using a pre-piloted data extraction form. The methodological quality of the studies were assessed using a tailored Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. We grouped studies according to commercial brand of the RDT and performed meta-analysis when appropriate. The results given by the index tests were based on the antibody affinity (referred to as the strength of the bond between an antibody and an antigen) and avidity (referred to as the strength of the overall bond between a multivalent antibody and multiple antigens). All analyses were stratified by the type of reference standard. The bivariate model was used to estimate the pooled sensitivity and specificity with 95% confidence intervals (CIs), this model was simplified when studies were few. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included 10 studies that assessed the accuracy of six different RDT brands (CareStart Malaria Pf/Pv Combo test, Falcivax Device Rapid test, Immuno-Rapid Malaria Pf/Pv test, SD Bioline Malaria Ag Pf/Pv test, OnSite Pf/Pv test and Test Malaria Pf/Pv rapid test) for detecting P vivax malaria. One study directly compared the accuracy of two RDT brands. Of the 10 studies, six used microscopy, one used PCR, two used both microscopy and PCR separately and one used microscopy corrected by PCR as the reference standard. Four of the studies were conducted in Ethiopia, two in India, and one each in Bangladesh, Brazil, Colombia and Sudan. The studies often did not report how patients were selected. In the patient selection domain, we judged the risk of bias as unclear for nine studies. We judged all studies to be of unclear applicability concern. In the index test domain, we judged most studies to be at low risk of bias, but we judged nine studies to be of unclear applicability concern. There was poor reporting on lot testing, how the RDTs were stored, and background parasitaemia density (a key variable determining diagnostic accuracy of RDTs). Only half of the included studies were judged to be at low risk of bias in the reference standard domain, Studies often did not report whether the results of the reference standard could classify the target condition or whether investigators knew the results of the RDT when interpreting the results of the reference standard. All 10 studies were judged to be at low risk of bias in the flow and timing domain. Only two brands were evaluated by more than one study. Four studies evaluated the CareStart Malaria Pf/Pv Combo test against microscopy and two studies evaluated the Falcivax Device Rapid test against microscopy. The pooled sensitivity and specificity were 99% (95% CI 94% to 100%; 251 patients, moderate-certainty evidence) and 99% (95% CI 99% to 100%; 2147 patients, moderate-certainty evidence) for CareStart Malaria Pf/Pv Combo test. For a prevalence of 20%, about 206 people will have a positive CareStart Malaria Pf/Pv Combo test result and the remaining 794 people will have a negative result. Of the 206 people with positive results, eight will be incorrect (false positives), and of the 794 people with a negative result, two would be incorrect (false negative). For the Falcivax Device Rapid test, the pooled sensitivity was 77% (95% CI: 53% to 91%, 89 patients, low-certainty evidence) and the pooled specificity was 99% (95% CI: 98% to 100%, 621 patients, moderate-certainty evidence), respectively. For a prevalence of 20%, about 162 people will have a positive Falcivax Device Rapid test result and the remaining 838 people will have a negative result. Of the 162 people with positive results, eight will be incorrect (false positives), and of the 838 people with a negative result, 46 would be incorrect (false negative). AUTHORS' CONCLUSIONS The CareStart Malaria Pf/Pv Combo test was found to be highly sensitive and specific in comparison to microscopy for detecting P vivax in ambulatory healthcare in endemic settings, with moderate-certainty evidence. The number of studies included in this review was limited to 10 studies and we were able to estimate the accuracy of 2 out of 6 RDT brands included, the CareStart Malaria Pf/Pv Combo test and the Falcivax Device Rapid test. Thus, the differences in sensitivity and specificity between all the RDT brands could not be assessed. More high-quality studies in endemic field settings are needed to assess and compare the accuracy of RDTs designed to detect P vivax.
Collapse
Affiliation(s)
- Ridhi Agarwal
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Leslie Choi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samuel Johnson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Gupta DK, Diagana T. In vitro Cultivation and Visualization of Malaria Liver Stages in Primary Simian Hepatocytes. Bio Protoc 2020; 10:e3722. [PMID: 33659384 PMCID: PMC7842340 DOI: 10.21769/bioprotoc.3722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 08/25/2024] Open
Abstract
Human liver is the primary and obligatory site for malaria infection where sporozoites invade host hepatocytes. Malaria hepatic stages are asymptomatic and represent an attractive target for development of anti-malarial interventions and vaccines. However, owing to lack of robust and reproducible in vitro culture system, it is difficult to target and study this imperative malaria liver stage. Here, we describe a procedure that allow cultivation and visualization of malaria hepatic stages including dormant hypnozoites using primary simian hepatocytes. This method enables sensitive and quantitative assessment of different hepatic stages in vitro.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- Novartis Institute for Tropical Diseases, 5300 Chiron way, Emeryville, California 94608, United States
| | - Thierry Diagana
- Novartis Institute for Tropical Diseases, 5300 Chiron way, Emeryville, California 94608, United States
| |
Collapse
|
34
|
Subramani PA, Vartak-Sharma N, Sreekumar S, Mathur P, Nayer B, Dakhore S, Basavanna SK, Kalappa DM, Krishnamurthy RV, Mukhi B, Mishra P, Yoshida N, Ghosh SK, Shandil R, Narayanan S, Campo B, Hasegawa K, Anvikar AR, Valecha N, Sundaramurthy V. Plasmodium vivax liver stage assay platforms using Indian clinical isolates. Malar J 2020; 19:214. [PMID: 32571333 PMCID: PMC7310233 DOI: 10.1186/s12936-020-03284-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Vivax malaria is associated with significant morbidity and economic loss, and constitutes the bulk of malaria cases in large parts of Asia and South America as well as recent case reports in Africa. The widespread prevalence of vivax is a challenge to global malaria elimination programmes. Vivax malaria control is particularly challenged by existence of dormant liver stage forms that are difficult to treat and are responsible for multiple relapses, growing drug resistance to the asexual blood stages and host-genetic factors that preclude use of specific drugs like primaquine capable of targeting Plasmodium vivax liver stages. Despite an obligatory liver-stage in the Plasmodium life cycle, both the difficulty in obtaining P. vivax sporozoites and the limited availability of robust host cell models permissive to P. vivax infection are responsible for the limited knowledge of hypnozoite formation biology and relapse mechanisms, as well as the limited capability to do drug screening. Although India accounts for about half of vivax malaria cases world-wide, very little is known about the vivax liver stage forms in the context of Indian clinical isolates. Methods To address this, methods were established to obtain infective P. vivax sporozoites from an endemic region in India and multiple assay platforms set up to detect and characterize vivax liver stage forms. Different hepatoma cell lines, including the widely used HCO4 cells, primary human hepatocytes as well as hepatocytes obtained from iPSC’s generated from vivax patients and healthy donors were tested for infectivity with P. vivax sporozoites. Results Both large and small forms of vivax liver stage are detected in these assays, although the infectivity obtained in these platforms are low. Conclusions This study provides a proof of concept for detecting liver stage P. vivax and provide the first characterization of P. vivax liver stage forms from an endemic region in India.
Collapse
Affiliation(s)
- Pradeep A Subramani
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065, India.,ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, Bangalore, India
| | - Neha Vartak-Sharma
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advance Studies, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Seetha Sreekumar
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065, India
| | - Pallavi Mathur
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065, India
| | - Bhavana Nayer
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | - Sushrut Dakhore
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | - Sowmya K Basavanna
- ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, Bangalore, India
| | - Devaiah M Kalappa
- ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, Bangalore, India
| | | | - Benudhar Mukhi
- ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, Bangalore, India
| | - Priyasha Mishra
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | - Noriko Yoshida
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advance Studies, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susanta Kumar Ghosh
- ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, Bangalore, India. .,Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | | | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Kouichi Hasegawa
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India. .,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advance Studies, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Anupkumar R Anvikar
- ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, New Delhi, India
| | - Neena Valecha
- ICMR-National Institute of Malaria Research (NIMR), Indian Council of Medical Research, New Delhi, India
| | - Varadharajan Sundaramurthy
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
35
|
Kancharla P, Dodean RA, Li Y, Pou S, Pybus B, Melendez V, Read L, Bane CE, Vesely B, Kreishman-Deitrick M, Black C, Li Q, Sciotti RJ, Olmeda R, Luong TL, Gaona H, Potter B, Sousa J, Marcsisin S, Caridha D, Xie L, Vuong C, Zeng Q, Zhang J, Zhang P, Lin H, Butler K, Roncal N, Gaynor-Ohnstad L, Leed SE, Nolan C, Ceja FG, Rasmussen SA, Tumwebaze PK, Rosenthal PJ, Mu J, Bayles BR, Cooper RA, Reynolds KA, Smilkstein MJ, Riscoe MK, Kelly JX. Lead Optimization of Second-Generation Acridones as Broad-Spectrum Antimalarials. J Med Chem 2020; 63:6179-6202. [PMID: 32390431 PMCID: PMC7354843 DOI: 10.1021/acs.jmedchem.0c00539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites. Here, we describe an optimization process that has produced a second-generation acridone series with significant improvements in efficacy, metabolic stability, pharmacokinetics, and safety profiles. These findings highlight the therapeutic potential of dual-stage targeting acridones as novel drug candidates for further preclinical development.
Collapse
Affiliation(s)
- Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Rozalia A. Dodean
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Yuexin Li
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Sovitj Pou
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Brandon Pybus
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Victor Melendez
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Lisa Read
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Charles E. Bane
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Brian Vesely
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Mara Kreishman-Deitrick
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Chad Black
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Qigui Li
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Richard J. Sciotti
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Raul Olmeda
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Thu-Lan Luong
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Heather Gaona
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Brittney Potter
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Jason Sousa
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Sean Marcsisin
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Diana Caridha
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Lisa Xie
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Chau Vuong
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Qiang Zeng
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Jing Zhang
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Ping Zhang
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Hsiuling Lin
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kirk Butler
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Norma Roncal
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Lacy Gaynor-Ohnstad
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Susan E. Leed
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Christina Nolan
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Frida G. Ceja
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Stephanie A. Rasmussen
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | | | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, United States
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - Brett R. Bayles
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
- Global Public Health Program, Dominican University of California, San Rafael CA 94901
| | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, United States
| | - Kevin A. Reynolds
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Martin J. Smilkstein
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Michael K. Riscoe
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Jane X. Kelly
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| |
Collapse
|
36
|
Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, Caldelari R, Golomingi M, Nyonda M, Pandey V, Schwach F, Chevalley S, Ramesar J, Metcalf T, Herd C, Burda PC, Rayner JC, Soldati-Favre D, Janse CJ, Hatzimanikatis V, Billker O, Heussler VT. Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell 2020; 179:1112-1128.e26. [PMID: 31730853 PMCID: PMC6904910 DOI: 10.1016/j.cell.2019.10.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development. 1,342 barcoded P. berghei knockout (KO) mutants analyzed for stage-specific phenotypes Life-stage-specific metabolic models reveal reprogramming of cellular function High agreement between blood/liver stage metabolic models and genetic screening data Essential metabolic pathways for parasite development and mechanistic origin revealed
Collapse
Affiliation(s)
- Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Ellen Bushell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Mary Nyonda
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Vikash Pandey
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | - Frank Schwach
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Séverine Chevalley
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Tom Metcalf
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Colin Herd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland; Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2, 0XY, UK
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden 2333ZA, the Netherlands
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Oliver Billker
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden.
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
37
|
Voorberg-van der Wel A, Zeeman AM, Nieuwenhuis IG, van der Werff NM, Klooster EJ, Klop O, Vermaat LC, Kocken CHM. Dual-Luciferase-Based Fast and Sensitive Detection of Malaria Hypnozoites for the Discovery of Antirelapse Compounds. Anal Chem 2020; 92:6667-6675. [PMID: 32267675 PMCID: PMC7203758 DOI: 10.1021/acs.analchem.0c00547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023]
Abstract
Efforts to eradicate Plasmodium vivax malaria are hampered by the presence of hypnozoites, persisting stages in the liver that can reactivate after prolonged periods of time enabling further transmission and causing renewed disease. Large-scale drug screening is needed to identify compounds with antihypnozoite activity, but current platforms rely on time-consuming high-content fluorescence imaging as read-out, limiting assay throughput. We here report an ultrafast and sensitive dual-luciferase-based method to differentiate hypnozoites from liver stage schizonts using a transgenic P. cynomolgi parasite line that contains Nanoluc driven by the constitutive hsp70 promoter, as well as firefly luciferase driven by the schizont-specific lisp2 promoter. The transgenic parasite line showed similar fitness and drug sensitivity profiles of selected compounds to wild type. We demonstrate robust bioluminescence-based detection of hypnozoites in 96-well and 384-well plate formats, setting the stage for implementation in large scale drug screens.
Collapse
Affiliation(s)
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Ivonne G. Nieuwenhuis
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Nicole M. van der Werff
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Els J. Klooster
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Onny Klop
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Lars C. Vermaat
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
38
|
McLean KJ, Jacobs-Lorena M. The response of Plasmodium falciparum to isoleucine withdrawal is dependent on the stage of progression through the intraerythrocytic cell cycle. Malar J 2020; 19:147. [PMID: 32268910 PMCID: PMC7140564 DOI: 10.1186/s12936-020-03220-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background A previous study reported that the malaria parasite Plasmodium falciparum enters an altered growth state upon extracellular withdrawal of the essential amino acid isoleucine. Parasites slowed transit through the cell cycle when deprived of isoleucine prior to the onset of S-phase. Methods This project was undertaken to study at higher resolution, how isoleucine withdrawal affects parasite growth. Parasites were followed at regular intervals across an extended isoleucine deprivation time course across the cell cycle using flow cytometry. Results These experiments revealed that isoleucine-deprived parasites never exit the cell cycle, but instead continuously grow at a markedly reduced pace. Moreover, slow growth occurs only if isoleucine is removed prior to the onset of schizogony. After S-phase commenced, the parasite is insensitive to isoleucine depletion and transits through the cell cycle at the normal pace. Conclusions The markedly different response of the parasite to isoleucine withdrawal before or after the onset of DNA replication is reminiscent of the nutrient-dependent G1 cell cycle checkpoints described in other organisms.
Collapse
Affiliation(s)
- Kyle Jarrod McLean
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
39
|
Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Murugesan S, Martinez-Valladares M, García-Estrada C, Reguera RM, Balaña-Fouce R. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar Drugs 2020; 18:E187. [PMID: 32244488 PMCID: PMC7230869 DOI: 10.3390/md18040187] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.
Collapse
Affiliation(s)
- María Álvarez-Bardón
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - César Ordóñez
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Daniel Sepúlveda-Crespo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Nestor M. Carballeira
- Department of Chemistry, University of Puerto Rico, Río Piedras 00925-2537, San Juan, Puerto Rico;
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, Birmingham, AL 35205, USA;
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani 333031, India;
| | - Maria Martinez-Valladares
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346 León, Spain;
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1-Parque Científico de León, 24006 León, Spain;
| | - Rosa M. Reguera
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| |
Collapse
|
40
|
Abstract
There is a pressing need for compounds with broad-spectrum activity against malaria parasites at various life cycle stages to achieve malaria elimination. However, this goal cannot be accomplished without targeting the tenacious dormant liver-stage hypnozoite that causes multiple relapses after the first episode of illness. In the search for the magic bullet to radically cure Plasmodium vivax malaria, tafenoquine outperformed other candidate drugs and was approved by the U.S. Food and Drug Administration in 2018. Tafenoquine is an 8-aminoquinoline that inhibits multiple life stages of various Plasmodium species. Additionally, its much longer half-life allows for single-dose treatment, which will improve the compliance rate. Despite its approval and the long-time use of other 8-aminoquinolines, the mechanisms behind tafenoquine's activity and adverse effects are still largely unknown. In this Perspective, we discuss the plausible underlying mechanisms of tafenoquine's antiparasitic activity and highlight its role as a cellular stressor. We also discuss potential drug combinations and the development of next-generation 8-aminoquinolines to further improve the therapeutic index of tafenoquine for malaria treatment and prevention.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
41
|
Kristan M, Thorburn SG, Hafalla JC, Sutherland CJ, Oguike MC. Mosquito and human hepatocyte infections with Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Trans R Soc Trop Med Hyg 2019; 113:617-622. [PMID: 31162595 DOI: 10.1093/trstmh/trz048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Human ovale malaria is caused by the two closely related species, Plasmodium ovale curtisi and P. ovale wallikeri. Both species are known to relapse from quiescent hepatic forms months or years after the primary infection occurred. Although some studies have succeeded in establishing mosquito transmission for ovale malaria, none have specifically described transmission and human hepatocyte infection of both sibling species. METHODS Here we describe a simplified protocol for successful transmission of both P. ovale curtisi and P. ovale wallikeri to Anopheles coluzzii mosquitoes and streamlined monitoring of infection using sensitive parasite DNA detection, by loop-activated amplification, in blood-fed mosquitoes. RESULTS In one experimental infection with P. ovale curtisi and one with P. ovale wallikeri, viable sporozoites were isolated from mosquito salivary glands and used to successfully infect cultured human hepatocytes. CONCLUSIONS This protocol provides a method for the utilisation of pretreatment clinical blood samples from ovale malaria patients, collected in EDTA, for mosquito infection studies and generation of the hepatic life cycle stages of P. ovale curtisi and P. ovale wallikeri. We also demonstrate the utility of loop-activated amplification as a rapid and sensitive alternative to dissection for estimating the prevalence of infection in Anopheles mosquitoes fed with Plasmodium-infected blood.
Collapse
Affiliation(s)
- Mojca Kristan
- Department of Disease Control, London School of Hygiene & Tropical Medicine (LSHTM), Keppel Street, London, UK
| | | | - Julius C Hafalla
- Immunology & Infection Department, LSHTM, Keppel Street, London, UK
| | - Colin J Sutherland
- Immunology & Infection Department, LSHTM, Keppel Street, London, UK.,Public Health England Malaria Reference Laboratory, LSHTM, Keppel Street, London, UK
| | - Mary C Oguike
- Immunology & Infection Department, LSHTM, Keppel Street, London, UK
| |
Collapse
|
42
|
Kostić M, Milosavljević MN, Stefanović S, Ranković G, Janković SM. Cost-utility of tafenoquine vs. primaquine for the radical cure (prevention of relapse) of Plasmodium vivax malaria. J Chemother 2019; 32:21-29. [PMID: 31524099 DOI: 10.1080/1120009x.2019.1665874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to compare cost-utility of tafenoquine (TQ) and primaquine (PQ) for a radical cure (prevention of relapse) of Plasmodium vivax (PV) malaria in Serbia using A five-state, 1-month cycle Markov model. The perspective of Republic Health Insurance Fund was chosen, and the time horizon was 10 years. The model results were obtained after Monte Carlo microsimulation of a sample with 1000 virtual patients. After base case analysis PQ was dominated by TQ, as the net monetary benefit was positive (20,713.84 ± 7,167.46 RSD (99% CI) (174.95 ± 60.54 €)) and incremental cost-effectiveness ratio was below the willingness-to-pay line of 1 Serbian gross national product per capita per quality-adjusted life year gained. Multiple one-way sensitivity analysis and probabilistic sensitivity analysis confirmed the results of the base case simulation. In conclusion, TQ was cost-effective in comparison to PQ for radical cure of PV malaria in socio-economic settings of a South-Eastern European country.
Collapse
Affiliation(s)
- Marina Kostić
- Faculty of Medical Sciences, Department of Pharmacology and toxicology, University of Kragujevac, Kragujevac, Serbia
| | - Miloš N Milosavljević
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Srđan Stefanović
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Kragujevac, Serbia
| | - Goran Ranković
- Medical Faculty, University of Priština, Kosovska Mitrovica, Serbia
| | - Slobodan M Janković
- Faculty of Medical Sciences, Department of Pharmacology and toxicology, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
43
|
Knestrick MA, Wilson NG, Roth A, Adams JH, Baker BJ. Friomaramide, a Highly Modified Linear Hexapeptide from an Antarctic Sponge, Inhibits Plasmodium falciparum Liver-Stage Development. JOURNAL OF NATURAL PRODUCTS 2019; 82:2354-2358. [PMID: 31403291 DOI: 10.1021/acs.jnatprod.9b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cold waters of Antarctica are known to harbor a rich biodiversity. Our continuing interest in the chemical analysis of Antarctic invertebrates has resulted in the isolation of friomaramide (1), a new, highly modified hexapeptide, from the Antarctic sponge Inflatella coelosphaeroides. The structure of friomaramide was determined using spectroscopic methods and its configuration established by Marfey's method. Friomaramide, which bears the unusual permethylation of the amino acid backbone and is the longest polypeptide bearing a tryptenamine C-terminus, blocks >90% of Plasmodium falciparum liver-stage parasite development at 6.1 μM.
Collapse
Affiliation(s)
- Matthew A Knestrick
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue, CHE205 , Tampa , Florida 33620 , United States
| | - Nerida G Wilson
- Western Australia Museum and University of Western Australia Perth , Fremantle , Western Australia 6106 , Australia
| | - Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health , University of South Florida , Tampa , Florida 33620 , United States
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health , University of South Florida , Tampa , Florida 33620 , United States
| | - Bill J Baker
- Department of Chemistry , University of South Florida , 4202 E. Fowler Avenue, CHE205 , Tampa , Florida 33620 , United States
- Center for Global Health and Infectious Diseases Research, College of Public Health , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
44
|
Beus M, Fontinha D, Held J, Rajić Z, Uzelac L, Kralj M, Prudêncio M, Zorc B. Primaquine and Chloroquine Fumardiamides as Promising Antiplasmodial Agents. Molecules 2019; 24:E2812. [PMID: 31374989 PMCID: PMC6695747 DOI: 10.3390/molecules24152812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/02/2022] Open
Abstract
This paper describes a continuation of our efforts in the pursuit of novel antiplasmodial agents with optimized properties. Following our previous discovery of biologically potent asymmetric primaquine (PQ) and halogenaniline fumardiamides (1-6), we now report their significant in vitro activity against the hepatic stages of Plasmodium parasites. Furthermore, we successfully prepared chloroquine (CQ) analogue derivatives (11-16) and evaluated their activity against both the hepatic and erythrocytic stages of Plasmodium. Our results have shown that PQ fumardiamides (1-6) exert both higher activity against P. berghei hepatic stages and lower toxicity against human hepatoma cells than the parent drug and CQ derivatives (11-16). The favourable cytotoxicity profile of the most active compounds, 5 and 6, was corroborated by assays performed on human cells (human breast adenocarcinoma (MCF-7) and non-tumour embryonic kidney cells (HEK293T)), even when glucose-6-phosphate dehydrogenase (G6PD) was inhibited. The activity of CQ fumardiamides on P. falciparum erythrocytic stages was higher than that of PQ derivatives, comparable to CQ against CQ-resistant strain PfDd2, but lower than CQ when tested on the CQ-sensitive strain Pf3D7. In addition, both sets of compounds showed favourable drug-like properties. Hence, quinoline fumardiamides could serve as a starting point towards the development of safer and more effective antiplasmodial agents.
Collapse
Affiliation(s)
- Maja Beus
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, HR-10 000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Zrinka Rajić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Lidija Uzelac
- Rudjer Bošković Institute, Division of Molecular Medicine, Laboratory of Experimental Therapy, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Rudjer Bošković Institute, Division of Molecular Medicine, Laboratory of Experimental Therapy, 10 000 Zagreb, Croatia
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Branka Zorc
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
45
|
Mayence A, Vanden Eynde JJ. Tafenoquine: A 2018 Novel FDA-Approved Prodrug for the Radical Cure of Plasmodium vivax Malaria and Prophylaxis of Malaria. Pharmaceuticals (Basel) 2019; 12:ph12030115. [PMID: 31366060 PMCID: PMC6789594 DOI: 10.3390/ph12030115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
Tafenoquine (an 8-aminoquinoline) was approved by the Food and Drug Administration (FDA) in 2018 for the radical cure of Plasmodium vivax malaria and preventive action against malaria. Despite the fact that the mechanism of action of the drug remains unclear, all studies indicated that a metabolite is responsible for its efficacy. Routes for the preparation of the drug are described.
Collapse
Affiliation(s)
- Annie Mayence
- Haute Ecole Provinciale de Hainaut-Condorcet, 7330 Saint-Ghislain, Belgium
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium.
| |
Collapse
|
46
|
Flannery EL, Markus MB, Vaughan AM. Plasmodium vivax. Trends Parasitol 2019; 35:583-584. [PMID: 31176582 DOI: 10.1016/j.pt.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023]
|
47
|
Gopi G, Behera SM, Behera P. Tafenoquine: A Breakthrough Drug for Radical Cure and Elimination of Malaria. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2019; X:1-6. [DOI: 10.14218/erhm.2019.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Gupta DK, Dembele L, Voorberg-van der Wel A, Roma G, Yip A, Chuenchob V, Kangwanrangsan N, Ishino T, Vaughan AM, Kappe SH, Flannery EL, Sattabongkot J, Mikolajczak S, Bifani P, Kocken CH, Diagana TT. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. eLife 2019; 8:43362. [PMID: 31094679 PMCID: PMC6542585 DOI: 10.7554/elife.43362] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Plasmodium vivax hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017). In this dataset, we identified and characterized the Liver-Specific Protein 2 (LISP2) protein as an early molecular marker of liver stage development. Immunofluorescence analysis of hepatocytes infected with relapsing malaria parasites, in vitro (P. cynomolgi) and in vivo (P. vivax), reveals that LISP2 expression discriminates between dormant hypnozoites and early developing parasites. We further demonstrate that prophylactic drugs selectively kill all LISP2-positive parasites, while LISP2-negative hypnozoites are only sensitive to anti-relapse drug tafenoquine. Our results provide novel biological insights in the initiation of liver stage schizogony and an early marker suitable for the development of drug discovery assays predictive of anti-relapse activity.
Collapse
Affiliation(s)
- Devendra Kumar Gupta
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Laurent Dembele
- Novartis Institute for Tropical Diseases, Singapore, Singapore.,Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), MRTC - DEAP, Bamako, Mali
| | | | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andy Yip
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | | | - Tomoko Ishino
- Graduate School of Medicine, Ehime University, Toon, Japan
| | | | - Stefan H Kappe
- Center for Infectious Disease Research, Seattle, United States
| | | | | | - Sebastian Mikolajczak
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Center for Infectious Disease Research, Seattle, United States
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, Singapore, Singapore.,Singapore Immunology Network (SIgN), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clemens Hm Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Thierry Tidiane Diagana
- Novartis Institute for Tropical Diseases, Emeryville, United States.,Novartis Institute for Tropical Diseases, Singapore, Singapore
| |
Collapse
|
49
|
Dodean RA, Kancharla P, Li Y, Melendez V, Read L, Bane CE, Vesely B, Kreishman-Deitrick M, Black C, Li Q, Sciotti RJ, Olmeda R, Luong TL, Gaona H, Potter B, Sousa J, Marcsisin S, Caridha D, Xie L, Vuong C, Zeng Q, Zhang J, Zhang P, Lin H, Butler K, Roncal N, Gaynor-Ohnstad L, Leed SE, Nolan C, Huezo SJ, Rasmussen SA, Stephens MT, Tan JC, Cooper RA, Smilkstein MJ, Pou S, Winter RW, Riscoe MK, Kelly JX. Discovery and Structural Optimization of Acridones as Broad-Spectrum Antimalarials. J Med Chem 2019; 62:3475-3502. [PMID: 30852885 DOI: 10.1021/acs.jmedchem.8b01961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.
Collapse
Affiliation(s)
- Rozalia A Dodean
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Papireddy Kancharla
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States
| | - Yuexin Li
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Victor Melendez
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Lisa Read
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Charles E Bane
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Brian Vesely
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Mara Kreishman-Deitrick
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Chad Black
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Qigui Li
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Richard J Sciotti
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Raul Olmeda
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Thu-Lan Luong
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Heather Gaona
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Brittney Potter
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Jason Sousa
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Sean Marcsisin
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Diana Caridha
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Lisa Xie
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Chau Vuong
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Qiang Zeng
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Jing Zhang
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Ping Zhang
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Hsiuling Lin
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Kirk Butler
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Norma Roncal
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Lacy Gaynor-Ohnstad
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Susan E Leed
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Christina Nolan
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Stephanie J Huezo
- Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States
| | - Stephanie A Rasmussen
- Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States
| | | | | | - Roland A Cooper
- Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States
| | - Martin J Smilkstein
- Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Sovitj Pou
- Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Rolf W Winter
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Michael K Riscoe
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Jane X Kelly
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| |
Collapse
|
50
|
Yahiya S, Rueda-Zubiaurre A, Delves MJ, Fuchter MJ, Baum J. The antimalarial screening landscape-looking beyond the asexual blood stage. Curr Opin Chem Biol 2019; 50:1-9. [PMID: 30875617 PMCID: PMC6591700 DOI: 10.1016/j.cbpa.2019.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
In recent years, the research agenda to tackle global morbidity and mortality from malaria disease has shifted towards innovation, in the hope that efforts at the frontiers of scientific research may re-invigorate gains made towards eradication. Discovery of new antimalarial drugs with novel chemotypes or modes of action lie at the heart of these efforts. There is a particular interest in drug candidates that target stages of the malaria parasite lifecycle beyond the symptomatic asexual blood stages. This is especially important given the spectre of emerging drug resistance to all current frontline antimalarials. One approach gaining increased interest is the potential of designing novel drugs that target parasite passage from infected individual to feeding mosquito and back again. Action of such therapeutics is geared much more at the population level rather than just concerned with the infected individual. The search for novel drugs active against these stages has been helped by improvements to in vitro culture of transmission and pre-erythrocytic parasite lifecycle stages, robotic automation and high content imaging, methodologies that permit the high-throughput screening (HTS) of compound libraries for drug discovery. Here, we review recent advances in the antimalarial screening landscape, focussed on transmission blocking as a key aim for drug-treatment campaigns of the future.
Collapse
Affiliation(s)
- Sabrina Yahiya
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Michael J Delves
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|