1
|
Del Bene A, D'Aniello A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Benedetti R, Altucci L, Cosconati S, Di Maro S, Messere A. From genetic code to global health: the impact of nucleic acid vaccines on disease prevention and treatment. RSC Med Chem 2025:d5md00032g. [PMID: 40337306 PMCID: PMC12053015 DOI: 10.1039/d5md00032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccinology has revolutionized modern medicine, delivering groundbreaking solutions to prevent and control infectious diseases while pioneering innovative strategies to tackle non-infectious challenges, including cancer. Traditional vaccines faced inherent limitations, driving the evolution of next-generation vaccines such as subunit vaccines, peptide-based vaccines, and nucleic acid-based platforms. Among these, nucleic acid-based vaccines, including DNA and mRNA technologies, represent a major innovation. Pioneering studies in the 1990s demonstrated their ability to elicit immune responses by encoding specific antigens. Recent advancements in delivery systems and molecular engineering have overcome initial challenges, enabling their rapid development and clinical success. This review explores nucleic acid-based vaccines, including chemically modified variants, by examining their mechanisms, structural features, and therapeutic potential, while underscoring their pivotal role in modern immunization strategies and expanding applications across contemporary medicine.
Collapse
Affiliation(s)
- Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | | | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Erica Campagna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
- Biogem Institute of Molecular and Genetic Biology 83031 Ariano Irpino Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
2
|
Davar D, Morrison RM, Dzutsev AK, Karunamurthy A, Chauvin JM, Amatore F, Deutsch JS, Das Neves RX, Rodrigues RR, McCulloch JA, Wang H, Hartman DJ, Badger JH, Fernandes MR, Bai Y, Sun J, Cole AM, Aggarwal P, Fang JR, Deitrick C, Bao R, Duvvuri U, Sridharan SS, Kim SW, A Choudry H, Holtzman MP, Pingpank JF, O'Toole JP, DeBlasio R, Jin Y, Ding Q, Gao W, Groetsch C, Pagliano O, Rose A, Urban C, Singh J, Divarkar P, Mauro D, Bobilev D, Wooldridge J, Krieg AM, Fury MG, Whiteaker JR, Zhao L, Paulovich AG, Najjar YG, Luke JJ, Kirkwood JM, Taube JM, Park HJ, Trinchieri G, Zarour HM. Neoadjuvant vidutolimod and nivolumab in high-risk resectable melanoma: A prospective phase II trial. Cancer Cell 2024; 42:1898-1918.e12. [PMID: 39486411 PMCID: PMC11560503 DOI: 10.1016/j.ccell.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
Intratumoral TLR9 agonists and anti-PD-1 produce clinical responses and broad immune activation. We conducted a single-arm study of neoadjuvant TLR9 agonist vidutolimod combined with anti-PD-1 nivolumab in high-risk resectable melanoma. In 31 evaluable patients, 55% major pathologic response (MPR) was observed, meeting primary endpoint. MPR was associated with necrosis, and melanophagocytosis with increased CD8+ tumor-infiltrating lymphocytes and plasmacytoid dendritic cells (pDCs) in the tumor microenvironment, and increased frequencies of Ki67+CD8+ T cells peripherally. MPRs had an enriched pre-treatment gene signature of myeloid cells, and response to therapy was associated with gene signatures of immune cells, pDCs, phagocytosis, and macrophage activation. MPRs gut microbiota were enriched for Gram-negative bacteria belonging to the Bacteroidaceae and Enterobacteriaceae families and the small subgroup of Gram-negative Firmicutes. Our findings support that combined vidutolimod and nivolumab stimulates a broad anti-tumor immune response and is associated with distinct baseline myeloid gene signature and gut microbiota. ClinicalTrials.gov identifier: NCT03618641.
Collapse
Affiliation(s)
- Diwakar Davar
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert M Morrison
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amiran K Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Arivarasan Karunamurthy
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joe-Marc Chauvin
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Florent Amatore
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Julie S Deutsch
- Division of Dermatopathology, Johns Hopkins University, Baltimore, MD, USA
| | - Rodrigo X Das Neves
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Richard R Rodrigues
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John A McCulloch
- Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Hartman
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan H Badger
- Genetics and Microbiome Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Miriam R Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yulong Bai
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alicia M Cole
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Poonam Aggarwal
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer R Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Deitrick
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Riyue Bao
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Umamaheswar Duvvuri
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shaum S Sridharan
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seungwon W Kim
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haroon A Choudry
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew P Holtzman
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Pingpank
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Patrick O'Toole
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Division of Plastic Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle DeBlasio
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Jin
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quanquan Ding
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wentao Gao
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher Groetsch
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ornella Pagliano
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Rose
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corey Urban
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagjit Singh
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David Mauro
- Checkmate Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lei Zhao
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yana G Najjar
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jason J Luke
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - John M Kirkwood
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Janis M Taube
- Division of Dermatopathology, Johns Hopkins University, Baltimore, MD, USA; Tumor Microenvironment Core, Bloomberg-Kimmel Institute of Immunotherapy, Mark Foundation Center for Advanced Imaging and Genomics, Johns Hopkins University, Baltimore, MD, USA
| | - Hyun Jung Park
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Hassane M Zarour
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
4
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
5
|
Wang Y, Liu S, Li B, Sun X, Pan Q, Zheng Y, Liu J, Zhao Y, Wang J, Liu L, Du E. A novel CpG ODN compound adjuvant enhances immune response to spike subunit vaccines of porcine epidemic diarrhea virus. Front Immunol 2024; 15:1336239. [PMID: 38322258 PMCID: PMC10846067 DOI: 10.3389/fimmu.2024.1336239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
CpG oligodeoxynucleotides (CpG ODNs) boost the humoral and cellular immune responses to antigens through interaction with Toll-like receptor 9 (TLR9). These CpG ODNs have been extensively utilized in human vaccines. In our study, we evaluated five B-type CpG ODNs that have stimulatory effects on pigs by measuring the proliferation of porcine peripheral blood mononuclear cells (PBMCs) and assessing interferon gamma (IFN-γ) secretion. Furthermore, this study examined the immunoenhancing effects of the MF59 and CpG ODNs compound adjuvant in mouse and piglet models of porcine epidemic diarrhea virus (PEDV) subunit vaccine administration. The in vitro screening revealed that the CpG ODN named CpG5 significantly stimulated the proliferation of porcine PBMCs and elevated IFN-γ secretion levels. In the mouse vaccination model, CpG5 compound adjuvant significantly bolstered the humoral and cellular immune responses to the PEDV subunit vaccines, leading to Th1 immune responses characterized by increased IFN-γ and IgG2a levels. In piglets, the neutralizing antibody titer was significantly enhanced with CpG5 compound adjuvant, alongside a considerable increase in CD8+ T lymphocytes proportion. The combination of MF59 adjuvant and CpG5 exhibits a synergistic effect, resulting in an earlier, more intense, and long-lasting immune response in subunit vaccines for PEDV. This combination holds significant promise as a robust candidate for the development of vaccine adjuvant.
Collapse
Affiliation(s)
- Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shijia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Boshuo Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinyao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qi Pan
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, China
| | - Yuxin Zheng
- Yangling Carey Biotechnology Co., Ltd., Yangling, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongqiang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Liming Liu
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, China
| |
Collapse
|
6
|
Ananya A, Holden KG, Gu Z, Nettleton D, Mallapragada SK, Wannemuehler MJ, Kohut ML, Narasimhan B. "Just right" combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun Ageing 2023; 20:10. [PMID: 36895007 PMCID: PMC9996592 DOI: 10.1186/s12979-023-00332-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The loss in age-related immunological markers, known as immunosenescence, is caused by a combination of factors, one of which is inflammaging. Inflammaging is associated with the continuous basal generation of proinflammatory cytokines. Studies have demonstrated that inflammaging reduces the effectiveness of vaccines. Strategies aimed at modifying baseline inflammation are being developed to improve vaccination responses in older adults. Dendritic cells have attracted attention as an age-specific target because of their significance in immunization as antigen presenting cells that stimulate T lymphocytes. RESULTS In this study, bone marrow derived dendritic cells (BMDCs) were generated from aged mice and used to investigate the effects of combinations of adjuvants, including Toll-like receptor, NOD2, and STING agonists with polyanhydride nanoparticles and pentablock copolymer micelles under in vitro conditions. Cellular stimulation was characterized via expression of costimulatory molecules, T cell-activating cytokines, proinflammatory cytokines, and chemokines. Our results indicate that multiple TLR agonists substantially increase costimulatory molecule expression and cytokines associated with T cell activation and inflammation in culture. In contrast, NOD2 and STING agonists had only a moderate effect on BMDC activation, while nanoparticles and micelles had no effect by themselves. However, when nanoparticles and micelles were combined with a TLR9 agonist, a reduction in the production of proinflammatory cytokines was observed while maintaining increased production of T cell activating cytokines and enhancing cell surface marker expression. Additionally, combining nanoparticles and micelles with a STING agonist resulted in a synergistic impact on the upregulation of costimulatory molecules and an increase in cytokine secretion from BMDCs linked with T cell activation without excessive secretion of proinflammatory cytokines. CONCLUSIONS These studies provide new insights into rational adjuvant selection for vaccines for older adults. Combining appropriate adjuvants with nanoparticles and micelles may lead to balanced immune activation characterized by low inflammation, setting the stage for designing next generation vaccines that can induce mucosal immunity in older adults.
Collapse
Affiliation(s)
- Ananya Ananya
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Zhiling Gu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Hernandez R, Malek TR. Fueling Cancer Vaccines to Improve T Cell-Mediated Antitumor Immunity. Front Oncol 2022; 12:878377. [PMID: 35651800 PMCID: PMC9150178 DOI: 10.3389/fonc.2022.878377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer vaccines offer the potential to enhance T cell-mediated antitumor immunity by expanding and increasing the function of tumor-specific T cells and shaping the recall response against recurring tumors. While the use of cancer vaccines is not a new immunotherapeutic approach, the cancer vaccine field continues to evolve as new antigen types emerge and vaccine formulations and delivery strategies are developed. As monotherapies, cancer vaccines have not been very efficacious in part due to pre-existing peripheral- and tumor-mediated tolerance mechanisms that limit T cell function. Over the years, various agents including Toll-like receptor agonists, cytokines, and checkpoint inhibitors have been employed as vaccine adjuvants and immune modulators to increase antigen-mediated activation, expansion, memory formation, and T effector cell function. A renewed interest in this approach has emerged as better neoepitope discovery tools are being developed and our understanding of what constitutes an effective cancer vaccine is improved. In the coming years, cancer vaccines will likely be vital to enhance the response to current immunotherapies. In this review, we discuss the various types of therapeutic cancer vaccines, including types of antigens and approaches used to enhance cancer vaccine responses such as TLR agonists, recombinant interleukin-2 and interleukin-2 derivatives, and checkpoint inhibitors.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Zhang Z, Kuo JCT, Yao S, Zhang C, Khan H, Lee RJ. CpG Oligodeoxynucleotides for Anticancer Monotherapy from Preclinical Stages to Clinical Trials. Pharmaceutics 2021; 14:73. [PMID: 35056969 PMCID: PMC8780291 DOI: 10.3390/pharmaceutics14010073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
CpG oligodeoxynucleotides (CpG ODNs), the artificial versions of unmethylated CpG motifs that were originally discovered in bacterial DNA, are demonstrated not only as potent immunoadjuvants but also as anticancer agents by triggering toll-like receptor 9 (TLR9) activation in immune cells. TLR9 activation triggered by CpG ODN has been shown to activate plasmacytoid dendritic cells (pDCs) and cytotoxic T lymphocytes (CTLs), enhancing T cell-mediated antitumor immunity. However, the extent of antitumor immunity carried by TLR agonists has not been optimized individually or in combinations with cancer vaccines, resulting in a decreased preference for TLR agonists as adjuvants in clinical trials. Although various combination therapies involving CpG ODNs have been applied in clinical trials, none of the CpG ODN-based drugs have been approved by the FDA, owing to the short half-life of CpG ODNs in serum that leads to low activation of natural killer cells (NK cells) and CTLs, along with increases of pro-inflammatory cytokine productions. This review summarized the current innovation on CpG ODNs that are under clinical investigation and explored the future direction for CpG ODN-based nanomedicine as an anticancer monotherapy.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
| | - Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Hira Khan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| |
Collapse
|
9
|
Rapaka RR, Cross AS, McArthur MA. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines (Basel) 2021; 9:vaccines9080820. [PMID: 34451945 PMCID: PMC8402546 DOI: 10.3390/vaccines9080820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Using adjuvants to drive features of T cell responses to vaccine antigens is an important technological challenge in the design of new and improved vaccines against infections. Properties such as T helper cell function, T cell memory, and CD8+ T cell cytotoxicity may play critical roles in optimal and long-lived immunity through vaccination. Directly manipulating specific immune activation or antigen delivery pathways with adjuvants may selectively augment desired T cell responses in vaccination and may improve the effectiveness and durability of vaccine responses in humans. In this review we outline recently studied adjuvants in their potential for antigen presenting cell and T cell programming during vaccination, with an emphasis on what has been observed in studies in humans as available.
Collapse
|
10
|
Role Played by Receptors for Advanced Glycosylation End Products in Corneal Endothelial Cells after HSV-1 Infection. Int J Mol Sci 2021; 22:ijms22115833. [PMID: 34072468 PMCID: PMC8199122 DOI: 10.3390/ijms22115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Senescence, sterile inflammation, and infection cause dysfunction of corneal endothelial cells, leading to visual morbidity that may require corneal transplantation. With increasing age, the extracellular matrix is modified by non-enzymatic glycation forming advanced glycation end products (AGEs). The modifications are primarily sensed by the receptors for the AGEs (RAGE) and are manifested as a type I interferon response. Interestingly, in our study, human corneal endothelial cells (HCEn) cells did not respond to the typical RAGE ligands, including the AGEs, high mobility group box 1 (HMGB1), and serum amyloid-A (SAA). Instead, HCEn cells responded exclusively to the CpG DNA, which is possessed by typical corneal pathogen, herpes simplex virus-1 (HSV-1). Upon HSV-1 infection, the surface expression of RAGE was increased, and endocytosed HSV-1 was associated with RAGE and CpG DNA receptor, TLR9. RAGE DNA transfection markedly increased interferon-β secretion by CpG DNA or HSV-1 infection. HSV-1 infection-induced interferon-β secretion was abolished by TLR9 inhibition and partially by RAGE inhibition. Global transcriptional response analysis confirmed that RAGE and TLR9 were both significantly involved in type I interferon responses. We conclude that RAGE is a sensor of HSV-1 infection and provokes a type I interferon response.
Collapse
|
11
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
12
|
Chuang YC, Tseng JC, Huang LR, Huang CM, Huang CYF, Chuang TH. Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade. Front Immunol 2020; 11:1075. [PMID: 32547560 PMCID: PMC7274158 DOI: 10.3389/fimmu.2020.01075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy using checkpoint blockade has revolutionized cancer treatment, improving patient survival and quality of life. Nevertheless, the clinical outcomes of such immunotherapy are highly heterogeneous between patients. Depending on the cancer type, the patient response rates to this immunotherapy are limited to 20–30%. Based on the mechanism underlying the antitumor immune response, new therapeutic strategies have been designed with the aim of increasing the effectiveness and specificity of the antitumor immune response elicited by checkpoint blockade agents. The activation of toll-like receptor 9 (TLR9) by its synthetic agonists induces the antitumor response within the innate immunity arm, generating adjuvant effects and priming the adaptive immune response elicited by checkpoint blockade during the effector phase of tumor-cell killing. This review first describes the underlying mechanisms of action and current status of monotherapy using TLR9 agonists and immune checkpoint inhibitors for cancer immunotherapy. The rationale for combining these two agents is discussed, and evidence indicating the current status of such combination therapy as a novel cancer treatment strategy is presented.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
13
|
Evaluation of cell surface reactive immuno-adjuvant in combination with immunogenic cell death inducing drug for in situ chemo-immunotherapy. J Control Release 2020; 322:519-529. [PMID: 32243973 PMCID: PMC7262586 DOI: 10.1016/j.jconrel.2020.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
Abstract
Apoptotic cells and cell fragments, especially those produced as a result of immunogenic cell death (ICD), are known to be a potential source of cancer vaccine immunogen. However, due to variation between tumours and between individuals, methods to generate such preparations may require extensive ex vivo personalisation. To address this, we have utilised the concept of in situ vaccination whereby an ICD inducing drug is injected locally to generate immunogenic apoptotic fragments/cells. These fragments are then adjuvanted by a co-administered cell reactive CpG adjuvant. We first evaluate means of labelling tumour cells with CpG adjuvant, we then go on to demonstrate in vitro that labelling is preserved following apoptosis and, furthermore, that the apoptotic body-adjuvant complexes are readily transferred to macrophages. In in vivo studies we observe synergistic tumour growth delays and elevated levels of CD4+ and CD8+ cells in tumours receiving adjuvant drug combination. CD4+/CD8+ cells are likewise elevated in the tumour draining lymph node and activated to a greater extent than individual treatments. This study represents the first steps toward the evaluation of rationally formulated drug-adjuvant combinations for in situ chemo-immunotherapy.
Collapse
|
14
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|
15
|
Protective cellular immune response against hepatitis C virus elicited by chimeric protein formulations in BALB/c mice. Arch Virol 2020; 165:593-607. [PMID: 32016547 PMCID: PMC7224087 DOI: 10.1007/s00705-019-04464-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
The eradication of hepatitis C virus (HCV) infection is a public health priority. Despite the efficiency of treatment with direct-acting antivirals, the high cost of the therapy and the lack of accurate data about the HCV-infected population worldwide constitute important factors hampering this task. Hence, an affordable preventive vaccine is still necessary for reducing transmission and the future disease burden globally. In this work, chimeric proteins (EnvCNS3 and NS3EnvCo) encompassing conserved and immunogenic epitopes from the HCV core, E1, E2 and NS3 proteins were produced in Escherichia coli, and their immunogenicity was evaluated in BALB/c mice. The impact of recombinant HCV E2.680 protein and oligodeoxynucleotide 39M (ODN39M) on the immune response to chimeric proteins was also assessed. Immunization with chimeric proteins mixed with E2.680 enhanced the antibody and cellular response against HCV antigens and chimeric proteins. Interestingly, the combination of NS3EnvCo with E2.680 and ODN39M as adjuvant elicited a potent antibody response characterized by an increase in antibodies of the IgG2a subclass against E2.680, NS3 and chimeric proteins, suggesting the induction of a Th1-type response. Moreover, a cytotoxic T lymphocyte response and a broad response of IFN-γ-secreting cells against HCV antigens were induced with this formulation as well. This T cell response was able to protect vaccinated mice against challenge with a surrogate model based on HCV recombinant vaccinia virus. Overall, the vaccine candidate NS3EnvCo/E2.680/ODN39M might constitute an effective immunogen against HCV with potential for reducing the likelihood of viral persistence.
Collapse
|
16
|
Tanaka A, Ito T, Kibata K, Inagaki-Katashiba N, Amuro H, Nishizawa T, Son Y, Ozaki Y, Nomura S. Serum high-mobility group box 1 is correlated with interferon-α and may predict disease activity in patients with systemic lupus erythematosus. Lupus 2019; 28:1120-1127. [PMID: 31299881 DOI: 10.1177/0961203319862865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sensing self-nucleic acids through toll-like receptors in plasmacytoid dendritic cells (pDCs), and the dysregulated type I IFN production, represent pathogenic events in the development of the autoimmune responses in systemic lupus erythematosus (SLE). Production of high-mobility group box-1 protein (HMGB1) promotes type I IFN response in pDCs. To better understand the active pathogenic mechanism of SLE, we measured serum levels of HMGB1, thrombomodulin, and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-17F, IFNα, IFNγ, TNFα) in 35 patients with SLE. Serum HMGB1 and IFNα were significantly higher in patients with active SLE (SLE Disease Activity Index (SLEDAI) score ≥ 6) compared with healthy donors or patients with inactive SLE. Furthermore, the HMGB1 levels were significantly correlated with IFNα levels. By qualitative analysis, the detection of serum IFNα or HMGB1 suggests active SLE and the presence of SLE-related arthritis, fever, and urinary abnormality out of SLEDAI manifestations. Collectively, HMGB1 and IFNα levels are biomarkers reflecting disease activity, and qualitative analysis of IFNα or HMGB1 is a useful screening test to estimate SLE severity and manifestations. Our results suggest the clinical significance of type I IFNs and HMGB1 as key molecules promoting the autoimmune process in SLE.
Collapse
Affiliation(s)
- A Tanaka
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - T Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - K Kibata
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - N Inagaki-Katashiba
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - H Amuro
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - T Nishizawa
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Y Son
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Y Ozaki
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - S Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
17
|
Kibata K, Ito T, Inaba M, Tanaka A, Iwata R, Inagaki-Katashiba N, Phan V, Satake A, Nomura S. The immunomodulatory-drug, lenalidomide, sustains and enhances interferon-α production by human plasmacytoid dendritic cells. J Blood Med 2019; 10:217-226. [PMID: 31372079 PMCID: PMC6635835 DOI: 10.2147/jbm.s206459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Lenalidomide (LEN), an immunomodulatory drug (IMiD), is currently used for treatment of multiple myeloma (MM). LEN potentiates T cell and natural killer cell functions. However, the cellular and molecular mechanisms underlying the immunomodulatory effects of LEN remain unclear. We focused on the effects of LEN on human plasmacytoid dendritic cells (pDCs), which are the major source of interferon (IFN)-α in the blood and play a central role in innate immune responses. Results: We found that bortezomib, a proteasome inhibitor used to treat MM, killed pDCs but that 0.1-3 μM LEN (covering clinical plasma concentration range) did not affect pDC survival or CD86 expression. Bortezomib inhibited pDC-derived IFN-α production in a dose-dependent fashion, but 0.1-3 µM LEN sustained pDC-derived IFN-α production when stimulated with an optimal concentration of CpG-ODN 2216 (3 μM). In pDCs stimulated with a low concentration of CpG-ODN (0.1 μM), LEN enhanced IFN-α production. These results indicated that LEN, when used at a clinically relevant concentration, can potentially enhance IFN-α production by pDCs. Conclusion: Collectively, our findings unveiled a novel target of LEN and extend the repertoire of the drug's known immunomodulatory effects. These effects may explain the low incidence of herpes zoster viral infection observed during LEN treatment compared with bortezomib treatment. LEN may function as an IMiD affecting a wide array of immune cells, including pDCs, leading to amplification of a positive immune axis able to eliminate MM cells.
Collapse
Affiliation(s)
- Kayoko Kibata
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Tomoki Ito
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Muneo Inaba
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Akihiro Tanaka
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Ryoichi Iwata
- Kansai Medical University, Department of Neurosurgery, Osaka, Japan
| | | | - Vien Phan
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Atsushi Satake
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| | - Shosaku Nomura
- Kansai Medical University, First Department of Internal Medicine, Osaka, Japan
| |
Collapse
|
18
|
Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol 2017; 8:1705. [PMID: 29255464 PMCID: PMC5723005 DOI: 10.3389/fimmu.2017.01705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body’s most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Collapse
Affiliation(s)
- Samuel Maldonado
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
19
|
Dendritic cell recruitment and activation in autoimmunity. J Autoimmun 2017; 85:126-140. [DOI: 10.1016/j.jaut.2017.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
20
|
Akkaya M, Akkaya B, Miozzo P, Rawat M, Pena M, Sheehan PW, Kim AS, Kamenyeva O, Kabat J, Bolland S, Chaturvedi A, Pierce SK. B Cells Produce Type 1 IFNs in Response to the TLR9 Agonist CpG-A Conjugated to Cationic Lipids. THE JOURNAL OF IMMUNOLOGY 2017; 199:931-940. [PMID: 28652397 DOI: 10.4049/jimmunol.1700348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022]
Abstract
B cells express the innate receptor, TLR9, which signals in response to unmethylated CpG sequences in microbial DNA. Of the two major classes of CpG-containing oligonucleotides, CpG-A appears restricted to inducing type 1 IFN in innate immune cells and CpG-B to activating B cells to proliferate and produce Abs and inflammatory cytokines. Although CpGs are candidates for adjuvants to boost innate and adaptive immunity, our understanding of the effect of CpG-A and CpG-B on B cell responses is incomplete. In this study we show that both CpG-B and CpG-A activated B cells in vitro to proliferate, secrete Abs and IL-6, and that neither CpG-B nor CpG-A alone induced type 1 IFN production. However, when incorporated into the cationic lipid, DOTAP, CpG-A, but not CpG-B, induced a type 1 IFN response in B cells in vitro and in vivo. We provide evidence that differences in the function of CpG-A and CpG-B may be related to their intracellular trafficking in B cells. These findings fill an important gap in our understanding of the B cell response to CpGs, with implications for the use of CpG-A and CpG-B as immunomodulators.
Collapse
Affiliation(s)
- Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| | - Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Mukul Rawat
- Indian Institute of Science Education and Research, Pune 411 008, India; and
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Patrick W Sheehan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Ann S Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Olena Kamenyeva
- Biological Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Juraj Kabat
- Biological Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Akanksha Chaturvedi
- Indian Institute of Science Education and Research, Pune 411 008, India; and
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
21
|
Shinde P, Liu W, Ménoret A, Luster AD, Vella AT. Optimal CD4 T cell priming after LPS-based adjuvanticity with CD134 costimulation relies on CXCL9 production. J Leukoc Biol 2017; 102:57-69. [PMID: 28432083 DOI: 10.1189/jlb.1a0616-261rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022] Open
Abstract
LPS is a powerful adjuvant, and although LPS-mediated TLR4 signaling has been exquisitely delineated, the in vivo mechanism of how TLR4 responses impact T cell priming is far less clear. Besides costimulation, TNF and type 1 IFN are dominant cytokines released after TLR4 activation and can shape T cell responses, but other downstream factors have not been examined extensively. Depending on context, we show that IFNαR1 blockade resulted in minor to major effects on specific CD4 T cell clonal expansion. To help explain these differences, it was hypothesized that IFNαR1 blockade would inhibit specific T cell migration by reducing chemokine receptor signaling, but specific CD4 T cells from IFNαR1-blocked mice were readily able to migrate in response to specific chemokines. Next, we examined downstream factors and found that type 1 IFN signaling was necessary for chemokine production, even when mice were immunized with specific Ag with LPS and CD134 costimulation. IFNαR1 signaling promoted CXCL9 and CXCL10 synthesis, suggesting that these chemokines might be involved in the LPS and CD134 costimulation response. After immunization, we show that CXCL9 blockade inhibited CD4 T cell accumulation in the liver but also in LNs, even in the presence of elevated serum IFN-β levels. Thus, whereas type 1 IFN might have direct effects on primed CD4 T cells, the downstream chemokines that play a role during migration also impact accumulation. In sum, CXCL9 production is a key benchmark for productive CD4 T cell vaccination strategies.
Collapse
Affiliation(s)
- Paurvi Shinde
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Wenhai Liu
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut, USA; and
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA;
| |
Collapse
|
22
|
Abstract
Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to advance medicine.
Collapse
Affiliation(s)
- G Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Saadeh D, Kurban M, Abbas O. Plasmacytoid dendritic cell role in cutaneous malignancies. J Dermatol Sci 2016; 83:3-9. [PMID: 27236509 DOI: 10.1016/j.jdermsci.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 02/08/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- Dana Saadeh
- Dermatology Department, American University of Beirut Medical Center, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Lebanon
| | - Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
24
|
Behm B, Di Fazio P, Michl P, Neureiter D, Kemmerling R, Hahn EG, Strobel D, Gress T, Schuppan D, Wissniowski TT. Additive antitumour response to the rabbit VX2 hepatoma by combined radio frequency ablation and toll like receptor 9 stimulation. Gut 2016; 65:134-143. [PMID: 25524262 DOI: 10.1136/gutjnl-2014-308286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Radiofrequency ablation (RFA), a palliative therapeutic option for solid hepatic tumours, stimulates localised and systemic antitumour cytotoxic T cells. We studied how far addition of CpG B oligonucleotides, toll like receptor (TLR) 9 agonists, would increase the antitumoural T cell response of RFA in the highly aggressive VX2 hepatoma. METHODS Rabbits were randomised to receive RFA, CpG B, their combination or no therapy. The antitumour efficacy of RFA alone or in combination with CpG B was further tested by rechallenging a separate group with intravenously injected VX2 tumour cells after 120 days. Animals were assessed for survival, tumour size and spread, and tumour and immune related histological markers after 120 days. Peripheral blood mononuclear cells were tested for tumour-specific T cell activation and cytotoxicity. Immune modulatory cytokines tumour necrosis factor α, interleukin (IL)-2/IL-8/IL-10/IL-12 and interferon γ, and vascular endothelial growth factor were measured in serum. RESULTS Mean survival of untreated animals was 36 days, as compared with 97, 78 and 114 days for RFA, CpG and combination therapy, respectively. Compared with untreated controls, antitumour T cell stimulation/cytotoxicity increased 26/16-fold, 32/17-fold and 50/38-fold 2 weeks after RFA, CpG and combination treatments, respectively. The combination inhibited tumour spread to lungs and peritoneum significantly and prohibited new tumour growth in animals receiving a secondary systemic tumour cell injection. RFA alone induced a Th1 cytokine pattern, while IL-8 and IL-10 were only upregulated in CpG treated animals and controls. CONCLUSIONS The combination of TLR9 stimulation with RFA resulted in a potentiated antitumour T cell response and cytotoxicity in the VX2 tumour model. Only this combination prevented subsequent tumour spread and resulted in a significantly improved survival, justifying the need for further exploration of the combination of ablative therapies and TLR9 agonists in liver cancer.
Collapse
Affiliation(s)
- Barbara Behm
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps-University Marburg, Marburg, Germany
| | - Patrick Michl
- Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Ralf Kemmerling
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Eckhart Georg Hahn
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Deike Strobel
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Gress
- Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Thaddaeus Till Wissniowski
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
25
|
Thomann S, Boscheinen JB, Vogel K, Knipe DM, DeLuca N, Gross S, Schuler-Thurner B, Schuster P, Schmidt B. Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells. Immunology 2015; 146:327-38. [PMID: 26194553 DOI: 10.1111/imm.12509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
Malignant melanoma is an aggressive tumour of the skin with increasing incidence, frequent metastasis and poor prognosis. At the same time, it is an immunogenic type of cancer with spontaneous regressions. Most recently, the tumoricidal effect of plasmacytoid dendritic cells (pDC) and their capacity to overcome the immunosuppressive tumour microenvironment are being investigated. In this respect, we studied the effect of the infectious, but replication-deficient, herpes simplex virus 1 (HSV-1) d106S vaccine strain, which lacks essential immediate early genes, in pDC co-cultures with 11 melanoma cell lines. We observed a strong cytotoxic activity, inducing apoptotic and necrotic cell death in most melanoma cell lines. The cytotoxic activity of HSV-1 d106S plus pDC was comparable to the levels of cytotoxicity induced by natural killer cells, but required only a fraction of cells with effector : target ratios of 1 : 20 (P < 0·05). The suppressive activity of cell-free supernatants derived from virus-stimulated pDC was significantly neutralized using antibodies against the interferon-α receptor (P < 0·05). In addition to type I interferons, TRAIL and granzyme B contributed to the inhibitory effect of HSV-1 d106S plus pDC to a minor extent. UV-irradiated viral stocks were significantly less active than infectious particles, both in the absence and presence of pDC (P < 0·05), indicating that residual activity of HSV-1 d106S is a major component and sensitizes the tumour cells to interferon-producing pDC. Three leukaemic cell lines were also susceptible to this treatment, suggesting a general anti-tumour effect. In conclusion, the potential of HSV-1 d106S for therapeutic vaccination should be further evaluated in patients suffering from different malignancies.
Collapse
Affiliation(s)
- Sabrina Thomann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan B Boscheinen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Vogel
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Neal DeLuca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefanie Gross
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Vogel AJ, Brown DM. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol 2015; 6:327. [PMID: 26161083 PMCID: PMC4479795 DOI: 10.3389/fimmu.2015.00327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023] Open
Abstract
Despite extensive research, influenza A virus (IAV) remains a major cause of morbidity, mortality, and healthcare expenditure. Emerging pandemics from highly pathogenic IAV strains, such as H5N1 and pandemic H1N1, highlight the need for universal, cross-protective vaccines. Current vaccine formulations generate strain-specific neutralizing antibodies primarily against the outer coat proteins, hemagglutinin and neuraminidase. In contrast to these highly mutable proteins, internal proteins of IAV are more conserved and are a favorable target for developing vaccines that induce strong T cell responses in addition to humoral immunity. Here, we found that intranasal administration with a single dose of CpG and inactivated x31 (H3N2) reduced viral titers and partially protected mice from a heterosubtypic challenge with a lethal dose of PR8 (H1N1). Early after immunization, vaccinated mice showed increased innate immune activation with high levels of MHCII and CD86 expression on dendritic cells in both draining lymph nodes and lungs. Three days after immunization, CD4 and CD8 cells in the lung upregulated CD69, suggesting that activated lymphocytes are present at the site of vaccine administration. The ensuing effector Th1 responses were capable of producing multiple cytokines and were present at least 30 days after immunization. Furthermore, functional memory responses were observed, as antigen-specific IFN-γ+ and GrB+ cells were detected early after lethal infection. Together, this work provides evidence for using pattern recognition receptor agonists as a mucosal vaccine platform for inducing robust T cell responses capable of protecting against heterologous IAV challenges.
Collapse
Affiliation(s)
- Alexander J Vogel
- School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE , USA ; Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE , USA ; Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| |
Collapse
|
27
|
Minang JT, Inglefield JR, Harris AM, Lathey JL, Alleva DG, Sweeney DL, Hopkins RJ, Lacy MJ, Bernton EW. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909). Vaccine 2014; 32:6847-54. [PMID: 24530403 PMCID: PMC4133324 DOI: 10.1016/j.vaccine.2014.01.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 11/23/2022]
Abstract
NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity.
Collapse
Affiliation(s)
- Jacob T Minang
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Jon R Inglefield
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Andrea M Harris
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Janet L Lathey
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - David G Alleva
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Diane L Sweeney
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Robert J Hopkins
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Michael J Lacy
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA.
| | - Edward W Bernton
- BioDefense Division, Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| |
Collapse
|
28
|
Kitaoka M, Naritomi A, Hirakawa Y, Kamiya N, Goto M. Transdermal immunization using solid-in-oil nanodispersion with CpG oligodeoxynucleotide adjuvants. Pharm Res 2014; 32:1486-92. [PMID: 25361868 DOI: 10.1007/s11095-014-1554-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Simple and noninvasive vaccine administration alternatives to injections are desired. A solid-in-oil (S/O) nanodispersion system was able to overcome skin barriers and induce an immune response; however, antibody levels remained low. We applied an immune potentiator, CpG oligodeoxynucleotide (ODN), to enhance the immune response by controlling the T helper 1 (Th1)/T helper 2 (Th2) balance. METHODS S/O nanodispersions containing ovalbumin (OVA) and CpG ODN (CpG-A or CpG-B) were characterized by size distribution analysis and a protein release test. The skin permeation of fluorescence-labeled OVA was observed by fluorescence microscopy. Antigen-specific IgG, IgG1, and IgG2a responses were measured by enzyme-linked immunosorbent assay. RESULTS Co-encapsulation of CpG ODNs in S/O nanodispersions enhanced induction of OVA-specific IgG. S/O nanodispersion containing OVA and CpG-A had a smaller mean particle size and permeated the skin more efficiently. In contrast, CpG-B showed the highest protein release and induction of OVA-specific IgG. IgG subclass analysis revealed that OVA induced a Th2-dominant immune response, while the S/O nanodispersion containing CpG-A skewed the immune response toward a Th1-bias. CONCLUSIONS In combination with CpG ODN, the S/O nanodispersion system efficiently induced an antigen-specific antibody response. The Th1/Th2 immune balance could be controlled by the selection of CpG ODN type.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, 819-0395, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
29
|
Aspord C, Tramcourt L, Leloup C, Molens JP, Leccia MT, Charles J, Plumas J. Imiquimod inhibits melanoma development by promoting pDC cytotoxic functions and impeding tumor vascularization. J Invest Dermatol 2014; 134:2551-2561. [PMID: 24751730 DOI: 10.1038/jid.2014.194] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 11/09/2022]
Abstract
Imiquimod (IMQ) is a synthetic Toll-like receptor (TLR7/8) ligand that can trigger antiviral and antitumor activities. Despite evidence of potent therapeutic effects, the clinical use of IMQ in melanoma is impeded by incomplete understanding of its mechanisms of action. Mice and humans differ in many aspects of immunity, including TLR7 expression patterns, thus impeding the use of mouse models in translating discoveries into clinical applications. In this article, we investigated the mechanisms behind IMQ effects in vivo in a human context of melanoma and immunity using an innovative melanoma-bearing humanized mouse model. In this model, IMQ strongly inhibited melanoma tumor development through prompt mobilization of plasmacytoid dendritic cells and by triggering their cytotoxic functions, and through upregulation of expression of type 1 IFN response genes. IMQ also drastically impeded tumor vascularization by inducing the downregulation of angiogenic factors vascular endothelial growth factor, angiogenin, IL-8, and fibroblast growth factor. Our results revealed the short- and long-term multifactorial effects of IMQ converging toward inhibition of melanoma development. By providing a better understanding of the mechanisms of action of IMQ in melanoma, our study opens the way for its further clinical use in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Caroline Aspord
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France.
| | - Laetitia Tramcourt
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Claire Leloup
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Jean-Paul Molens
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Marie-Therese Leccia
- University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France; Department of Dermatology, Grenoble University Hospital, Grenoble, France
| | - Julie Charles
- University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France; Department of Dermatology, Grenoble University Hospital, Grenoble, France
| | - Joel Plumas
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| |
Collapse
|
30
|
Topical CpG adjuvantation of a protein-based vaccine induces protective immunity to Listeria monocytogenes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:329-39. [PMID: 24391136 DOI: 10.1128/cvi.00734-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Robust CD8(+) T cell responses are essential for immune protection against intracellular pathogens. Using parenteral administration of ovalbumin (OVA) protein as a model antigen, the effect of the Toll-like receptor 9 (TLR9) agonist, CpG oligodeoxynucleotide (ODN) 1826, as an adjuvant delivered either topically, subcutaneously, or intramuscularly on antigen-specific CD8(+) T cell responses in a mouse model was evaluated. Topical CpG adjuvant increased the frequency of OVA-specific CD8(+) T cells in the peripheral blood and in the spleen. The more effective strategy to administer topical CpG adjuvant to enhance CD8(+) T cell responses was single-dose administration at the time of antigen injection with a prime-boost regimen. Topical CpG adjuvant conferred both rapid and long-lasting protection against systemic challenge with recombinant Listeria monocytogenes expressing the cytotoxic T lymphocyte (CTL) epitope of OVA(257-264) (strain Lm-OVA) in a TLR9-dependent manner. Topical CpG adjuvant induced a higher proportion of CD8(+) effector memory T cells than parenteral administration of the adjuvant. Although traditional vaccination strategies involve coformulation of antigen and adjuvant, split administration using topical adjuvant is effective and has advantages of safety and flexibility. Split administration of topical CpG ODN 1826 with parenteral protein antigen is superior to other administration strategies in enhancing both acute and memory protective CD8(+) T cell immune responses to subcutaneous protein vaccines. This vaccination strategy induces rapid and persistent protective immune responses against the intracellular organism L. monocytogenes.
Collapse
|
31
|
Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci U S A 2013; 110:19902-7. [PMID: 24248387 DOI: 10.1073/pnas.1313152110] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 μg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.
Collapse
|
32
|
Aspord C, Leccia MT, Charles J, Plumas J. Plasmacytoid Dendritic Cells Support Melanoma Progression by Promoting Th2 and Regulatory Immunity through OX40L and ICOSL. Cancer Immunol Res 2013; 1:402-15. [DOI: 10.1158/2326-6066.cir-13-0114-t] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Hu S, Chen H, Ma J, Chen Q, Deng H, Gong F, Huang H, Shi C. CpG7909 adjuvant enhanced immunogenicity efficacy in mice immunized with ESAT6-Ag85A fusion protein, but does not confer significant protection against Mycobacterium tuberculosis infection. J Appl Microbiol 2013; 115:1203-11. [PMID: 23902541 DOI: 10.1111/jam.12315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
AIMS This study aimed to investigate the ability of CpG7909 adjuvant to enhance immunogenicity and protective efficacy of a subunit vaccine composed of ESAT6-Ag85A fusion protein (Pe685a) of Mycobacterium tuberculosis. METHODS AND RESULTS ELISA was used to detect specific antibody and IFN-γ expression in sera; ELISPOT, to detect IFN-γ expression in splenocytes; MTT assay and FACS, to detect T-lymphocytes proliferation in spleens; and RT-PCR, to detect cytokines expression in lungs of mice after immunization. Bacterial load and histopathological lesions in lungs or spleens of mice challenged with Myco. tuberculosis H37Rv strain were analysed. Compared with incomplete Freund's adjuvant, CpG7909 induced more potent production of Pe685a-specific IgG2a/IgG1 antibody and higher expression of IFN-γ in sera, stimulated more generation of antigen-specific IFN-γ-secreting splenocytes, enhanced frequencies of CD3(+) CD4(+) and CD3(+) CD8(+) T-lymphocytes in spleen and increased transcription of TNF-α, IFN-γ, IL-6 and TLR9 in lung. However, lower bacterial load in lung and less severe lung pathology were not observed in CpG7909 group mice. CONCLUSIONS CpG7909 is able to enhance immunological effects of Pe685a subunit vaccine, but does not confer significant protective efficacy against Myco. tuberculosis infection. SIGNIFICANCE AND IMPACT OF THE STUDY CpG7909 as an adjuvant of subunit vaccine against Myco. tuberculosis is worthy of further investigation.
Collapse
Affiliation(s)
- S Hu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Medical College, Jianghan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
La Rosa C, Longmate J, Lacey SF, Kaltcheva T, Sharan R, Marsano D, Kwon P, Drake J, Williams B, Denison S, Broyer S, Couture L, Nakamura R, Dadwal S, Kelsey MI, Krieg AM, Diamond DJ, Zaia JA. Clinical evaluation of safety and immunogenicity of PADRE-cytomegalovirus (CMV) and tetanus-CMV fusion peptide vaccines with or without PF03512676 adjuvant. J Infect Dis 2012; 205:1294-304. [PMID: 22402037 DOI: 10.1093/infdis/jis107] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It has been reported that cytomegalovirus (CMV) pp65-specific T cells can protect hematopoietic cell transplant (HCT) recipients from CMV complications. Two candidate CMV peptide vaccines composed of the HLA A*0201 pp65(495-503) cytotoxic CD8(+) T-cell epitope fused to 2 different universal T-helper epitopes (either the synthetic Pan DR epitope [PADRE] or a natural Tetanus sequence) were clinically evaluated for safety and ability to elicit pp65 T cells in HLA A*0201 healthy volunteers. METHODS Escalating doses (0.5, 2.5, 10 mg) of PADRE or Tetanus pp65(495-503) vaccines with (30 adults) or without (28 adults) PF03512676 adjuvant were administered by subcutaneous injection every 3 weeks for a total of 4 injections. RESULTS No serious adverse events were reported, although vaccines used in combination with PF03512676 had enhanced reactogenicity. Ex vivo responses were detected by flow cytometry exclusively in volunteers who received the vaccine coadministered with PF03512676. In addition, using a sensitive in vitro stimulation system, vaccine-elicited pp65(495-503) T cells were expanded in 30% of volunteers injected solely with the CMV peptides and in all tested subjects receiving the vaccines coinjected with PF03512676. CONCLUSIONS Acceptable safety profiles and vaccine-driven expansion of pp65(495-503) T cells in healthy adults support further evaluation of CMV peptide vaccines combined with PF03512676 in the HCT setting. CLINICAL TRIALS REGISTRATION NCT00722839.
Collapse
Affiliation(s)
- Corinna La Rosa
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aspord C, Laurin D, Richard MJ, Vie H, Chaperot L, Plumas J. Induction of antiviral cytotoxic T cells by plasmacytoid dendritic cells for adoptive immunotherapy of posttransplant diseases. Am J Transplant 2011; 11:2613-26. [PMID: 21883919 DOI: 10.1111/j.1600-6143.2011.03722.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Virus-associated hematologic malignancies (EBV lymphoproliferative disease) and opportunistic infections (CMV) represent a major cause of hematopoietic stem cell and solid organ transplantation failure. Adoptive transfer of antigen-specific T lymphocytes appears to be a major and successful immunotherapeutic strategy, but improvements are needed to reliably produce high numbers of virus-specific T cells with appropriate requirements for adoptive immunotherapy that would allow extensive clinical use. Since plasmacytoid dendritic cells (pDCs) are crucial in launching antiviral responses, we investigated their capacity to elicit functional antiviral T-cell responses for adoptive cellular immunotherapy using a unique pDC line and antigens derived from Influenza, CMV and EBV viruses. Stimulation of peripheral blood mononuclear cells from HLA-A*0201(+) donors by HLA-A0201 matched pDCs pulsed with viral-derived peptides triggered high levels of multi-specific and functional cytotoxic T-cell responses (up to 99% tetramer(+) CD8 T cells) in vitro. Furthermore, the central/effector memory cytotoxic T cells elicited by the pDCs strongly display antiviral activity upon adoptive transfer into a humanized mouse model that mimics a virus-induced malignancy. We provide a simple and potent method to generate virus-specific CTL with the required properties for adoptive cellular immunotherapy of post-transplant diseases.
Collapse
Affiliation(s)
- C Aspord
- EFS Rhone-Alpes, R&D Laboratory, La Tronche F-38701, France.
| | | | | | | | | | | |
Collapse
|
36
|
Zhao K, Wang H, Wu C. The immune responses of HLA-A*0201 restricted SARS-CoV S peptide-specific CD8⁺ T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine 2011; 29:6670-8. [PMID: 21745520 PMCID: PMC7115397 DOI: 10.1016/j.vaccine.2011.06.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/13/2011] [Accepted: 06/25/2011] [Indexed: 01/13/2023]
Abstract
The induction of antigen specific memory CD8+ T cells in vivo is very important to new vaccines against infectious diseases. In the present study, we aimed to evaluate the immune responses of peptide-specific CD8+ T cells induced by HLA-A*0201 restricted severe acute respiratory syndrome-associated coronavirus (SARS-CoV) S epitopes plus CpG oligodeoxynucleotide (CpG ODN), PolyI:C and R848 as adjuvants. Furthermore, the generation, distribution and phenotype of long-lasting peptide-specific memory CD8+ T cells were assessed by ELISA, ELISPOT and flow cytometry. Our results showed that antigen specific CD8+ T cells were elicited by HLA-A*0201 restricted SARS-CoV S epitopes. Furthermore, the frequency of peptide-specific CD8+ T cells was dramatically increased after both prime and boost immunization with peptides plus CpG ODN, whereas slight enhancements were induced following boost vaccination with peptides plus PolyI:C or R848. SARS-CoV S peptide-specific IFN-γ+CD8+ T cells were distributed throughout the lymphoid and non-lymphoid tissues. Results also demonstrated that the HLA-A*0201 restricted peptide-specific CD8+ T cells induced by peptides plus CpG ODN carried a memory cell phenotype with CD45RB+ and CD62L− and possessed long-term survival ability in vivo. Taken together, our results implied that HLA-A*0201 restricted SARS-CoV S epitopes plus CpG ODN might be the superior candidates for SARS vaccine.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong Province 510080, People' s Republic of China
| | | | | |
Collapse
|
37
|
Butsch R, Lukas waelti S, Schaerer S, Braun J, Korol D, Probst-hensch N, Moch H, Kurrer M. Intratumoral plasmacytoid dendritic cells associate with increased survival in patients with follicular lymphoma. Leuk Lymphoma 2011; 52:1230-8. [DOI: 10.3109/10428194.2011.569619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine 2011; 29:3341-55. [PMID: 20713100 PMCID: PMC3000864 DOI: 10.1016/j.vaccine.2010.08.002] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/27/2010] [Accepted: 08/01/2010] [Indexed: 12/29/2022]
Abstract
This work describes the nature and strength of the immune response induced by various Toll-like receptor ligands and their ability to act as vaccine adjuvants. It reviews the various ligands capable of triggering individual TLRs, and then focuses on the efficacy and safety of those agents for which clinical results are available.
Collapse
Affiliation(s)
- Folkert Steinhagen
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | | | | | | |
Collapse
|
39
|
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines.
Collapse
Affiliation(s)
- Christian Bode
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Gan Zhao
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Folkert Steinhagen
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Takeshi Kinjo
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
40
|
|
41
|
Jähn PS, Zänker KS, Schmitz J, Dzionek A. BDCA-2 signaling inhibits TLR-9-agonist-induced plasmacytoid dendritic cell activation and antigen presentation. Cell Immunol 2010; 265:15-22. [PMID: 20673884 DOI: 10.1016/j.cellimm.2010.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 01/09/2023]
Abstract
Plasmacytoid dendritic cells (PDCs) express Toll-like receptor (TLR) 9, which mediates recognition of microbial DNA during infection or self-DNA in autoimmune diseases. Triggering TLR-9 in PDC induces either maturation (lysosomal TLR-9 triggering) or type I interferon (IFN-I) production (endosomal TLR-9 triggering). PDCs also express BDCA-2 (CD303), a C-type lectin receptor (CLR) unique to these cells. CLRs appear to function in innate immunity and microbial recognition, and may cooperate with TLRs to fine-tune inflammatory responses. It has been shown that anti-BDCA-2 monoclonal antibody is internalized by PDC for antigen presentation and inhibits TLR-9 induced IFN-I expression. Here we investigated the cross-talk between BDCA-2 and TLR-9-signaling during PDC maturation and antigen presentation. We found that BDCA-2-induced signaling in PDCs inhibits up-regulation of CD86 and CD40 molecules in CpG-activated PDCs, but not in CD40L-activated PDCs. Furthermore, triggering of BDCA-2 diminished the ability of CpG- and CD40L-stimulated PDCs to process and present antigen to antigen-specific autologous memory T cells. This study demonstrates that BDCA-2 represents an attractive target for clinical immunotherapy of IFN-I dependent autoimmune diseases influencing both, IFN-I production and antigen-specific T-cell stimulation by PDC.
Collapse
Affiliation(s)
- Peter S Jähn
- Department of Research and Development, Miltenyi Biotec GmbH, Friedrich-Ebert-Strasse 68, D-51429 Bergisch Gladbach, Germany.
| | | | | | | |
Collapse
|
42
|
Aspord C, Charles J, Leccia MT, Laurin D, Richard MJ, Chaperot L, Plumas J. A novel cancer vaccine strategy based on HLA-A*0201 matched allogeneic plasmacytoid dendritic cells. PLoS One 2010; 5:e10458. [PMID: 20454561 PMCID: PMC2864288 DOI: 10.1371/journal.pone.0010458] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 04/07/2010] [Indexed: 11/26/2022] Open
Abstract
Background The development of effective cancer vaccines still remains a challenge. Despite the crucial role of plasmacytoid dendritic cells (pDCs) in anti-tumor responses, their therapeutic potential has not yet been worked out. We explored the relevance of HLA-A*0201 matched allogeneic pDCs as vectors for immunotherapy. Methods and Findings Stimulation of PBMC from HLA-A*0201+ donors by HLA-A*0201 matched allogeneic pDCs pulsed with tumor-derived peptides triggered high levels of antigen-specific and functional cytotoxic T cell responses (up to 98% tetramer+ CD8 T cells). The pDC vaccine demonstrated strong anti-tumor therapeutic in vivo efficacy as shown by the inhibition of tumor growth in a humanized mouse model. It also elicited highly functional tumor-specific T cells ex-vivo from PBMC and TIL of stage I-IV melanoma patients. Responses against MelA, GP100, tyrosinase and MAGE-3 antigens reached tetramer levels up to 62%, 24%, 85% and 4.3% respectively. pDC vaccine-primed T cells specifically killed patients' own autologous melanoma tumor cells. This semi-allogeneic pDC vaccine was more effective than conventional myeloid DC-based vaccines. Furthermore, the pDC vaccine design endows it with a strong potential for clinical application in cancer treatment. Conclusions These findings highlight HLA-A*0201 matched allogeneic pDCs as potent inducers of tumor immunity and provide a promising immunotherapeutic strategy to fight cancer.
Collapse
Affiliation(s)
- Caroline Aspord
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- * E-mail: (CA); (JP)
| | - Julie Charles
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Dermatology, pole pluridisciplinaire de medecine, Grenoble, France
| | - Marie-Therese Leccia
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Dermatology, pole pluridisciplinaire de medecine, Grenoble, France
| | - David Laurin
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
| | - Marie-Jeanne Richard
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- Centre Hospitalier Universitaire Grenoble, Michallon Hospital, Cancerology and Biotherapy, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
| | - Joel Plumas
- Etablissement Français du Sang Rhone-Alpes, R&D Laboratory, La Tronche, France
- University Joseph Fourier, Grenoble, France
- INSERM, U823, Immunobiology & Immunotherapy of Cancers, La Tronche, France
- * E-mail: (CA); (JP)
| |
Collapse
|
43
|
Schwab N, Zozulya AL, Kieseier BC, Toyka KV, Wiendl H. An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2010; 184:5368-74. [PMID: 20357264 DOI: 10.4049/jimmunol.0903662] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are instrumental in peripheral T cell tolerance and innate immunity. How pDCs control peripheral immunetolerance and local parenchymal immune response and contribute to the altered immunoregulation in autoimmune disorders in humans is poorly understood. Based on their surface markers, cytokine production, and ability to prime naive allogenic T cells, we found that purified BDCA-2(+)BDCA-4(+) pDCs consist of at least two separate populations, which differed in their response to oligodeoxynucleotides and IFNs (IFN-beta), and differently induced IL-17- or IL-10-producing T cells. To evaluate the potential immunoregulatory role of these two types of pDCs in multiple sclerosis (MS) and other human autoimmune disorders (myasthenia gravis), we studied the phenotype and regulatory function of pDCs isolated from clinically stable, untreated patients with MS (n = 16). Patients with MS showed a reversed ratio of pDC1/pDC2 in peripheral blood (4.4:1 in healthy controls, 0.69:1 in MS), a phenomenon not observed in the other autoimmune disorders. As a consequence, MS pDCs had an overall propensity to prime IL-17-secreting cells over IL-10-secreting CD4+ T cells. Immunomodulatory therapy with IFN-beta induced an increase of the pDC1 population in vivo (n = 5). Our data offer a plausible explanation for the disturbed immune tolerance in MS patients and provide evidence that immunomodulatory therapy acts at the level of reconstituting homeostasis of pDC, thus reconstituting the disturbed balance.
Collapse
Affiliation(s)
- Nicholas Schwab
- Department of Neurology, Clinical Research Group for Multiple Sclerosis and Neuroimmunology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Fitzgerald-Bocarsly P, Jacobs ES. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 2010; 87:609-20. [PMID: 20145197 DOI: 10.1189/jlb.0909635] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
pDC are the most potent IFN-alpha-producing cells in the body and serve as a vital link between innate and adaptive immunity. Deficiencies in pDC function were among the earliest observations of immune dysfunction in HIV-1 infection. Herein, we review the status of pDC in individuals with HIV-1 infection and the potential role of these cells in pathogenesis. We begin by reviewing the basic properties of pDC and then discuss the compromise in circulating pDC numbers and function in early and viremic HIV-1 infection and mechanisms that might account for their depletion in HIV-infected patients. In addition, we review the evidence that chronic production of IFN-alpha, probably through the chronic activation of pDC, is central to the immune activation that is so detrimental in HIV infection. Finally, we discuss the importance of balance in pDC numbers and function and the potential value of using absolute pDC counts and function as a biomarker, along with CD4(+) cell counts and VL in HIV-1-infected patients.
Collapse
|
45
|
Dar A, Nichani A, Lai K, Potter A, Gerdts V, Babiuk LA, Mutwiri G. All three classes of CpG ODNs up-regulate IP-10 gene in pigs. Res Vet Sci 2009; 88:242-50. [PMID: 19896155 DOI: 10.1016/j.rvsc.2009.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 09/04/2009] [Accepted: 10/02/2009] [Indexed: 01/13/2023]
Abstract
The analysis of CpG ODN induced innate immune responses in different animal species has shown substantial similarities and differences in levels and types of induced cytokines profile. The objectives of these studies were to identify innate immune biomarkers activated by three classes of CpG ODNs in pigs. For this purpose, we investigated the kinetics of innate immune responses in immune cells from pigs following in vitro and in vivo stimulation with CpG ODNs. The mRNA expression of cytokine and chemokine genes were assayed by SYBR green based quantitative real time PCR. A-class CpG ODN induced significant but transient levels of IFN-gamma, IL-12 (P40), IL-6, IL-4 and TNF-alpha mRNA, C-class CpG ODN induced significant level of IFN-gamma, IFN-alpha and IL-12 mRNA and the lowest level of IL-4 (Th-2 type) mRNA. A very low level of some cytokines stimulation was observed by GC ODNs. It is noteworthy, that IL-12 (P35) mRNA was significantly stimulated by B-class GpC ODN 7909. Interestingly, all classes of CpG ODNs induced significant level of IP-10 at 12h post stimulation. These in vitro and in vivo observations suggest that interferon-gamma inducible protein 10 (IP-10) may be a reliable biomarker for immune activity induced by CpG ODNs in pigs.
Collapse
Affiliation(s)
- Arshud Dar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wilson HL, Dar A, Napper SK, Marianela Lopez A, Babiuk LA, Mutwiri GK. Immune Mechanisms and Therapeutic Potential of CpG Oligodeoxynucleotides. Int Rev Immunol 2009; 25:183-213. [PMID: 16818371 DOI: 10.1080/08830180600785868] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unmethylated CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides activate immune cells that express Toll-like Receptor 9. Activation through this receptor triggers cellular signaling that leads to production of a proinflammatory and a Th1-type, antigen-specific immune response. The immunostimulatory effects of CpG oligodeoxynucleotides confer protection against infectious disease, allergy and cancer in animal models, and clinical trials have been initiated. However, CpG oligodeoxynucleotides may exacerbate disease in some situations. We will review current concepts in the mechanisms of activating Toll-like Receptor 9 with CpG oligodeoxynucleotides and highlight opportunities for using large animal models to better determine the mechanisms of action.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Molenkamp BG, Sluijter BJR, van Leeuwen PAM, Santegoets SJAM, Meijer S, Wijnands PGJTB, Haanen JBAG, van den Eertwegh AJM, Scheper RJ, de Gruijl TD. Local administration of PF-3512676 CpG-B instigates tumor-specific CD8+ T-cell reactivity in melanoma patients. Clin Cancer Res 2008; 14:4532-42. [PMID: 18628468 DOI: 10.1158/1078-0432.ccr-07-4711] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Impaired immune effector functions in the melanoma sentinel lymph node (SLN) may allow for early metastatic events. Local administration of PF-3512676 (formerly known as CpG 7909) has shown immunostimulatory effects of both dendritic cell and T-cell subsets in the melanoma SLN. Here, we set out to ascertain whether these PF-3512676-induced immunostimulatory effects translate into higher frequencies of melanoma-specific CD8(+) T cells. EXPERIMENTAL DESIGN Twenty-four stage I to III melanoma patients were randomized to preoperative local administration of either PF-3512676 or saline. CD8(+) T cells from SLN and peripheral blood were tested for reactivity by IFN-gamma ELISPOT assay against several HLA-A1/A2/A3-restricted epitopes derived from various melanoma-associated antigens (MAA) in 21 of 24 enrolled patients. Frequencies of natural killer (NK) cells and frequencies and maturation state of dendritic cell subsets in the SLN were determined by flow cytometry. RESULTS Melanoma-specific CD8(+) T-cell response rates against >1 MAA epitope in the SLN were 0 of 11 for the saline group versus 5 of 10 for the PF-3512676-administered group (P = 0.012). Of these 5 responding patients, 4 also had a measurable response to >1 MAA epitope in the blood. Increased frequencies in the SLN of both MAA-specific CD8(+) T cells and NK cells correlated to CpG-induced plasmacytoid dendritic cell maturation. CONCLUSIONS These data show an increase in melanoma-specific CD8(+) T-cell frequencies as well as an increased effector NK cell rate after a single dose of PF-3512676 and thus support the utility of local PF-3512676 administration as adjuvant treatment in early-stage melanoma to try and halt metastatic spread.
Collapse
Affiliation(s)
- Barbara G Molenkamp
- Department of Surgical Oncology, Medical Oncology, and Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Park JE, Kim YI, Yi AK. Protein kinase D1: a new component in TLR9 signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:2044-55. [PMID: 18641342 DOI: 10.4049/jimmunol.181.3.2044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein kinase D1 (PKD1) is expressed ubiquitously and regulates diverse cellular processes such as oxidative stress, gene expression, cell survival, and vesicle trafficking. However, the presence and function of PKD1 in monocytic cells are currently unknown. In this study, we provide evidence that PKD1 is involved in TLR9 signaling in macrophages. Class B-type CpG DNA (CpG-B DNA) induced activation of PKD1 via a pathway that is dependent on endosomal pH, TLR9, MyD88, and IL-1R-associated kinase 1 in macrophages. Upon CpG-B DNA stimulation, PKD1 interacted with the TLR9/MyD88/IL-1R-associated kinase/TNFR-associated factor 6 complex. Knockdown of PKD1 revealed that PKD1 is required for activation of NF-kappaB and MAPKs, and subsequent expression of cytokines in response to CpG-B DNA. Our findings identify PKD1 as a key signaling modulator in TLR9-mediated macrophage activation.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | |
Collapse
|
49
|
Malaspina A, Moir S, DiPoto AC, Ho J, Wang W, Roby G, O'Shea MA, Fauci AS. CpG oligonucleotides enhance proliferative and effector responses of B Cells in HIV-infected individuals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1199-206. [PMID: 18606673 PMCID: PMC2670450 DOI: 10.4049/jimmunol.181.2.1199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stimulation through TLR represents a new therapeutic approach for enhancing Ab responses to vaccination. Considering that Ab responses are decreased in HIV disease and that B cells express TLR9 and respond to TLR9 agonists, we investigated the responsiveness of B cell subpopulations from HIV-infected and uninfected individuals to the TLR9 agonist CpG oligonucleotide type B (CpG-B) in the presence and absence of BCR ligation and T cell help (CD40L). CpG-B was equally effective in stimulating the proliferation of naive B cells of HIV-infected individuals and HIV-negative individuals, and, when combined with BCR and CD40 ligation, cytokine secretion by naive B cells was also comparable in HIV-infected and uninfected individuals. In contrast, CD27(+) memory/activated B cells of HIV-infected individuals with active disease were less responsive to CpG-B in terms of proliferation and cytokine secretion when compared with CD27(+) B cells of HIV-negative and HIV-infected individuals whose viremia was controlled by antiretroviral therapy. These findings suggest that despite abnormalities in memory B cells of HIV-infected individuals with active disease, naive B cells of HIV-infected individuals, irrespective of disease status, can respond to TLR9 agonists and that the incorporation of such agents in vaccine formulations may enhance their Ab responses to vaccination.
Collapse
Affiliation(s)
- Angela Malaspina
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tör M, Billiar T. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 2008; 220:60-81. [PMID: 17979840 DOI: 10.1111/j.1600-065x.2007.00579.x] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The response to pathogens and damage in plants and animals involves a series of carefully orchestrated, highly evolved, molecular mechanisms resulting in pathogen resistance and wound healing. In metazoans, damage- or pathogen-associated molecular pattern molecules (DAMPs, PAMPs) execute precise intracellular tasks and are also able to exert disparate functions when released into the extracellular space. The emergent consequence for both inflammation and wound healing of the abnormal extracellular persistence of these factors may underlie many clinical disorders. DAMPs/PAMPs are recognized by hereditable receptors including the Toll-like receptors, the NOD1-like receptors and retinoic-acid-inducible gene I-like receptors, as well as the receptor for advanced glycation end products. These host molecules 'sense' not only pathogens but also misfolded/glycated proteins or exposed hydrophobic portions of molecules, activating intracellular cascades that lead to an inflammatory response. Equally important are means to not only respond to these molecules but also to eradicate them. We have speculated that their destruction through oxidative mechanisms normally exerted by myeloid cells, such as neutrophils and eosinophils, or their persistence in the setting of pathologic extracellular reducing environments, maintained by exuberant necrotic cell death and/or oxidoreductases, represent important molecular means enabling chronic inflammatory states.
Collapse
Affiliation(s)
- Michael T Lotze
- Department of Surgery, G.27A Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|