1
|
Yuan Z, Ostrowska‐Podhorodecka Z, Cox T, Norouzi M, Wang Y, Robaszkiewicz K, Siatkowska M, Xia K, Ali A, Abovsky M, Jurisica I, Smith P, McCulloch CA. Annexin A2 Contributes to Release of Extracellular Vimentin in Response to Inflammation. FASEB J 2025; 39:e70621. [PMID: 40346842 PMCID: PMC12065020 DOI: 10.1096/fj.202500793r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Vimentin, an abundant intracellular cytoskeletal protein, is secreted into the extracellular space, where it can amplify tissue destruction in inflammatory diseases. The mechanisms by which inflammation promotes the release of extracellular vimentin (ECV) are not defined. In human subjects, we found > twofold higher levels of ECV in gingival crevicular fluid from periodontitis sites with inflammation compared with healthy sites. In cultures of human gingival fibroblasts (hGFs) treated with 1% serum or IL-1β (10 ng/mL) to model tissue injury or inflammation, respectively, we found that 1% serum increased ECV release > 11-fold while IL-1β further enhanced release 17-fold. Mass spectrometry of vimentin immunoprecipitates identified Annexin A2 (AnxA2), a Ca2+-dependent phospholipid-binding protein, as a potential binding protein of ECV, which was confirmed by immunoprecipitation of cultured hGFs and immunostaining of inflamed human gingiva. IL-1β treatment enhanced the abundance of AnxA2 and vimentin in membrane fractions prepared by sucrose gradients of hGF lysates. IL-1β increased colocalization of ECV and AnxA2 at the outer aspect of the plasma membrane of intact hGFs. Knockdown of AnxA2 with siRNA or inhibition of the unconventional secretory pathway reduced ECV release from hGFs. These findings indicate that the production of ECV by hGFs in response to inflammation is mediated by an AnxA2-dependent, unconventional secretory pathway that may play a role in amplification of the inflammatory response.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of StomatologyNanjing UniversityNanjingChina
| | | | - T. Cox
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - M. Norouzi
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Y. Wang
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - K. Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Natural SciencesKazimierz Wielki University in BydgoszczBydgoszczPoland
| | - M. Siatkowska
- Department of Biochemistry and Cell Biology, Faculty of Natural SciencesKazimierz Wielki University in BydgoszczBydgoszczPoland
- Laboratory of Molecular and Nanostructural BiophysicsBionanoparkLodzPoland
| | - K. Xia
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - A. Ali
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - M. Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - I. Jurisica
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada
- Institute of NeuroimmunologySlovak Academy of SciencesBratislavaSlovakia
| | - P. Smith
- Faculty of Medicine, School of DentistryPontificia Universidad Católica de ChileSantiagoChile
| | - C. A. McCulloch
- Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
2
|
Yilmaz M, Bal İ, Hanli S, Turkmen E, Balci N, Toygar HU. Annexin levels in GCF determine the imbalance of periodontal inflammatory regulation. Sci Rep 2024; 14:28833. [PMID: 39572681 PMCID: PMC11582596 DOI: 10.1038/s41598-024-80418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE Annexin-1 (ANXA1), a member of the annexin family, plays a role in the resolution of inflammation and the regulation of anti-inflammatory responses, while annexin-2 (ANXA2) is involved in the initiation of the inflammatory responses. The aim of this study was to determine the effects of annexin family (ANXA1 and ANXA2) in periodontal disease. METHODS Healthy participants (n:25) and stage III, grade B periodontitis (n:25) patients enrolled for this study. Clinical periodontal parameters and the periodontal inflamed surface area (PISA) levels were noted. Serum, saliva, and gingival crevicular fluid (GCF) samples were collected to measure the ANXA1, ANXA2 and IL-1β levels. RESULTS Salivary and serum concentrations of ANXA1 was significantly lower in the periodontitis group than in the control group (respectively, p = 0.0177 and p = < 0.0001). Periodontitis patients demonstrated higher serum ANXA2 and IL-1β concentrations compared to controls (respectively, p = 0.0002 and p = 0.0017). As an inflammatory index; saliva, serum and GCF ANXA1/ANXA2 ratio were significantly lower in the periodontitis group compared to healthy controls. CONCLUSIONS The data suggest that periodontitis is associated with a disruption of the balance between pro-inflammatory mechanisms (ANXA2 and IL-1beta) and inflammation resolution (ANXA1), in parallel with PISA levels. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT06554756 (15/08/2024).
Collapse
Affiliation(s)
- Melis Yilmaz
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - İpek Bal
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Sena Hanli
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Emrah Turkmen
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Nur Balci
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey.
| | - Hilal Uslu Toygar
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| |
Collapse
|
3
|
Wang XY, Zhang RZ, Wang YK, Pan S, Yun SM, Li JJ, Xu YJ. An updated overview of the search for biomarkers of osteoporosis based on human proteomics. J Orthop Translat 2024; 49:37-48. [PMID: 39430131 PMCID: PMC11488448 DOI: 10.1016/j.jot.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Osteoporosis is a chronic metabolic disease that increases bone fragility and, leads to severe osteoporotic fractures. In recent years, the use of high-throughput omics to explore physiological and pathological biomarkers related to bone metabolism has gained popularity. In this review, we first briefly review the technical approaches of proteomics. Additionally, we summarize the relevant literature in the last decade to provide a comprehensive overview of advances in human proteomics related to osteoporosis. We describe the specific roles of various proteins related to human bone metabolism, highlighting their potential as biomarkers for risk assessment, early diagnosis and disease course monitoring in osteoporosis. Finally, we outline the main challenges currently faced by human proteomics in the field of osteoporosis and offer suggestions to address these challenges, to inspire the search for novel osteoporosis biomarkers and a foundation for their clinical translation. In conclusion, proteomics is a powerful tool for discovering osteoporosis-related biomarkers, which can not only provide risk assessment, early diagnosis and disease course monitoring, but also reveal the underlying mechanisms of disease and provide key information for personalized treatment. The translational potential of this article This review provides an insightful summary of recent human-based studies on osteoporosis-associated proteomics, which can aid the search for novel osteoporosis biomarkers based on human proteomics and the clinical translation of research results.
Collapse
Affiliation(s)
- Xiong-Yi Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui-Zhi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Ke Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Pan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Si-Min Yun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun-Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Luo M, Almeida D, Dallacasagrande V, Hedhli N, Gupta M, D'Amico DJ, Kiss S, Hajjar KA. Annexin A2 promotes proliferative vitreoretinopathy in response to a macrophage inflammatory signal in mice. Nat Commun 2024; 15:8757. [PMID: 39384746 PMCID: PMC11464875 DOI: 10.1038/s41467-024-52675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Proliferative vitreoretinopathy is a vision-threatening response to penetrating ocular injury, for which there is no satisfactory treatment. In this disorder, retinal pigment epithelial cells, abandon their attachment to Bruch's membrane on the scleral side of the retina, transform into motile fibroblast-like cells, and migrate through the retinal wound to the vitreal surface of the retina, where they secrete membrane-forming proteins. Annexin A2 is a calcium-regulated protein that, in complex with S100A10, assembles plasmin-forming proteins at cell surfaces. Here, we show that, in proliferative vitreoretinopathy, recruitment of macrophages and directed migration of retinal pigment epithelial cells are annexin A2-dependent, and stimulated by macrophage inflammatory protein-1α/β. These factors induce translocation of annexin A2 to the cell surface, thus enabling retinal pigment epithelial cell migration following injury; our studies reveal further that treatment of mice with intraocular antibody to either annexin A2 or macrophage inflammatory protein dampens the development of proliferative vitreoretinopathy in mice.
Collapse
Affiliation(s)
- Min Luo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Nadia Hedhli
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Hudson Community College, Jersey City, NJ, USA
| | - Mrinali Gupta
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Donald J D'Amico
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
5
|
Wang T, Zhao D, Zhang Y, Yu D, Liu G, Zhang K. Annexin A2: A Double-Edged Sword in Pathogen Infection. Pathogens 2024; 13:564. [PMID: 39057791 PMCID: PMC11279864 DOI: 10.3390/pathogens13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional calcium- and phospholipid-binding protein that plays an important role in various cells. During pathogen infections, ANXA2 modulates the nuclear factor kappa-B (NF-κB) and cell apoptosis signaling pathways and guides the chemotaxis of inflammatory cells toward inflammation sites, thereby protecting the host organism through the modulation of the inflammatory response. In addition, ANXA2 can regulate immune responses, and in certain pathogen infections, it can interact with pathogen proteins to facilitate their invasion and proliferation. This review provides an overview of the research progress on how ANXA2 regulates pathogen infections.
Collapse
Affiliation(s)
- Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
6
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
7
|
Lamothe-Reyes Y, Figueroa M, Sánchez O. Host cell factors involved in classical swine fever virus entry. Vet Res 2023; 54:115. [PMID: 38041163 PMCID: PMC10693020 DOI: 10.1186/s13567-023-01238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023] Open
Abstract
Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.
Collapse
Affiliation(s)
- Yaneysis Lamothe-Reyes
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
8
|
Mahdi AF, Nolan J, O’Connor RÍ, Lowery AJ, Allardyce JM, Kiely PA, McGourty K. Collagen-I influences the post-translational regulation, binding partners and role of Annexin A2 in breast cancer progression. Front Oncol 2023; 13:1270436. [PMID: 37941562 PMCID: PMC10628465 DOI: 10.3389/fonc.2023.1270436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The extracellular matrix (ECM) has been heavily implicated in the development and progression of cancer. We have previously shown that Annexin A2 is integral in the migration and invasion of breast cancer cells and in the clinical progression of ER-negative breast cancer, processes which are highly influenced by the surrounding tumor microenvironment and ECM. Methods We investigated how modulations of the ECM may affect the role of Annexin A2 in MDA-MB-231 breast cancer cells using western blotting, immunofluorescent confocal microscopy and immuno-precipitation mass spectrometry techniques. Results We have shown that the presence of collagen-I, the main constituent of the ECM, increases the post-translational phosphorylation of Annexin A2 and subsequently causes the translocation of Annexin A2 to the extracellular surface. In the presence of collagen-I, we identified fibronectin as a novel interactor of Annexin A2, using mass spectrometry analysis. We then demonstrated that reducing Annexin A2 expression decreases the degradation of fibronectin by cancer cells and this effect on fibronectin turnover is increased according to collagen-I abundance. Discussion Our results suggest that Annexin A2's role in promoting cancer progression is mediated by collagen-I and Annexin A2 maybe a therapeutic target in the bi-directional cross-talk between cancer cells and ECM remodeling that supports metastatic cancer progression.
Collapse
Affiliation(s)
- Amira F. Mahdi
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Joanne Nolan
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Ruth Í. O’Connor
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Aoife J. Lowery
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Joanna M. Allardyce
- Health Research Institute, University of Limerick, Limerick, Ireland
- School of Allied Health, University of Limerick, Limerick, Ireland
| | - Patrick A. Kiely
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Health Research Institute, University of Limerick, Limerick, Ireland
- Science Foundation Ireland Research Centre in Pharmaceuticals (SSPC), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
10
|
Angeletti A, Bruschi M, Kajana X, Spinelli S, Verrina E, Lugani F, Caridi G, Murtas C, Candiano G, Prunotto M, Ghiggeri GM. Mechanisms Limiting Renal Tissue Protection and Repair in Glomerulonephritis. Int J Mol Sci 2023; 24:ijms24098318. [PMID: 37176025 PMCID: PMC10179029 DOI: 10.3390/ijms24098318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Glomerulonephritis are renal disorders resulting from different pathogenic mechanisms (i.e., autoimmunity, complement, inflammatory activation, etc.). Clarifying details of the pathogenic cascade is basic to limit the progression from starting inflammation to degenerative stages. The balance between tissue injury, activation of protective systems and renal tissue repair determines the final outcome. Induction of an oxidative stress is part of glomerular inflammation and activation of protective antioxidant systems has a crucial role in reducing tissue effects. The generation of highly reactive oxygen species can be evaluated in vivo by tracing the inner-layer content of phosphatidyl ethanolamine and phosphatidyl serine in cell membranes. Albumin is the major antioxidant in serum and the level of oxidized albumin is another indirect sign of oxidative stress. Studies performed in Gn, specifically in FSGS, showed a high degree of oxidation in most contexts. High levels of circulating anti-SOD2 antibodies, limiting the detoxyfing activity of SOD2, have been detected in autoimmune Gn(lupus nephritis and membranous nephropathy) in association with persistence of proteinuria and worsening of renal function. In renal transplant, high levels of circulating anti-Glutathione S-transferase antibodies have been correlated with chronic antibody rejection and progressive loss of renal function. Annexins, mainly ANXA1 and ANXA2, play a general anti-inflammatory effect by inhibiting neutrophil functions. Cytosolic ANXA1 is decreased in apoptotic neutrophils of patients with glomerular polyangitis in association with delayed apoptosis that is considered the mechanism for polyangitis. High circulating levels of anti-ANXA1 and anti-ANXA2 antibodies characterize lupus nephritis implying a reduced anti-inflammatory effect. High circulating levels of antibodies targeting Macrophages (anti-FMNL1) have been detected in Gn in association with proteinuria. They potentially modify the intra-glomerular presence of protective macrophages (M2a, M2c) thus acting on the composition of renal infiltrate and on tissue repair.
Collapse
Affiliation(s)
- Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy
| | - Xuliana Kajana
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Sonia Spinelli
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Enrico Verrina
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Francesca Lugani
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Gialuca Caridi
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Corrado Murtas
- Nephrology and Dialysis Unit, Ospedale Belcolle, 01100 Viterbo, Italy
| | - Giovanni Candiano
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis and Transplantation Unit, IRCCS, Istituto GianninaGaslini, 16147 Genova, Italy
| |
Collapse
|
11
|
Hsing DD, Stock AC, Greenwald BM, Bacha EA, Flynn PA, Carroll SJ, Dayton JD, Prockop SE, Qiu Y, Almeida D, Tamura S, Hajjar KA. Annexin A2 Loss After Cardiopulmonary Bypass and Development of Acute Postoperative Respiratory Dysfunction in Children. Crit Care Explor 2023; 5:e0862. [PMID: 36798534 PMCID: PMC9925105 DOI: 10.1097/cce.0000000000000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The primary objective of this study was to determine whether expression of the multifunctional and adherens junction-regulating protein, annexin A2 (A2), is altered following cardiopulmonary bypass (CPB). A secondary objective was to determine whether depletion of A2 is associated with post-CPB organ dysfunction in children. DESIGN In a prospective, observational study conducted over a 1-year period in children undergoing cardiac surgery requiring CPB, we analyzed A2 expression in peripheral blood mononuclear cells at different time points. We then assessed the relationship of A2 expression with organ function at each time point in the early postoperative period. SETTING Twenty-three-bed mixed PICU in a tertiary academic center. PARTICIPANTS Patients 1 month to 18 years old undergoing cardiac surgery requiring CPB. MEAN OUTCOME MEASUREMENTS AND RESULTS We analyzed A2 expression in 22 enrolled subjects (n = 9, 1-23 mo old; n = 13, 2-18 yr old) and found a proteolysis-mediated decline in intact A2 immediately after bypass (p = 0.0009), reaching a median of 4% of baseline at 6 hours after bypass (p < 0.0001), and recovery by postoperative day 1. The degree of A2 depletion immediately after bypass in 1-23-month-olds correlated strongly with the extent of organ dysfunction, as measured by PICU admission Vasoactive-Ventilation-Renal (p = 0.004) and PEdiatric Logistic Organ Dysfunction-2 (p = 0.039) scores on postoperative day 1. A2 depletion immediately after bypass also correlated with more protracted requirement for both respiratory support (p = 0.007) and invasive ventilation (p = 0.013) in the 1-23-month-olds. CONCLUSIONS AND RELEVANCE The degree of depletion of A2 following CPB correlates with more severe organ dysfunction, especially acute respiratory compromise in children under 2 years. These findings suggest that loss of A2 may contribute to pulmonary microvascular leak in young children following CPB.
Collapse
Affiliation(s)
- Deyin D. Hsing
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Arabela C. Stock
- Division of Cardiac Critical Care Medicine, Heart Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bruce M. Greenwald
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Emile A. Bacha
- Division of Cardiac, Thoracic and Vascular Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, New York City, NY
| | - Patrick A. Flynn
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Sheila J. Carroll
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Jeffrey D. Dayton
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Susan E. Prockop
- Stem Cell Transplant Program, Division of Hematology-Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Yuqing Qiu
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY
| | - Dena Almeida
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Shoran Tamura
- Medical School, Class of 2024, Albert Einstein College of Medicine, Bronx, NY
| | - Katherine A. Hajjar
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| |
Collapse
|
12
|
Green D. Pathophysiology of the Antiphospholipid Antibody Syndrome. Thromb Haemost 2021; 122:1085-1095. [PMID: 34794200 PMCID: PMC9391091 DOI: 10.1055/a-1701-2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The antiphospholipid syndrome is characterized by antibodies directed against phospholipid-binding proteins and phospholipids attached to cell membrane receptors, mitochondria, oxidized lipoproteins, and activated complement components. When antibodies bind to these complex antigens, cells are activated and the coagulation and complement cascades are triggered, culminating in thrombotic events and pregnancy morbidity that further define the syndrome. The phospholipid-binding proteins most often involved are annexins II and V, β2-glycoprotein I, prothrombin, and cardiolipin. A distinguishing feature of the antiphospholipid syndrome is the "lupus anticoagulant". This is not a single entity but rather a family of antibodies directed against complex antigens consisting of β2-glycoprotein I and/or prothrombin bound to an anionic phospholipid. Although these antibodies prolong in vitro clotting times by competing with clotting factors for phospholipid binding sites, they are not associated with clinical bleeding. Rather, they are thrombogenic because they augment thrombin production in vivo by concentrating prothrombin on phospholipid surfaces. Other antiphospholipid antibodies decrease the clot-inhibitory properties of the endothelium and enhance platelet adherence and aggregation. Some are atherogenic because they increase lipid peroxidation by reducing paraoxonase activity, and others impair fetal nutrition by diminishing placental antithrombotic and fibrinolytic activity. This plethora of destructive autoantibodies is currently managed with immunomodulatory agents, but new approaches to treatment might include vaccines against specific autoantigens, blocking the antibodies generated by exposure to cytoplasmic DNA, and selective targeting of aberrant B-cells to reduce or eliminate autoantibody production.
Collapse
Affiliation(s)
- David Green
- Medicine/Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
13
|
Lim HI, Hajjar KA. Annexin A2 in Fibrinolysis, Inflammation and Fibrosis. Int J Mol Sci 2021; 22:6836. [PMID: 34202091 PMCID: PMC8268605 DOI: 10.3390/ijms22136836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
As a cell surface tissue plasminogen activator (tPA)-plasminogen receptor, the annexin A2 (A2) complex facilitates plasmin generation on the endothelial cell surface, and is an established regulator of hemostasis. Whereas A2 is overexpressed in hemorrhagic disease such as acute promyelocytic leukemia, its underexpression or impairment may result in thrombosis, as in antiphospholipid syndrome, venous thromboembolism, or atherosclerosis. Within immune response cells, A2 orchestrates membrane repair, vesicle fusion, and cytoskeletal organization, thus playing a critical role in inflammatory response and tissue injury. Dysregulation of A2 is evident in multiple human disorders, and may contribute to the pathogenesis of various inflammatory disorders. The fibrinolytic system, moreover, is central to wound healing through its ability to remodel the provisional matrix and promote angiogenesis. A2 dysfunction may also promote tissue fibrogenesis and end-organ fibrosis.
Collapse
Affiliation(s)
- Hana I. Lim
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Katherine A. Hajjar
- Division of Hematology and Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
14
|
Fassel H, Chen H, Ruisi M, Kumar N, DeSancho M, Hajjar KA. Reduced expression of annexin A2 is associated with impaired cell surface fibrinolysis and venous thromboembolism. Blood 2021; 137:2221-2230. [PMID: 33512476 PMCID: PMC8063089 DOI: 10.1182/blood.2020008123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023] Open
Abstract
Reduced plasma fibrinolysis has been identified as a potential risk factor for venous thromboembolism (VTE), but the role of cell surface fibrinolysis in VTE is unknown. The annexin A2/S100A10 complex serves as a coreceptor for plasminogen and tissue plasminogen activator (tPA), augmenting plasmin generation by 60-fold on the endothelial cell surface. Several studies in both mice and humans support the concept that A2 regulates fibrin homeostasis and intravascular thrombosis in vivo. Here, we examined A2 protein expression and function in 115 adult subjects with VTE and 87 healthy controls. Using peripheral blood mononuclear cells as a surrogate for endothelial cells, we found a 41% mean decrease in cell surface tPA-dependent fibrinolytic activity in subjects who had a positive personal and family history of VTE but tested negative for known inherited thrombophilias (ITs). A2 protein was reduced on average by 70% and messenger RNA levels by 30%, but neither decrease correlated with anticoagulant therapy. Neither cell A2 protein nor cell surface plasmin generation correlated with plasma-based clot lysis times, suggesting that the plasma and cell surface fibrinolytic systems operate independently of one another. These data suggest that reduced expression of annexin A2 protein is associated with cell surface hypofibrinolysis and may represent a novel risk factor for IT.
Collapse
Affiliation(s)
| | | | | | | | - Maria DeSancho
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Katherine A Hajjar
- Department of Pediatrics and
- Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
15
|
Xiong K, Shi M, Zhang T, Han H. Protective effect of picroside I against hepatic fibrosis in mice via sphingolipid metabolism, bile acid biosynthesis, and PPAR signaling pathway. Biomed Pharmacother 2020; 131:110683. [PMID: 32942155 DOI: 10.1016/j.biopha.2020.110683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Picroside I, a hepatoprotectant isolated from Picrorhiza kurroa Royle ex Benth and P. scrophulariiflora Pennell, can reduce liver injury in humans and animals. However, its anti-fibrosis effect remains elusive. This work aimed to explore the mechanism underlying the hepatoprotective effect of picroside I against hepatic fibrosis. Male mice (12 mice per group) were randomly divided into six groups: the control group; the model group, which received thioacetamide (TAA); the positive group, which received TAA + S-(5'-adenosyl)-l-methionine (SAMe, 10 mg/kg); the low-dose group, which received TAA + picroside I (25 mg/kg); the middle-dose group, which received TAA + picroside I (50 mg/kg); and the high-dose group, which received TAA + picroside I (75 mg/kg). Serum biochemical indicators were detected, and histological evaluation was performed. Metabolomics and proteomic analyses were conducted via liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). Data showed that picroside I could decrease the serum levels of alanine transaminase (ALT), aspartate transaminase (AST), collagen type IV (CIV), N-terminal peptide of type III procollagen (PIIINP), laminin (LN), and hyaluronic acid (HA) and reduced fibrosis area. Picroside I altered metabolomic profiles, including energy, lipid, and glutathione (GSH) metabolism, in ice with fibrosis. Additionally, 25 differentially expressed proteins in the picroside I high-dose-treated group were reversed relative to in the model group. These proteins were involved in the sphingolipid signaling pathway, primary bile acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Moreover, this study revealed how picroside I could protect against TAA-induced liver fibrosis in mice. Results indicated that picroside I can serve as a candidate drug for hepatic fibrosis.
Collapse
Affiliation(s)
- Kai Xiong
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Mengge Shi
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China.
| |
Collapse
|
16
|
Toufiq M, Roelands J, Alfaki M, Syed Ahamed Kabeer B, Saadaoui M, Lakshmanan AP, Bangarusamy DK, Murugesan S, Bedognetti D, Hendrickx W, Al Khodor S, Terranegra A, Rinchai D, Chaussabel D, Garand M. Annexin A3 in sepsis: novel perspectives from an exploration of public transcriptome data. Immunology 2020; 161:291-302. [PMID: 32682335 PMCID: PMC7692248 DOI: 10.1111/imm.13239] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
According to publicly available transcriptome datasets, the abundance of Annexin A3 (ANXA3) is robustly increased during the course of sepsis; however, no studies have examined the biological significance or clinical relevance of ANXA3 in this pathology. Here we explored this interpretation gap and identified possible directions for future research. Based on reference transcriptome datasets, we found that ANXA3 expression is restricted to neutrophils, is upregulated in vitro after exposure to plasma obtained from septic patients, and is associated with adverse clinical outcomes. Secondly, an increase in ANXA3 transcript abundance was also observed in vivo, in the blood of septic patients in multiple independent studies. ANXA3 is known to mediate calcium-dependent granules-phagosome fusion in support of microbicidal activity in neutrophils. More recent work has also shown that ANXA3 enhances proliferation and survival of tumour cells via a Caspase-3-dependent mechanism. And this same molecule is also known to play a critical role in regulation of apoptotic events in neutrophils. Thus, we posit that during sepsis ANXA3 might either play a beneficial role, by facilitating microbial clearance and resolution of the infection; or a detrimental role, by prolonging neutrophil survival, which is known to contribute to sepsis-mediated organ damage.
Collapse
|
17
|
Annexin A2 in Inflammation and Host Defense. Cells 2020; 9:cells9061499. [PMID: 32575495 PMCID: PMC7348701 DOI: 10.3390/cells9061499] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Annexin A2 (AnxA2) is a multifunctional calcium2+ (Ca2+) and phospholipid-binding protein that is expressed in a wide spectrum of cells, including those participating in the inflammatory response. In acute inflammation, the interaction of AnxA2 with actin and adherens junction VE-cadherins underlies its role in regulating vascular integrity. In addition, its contribution to endosomal membrane repair impacts several aspects of inflammatory regulation, including lysosome repair, which regulates inflammasome activation, and autophagosome biogenesis, which is essential for macroautophagy. On the other hand, AnxA2 may be co-opted to promote adhesion, entry, and propagation of bacteria or viruses into host cells. In the later stages of acute inflammation, AnxA2 contributes to the initiation of angiogenesis, which promotes tissue repair, but, when dysregulated, may also accompany chronic inflammation. AnxA2 is overexpressed in malignancies, such as breast cancer and glioblastoma, and likely contributes to cancer progression in the context of an inflammatory microenvironment. We conclude that annexin AnxA2 normally fulfills a spectrum of anti-inflammatory functions in the setting of both acute and chronic inflammation but may contribute to disease states in settings of disordered homeostasis.
Collapse
|
18
|
Qin YY, Huang SN, Chen G, Pang YY, Li XJ, Xing WW, Wei DM, He Y, Rong MH, Tang XZ. Clinicopathological value and underlying molecular mechanism of annexin A2 in 992 cases of thyroid carcinoma. Comput Biol Chem 2020; 86:107258. [PMID: 32304977 DOI: 10.1016/j.compbiolchem.2020.107258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid carcinoma (THCA) is one of the most frequent endocrine cancers and has increasing morbidity. Annexin A2 (ANXA2) has been found to be highly expressed in various cancers; however, its expression level and potential mechanism in THCA remain unknown. This study investigated the clinicopathological value and primary molecular machinery of ANXA2 in THCA. MATERIAL AND METHODS Public RNA-sequencing and microarray data were obtained and analyzed with ANXA2 expression in THCA and corresponding non-cancerous thyroid tissue. A Pearson correlation coefficient calculation was used for the acquisition of ANXA2 coexpressed genes, while edgR, limma, and Robust Rank Aggregation were employed for differentially expressed gene (DEG) in THCA. The probable mechanism of ANXA2 in THCA was predicted by gene ontology and pathway enrichment. A dual-luciferase reporter assay was employed to confirm the targeting relationships between ANXA2 and its predicted microRNA (miRNA). RESULTS Expression of ANXA2 was significantly upregulated in THCA tissues with a summarized standardized mean difference of 1.09 (P < 0.0001) based on 992 THCA cases and 589 cases of normal thyroid tissue. Expression of ANXA2 was related to pathologic stage. Subsequently, 1442 genes were obtained when overlapping 4542 ANXA2 coexpressed genes with 2248 DEGs in THCA; these genes were mostly enriched in pathways of extracellular matrix-receptor interaction, cell adhesion molecules, and complement and coagulation cascades. MiR-23b-3p was confirmed to target ANXA2 by dual-luciferase reporter assay. CONCLUSIONS Upregulated expression of ANXA2 may promote the malignant biological behavior of THCA by affecting the involving pathways or being targeted by miR-23b-3p.
Collapse
Affiliation(s)
- Yong-Ying Qin
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xiao-Jiao Li
- Department of PET/CT, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wen-Wen Xing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yun He
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
19
|
Nazri HM, Imran M, Fischer R, Heilig R, Manek S, Dragovic RA, Kessler BM, Zondervan KT, Tapmeier TT, Becker CM. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil Steril 2020; 113:364-373.e2. [PMID: 32106990 PMCID: PMC7057257 DOI: 10.1016/j.fertnstert.2019.09.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To demonstrate the feasibility of studying exosomes directly from peritoneal fluid, we isolated exosomes from endometriosis patient samples and from controls, and characterized their cargo. DESIGN Case-control experimental study. SETTING Academic clinical center. PATIENT (S) Women with and without endometriosis who underwent laparoscopic surgery (n = 28 in total). INTERVENTION (S) None. MAIN OUTCOME MEASURE (S) Concentration of exosomes within peritoneal fluid and protein content of the isolated exosomes. RESULT (S) Peritoneal fluid samples were pooled according to the cycle phase and disease stage to form six experimental groups, from which the exosomes were isolated. Exosomes were successfully isolated from peritoneal fluid in all the study groups. The concentration varied with cycle phase and disease stage. Proteomic analysis showed specific proteins in the exosomes derived from endometriosis patients that were absent in the controls. Five proteins were found exclusively in the endometriosis groups: PRDX1, H2A type 2-C, ANXA2, ITIH4, and the tubulin α-chain. CONCLUSION (S) Exosomes are present in peritoneal fluid. The characterization of endometriosis-specific exosomes opens up new avenues for the diagnosis and investigation of endometriosis.
Collapse
Affiliation(s)
- Hannah M Nazri
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maria Imran
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raphael Heilig
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanjiv Manek
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Rebecca A Dragovic
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Krina T Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas T Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom.
| | - Christian M Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Plasmin-mediated fibrinolysis enables macrophage migration in a murine model of inflammation. Blood 2019; 134:291-303. [PMID: 31101623 DOI: 10.1182/blood.2018874859] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Efficient migration of macrophages to sites of inflammation requires cell surface-bound plasmin(ogen). Here, we investigated the mechanisms underlying the deficits of plasmin(ogen)-mediated macrophage migration in 2 models: murine thioglycollate-induced peritonitis and in vitro macrophage migration. As previously reported, macrophage migration into the peritoneal cavity of mice in response to thioglycollate was significantly impaired in the absence of plasminogen. Fibrin(ogen) deposition was noted in the peritoneal cavity in response to thioglycollate, with a significant increase in fibrin(ogen) in the plasminogen-deficient mice. Interestingly, macrophage migration was restored in plasminogen-deficient mice by simultaneous imposition of fibrinogen deficiency. Consistent with this in vivo finding, chemotactic migration of cultured macrophages through a fibrin matrix did not occur in the absence of plasminogen. The macrophage requirement for plasmin-mediated fibrinolysis, both in vivo and in vitro, was negated by deletion of the major myeloid integrin αMβ2-binding motif on the γ chain of fibrin(ogen). The study identifies a critical role of fibrinolysis in macrophage migration, presumably through the alleviation of migratory constraints imposed by the interaction of leukocytes with fibrin(ogen) through the integrin αMβ2 receptor.
Collapse
|
21
|
Lou Y, Yu Y, Xu X, Zhou S, Shen H, Fan T, Wu D, Yin J, Li G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J Cell Mol Med 2018; 23:1873-1884. [PMID: 30588744 PMCID: PMC6378214 DOI: 10.1111/jcmm.14088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/10/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) play essential roles in diverse biological processes; however, current understanding of the mechanism underlying the regulation of tumour proliferation and metastasis is limited. Lung cancer‐associated transcript 1 (LUCAT1) has been reported in a variety of human cancers, while its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to determine the biological role and underlying mechanism of LUCAT1 on progression and metastasis in HCC cells and clinical specimens. Our results demonstrated that LUCAT1 was up‐regulated in HCC tissues and cells. Loss‐ and gain‐of‐function studies revealed that LUCAT1 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Furthermore, RNA pulldown and Western blot assays indicated that LUCAT1 inhibited the phosphorylation of Annexin A2 (ANXA2) to reduce the degradation of ANXA2‐S100A10 heterotetramer (AIIt), which in turn accelerated the secretion of plasminogen into plasmin, thereby resulting in the activation of metalloprotease proteins. In conclusion, we propose that LUCAT1 serves as a novel diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yun Lou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Yue Yu
- Key Laboratory of Living Donor Transplantation of Ministry of Public Health, Nanjing, Jiangsu province, China
| | - Xiaolia Xu
- Medical School of Southeast University, Nanjing, Jiangsu province, P.R. China
| | - Shu Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Haiyuan Shen
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Tianlong Fan
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Di Wu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu province, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
22
|
Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 2018; 144:2074-2081. [PMID: 30125343 DOI: 10.1002/ijc.31817] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of cancer cells. It exhibits high affinity binding for calcium (Ca++ ) and phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| |
Collapse
|
23
|
Wang P, Zhang Y, Yang H, Hou W, Jin B, Hou J, Li H, Zhao H, Zhou J. Characteristics of fibrinolytic disorders in acute promyelocytic leukemia. ACTA ACUST UNITED AC 2018; 23:756-764. [PMID: 29724147 DOI: 10.1080/10245332.2018.1470069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Catastrophic hemorrhage remains the main cause of acute promyelocytic leukemia (APL) treatment failure. This study was aimed to study the pathogenesis of coagulopathy in patients with APL. METHODS Multiple procoagulant and profibrinolytic parameters in plasma and peripheral leukocytes from 24 patients with newly diagnosed APL accompanied by coagulopathy before and after arsenic trioxide (ATO) treatment were evaluated. RESULTS Prior to the treatment, the patients had elevated D-dimer and decreased fibrinogen levels. Plasma urokinase-type plasminogen activator receptor (uPAR) and plasmin-ɑ2 antiplasmin complexes (PAP) levels, plasmin (Pn) activity, and cell surface levels of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) were significantly higher; plasma plasminogen activator inhibitor-1 (PAI-1) levels and plasminogen (Pg) activity were significantly decreased; plasma plasminogen activator (PA) activity, uPA and tPA levels; and cell surface levels of uPAR and annexin II were not significantly different from levels in the control group. During ATO treatment, both patients' plasma PA activity and uPAR on leukocytes gradually increased, annexin II on leukocytes increased initially and decreased afterwards, and tPA and uPA on leukocytes remained consistently higher in the patients than in the controls. Other parameters gradually tended toward normal values. CONCLUSIONS In APL, activated coagulation system activated fibrinolytic system, and increased uPAR levels could contribute to the hyperfibrinolysis. Annexin II might not be involved in the coagulopathy.
Collapse
Affiliation(s)
- Ping Wang
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China.,b Department of Neonatology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Yingmei Zhang
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Huiyuan Yang
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Wenyi Hou
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Bo Jin
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Jinxiao Hou
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Haitao Li
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Hongli Zhao
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China.,c Department of Hematology, The Fourth Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| | - Jin Zhou
- a Center for Hematology and Oncology, The First Affiliated Hospital , Harbin Medical University , Harbin , People's Republic of China
| |
Collapse
|
24
|
Foley K, Muth S, Jaffee E, Zheng L. Hedgehog signaling stimulates Tenascin C to promote invasion of pancreatic ductal adenocarcinoma cells through Annexin A2. Cell Adh Migr 2017; 11:514-523. [PMID: 28152318 PMCID: PMC5810754 DOI: 10.1080/19336918.2016.1259057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic adenocarcinoma (PDA) is characterized by a dense desmoplastic reaction that comprises 60-90% of the tumor, while only 10-40% of the tumor is composed of malignant epithelial cells. This desmoplastic reaction is composed of stromal fibroblast cells, extracellular matrix proteins, and immune cells. Accumulating evidence has suggested that the stromal and epithelial cell compartments interact during the pathogenesis of this disease. Therefore, it is important to identify the signaling pathways responsible for this interaction to better understand the mechanisms by which PDA invades and metastasizes. Here, we show that secreted stromal factors induce invasion of PDA cells. Specifically, hedgehog signaling from the tumor cells induces tenascin C (TnC) secretion from the stromal cells that acts back upon the tumor cells in a paracrine fashion to induce the invasion of PDA cells through its' receptor annexin A2 (AnxA2). Therefore, blocking the interaction between TnC and AnxA2 has the potential to prevent liver metastasis in PDA.
Collapse
Affiliation(s)
- Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Huang D, Yang Y, Sun J, Dong X, Wang J, Liu H, Lu C, Chen X, Shao J, Yan J. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia. Front Med 2017; 11:410-422. [PMID: 28687976 DOI: 10.1007/s11684-017-0527-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/08/2017] [Indexed: 02/08/2023]
Abstract
Aberrant expression of annexin A2-S100A10 heterotetramer (AIIt) associated with PML/RARα fusion protein causes lethal hyperfibrinolysis in acute promyelocytic leukemia (APL), but the mechanism is unclear. To facilitate the investigation of regulatory association between ANXA2 and promyelocytic leukemia/retinoic acid receptor a (PML/RARα) fusion protein, this work was performed to determine the transcription start site of ANXA2 promoter with rapid amplification of 5'-cDNA ends analysis. Zinc-induced U937/PR9 cells expressed PML/RARα fusion protein, and resultant increases in ANXA2 transcripts and translational expressions of both ANXA2 and S100A10, while S100A10 transcripts remained constitutive. The transactivation of ANXA2 promoter by PML/RARα fusion protein was 3.29 ± 0.13 fold higher than that by control pSG5 vector or wild-type RARα. The overexpression of ANXA2 in U937 transfected with full-length ANXA2 cDNA was associated with increased S100A10 subunit, although S100A10 transcripts remained constitutive. The tPA-dependent initial rate of plasmin generation (IRPG) in zinc-treated U937/PR9 increased by 2.13-fold, and cell invasiveness increased by 27.6%. Antibodies against ANXA2, S100A10, or combination of both all remarkably inhibited the IRPG and invasiveness in U937/PR9 and NB4. Treatment of zinc-induced U937/PR9 or circulating APL blasts with all-trans retinoic acid (ATRA) significantly reduced cell surface ANXA2 and S100A10 and associated reductions in IRPG and invasiveness. Thus, PML/RARα fusion protein transactivated the ANXA2 promoter to upregulate ANXA2 and accumulate S100A10. Increased AIIt promoted IRPG and invasiveness, both of which were partly abolished by antibodies against ANXA2 and S100A10 or by ATRA.
Collapse
Affiliation(s)
- Dan Huang
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Yan Yang
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jian Sun
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xiaorong Dong
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jiao Wang
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hongchen Liu
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Chengquan Lu
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xueyu Chen
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jing Shao
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Jinsong Yan
- Dalian Key Laboratory of Hematology, Liaoning Hematopoietic Stem Cell Transplantation Medical Center, Department of Hematology of the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
26
|
Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017; 129:2896-2907. [PMID: 28320709 DOI: 10.1182/blood-2016-09-742825] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor β and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.
Collapse
|
27
|
Annexin II-binding immunoglobulins in patients with lupus nephritis and their correlation with disease manifestations. Clin Sci (Lond) 2017; 131:653-671. [PMID: 28183811 DOI: 10.1042/cs20160732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/07/2023]
Abstract
Annexin II on mesangial cell surface mediates the binding of anti-dsDNA antibodies and consequent downstream inflammatory and fibrotic processes. We investigated the clinical relevance of circulating annexin II-binding immunoglobulins (Igs) in patients with severe proliferative lupus nephritis, and renal annexin II expression in relation to progression of nephritis in New Zealand Black and White F1 mice (NZBWF1/J) mice. Annexin II-binding Igs in serum were measured by ELISA. Ultrastructural localization of annexin II was determined by electron microscopy. Seropositivity rates for annexin II-binding IgG and IgM in patients with active lupus nephritis were significantly higher compared with controls (8.9%, 1.3% and 0.9% for annexin II-binding IgG and 11.1%, 4.0% and 1.9% for annexin II-binding IgM for patients with active lupus nephritis, patients with non-lupus renal disease and healthy subjects respectively). In lupus patients, annexin II-binding IgM level was higher at disease flare compared with remission. Annexin II-binding IgG and IgM levels were associated with that of anti-dsDNA and disease activity. Annexin II-binding IgG and IgM levels correlated with histological activity index in lupus nephritis biopsy samples. In NZBWF1/J mice, serum annexin II-binding IgG and IgM levels and glomerular annexin II and p11 expression increased with progression of active nephritis. Annexin II expression was present on mesangial cell surface and in the mesangial matrix, and co-localized with electron-dense deposits along the glomerular basement membrane. Our results show that circulating annexin II-binding IgG and IgM levels are associated with clinical and histological disease activity in proliferative lupus nephritis. The co-localization of annexin II and p11 expression with immune deposition in the kidney suggests pathogenic relevance.
Collapse
|
28
|
Cui L, Song J, Wu L, Cheng L, Chen A, Wang Y, Huang Y, Huang L. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSki cells. Oncol Lett 2016; 13:377-383. [PMID: 28123570 DOI: 10.3892/ol.2016.5406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
The epidermal growth factor receptor (EGF-R) signaling pathway is thought to have an important role in the development and progression of several carcinomas, as it is associated with cell proliferation, differentiation and migration. Activation of EGF-R signaling regulates epithelial-mesenchymal transition (EMT)-associated invasion and migration in normal and malignant epithelial cells. However, the specific mechanisms have not yet been fully elucidated. The present study utilized wound healing assays, western blotting, flow cytometry and MTT assays to demonstrate that Annexin A2 (ANXA2) is a key regulatory factor in EGF-induced EMT in CaSki cervical cancer cells. Moreover, the increased expression levels of ANXA2 promoted cell viability and migration in human CaSki cells. It was also found that silencing ANXA2 partially reverses EGF-induced EMT and inhibits cell viability and migration in CaSki cells. These findings suggest that ANXA2 is a key regulator of EGF-induced EMT in CaSki cervical cancer cells.
Collapse
Affiliation(s)
- Lei Cui
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jian Song
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liting Wu
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Luhui Cheng
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Aijun Chen
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yanlin Wang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yingdi Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Liming Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
29
|
Mangala LS, Wang H, Jiang D, Wu SY, Somasunderam A, Volk DE, Lokesh GLR, Li X, Pradeep S, Yang X, Haemmerle M, Rodriguez-Aguayo C, Nagaraja AS, Rupaimoole R, Bayraktar E, Bayraktar R, Li L, Tanaka T, Hu W, Ivan C, Gharpure KM, McGuire MH, Thiviyanathan V, Zhang X, Maiti SN, Bulayeva N, Choi HJ, Dorniak PL, Cooper LJ, Rosenblatt KP, Lopez-Berestein G, Gorenstein DG, Sood AK. Improving vascular maturation using noncoding RNAs increases antitumor effect of chemotherapy. JCI Insight 2016; 1:e87754. [PMID: 27777972 PMCID: PMC5070952 DOI: 10.1172/jci.insight.87754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Current antiangiogenesis therapy relies on inhibiting newly developed immature tumor blood vessels and starving tumor cells. This strategy has shown transient and modest efficacy. Here, we report a better approach to target cancer-associated endothelial cells (ECs), reverse permeability and leakiness of tumor blood vessels, and improve delivery of chemotherapeutic agents to the tumor. First, we identified deregulated microRNAs (miRs) from patient-derived cancer-associated ECs. Silencing these miRs led to decreased vascular permeability and increased maturation of blood vessels. Next, we screened a thioaptamer (TA) library to identify TAs selective for tumor-associated ECs. An annexin A2-targeted TA was identified and used for delivery of miR106b-5p and miR30c-5p inhibitors, resulting in vascular maturation and antitumor effects without inducing hypoxia. These findings could have implications for improving vascular-targeted therapy.
Collapse
Affiliation(s)
- Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongyu Wang
- Institute of Molecular Medicine
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center, Houston, Texas, USA
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Y. Wu
- Department of Gynecologic Oncology and Reproductive Medicine
| | - Anoma Somasunderam
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - David E. Volk
- Institute of Molecular Medicine
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center, Houston, Texas, USA
| | | | - Xin Li
- Institute of Molecular Medicine
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine
| | | | | | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Emine Bayraktar
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Recep Bayraktar
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Institute of Molecular Medicine
| | - Takemi Tanaka
- Biomedical Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine
| | - Cristina Ivan
- Department of Gynecologic Oncology and Reproductive Medicine
| | | | | | - Varatharasa Thiviyanathan
- Institute of Molecular Medicine
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center, Houston, Texas, USA
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sourindra N. Maiti
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Hyun-Jin Choi
- Department of Gynecologic Oncology and Reproductive Medicine
| | | | - Laurence J.N. Cooper
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David G. Gorenstein
- Institute of Molecular Medicine
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center, Houston, Texas, USA
- AM Biotechnologies, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Motley MP, Madsen DH, Jürgensen HJ, Spencer DE, Szabo R, Holmbeck K, Flick MJ, Lawrence DA, Castellino FJ, Weigert R, Bugge TH. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood 2016; 127:1085-96. [PMID: 26647393 PMCID: PMC4778161 DOI: 10.1182/blood-2015-05-644260] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
Extravascular fibrin deposition accompanies many human diseases and causes chronic inflammation and organ damage, unless removed in a timely manner. Here, we used intravital microscopy to investigate how fibrin is removed from extravascular space. Fibrin placed into the dermis of mice underwent cellular endocytosis and lysosomal targeting, revealing a novel intracellular pathway for extravascular fibrin degradation. A C-C chemokine receptor type 2 (CCR2)-positive macrophage subpopulation constituted the majority of fibrin-uptaking cells. Consequently, cellular fibrin uptake was diminished by elimination of CCR2-expressing cells. The CCR2-positive macrophage subtype was different from collagen-internalizing M2-like macrophages. Cellular fibrin uptake was strictly dependent on plasminogen and plasminogen activator. Surprisingly, however, fibrin endocytosis was unimpeded by the absence of the fibrin(ogen) receptors, αMβ2 and ICAM-1, the myeloid cell integrin-binding site on fibrin or the endocytic collagen receptor, the mannose receptor. The study identifies a novel fibrin endocytic pathway engaged in extravascular fibrin clearance and shows that interstitial fibrin and collagen are cleared by different subsets of macrophages employing distinct molecular pathways.
Collapse
Affiliation(s)
- Michael P Motley
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Daniel H Madsen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD; Center for Cancer Immune Therapy, Department of Haematology, Herlev University Hospital, Herlev, Denmark; Finsen Laboratory, Biotech Research and Innovation Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik J Jürgensen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD; Finsen Laboratory, Biotech Research and Innovation Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - David E Spencer
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Internal Medicine, University of Michigan Medical School, Ann Arbor, MI; and
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Roberto Weigert
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Thomas H Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Biological characteristics of a novel giant cell tumor cell line derived from spine. Tumour Biol 2016; 37:9681-9. [PMID: 26801673 DOI: 10.1007/s13277-016-4867-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Giant cell tumor of bone(GCTB) is a special bone tumor for it consists of various cell types, and its biological characteristics is different from common benign or malignant neoplasm. In the present study, we report the biological features of a primary Asian GCTB cell line named GCTB28. We analyzed extensive properties of the GCTB28 cells including morphological observations, growth, cell cycle, karyotype, proliferation, proteins expression, surface biomarker verification, and tumorigenicity in nude mice. We found that the stromal cells of GCTB were endowed with self-renewal capacity and played dominant roles in GCTB development. Moreover, we confirmed that GCTB cells can be CD33(-)CD14(-) phenotype which was not in accord with previous study. This study provides an in vitro model system to investigate pathogenic mechanisms and molecular characteristics of GCTB and also provides a useful tool for researching the therapeutic targeting of GCTB.
Collapse
|
32
|
Sharma MC, Tuszynski GP, Blackman MR, Sharma M. Long-term efficacy and downstream mechanism of anti-annexinA2 monoclonal antibody (anti-ANX A2 mAb) in a pre-clinical model of aggressive human breast cancer. Cancer Lett 2016; 373:27-35. [PMID: 26797420 DOI: 10.1016/j.canlet.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
Abstract
There is considerable direct evidence that calcium binding protein ANX A2 is a potential target for treating aggressive breast cancer. The most compelling data are based on the finding of ANX A2 overexpression in aggressive triple negative human breast cancer (TNBC) cell lines and in human breast cancer tissues. Previously, we and others reported a unique role of ANX A2 in cancer invasion, including breast cancer. Moreover, we demonstrated that anti-ANX A2 mAb-mediated immunoneutralization of ANX A2 inhibited invasive human breast cancer growth in a xenograft model. We further evaluated the long-term effects of multiple treatments with anti-ANX A2 mAb and its mechanism of inhibition on human breast tumor growth. We now demonstrate that three treatments with anti-ANX A2 mAb led to significant inhibition of breast tumor growth in immunodeficient mice, and that the anti-tumor response was demonstrable from day 94. After treatment, we followed tumor growth for 172 days and demonstrated 67% inhibition of tumor growth without detectable adverse effects. Biochemical analysis demonstrated that anti-ANX A2 mAb treatment caused significant inhibition of conversion of tissue plasminogen activator (tPA) in the tumor microenvironment. This led to disruption of plasmin generation that consequently inhibited activation of MMP-9 and MMP-2. These results suggest that ANX A2 plays an important role in aggressive breast tumor growth by regulating proteolytic pathways in the tumor microenvironment. ANX A2 may represent a new target for the development of therapeutics for treatment of aggressive breast cancer.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA.
| | - George P Tuszynski
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Marc R Blackman
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA; Department of Medicine, George Washington University, Washington, DC, USA
| | - Meena Sharma
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Wiesner C, Le-Cabec V, El Azzouzi K, Maridonneau-Parini I, Linder S. Podosomes in space: macrophage migration and matrix degradation in 2D and 3D settings. Cell Adh Migr 2015; 8:179-91. [PMID: 24713854 DOI: 10.4161/cam.28116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Migration of macrophages is a key process for a variety of physiological functions, such as pathogen clearance or tissue homeostasis. However, it can also be part of pathological scenarios, as in the case of tumor-associated macrophages. This review presents an overview of the different migration modes macrophages can adopt, depending on the physical and chemical properties of specific environments, and the constraints they impose upon cells. We discuss the importance of these environmental and also of cellular parameters, as well as their relative impact on macrophage migration and on the formation of matrix-lytic podosomes in 2D and 3D. Moreover, we present an overview of routinely used and also newly developed assays for the study of macrophage migration in both 2D and 3D contexts, their respective advantages and limitations, and also their potential to reliably mimic in vivo situations.
Collapse
Affiliation(s)
- Christiane Wiesner
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Véronique Le-Cabec
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Karim El Azzouzi
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany
| | - Isabelle Maridonneau-Parini
- CNRS UMR 5089; IPBS (Institut de Pharmacologie et de Biologie Structurale), BP64182, 205 route de Narbonne, 31077 Toulouse Cedex 04, France; Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France; These authors contributed equally to this work
| | - Stefan Linder
- Institute for Medical Microbiology; Virology and Hygiene; University Medical Center Eppendorf; Hamburg, Germany; These authors contributed equally to this work
| |
Collapse
|
34
|
Kantara C, O’Connell M, Luthra G, Gajjar A, Sarkar S, Ullrich R, Singh P. Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. J Transl Med 2015; 95:100-12. [PMID: 25347154 PMCID: PMC4281282 DOI: 10.1038/labinvest.2014.133] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are believed to be resistant to currently available therapies and may be responsible for relapse of cancer in patients. Measuring circulating tumor cells (CTCs) in the blood of patients has emerged as a non-invasive diagnostic procedure for screening patients who may be at high risk for developing metastatic cancers or relapse of the cancer disease. However, accurate detection of CTCs has remained a problem, as epithelial-cell markers used to date are not always reliable for detecting CTCs, especially during epithelial-mesenchymal transition. As CSCs are required to initiate metastatic tumors, our goal was to optimize and standardize a method for identifying circulating CSCs (CCSCs) in patients, using established CSC markers. Here, we report for the first time the detection of CCSCs in the blood of athymic nude mice, bearing metastatic tumors, and in the blood of patients positive for colonic adenocarcinomas. Using a simple and non-expensive method, we isolated a relatively pure population of CSCs (CD45-/CK19+), free of red blood cells and largely free of contaminating CD45+ white blood cells. Enriched CCSCs from patients with colon adenocarcinomas had a malignant phenotype and co-expressed CSC markers (DCLK1/LGR5) with CD44/Annexin A2. CSCs were not found in the blood of non-cancer patients, free of colonic growths. Enriched CCSCs from colon cancer patients grew primary spheroids, suggesting the presence of tumor-initiating cells in the blood of these patients. In conclusion, we have developed a novel diagnostic assay for detecting CSCs in circulation, which may more accurately predict the risk of relapse or metastatic disease in patients. As CSCs can potentially initiate metastatic growths, patients positive for CCSCs can be treated with inhibitory agents that selectively target CSCs, besides conventional treatments, to reduce the risk of relapse/metastatic disease for improving clinical outcomes.
Collapse
Affiliation(s)
- Carla Kantara
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | - Malaney O’Connell
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| | | | | | | | - Robert Ullrich
- Department of Radiation Oncology, utmbHealth, Galveston, TX
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, utmbHealth, Galveston, TX
| |
Collapse
|
35
|
MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 2014; 34:4867-78. [PMID: 25500542 PMCID: PMC4569942 DOI: 10.1038/onc.2014.408] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/05/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
Recent advances in cancer biology have emerged important roles for microRNAs (miRNAs) in regulating tumor responses. However, their function in mediating intercellular communication within the tumor microenvironment is thus far poorly explored. Here, we found miR-206 to be abrogated in human pancreatic ductal adenocarcinoma (PDAC) specimens and cell lines. We show that miR-206 directly targets the oncogenes KRAS and annexin a2 (ANXA2), thereby acting as tumor suppressor in PDAC cells by blocking cell cycle progression, cell proliferation, migration and invasion. Importantly, we identified miR-206 as a negative regulator of oncogenic KRAS-induced nuclear factor-κB transcriptional activity, resulting in a concomitant reduction of the expression and secretion of pro-angiogenic and pro-inflammatory factors including the cytokine interleukin-8, the chemokines (C-X-C motif) ligand 1 and (C–C motif) ligand 2, and the granulocyte macrophage colony-stimulating factor. We further show that miR-206 abrogates the expression and secretion of the potent pro-lymphangiogenic factor vascular endothelial growth factor C in pancreatic cancer cells through an NF-κB-independent mechanism. By using in vitro and in vivo approaches, we reveal that re-expression of miR-206 in PDAC cells is sufficient to inhibit tumor blood and lymphatic vessel formation, thus leading to a significant delay of tumor growth and progression. Taken together, our study sheds light onto the role of miR-206 as a pleiotropic modulator of different hallmarks of cancer, and as such raising the intriguing possibility that miR-206 may be an attractive candidate for miRNA-based anticancer therapies.
Collapse
|
36
|
Pellacani C, Monari E, Zaffe D, Cuoghi A, Bellei E, Lucchi A, Bergamini S, Tomasi A, Bertoldi C. Analisi tissutale proteomica della tasca parodontale. Uno studio pilota. DENTAL CADMOS 2014. [DOI: 10.1016/s0011-8524(14)70231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Tarassishin L, Casper D, Lee SC. Aberrant expression of interleukin-1β and inflammasome activation in human malignant gliomas. PLoS One 2014; 9:e103432. [PMID: 25054228 PMCID: PMC4108401 DOI: 10.1371/journal.pone.0103432] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Glioblastoma is the most frequent and malignant form of primary brain tumor with grave prognosis. Mounting evidence supports that chronic inflammation (such as chronic overactivation of IL-1 system) is a crucial event in carcinogenesis and tumor progression. IL-1 also is an important cytokine with species-dependent regulations and roles in CNS cell activation. While much attention is paid to specific anti-tumor immunity, little is known about the role of chronic inflammation/innate immunity in glioma pathogenesis. In this study, we examined whether human astrocytic cells (including malignant gliomas) can produce IL-1 and its role in glioma progression. Methods We used a combination of cell culture, real-time PCR, ELISA, western blot, immunocytochemistry, siRNA and plasmid transfection, micro-RNA analysis, angiogenesis (tube formation) assay, and neurotoxicity assay. Results Glioblastoma cells produced large quantities of IL-1 when activated, resembling macrophages/microglia. The activation signal was provided by IL-1 but not the pathogenic components LPS or poly IC. Glioblastoma cells were highly sensitive to IL-1 stimulation, suggesting its relevance in vivo. In human astrocytes, IL-1β mRNA was not translated to protein. Plasmid transfection also failed to produce IL-1 protein, suggesting active repression. Suppression of microRNAs that can target IL-1α/β did not induce IL-1 protein. Glioblastoma IL-1β processing occurred by the NLRP3 inflammasome, and ATP and nigericin increased IL-1β processing by upregulating NLRP3 expression, similar to macrophages. RNAi of annexin A2, a protein strongly implicated in glioma progression, prevented IL-1 induction, demonstrating its new role in innate immune activation. IL-1 also activated Stat3, a transcription factor crucial in glioma progression. IL-1 activated glioblastoma-conditioned media enhanced angiogenesis and neurotoxicity. Conclusions Our results demonstrate unique, species-dependent immune activation mechanisms involving human astrocytes and astrogliomas. Specifically, the ability to produce IL-1 by glioblastoma cells may confer them a mesenchymal phenotype including increased migratory capacity, unique gene signature and proinflammatory signaling.
Collapse
Affiliation(s)
- Leonid Tarassishin
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Diana Casper
- Department of Neurosurgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Sunhee C Lee
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|
38
|
Dynamic reciprocity: the role of annexin A2 in tissue integrity. J Cell Commun Signal 2014; 8:125-33. [PMID: 24838661 DOI: 10.1007/s12079-014-0231-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
Interactions between cells and the extracellular matrix are integral to tissue development, remodelling and pathogenesis. This is underlined by bi-directional flow of information signalling, referred to as dynamic reciprocity. Annexin A2 is a complex and multifunctional protein that belongs to a large family of Ca(2+)-dependent anionic phospholipid and membrane-binding proteins. It has been implicated in diverse cellular processes at the nuclear, cytoplasmic and extracellular compartments including Ca(2+)-dependent regulation of endocytosis and exocytosis, focal adhesion dynamics, transcription and translation, cell proliferation, oxidative stress and apoptosis. Most of these functions are mediated by the annexin A2-S100A10 heterotetramer (AIIt) via its ability to simultaneously interact with cytoskeletal, membrane and extracellular matrix components, thereby mediating regulatory effects of extracellular matrix adhesion on cell behaviour and vice versa. While Src kinase-mediated phosphorylation of filamentous actin-bound AIIt results in membrane-cytoskeletal remodelling events which control cell polarity, cell morphology and cell migration, AIIt at the cell surface can bind to a number of extracellular matrix proteins and catalyse the activation of serine and cysteine proteases which are important in facilitating tissue remodelling during tissue repair, neoangiogenesis and pathological situations. This review will focus on the role of annexin A2 in regulating tissue integrity through intercellular and cell-extracellular matrix interaction. Annexin A2 is differentially expressed in various tissue types as well as in many pathologies, particularly in several types of cancer. These together suggest that annexin A2 acts as a central player during dynamic reciprocity in tissue homeostasis.
Collapse
|
39
|
Zhang W, Zhao P, Xu XL, Cai L, Song ZS, Cao DY, Tao KS, Zhou WP, Chen ZN, Dou KF. Annexin A2 promotes the migration and invasion of human hepatocellular carcinoma cells in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells. PLoS One 2013; 8:e67268. [PMID: 23950866 PMCID: PMC3741296 DOI: 10.1371/journal.pone.0067268] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
It has been reported that Annexin A2 (ANXA2) is up-regulated in hepatocellular carcinoma (HCC), but the roles of ANXA2 in the migration and invasion of HCC cells have not been determined. In this study, we found that ANXA2-specific siRNA (si-ANXA2) significantly inhibited the migration and invasion of HCC cells co-cultured with fibroblasts in vitro. In addition, the production of MMP-2 by fibroblasts cultured in supernatant collected from si-ANXA2-transfected HCC cells was notably down-regulated. ANXA2 was also found to be co-localized and co-immunoprecipitated with CD147. Further investigation revealed that the expression of ANXA2 in HCC cells affected the shedding of CD147-harboring membrane microvesicles, acting as a vehicle for CD147 in tumor-stromal interactions and thereby regulating the production of MMP-2 by fibroblasts. Together, these results suggest that ANXA2 enhances the migration and invasion potential of HCC cells in vitro by regulating the trafficking of CD147-harboring membrane microvesicles.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning Province, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning Province, China
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell University, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiu-Li Xu
- Center of Clinical Laboratory Medicine of People's Liberation Army, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lei Cai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhen-Shun Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Da-Yong Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Kai-Shan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wen-Ping Zhou
- Department of Hepatobiliary Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning Province, China
- * E-mail: (WPZ); (ZNC); (KFD)
| | - Zhi-Nan Chen
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell University, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- * E-mail: (WPZ); (ZNC); (KFD)
| | - Ke-Feng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- * E-mail: (WPZ); (ZNC); (KFD)
| |
Collapse
|
40
|
Bertoldi C, Bellei E, Pellacani C, Ferrari D, Lucchi A, Cuoghi A, Bergamini S, Cortellini P, Tomasi A, Zaffe D, Monari E. Non-bacterial protein expression in periodontal pockets by proteome analysis. J Clin Periodontol 2013; 40:573-82. [PMID: 23509886 DOI: 10.1111/jcpe.12050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/26/2012] [Accepted: 11/30/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare the proteomic profile of inter-proximal pocket tissues with inter-proximal healthy tissues in the same subject to reveal proteins associated with periodontal disease in sites where periodontopathogenic bacteria were not detectable. METHODS Twenty-five healthy patients, with moderate-to-advanced chronic periodontitis and presenting with at least one intra-bony defect next to a healthy inter-proximal site were enrolled. The periodontal defects were treated with osseous resective surgery, and the flap design included both the periodontal pockets and the neighbouring inter-proximal healthy sites. Pocket-associated and healthy tissues were harvested for proteomic analyses. RESULTS Fifteen proteins were differently expressed between pathological and healthy tissues. In particular, annexin A2, actin cytoplasmic 1, carbonic anhydrase 1 & 2; Ig kappa chain C region (two spots) and flavinreductase were overexpressed, whereas 14-3-3 protein sigma and zeta/delta, heat-shock protein beta -1 (two spots), triosephosphateisomerase, peroxiredoxin-1, fatty acid-binding protein-epidermal, and galectin-7 were underexpressed in pathological tissue. CONCLUSIONS The unbalanced functional network of proteins involved could hinder adequate tissue response to pathogenic noxa. The study of periodontal pocket tissue proteomic profile would be crucial to better understand the pathogenesis of and the therapeutic strategies for periodontitis.
Collapse
Affiliation(s)
- Carlo Bertoldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
42
|
Wu MH, Chuang PC, Lin YJ, Tsai SJ. Suppression of annexin A2 by prostaglandin E₂ impairs phagocytic ability of peritoneal macrophages in women with endometriosis. Hum Reprod 2013; 28:1045-53. [PMID: 23340055 DOI: 10.1093/humrep/det003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Is annexin A2 involved in the reduced phagocytic ability of macrophages in endometriosis? SUMMARY ANSWER Data from women with endometriosis and a murine model of the disease show that expression of annexin A2 in peritoneal macrophages is inhibited by prostaglandin E2 (PGE2) and this impairs the phagocytic ability of macrophages. WHAT IS ALREADY KNOWN Endometriosis is a chronic inflammatory disease that recruits many immune cells, especially macrophages, to the peritoneal cavity. The phagocytic ability of peritoneal macrophages isolated from women with endometriosis is reduced. STUDY DESIGN, SIZE, DURATION A laboratory study. Thirty-five patients (20 with and 15 without endometriosis) of reproductive age with normal menstrual cycles were recruited. PARTICIPANTS/MATERIALS, SETTING, METHODS Peritoneal macrophages isolated from women with or without endometriosis were cultured and treated with vehicle, PGE2 and different EP receptor agonists, and the expression of annexin A2 was quantified by RT-PCR and western blotting. Annexin A2 was knocked down (by small interfering RNA) in normal macrophages or overexpressed (by treatment with recombinant protein) in endometriotic macrophages and their phagocytic ability was measured by flow cytometry. Peritoneal macrophages were isolated from a mouse model of endometriosis and treated with PGE2 or cyclo-oxygenase (COX) inhibitors, and annexin A2 mRNA was quantified. MAIN RESULTS AND THE ROLE OF CHANCE Levels of annexin A2 were markedly reduced in peritoneal macrophages from women with endometriosis versus controls (mRNA: P < 0.01). The level of annexin A2 mRNA in the macrophages was reduced by PGE2 (P < 0.01/P < 0.05 in women without/with endometriosis versus control) via the EP2/EP4 receptor-dependent signaling pathway. Treatment with PGE2 or knockdown of annexin A2 inhibited the phagocytic ability of macrophages (P < 0.05 versus control), while treatment with annexin A2 recombinant protein enhanced phagocytosis. Autologous transplantation animal studies further confirmed that levels of annexin A2 in peritoneal macrophages were markedly reduced in mice treated with PGE2 (P < 0.01 versus control). In contrast, treatment with COX inhibitors to inhibit PGE2 production enhanced annexin A2 expression in peritoneal macrophages (P < 0.05 versus control). LIMITATIONS, REASONS FOR CAUTION We have provided no direct demonstration that phagocytic activity is indeed decreased in peritoneal cells from patients with endometriosis or that their endometriotic fluid contains increased amounts of PGE2 when compared with control subjects. WIDER IMPLICATIONS OF THE FINDINGS Inhibiting PGE2 signaling, in order to restore or enhance the phagocytic capability of macrophages, may represent a new direction of thinking in developing novel strategies against endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from National Science Council of Taiwan, Republic of China (NSC97-2314-B-006-020-MY3) to M.-H.W. and (NSC98-2320-B-006-026-MY3) to S.-J.T., and grants from the Chang Gung Memorial Hospital, Taiwan, Republic of China (CMRPG891432 and CMRPG8A0531) to P.-C.C. None of the authors have any conflicts of interest.
Collapse
Affiliation(s)
- Meng-Hsing Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
43
|
Abstract
Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
44
|
A link between interferon and augmented plasmin generation in exocrine gland damage in Sjögren's syndrome. J Autoimmun 2012; 40:122-33. [PMID: 23110742 DOI: 10.1016/j.jaut.2012.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 09/26/2012] [Accepted: 09/30/2012] [Indexed: 11/23/2022]
Abstract
Sjögren's syndrome is an autoimmune disease that targets exocrine glands, but often exhibits systemic manifestations. Infiltration of the salivary and lacrimal glands by lymphoid and myeloid cells orchestrates a perpetuating immune response leading to exocrine gland damage and dysfunction. Th1 and Th17 lymphocyte populations and their products recruit additional lymphocytes, including B cells, but also large numbers of macrophages, which accumulate with disease progression. In addition to cytokines, chemokines, chitinases, and lipid mediators, macrophages contribute to a proteolytic milieu, underlying tissue destruction, inappropriate repair, and compromised glandular functions. Among the proteases enhanced in this local environment are matrix metalloproteases (MMP) and plasmin, generated by plasminogen activation, dependent upon plasminogen activators, such as tissue plasminogen activator (tPA). Not previously associated with salivary gland pathology, our evidence implicates enhanced tPA in the context of inflamed salivary glands revolving around lymphocyte-mediated activation of macrophages. Tracking down the mechanism of macrophage plasmin activation, the cytokines IFNγ and to a lesser extent, IFNα, via Janus kinase (JAK) and signal transducer and activator of transcription (STAT) activation, were found to be pivotal for driving the plasmin cascade of proteolytic events culminating in perpetuation of the inflammation and tissue damage, and suggesting intervention strategies to blunt irreversible tissue destruction.
Collapse
|
45
|
The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol 2012; 2012:353687. [PMID: 23118506 PMCID: PMC3479961 DOI: 10.1155/2012/353687] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 12/16/2022] Open
Abstract
The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.
Collapse
|
46
|
Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol 2012; 2012:564259. [PMID: 23097597 PMCID: PMC3477900 DOI: 10.1155/2012/564259] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 12/23/2022] Open
Abstract
Plasmin, one of the most potent and reactive serine proteases, is involved in various physiological processes, including embryo development, thrombolysis, wound healing and cancer progression. The proteolytic activity of plasmin is tightly regulated through activation of its precursor, plasminogen, only at specific times and in defined locales as well as through inhibition of active plasmin by its abundant natural inhibitors. By exploiting the plasminogen activating system and overexpressing distinct components of the plasminogen activation cascade, such as pro-uPA, uPAR and plasminogen receptors, malignant cells can enhance the generation of plasmin which in turn, modifies the tumor microenvironment to sustain cancer progression. While plasmin-mediated degradation and modification of extracellular matrix proteins, release of growth factors and cytokines from the stroma as well as activation of several matrix metalloproteinase zymogens, all have been a focus of cancer research studies for decades, the ability of plasmin to cleave transmembrane molecules and thereby to generate functionally important cleaved products which induce outside-in signal transduction, has just begun to receive sufficient attention. Herein, we highlight this relatively understudied, but important function of the plasmin enzyme as it is generated de novo at the interface between cross-talking cancer and host cells.
Collapse
|
47
|
Swedberg JE, Harris JM. Natural and engineered plasmin inhibitors: applications and design strategies. Chembiochem 2012; 13:336-48. [PMID: 22238174 DOI: 10.1002/cbic.201100673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Indexed: 12/17/2022]
Abstract
The serine protease plasmin is ubiquitously expressed throughout the human body in the form of the zymogen plasminogen. Conversion to active plasmin occurs through enzymatic cleavage by plasminogen activators. The plasminogen activator/plasmin system has a well-established function in the removal of intravascular fibrin deposition through fibrinolysis and the inhibition of plasmin activity; this has found widespread clinical use in reducing perioperative bleeding. Increasing evidence also suggests diverse, although currently less defined, roles for plasmin in a number of physiological and pathological processes relating to extracellular matrix degradation, cell migration and tissue remodelling. In particular, dysregulation of plasmin has been linked to cancer invasion/metastasis and various chronic inflammatory conditions; this has prompted efforts to develop inhibitors of this protease. Although a number of plasmin inhibitors exist, they commonly suffer from poor potency and/or specificity of inhibition that either results in reduced efficacy or prevents clinical use. Consequently, there is a need for further development of high-affinity plasmin inhibitors that maintain selectivity over other serine proteases. This review summarises clearly defined and potential applications for plasmin inhibition. The properties of naturally occurring and engineered plasmin inhibitors are discussed in the context of current knowledge regarding plasmin structure, specificity and function. This includes design strategies to obtain the potency and specificity of inhibition in addition to controlled temporal and spatial distribution tailored for the intended use.
Collapse
Affiliation(s)
- Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072 (Australia)
| | | |
Collapse
|
48
|
Mukerjee A, Shankardas J, Ranjan AP, Vishwanatha JK. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells. NANOTECHNOLOGY 2011; 22:445101. [PMID: 21990205 PMCID: PMC5624714 DOI: 10.1088/0957-4484/22/44/445101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.
Collapse
Affiliation(s)
- Anindita Mukerjee
- Department of Molecular Biology & Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
49
|
Deng FY, Lei SF, Zhang Y, Zhang YL, Zheng YP, Zhang LS, Pan R, Wang L, Tian Q, Shen H, Zhao M, Lundberg YW, Liu YZ, Papasian CJ, Deng HW. Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Mol Cell Proteomics 2011; 10:M111.011700. [PMID: 21817168 PMCID: PMC3226411 DOI: 10.1074/mcp.m111.011700] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/06/2011] [Indexed: 01/03/2023] Open
Abstract
Low bone mineral density (BMD) is a risk factor of osteoporosis and has strong genetic determination. Genes influencing BMD and fundamental mechanisms leading to osteoporosis have yet to be fully determined. Peripheral blood monocytes (PBM) are potential osteoclast precursors, which could access to bone resorption surfaces and differentiate into osteoclasts to resorb bone. Herein, we attempted to identify osteoporosis susceptibility gene(s) and characterize their function(s), through an initial proteomics discovery study on PBM in vivo, and multiscale validation studies in vivo and in vitro. Utilizing the quantitative proteomics methodology LC-nano-ESI-MS(E), we discovered that a novel protein, i.e. ANXA2, was up-regulated twofold in PBM in vivo in Caucasians with extremely low BMD (cases) versus those with extremely high BMD (controls) (n = 28, p < 0.05). ANXA2 gene up-regulation in low BMD subjects was replicated at the mRNA level in PBM in vivo in a second and independent case-control sample (n = 80, p < 0.05). At the DNA level, we found that SNPs in the ANXA2 gene were associated with BMD variation in a 3(rd) and independent case-control sample (n = 44, p < 0.05), as well as in a random population sample (n = 997, p < 0.05). The above integrative evidence strongly supports the concept that ANXA2 is involved in the pathogenesis of osteoporosis in humans. Through a follow-up cellular functional study, we found that ANXA2 protein significantly promoted monocyte migration across an endothelial barrier in vitro (p < 0.001). Thus, elevated ANXA2 protein expression level, as detected in low BMD subjects, probably stimulates more PBM migration through the blood vessel walls to bone resorption surfaces in vivo, where they differentiate into higher number of osteoclasts and resorb bone at higher rates, thereby decreasing BMD. In conclusion, this study identified a novel osteoporosis susceptibility gene ANXA2, and suggested a novel pathophysiological mechanism, mediated by ANXA2, for osteoporosis in humans.
Collapse
Affiliation(s)
- Fei-Yan Deng
- From the §Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
| | - Shu-Feng Lei
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
- ¶College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Yan Zhang
- ‖Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, U.S.A
| | - Yu-Ling Zhang
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
- **Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yan-Peng Zheng
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
- ‡‡College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Li-Shu Zhang
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
- ‡‡College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Rong Pan
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
- ¶College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Lili Wang
- ‖Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, U.S.A
| | - Qing Tian
- From the §Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Hui Shen
- From the §Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Ming Zhao
- From the §Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Yunxia Wang Lundberg
- ‖Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, U.S.A
| | - Yao-Zhong Liu
- From the §Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | | | - Hong-Wen Deng
- From the §Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
- ‡School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108
- ¶College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
- **Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- ‡‡College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
50
|
Sharma M, Blackman MR, Sharma MC. Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model. Exp Mol Pathol 2011; 92:175-84. [PMID: 22044461 DOI: 10.1016/j.yexmp.2011.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/08/2011] [Indexed: 12/11/2022]
Abstract
Activation of the fibrinolytic pathway has long been associated with human breast cancer. Plasmin is the major end product of the fibrinolytic pathway and is critical for normal physiological functions. The mechanism by which plasmin is generated in breast cancer is not yet fully described. We previously identified annexin II (ANX II), a fibrinolytic receptor, in human breast tumor tissue samples and observed a strong positive correlation with advanced stage cancer (Sharma et al., 2006a). We further demonstrated that tissue plasminogen activator (tPA) binds to ANX II in invasive breast cancer MDA-MB231cells, which leads to plasmin generation (Sharma et al., 2010). We hypothesize that ANX II-dependent plasmin generation in breast tumor is necessary to trigger the switch to neoangiogenesis, thereby stimulating a more aggressive cancer phenotype. Our immunohistochemical studies of human breast tumor tissues provide compelling evidence of a strong positive correlation between ANX II expression and neoangiogenesis, and suggest that ANX II is a potential target to slow or inhibit breast tumor growth by inhibiting neoangiogenesis. We now report that administration of anti-ANX II antibody potently inhibits the growth of human breast tumor in a xenograft model. Inhibition of tumor growth is at least partly due to attenuation of neoangiogenic activity within the tumor. In vitro studies demonstrate that anti-ANX II antibody inhibits angiogenesis on three dimensional matrigel cultures by eliciting endothelial cell (EC) death likely due to apoptosis. Taken together, these data suggest that selective disruption of the fibrinolytic activity of ANX II may provide a novel strategy for specific inhibition of neoangiogenesis in human breast cancer.
Collapse
Affiliation(s)
- Meena Sharma
- University of Pennsylvania, School of Medicine, PA, USA
| | | | | |
Collapse
|