1
|
Jiao X, Zhou J, Liang X, Zhu J, Xiao M, Ding Y, Tao Q, Xiao H, Li Y, Wang H, Zhai Z. Dynamic monitoring of lymphocyte subsets at different disease stages can predict the prognosis of acute myeloid leukemia especially in complete remission status. Sci Rep 2025; 15:17128. [PMID: 40382411 PMCID: PMC12085652 DOI: 10.1038/s41598-025-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Acute myeloid leukemia (AML) lacks effective prognostic markers. While lymphocyte subsets are recognized as valuable predictive indicators in hematologic malignancies, their role in AML remains largely unexplored, particularly during different stages of AML. Our study analyzed the levels and changes of lymphocyte subsets in AML patients at newly diagnosed (ND) and first complete remission (CR) status, and explored the correlation between lymphocyte subsets and prognosis in different disease stages. Flow cytometry detected peripheral blood lymphocyte subsets in 145 ND AML patients, 125 CR AML patients, and 47 healthy controls (HCs). Dynamic testing was conducted on 28 AML patients at both ND and CR status. Our study found significant differences in lymphocyte subsets between ND, CR, and HCs, with notable changes in CD3+T, CD4+T, CD8+T, effector T (Teff), B, and natural killer (NK) cells between ND and CR status. Low frequencies of CD8+T below HCs thresholds and high regulatory T cell (Treg) frequency above HCs thresholds in the ND group, were independent risk factors for non-response to treatment. ROC curves evaluated the prognostic value of lymphocyte subsets and established cutoff values. Lymphocyte subsets in the ND group were not significantly associated with relapse or survival. Low absolute counts of CD3+T, B, and NK cells in the CR group were linked to AML relapse, and a low NK cell count was an independent predictor of overall survival (OS). Lymphocyte subsets can act as prognostic biomarkers, and their dynamic monitoring predicts treatment response, relapse, and survival in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/blood
- Male
- Female
- Middle Aged
- Prognosis
- Adult
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/pathology
- Aged
- Remission Induction
- Young Adult
- Flow Cytometry
- Killer Cells, Natural
- Adolescent
- ROC Curve
- Lymphocyte Count
- Pathologic Complete Response
Collapse
Affiliation(s)
- Xunyi Jiao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji Zhou
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, China
| | - Xue Liang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinli Zhu
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Xiao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Ding
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianshan Tao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Xiao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yingwei Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Cheah S, Lowe AJ, Afshar N, Bassett JK, Bruinsma FJ, Cozen W, Harrison SJ, Hopper JL, Jayasekara H, Prince HM, Vajdic CM, Doo NW, Giles GG, Dharmage SC, Milne RL. Allergic disease and risk of multiple myeloma: A case-control study. Cancer Epidemiol 2025; 97:102839. [PMID: 40378505 DOI: 10.1016/j.canep.2025.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND AND AIMS Multiple myeloma (MM) is responsible for significant morbidity and mortality, yet our knowledge regarding MM aetiology remains limited. We investigated whether a history of allergic conditions is associated with MM risk. METHODS Incident cases (n = 782) of MM were recruited via cancer registries in Victoria and NSW. Controls (n = 733) were siblings (n = 436) or spouses (n = 297) of cases. Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for associations between self-reported allergic conditions (asthma, eczema, food allergy, hay fever) and MM risk. RESULTS Eczema was inversely associated with MM risk (OR = 0.54, 95 %CI = 0.42-0.70), as was a combined history of food allergy and eczema (OR = 0.52, 95 %CI = 0.29-0.93). There was an inverse association between a history of any allergic condition (compared with none) and risk of MM (OR = 0.68, 95 %CI = 0.55-0.84). In the mean-centred dose-risk analysis the OR was 0.87 (95 %CI = 0.73-1.04) per additional allergic condition of interest. No notable associations were identified for food allergy, asthma, or hay fever alone. CONCLUSIONS AND FUTURE DIRECTIONS We found that a history of allergic disease, particularly eczema, was associated with reduced MM risk. Further research is recommended to confirm findings and investigate potential mechanisms.
Collapse
Affiliation(s)
- Simon Cheah
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Adrian J Lowe
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Nina Afshar
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Julie K Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Fiona J Bruinsma
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | - Wendy Cozen
- University of California, Irvine, United States
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Clinical Haematology Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, Australia
| | - John L Hopper
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Harindra Jayasekara
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - H Miles Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Epworth Healthcare, Melbourne, Australia
| | | | - Nicole Wong Doo
- Concord Clinical School, University of Sydney, Sydney, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia
| | - Shyamali C Dharmage
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Melbourne, Australia.
| |
Collapse
|
3
|
Jordan MA, Morschl J, Autenrieth SE. Dendritic cells in multiple myeloma: from immune evasion to therapeutic potential. Front Immunol 2025; 16:1575509. [PMID: 40313957 PMCID: PMC12043573 DOI: 10.3389/fimmu.2025.1575509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Multiple myeloma (MM) is a type of hematologic cancer characterized by the uncontrolled clonal expansion of plasma cells in the bone marrow (BM). This leads to significant dysfunction and suppression of the immune system in affected patients. Myeloma cells employ sophisticated strategies to manipulate immune and non-immune cells, evading immune surveillance and enhancing their survival. One key factor in this evasion is the disruption of dendritic cell (DC)-mediated immune mechanisms. Extensive evidence indicates that in the presence of myeloma cells, DC numbers are notably reduced, and their phenotype and function are altered, impairing their ability to present antigens and activate robust T-cell responses effectively. Despite rapid advances in MM treatment, with promising strategies such as DC-based vaccines being already achieved, DC dysfunction remains a substantial hurdle, associated with or contributing to poor therapeutic outcomes, disease relapse, and MM's persistence as an incurable disease. To address these challenges, it is essential to understand the intricate mechanisms through which myeloma cells transform DCs into their "accomplices," undermining immune responses. This review comprehensively summarizes the current understanding of the role of DCs in MM. Additionally, it evaluates the potential of DCs in anti-MM immunotherapy, discussing persistent challenges and highlighting emerging perspectives that may lead to promising breakthroughs for improved patient outcomes.
Collapse
|
4
|
Tasbihi K, Bruns H. Selinexor's Immunomodulatory Impact in Advancing Multiple Myeloma Treatment. Cells 2025; 14:430. [PMID: 40136679 PMCID: PMC11940887 DOI: 10.3390/cells14060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Despite the major advancements in the repertoire for multiple myeloma (MM) treatment, this disease remains a chronically progressive plasma cell malignancy. Drug resistance and high relapse rates complicate the extended treatment strategies. However, the tumor microenvironment (TME) in MM is decisive for the success of a therapy or relapse. Aiming to improve the outcome of relapsed and refractory MM patients, Selinexor has entered the drug arsenal of myeloma therapy through the implementation of a novel therapeutic approach by selectively inhibiting the nuclear export receptor Exportin-1 (XPO1). Selinexor leads to the inactivation of cancer-related proteins and induces apoptosis by disrupting the nucleocytoplasmic flow in myeloma cells. While this drug is selectively cytotoxic to neoplastic cells, Selinexor's immunomodulatory impact on the TME is currently being investigated. The aim of this review was to elucidate Selinexor's capacity to influence the cell interaction network of the TME from an immunological perspective. Deciphering the complex interplay of highly plastic immune cells provides a contribution to the molecular-biological exploration of disease initiation and progression in MM. Unraveling the novel therapeutic targets of the immunological TME and evaluating the advanced immunotherapeutic regimens implementing Selinexor will shape the future directions of immune-oncotherapy in MM.
Collapse
Affiliation(s)
| | - Heiko Bruns
- Department of Medicine 5—Hematology and Oncology, University Hospital Erlangen, 91054 Erlangen, Germany;
| |
Collapse
|
5
|
Wang H, Zhang J, Ren H, Chen L, Ren J, Liu C, Wu H, Zhou L. Lipid metabolism in multiple myeloma: pathogenesis, therapeutic opportunities, and future directions. Front Oncol 2025; 15:1531928. [PMID: 40110197 PMCID: PMC11919907 DOI: 10.3389/fonc.2025.1531928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a complex hematological malignancy characterized by the clonal expansion of plasma cells in the bone marrow. Emerging studies have emphasized the importance of lipid metabolism, which is closely associated with the survival, proliferation, and drug resistance of tumor cells. The hypoxic environment in the bone marrow (BM) contributes to metabolic reprogramming in MM cells, including alterations in metabolite levels, changes in metabolic enzyme activity, and metabolic shifts. Cancer cells possess the ability to adapt their metabolism in order to fulfill their continuously increasing energy demands. In this review, we will discuss the alterations in lipid metabolism during the development of MM, and their reciprocal interactions with the tumor microenvironment.
Collapse
Affiliation(s)
- Huiquan Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiafeng Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Chen
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chang Liu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Spiliopoulou P, Rousakis P, Panteli C, Eleutherakis‐Papaiakovou E, Migkou M, Kanellias N, Ntanasis‐Stathopoulos I, Malandrakis P, Theodorakakou F, Fotiou D, Terpos E, Gavriatopoulou M, Tsitsilonis OE, Kastritis E, Dimopoulos MA, Terzis G. Effects of Exercise Training on the Bone Marrow Immune Microenvironment and Minimal Residual Disease in Multiple Myeloma Patients Following First-Line Treatment. Scand J Med Sci Sports 2025; 35:e70020. [PMID: 39853819 PMCID: PMC11760657 DOI: 10.1111/sms.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls. Before and after the intervention, white blood cells, red blood cells, and platelets, as well as the percentages of neutrophils, lymphocytes, monocytes, eosinophils, and basophils, were measured in the peripheral blood. Abnormal plasma cells, normal plasma cells, B cells, T cells, NK/NKT cells, monocytes, neutrophils, eosinophils, basophils, mast cells, myeloid progenitors, erythroid progenitors, and erythroblasts were assessed in the bone marrow. Exercise training increased the percentage of blood monocytes (mean difference 3.5% ± 2.6%; p = 0.006), while no change was detected in the control group. In the bone marrow, the CD27+ T cell subset increased (mean difference 18.2% ± 21.9%; p = 0.043) and the ratio of CD27-/CD27+ T lymphocytes decreased (pre: 1.06 ± 0.59; post: 0.76 ± 0.47; p = 0.049) in the exercise group, but remained unaltered in the control group. In conclusion, the study provides evidence that 5 months of exercise training can induce an increase in the percentage of activated T lymphocytes, as shown by the higher expression of the costimulatory CD27 marker. It also suggests that exercise-induced changes in the bone marrow microenvironment may be beneficial in the control of clonal cell proliferation.
Collapse
Affiliation(s)
- Polyxeni Spiliopoulou
- Sports Performance Laboratory, School of Physical Education and Sport ScienceNational and Kapodistrian University of AthensAthensGreece
| | - Pantelis Rousakis
- Flow Cytometry Unit, Department of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Chrysanthi Panteli
- Flow Cytometry Unit, Department of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Evangelos Eleutherakis‐Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis Ntanasis‐Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sport ScienceNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
7
|
Mousa AM, Enk AH, Hassel JC, Reschke R. Immune Checkpoints and Cellular Landscape of the Tumor Microenvironment in Non-Melanoma Skin Cancer (NMSC). Cells 2024; 13:1615. [PMID: 39404378 PMCID: PMC11475876 DOI: 10.3390/cells13191615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) is primarily categorized into basal cell carcinoma (BCC), the most prevalent form of skin cancer, and cutaneous squamous cell carcinoma (cSCC), the second most common type. Both BCC and cSCC represent a significant health burden, particularly in immunocompromised individuals and the elderly. The immune system plays a pivotal role in the development and progression of NMSC, making it a critical focus for therapeutic interventions. This review highlights key immunological targets in BCC and cSCC, with a focus on immune checkpoint molecules such as PD-1/PD-L1 and CTLA-4, which regulate T cell activity and contribute to immune evasion. This review also highlights anti-tumor immune cell subsets within the tumor microenvironment (TME), such as tumor-infiltrating lymphocytes (TILs) and dendritic cells. Additionally, it examines the immunosuppressive elements of the TME, including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs), as well as their roles in NMSC progression and resistance to therapy. Emerging strategies targeting these immune elements, such as monoclonal antibodies, are also discussed for their potential to enhance anti-tumor immune responses and improve clinical outcomes. By elucidating the immunological landscape of BCC and cSCC and drawing comparisons to melanoma, this review highlights the transformative potential of immunotherapy in treating these malignancies.
Collapse
Affiliation(s)
- Ahmed M. Mousa
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Alexander H. Enk
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Robin Reschke
- Department of Dermatology and National Center for Tumor Diseases (NCT), Medical Faculty Heidelberg, Heidelberg University NCT Heidelberg, a Partnership between DKFZ and University Hospital Heidelberg, 69117 Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Wendering DJ, Amini L, Schlickeiser S, Farrera-Sal M, Schulenberg S, Peter L, Mai M, Vollmer T, Du W, Stein M, Hamm F, Malard A, Castro C, Yang M, Ranka R, Rückert T, Durek P, Heinrich F, Gasparoni G, Salhab A, Walter J, Wagner DL, Mashreghi MF, Landwehr-Kenzel S, Polansky JK, Reinke P, Volk HD, Schmueck-Henneresse M. Effector memory-type regulatory T cells display phenotypic and functional instability. SCIENCE ADVANCES 2024; 10:eadn3470. [PMID: 39231218 PMCID: PMC11421655 DOI: 10.1126/sciadv.adn3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Regulatory T cells (Treg cells) hold promise for sustainable therapy of immune disorders. Recent advancements in chimeric antigen receptor development and genome editing aim to enhance the specificity and function of Treg cells. However, impurities and functional instability pose challenges for the development of safe gene-edited Treg cell products. Here, we examined different Treg cell subsets regarding their fate, epigenomic stability, transcriptomes, T cell receptor repertoires, and function ex vivo and after manufacturing. Each Treg cell subset displayed distinct features, including lineage stability, epigenomics, surface markers, T cell receptor diversity, and transcriptomics. Earlier-differentiated memory Treg cell populations, including a hitherto unidentified naïve-like memory Treg cell subset, outperformed late-differentiated effector memory-like Treg cells in regulatory function, proliferative capacity, and epigenomic stability. High yields of stable, functional Treg cell products could be achieved by depleting the small effector memory-like Treg cell subset before manufacturing. Considering Treg cell subset composition appears critical to maintain lineage stability in the final cell product.
Collapse
Affiliation(s)
- Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Leila Amini
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stephan Schlickeiser
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Einstein Center for Regenerative Therapies at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marco Mai
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maik Stein
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Frederik Hamm
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Alisier Malard
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carla Castro
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ramon Ranka
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Rückert
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Gilles Gasparoni
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Jörn Walter
- Saarland University, Institute for Genetics/Epigenetics, Saarbrücken, Germany
| | - Dimitrios Laurin Wagner
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Gene Editing for Cell Therapy, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Transfusion Medicine, Charitéplatz 1, 10117 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Hannover Medical School, Department of Pediatric Pulmonology, Allergy and Neonatology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Immuno-Epigenetics, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, an Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Cell Therapy and Personalized Immunosuppression, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Development of Biomarkers and Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT) at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- CheckImmune GmbH, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
9
|
Huang Y, Zhong M, Gao R, Wang X, Zhong S, Zhong L, Huang X, Li Y, Zeng C. BET Inhibitor JQ1 Selectively Reduce Tregs by Upregulating STAT3 and Suppressing PD-1 Expression in Patients with Multiple Myeloma. Adv Biol (Weinh) 2024; 8:e2300640. [PMID: 38797917 DOI: 10.1002/adbi.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Multiple myeloma (MM) stands as a prevalent hematological malignancy, primarily incurable, originating from plasma cell clones. MM's progression encompasses genetic abnormalities and disruptions in the bone marrow microenvironment, leading to tumor proliferation, immune dysfunction, and compromised treatment outcomes. Emerging evidence highlights the critical role of regulatory T cells (Tregs) in MM progression, suggesting that targeting Tregs could enhance immune functionality and treatment efficacy. In this study, a notable increase in Treg proportions within MM patients' bone marrow (BM) compared to healthy individuals is observed. Additionally, it is found that the bromodomain and extraterminal domain (BET) inhibitor JQ1 selectively diminishes Treg percentages in MM patients' BM and reduces TGF-β1-induced Tregs. This reduction occurs via inhibiting cell viability and promoting apoptosis. RNA sequencing further indicates that JQ1's inhibitory impact on Tregs likely involves upregulating STAT3 and suppressing PD-1 expression. Collectively, these findings suggest JQ1's potential to modulate Tregs, bolstering the immune response in MM and introducing a promising avenue for MM immunotherapy.
Collapse
Affiliation(s)
- Youxue Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
| | - Rili Gao
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xianfeng Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| |
Collapse
|
10
|
Malard F, Neri P, Bahlis NJ, Terpos E, Moukalled N, Hungria VTM, Manier S, Mohty M. Multiple myeloma. Nat Rev Dis Primers 2024; 10:45. [PMID: 38937492 DOI: 10.1038/s41572-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Multiple myeloma (MM) is a haematological lymphoid malignancy involving tumoural plasma cells and is usually characterized by the presence of a monoclonal immunoglobulin protein. MM is the second most common haematological malignancy, with an increasing global incidence. It remains incurable because most patients relapse or become refractory to treatments. MM is a genetically complex disease with high heterogeneity that develops as a multistep process, involving acquisition of genetic alterations in the tumour cells and changes in the bone marrow microenvironment. Symptomatic MM is diagnosed using the International Myeloma Working Group criteria as a bone marrow infiltration of ≥10% clonal plasma cells, and the presence of at least one myeloma-defining event, either standard CRAB features (hypercalcaemia, renal failure, anaemia and/or lytic bone lesions) or biomarkers of imminent organ damage. Younger and fit patients are considered eligible for transplant. They receive an induction, followed by consolidation with high-dose melphalan and autologous haematopoietic cell transplantation, and maintenance therapy. In older adults (ineligible for transplant), the combination of daratumumab, lenalidomide and dexamethasone is the preferred option. If relapse occurs and requires further therapy, the choice of therapy will be based on previous treatment and response and now includes immunotherapies, such as bi-specific monoclonal antibodies and chimeric antigen receptor T cell therapy.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nour Moukalled
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Salomon Manier
- Department of Hematology, Lille University Hospital and INSERM UMR-S1277 and CNRS UMR9020, Lille, France
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
11
|
Zhang D, Zhan D, Zhang R, Sun Y, Duan C, Yang J, Wei J, Li X, Lu Y, Lai X. Treg-derived TGF-β1 dampens cGAS-STING signaling to downregulate the expression of class I MHC complex in multiple myeloma. Sci Rep 2024; 14:11593. [PMID: 38773213 PMCID: PMC11109281 DOI: 10.1038/s41598-024-62298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-β1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-β1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-β1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-β1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.
Collapse
Affiliation(s)
- Disi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Dong Zhan
- Department of Human Anatomy and Histology and Embrology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Yunyan Sun
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Ci Duan
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Jiapeng Yang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Jia Wei
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Xianshi Li
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Yanqi Lu
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China.
| |
Collapse
|
12
|
Takahashi S, Minnie SA, Ensbey KS, Schmidt CR, Sekiguchi T, Legg SRW, Zhang P, Koyama M, Olver SD, Collinge AD, Keshmiri S, Comstock ML, Varelias A, Green DJ, Hill GR. Regulatory T cells suppress myeloma-specific immunity during autologous stem cell mobilization and transplantation. Blood 2024; 143:1656-1669. [PMID: 38295333 PMCID: PMC11103090 DOI: 10.1182/blood.2023022000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.
Collapse
Affiliation(s)
- Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Samuel R. W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stuart D. Olver
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Sara Keshmiri
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melissa L. Comstock
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Damian J. Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Wang C, Wang W, Wang M, Deng J, Sun C, Hu Y, Luo S. Different evasion strategies in multiple myeloma. Front Immunol 2024; 15:1346211. [PMID: 38464531 PMCID: PMC10920326 DOI: 10.3389/fimmu.2024.1346211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple myeloma is the second most common malignant hematologic malignancy which evolved different strategies for immune escape from the host immune surveillance and drug resistance, including uncontrolled proliferation of malignant plasma cells in the bone marrow, genetic mutations, or deletion of tumor antigens to escape from special targets and so. Therefore, it is a big challenge to efficiently treat multiple myeloma patients. Despite recent applications of immunomodulatory drugs (IMiDS), protease inhibitors (PI), targeted monoclonal antibodies (mAb), and even hematopoietic stem cell transplantation (HSCT), it remains hardly curable. Summarizing the possible evasion strategies can help design specific drugs for multiple myeloma treatment. This review aims to provide an integrative overview of the intrinsic and extrinsic evasion mechanisms as well as recently discovered microbiota utilized by multiple myeloma for immune evasion and drug resistance, hopefully providing a theoretical basis for the rational design of specific immunotherapies or drug combinations to prevent the uncontrolled proliferation of MM, overcome drug resistance and improve patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
16
|
Zhu Y, Chang S, Liu J, Wang B. Identification of a novel cuproptosis-related gene signature for multiple myeloma diagnosis. Immun Inflamm Dis 2023; 11:e1058. [PMID: 38018590 PMCID: PMC10629272 DOI: 10.1002/iid3.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) ranks second among the most prevalent hematological malignancies. Recent studies have unearthed the promise of cuproptosis as a novel therapeutic intervention for cancer. However, no research has unveiled the particular roles of cuproptosis-related genes (CRGs) in the prediction of MM diagnosis. METHODS Microarray data and clinical characteristics of MM patients were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed gene analysis, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential signature genes for MM diagnosis. Predictive performance was further assessed by receiver operating characteristic (ROC) curves, nomogram analysis, and external data sets. Functional enrichment analysis was performed to elucidate the involved mechanisms. Finally, the expression of the identified genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in MM cell samples. RESULTS The optimal gene signature was identified using LASSO and SVM-RFE algorithms based on the differentially expressed CRGs: ATP7A, FDX1, PDHA1, PDHB, MTF1, CDKN2A, and DLST. Our gene signature-based nomogram revealed a high degree of accuracy in predicting MM diagnosis. ROC curves showed the signature had dependable predictive ability across all data sets, with area under the curve values exceeding 0.80. Additionally, functional enrichment analysis suggested significant associations between the signature genes and immune-related pathways. The expression of the genes was validated in MM cells, indicating the robustness of these findings. CONCLUSION We discovered and validated a novel CRG signature with strong predictive capability for diagnosing MM, potentially implicated in MM pathogenesis and progression through immune-related pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Shuaikang Chang
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Bo Wang
- Department of Endocrinology, Yangpu HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
17
|
Coffey DG, Maura F, Gonzalez-Kozlova E, Diaz-Mejia JJ, Luo P, Zhang Y, Xu Y, Warren EH, Dawson T, Lee B, Xie H, Smith E, Ciardiello A, Cho HJ, Rahman A, Kim-Schulze S, Diamond B, Lesokhin A, Kazandjian D, Pugh TJ, Green DJ, Gnjatic S, Landgren O. Immunophenotypic correlates of sustained MRD negativity in patients with multiple myeloma. Nat Commun 2023; 14:5335. [PMID: 37660077 PMCID: PMC10475030 DOI: 10.1038/s41467-023-40966-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
The role of the immune microenvironment in maintaining disease remission in patients with multiple myeloma (MM) is not well understood. In this study, we comprehensively profile the immune system in patients with newly diagnosed MM receiving continuous lenalidomide maintenance therapy with the aim of discovering correlates of long-term treatment response. Leveraging single-cell RNA sequencing and T cell receptor β sequencing of the peripheral blood and CyTOF mass cytometry of the bone marrow, we longitudinally characterize the immune landscape in 23 patients before and one year after lenalidomide exposure. We compare patients achieving sustained minimal residual disease (MRD) negativity to patients who never achieved or were unable to maintain MRD negativity. We observe that the composition of the immune microenvironment in both the blood and the marrow varied substantially according to both MRD negative status and history of autologous stem cell transplant, supporting the hypothesis that the immune microenvironment influences the depth and duration of treatment response.
Collapse
Affiliation(s)
- David G Coffey
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Francesco Maura
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - J Javier Diaz-Mejia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yong Zhang
- Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Travis Dawson
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xie
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Smith
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amanda Ciardiello
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hearn J Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiple Myeloma Research Foundation, Norwalk, USA
| | - Adeeb Rahman
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Benjamin Diamond
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Alexander Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dickran Kazandjian
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Damian J Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ola Landgren
- Division of Myeloma, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
18
|
Gao D, Hong F, He A. The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies. Scand J Immunol 2023; 98:e13273. [PMID: 39007933 DOI: 10.1111/sji.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/16/2024]
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Merino A, Maakaron J, Bachanova V. Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev 2023; 60:101073. [PMID: 36959057 PMCID: PMC10979648 DOI: 10.1016/j.blre.2023.101073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Natural Killer (NK) cells yield promise in therapy of hematologic malignancies. The clinical experience with adoptively transferred allogeneic NK cells over past two decades has revealed safety and minimal risk of CRS or ICANS. Unlike T cells which have to be genetically altered to avoid graft vs host disease (GVHD), HLA mismatched NK cells can be infused without GVHD risk. This makes them ideal for the development of off-the-shelf products. In this review we focus on NK biology relevant to the cancer therapy, the trajectory of NK therapeutics for leukemia, lymphoma, and myeloma; and advantages of the NK cell platform. We will also discuss novel methods to enhance NK cell targeting, persistence, and function in the tumor microenvironment. The future of NK cell therapy depends on novel strategies to realize these qualities.
Collapse
Affiliation(s)
- Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America.
| |
Collapse
|
20
|
Ong KL, Davis MD, Purnell KK, Cutshall H, Pal HC, Connelly AN, Fay CX, Kuznetsova V, Brown EE, Hel Z. Distinct phenotype of neutrophil, monocyte, and eosinophil populations indicates altered myelopoiesis in a subset of patients with multiple myeloma. Front Oncol 2023; 12:1074779. [PMID: 36733370 PMCID: PMC9888259 DOI: 10.3389/fonc.2022.1074779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Hematologic malignancies, including multiple myeloma (MM), promote systemic immune dysregulation resulting in an alteration and increased plasticity of myeloid cell subsets. To determine the heterogeneity of the myeloid cell compartment in the peripheral blood of patients with MM, we performed a detailed investigation of the phenotype and function of myeloid subpopulations. We report that a subset of MM patients exhibits a specific myeloid cell phenotype indicative of altered myelopoiesis characterized by significant changes in the properties of circulating granulocytic, monocytic, and eosinophilic populations. The subset, referred to as MM2, is defined by a markedly elevated level of CD64 (FcγRI) on the surface of circulating neutrophils. Compared to healthy controls or MM1 patients displaying intermediate levels of CD64, neutrophils from MM2 patients exhibit a less differentiated phenotype, low levels of CD10 and CXC chemokine receptor 2 (CXCR2), increased capacity for the production of mitochondrial reactive oxygen species, and an expansion of CD16neg immature neutrophil subset. Classical and patrolling monocytes from MM2 patients express elevated levels of CD64 and activation markers. MM2 eosinophils display lower levels of C-C Chemokine receptor 3 (CCR3), Toll-like receptor 4 (TLR4, CD284), and tissue factor (TF, CD142). The MM2 (CD64high) phenotype is independent of age, race, sex, and treatment type. Characteristic features of the MM2 (CD64high) phenotype are associated with myeloma-defining events including elevated involved/uninvolved immunoglobulin free light chain (FLC) ratio at diagnosis. Detailed characterization of the altered myeloid phenotype in multiple myeloma will likely facilitate the identification of patients with an increased risk of disease progression and open new avenues for the rational design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Krystle L. Ong
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcus D. Davis
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kalyn K. Purnell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hannah Cutshall
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish C. Pal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley N. Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian X. Fay
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elizabeth E. Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Zdenek Hel,
| |
Collapse
|
21
|
Saeidi V, Doudican N, Carucci JA. Understanding the squamous cell carcinoma immune microenvironment. Front Immunol 2023; 14:1084873. [PMID: 36793738 PMCID: PMC9922717 DOI: 10.3389/fimmu.2023.1084873] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Primary cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with a rising incidence of about 1.8 million in the United States annually. Primary cSCC is usually curable by surgery; however, in some cases, cSCC eventuates in nodal metastasis and death from disease specific death. cSCC results in up to 15,000 deaths each year in the United States. Until recently, non-surgical options for treatment of locally advanced or metastatic cSCC were largely ineffective. With the advent of checkpoint inhibitor immunotherapy, including cemiplimab and pembrolizumab, response rates climbed to 50%, representing a vast improvement over chemotherapeutic agents used previously. Herein, we discuss the phenotype and function of SCC associated Langerhans cells, dendritic cells, macrophages, myeloid derived suppressor cells and T cells as well as SCC-associated lymphatics and blood vessels. Possible role(s) of SCC-associated cytokines in progression and invasion are reviewed. We also discuss the SCC immune microenvironment in the context of currently available and pipeline therapeutics.
Collapse
Affiliation(s)
- Vahide Saeidi
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| | - Nicole Doudican
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| | - John A Carucci
- Section of Dermatologic Surgery, Ronald O. Perelman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
22
|
Roshandel E, Ghaffari-Nazari H, Mohammadian M, Salimi M, Abroun S, Mirfakhraie R, Hajifathali A. NK cell therapy in relapsed refractory multiple myeloma. Clin Immunol 2023; 246:109168. [PMID: 36415020 DOI: 10.1016/j.clim.2022.109168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/03/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
Recent advances in adoptive cell therapy have considerably changed the paradigm of cancer immunotherapy. Although current immunotherapies could cure many patients with multiple myeloma (MM), relapsed/refractory MM (RR/MM) is still challenging in some cases. Natural killer (NK) cells are innate immune cells that exert effective cytotoxic activity against malignant cells like myeloma cells. In addition to their antitumor properties, NK cells do not induce graft versus host disease following transplantation. Therefore, they provide a promising approach to treating RR/MM patients. Currently, attempts have been made to produce large-scale and good manufacturing practices (GMP) of NK cells. Ex vivo expanded/activated NK cells derived from the own patient or allogenic donors are potential options for NK cell therapy in MM. Besides, novel cell-based products such as NK cell lines and chimeric antigen receptor (CAR)-NK cells may provide an off-the-shelf source for NK cell therapy. Here, we summarized NK cell activity in the MM microenvironment and focused on different NK cell therapy methods for MM patients.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Ho M, Xiao A, Yi D, Zanwar S, Bianchi G. Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Curr Oncol 2022; 29:8975-9005. [PMID: 36421358 PMCID: PMC9689284 DOI: 10.3390/curroncol29110705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The treatment landscape of multiple myeloma (MM) has evolved considerably with the FDA-approval of at least 15 drugs over the past two decades. Together with the use of autologous stem cell transplantation, these novel therapies have resulted in significant survival benefit for patients with MM. In particular, our improved understanding of the BM and immune microenvironment has led to the development of highly effective immunotherapies that have demonstrated unprecedented response rates even in the multiple refractory disease setting. However, MM remains challenging to treat especially in a high-risk setting. A key mediator of therapeutic resistance in MM is the bone marrow (BM) microenvironment; a deeper understanding is necessary to facilitate the development of therapies that target MM in the context of the BM milieu to elicit deeper and more durable responses with the ultimate goal of long-term control or a cure of MM. In this review, we discuss our current understanding of the role the BM microenvironment plays in MM pathogenesis, with a focus on its immunosuppressive nature. We also review FDA-approved immunotherapies currently in clinical use and highlight promising immunotherapeutic approaches on the horizon.
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Alexander Xiao
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Dongni Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Giada Bianchi
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA
| |
Collapse
|
24
|
Serrano Del Valle A, Beltrán-Visiedo M, de Poo-Rodríguez V, Jiménez-Alduán N, Azaceta G, Díez R, Martínez-Lázaro B, Izquierdo I, Palomera L, Naval J, Anel A, Marzo I. Ecto-calreticulin expression in multiple myeloma correlates with a failed anti-tumoral immune response and bad prognosis. Oncoimmunology 2022; 11:2141973. [PMID: 36338146 PMCID: PMC9629093 DOI: 10.1080/2162402x.2022.2141973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunogenic cell death (ICD) has been proposed to be a crucial process for antitumor immunosurveillance. ICD is characterized by the exposure and emission of Damage Associated Molecular Patterns (DAMP), including calreticulin (CRT). A positive correlation between CRT exposure or total expression and improved anticancer immunosurveillance has been found in certain cancers, usually accompanied by favorable patient prognosis. In the present study, we sought to evaluate CRT levels in the plasma membrane of CD38+ bone marrow mononuclear cells (BMMCs) isolated from 71 patients with varying degrees of multiple myeloma (MM) disease and examine the possible relationship between basal CRT exposure and the bone marrow immune microenvironment, as well as its connection with different clinical markers. Data show that increased levels of cell surface-CRT were associated with more aggressive clinical features and with worse clinical prognosis in MM. High CRT expression in MM cells was associated with increased infiltration of NK cells, CD8+ T lymphocytes and dendritic cells (DC), indicative of an active anti-tumoral immune response, but also with a significantly higher presence of immunosuppressive Treg cells and increased expression of PD-L1 in myeloma cells.
Collapse
Affiliation(s)
| | - Manuel Beltrán-Visiedo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Victoria de Poo-Rodríguez
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Nelia Jiménez-Alduán
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Beatriz Martínez-Lázaro
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Isabel Izquierdo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,Hematology Service, Hospital Universitario Miguel Servet, 50009Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, 50009Zaragoza, Spain,HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, 50009Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain,CONTACT Isabel Marzo Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, 50009Zaragoza, Spain
| |
Collapse
|
25
|
Ohmine K, Uchibori R. Novel immunotherapies in multiple myeloma. Int J Hematol 2022; 115:799-810. [PMID: 35583724 DOI: 10.1007/s12185-022-03365-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
For a substantial period, options for the treatment of multiple myeloma (MM) were limited; however, the advent of novel therapies into clinical practice in the 1990s resulted in dramatic changes in the prognosis of the disease. Subsequently, new proteasome inhibitors and immunomodulators with innovations in efficacy and toxicity were introduced; yet there remains a spectrum of patients with poor outcomes with current treatment strategies. One of the causes of disease progression in MM is the loss of the ability of the dysfunctional immune environment to control virulent cell clones. In recent years, therapies to overcome the immunosuppressive tumor microenvironment and activate the host immune system have shown promise in MM, especially in relapsed and refractory disease. Clinical use of this approach has been approved for several immunotherapies, and a number of studies are currently underway in clinical trials. This review outlines three of the newest and most promising approaches being investigated to enhance the immune system against MM: (1) overcoming immunosuppression with checkpoint inhibitors, (2) boosting immunity against tumors with vaccines, and (3) enhancing immune effectors with adoptive cell therapy. Information on the latest clinical trials in each class will be provided, and further developments will be discussed.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
- Division of Immuno-Gene and Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Ryosuke Uchibori
- Division of Immuno-Gene and Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
26
|
Xu ZY, Yao XC, Shi XJ, Du XR. Significance of preoperative peripheral blood neutrophil-lymphocyte ratio in predicting postoperative survival in patients with multiple myeloma bone disease. World J Clin Cases 2022; 10:4380-4394. [PMID: 35663088 PMCID: PMC9125285 DOI: 10.12998/wjcc.v10.i14.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/30/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The neutrophil-lymphocyte ratio (NLR) is often used to predict a poor prognosis in patients with tumors. This study investigated the preoperative peripheral blood NLR in predicting postoperative survival (POS) in patients with multiple myeloma bone disease (MMBD).
AIM To evaluate whether NLR can be used to predict the prognosis of MMBD patients after surgery.
METHODS The clinical data of 82 MMBD patients who underwent surgical treatments in Beijing Chao-yang Hospital were collected. The NLR was obtained from the absolute number of neutrophils and lymphocytes, calculated by the number of neutrophils and divided by the number of lymphocytes. The peripheral blood lymphocyte percentage was used as the major marker to analyze the change in characteristics of the immune statuses of multiple myeloma patients.
RESULTS The NLR cut-off values of NLR ≥ 3 patients and NLR ≥ 4 patients were significantly correlated with POS. The 3- and 5-year cumulative survival rates of the high NLR group (NLR ≥ 3 patients) were 19.1% and 0.0%, respectively, which were lower than those of the low NLR group (NLR < 3 patients) (67.2% and 48.3%) (P = 0.000). In the high NLR group, POS (14.86 ± 14.28) was significantly shorter than that in the low NLR group (32.68 ± 21.76). Univariate analysis showed that the lymphocyte percentage 1 wk after the operation (19.33 ± 9.08) was significantly lower than that before the operation (25.72 ± 11.02). Survival analysis showed that postoperative chemotherapy, preoperative performance status and preoperative peripheral blood NLR ≥ 3 were independent risk factors for POS.
CONCLUSION The preoperative peripheral blood NLR can predict POS in MMBD patients. MMBD patients with a high preoperative NLR (NLR ≥ 3) showed poor prognosis.
Collapse
Affiliation(s)
- Zi-Yu Xu
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing 100020, China
| | - Xing-Chen Yao
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing 100020, China
| | - Xiang-Jun Shi
- Department of Hematology, Beijing Chao-Yang Hospital, Beijing 100020, China
| | - Xin-Ru Du
- Department of Orthopedics, Beijing Chao-Yang Hospital, Beijing 100020, China
| |
Collapse
|
27
|
Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol 2022; 15:17. [PMID: 35172851 PMCID: PMC8848665 DOI: 10.1186/s13045-022-01234-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is an incurable cancer characterized by the uncontrolled growth of malignant plasma cells nurtured within a permissive bone marrow microenvironment. While patients mount numerous adaptive immune responses directed against their disease, emerging data demonstrate that tumor intrinsic and extrinsic mechanisms allow myeloma cells to subvert host immunosurveillance and resist current therapeutic strategies. Myeloma downregulates antigens recognized by cellular immunity and modulates the bone marrow microenvironment to promote uncontrolled tumor proliferation, apoptotic resistance, and further hamper anti-tumor immunity. Additional resistance often develops after an initial clinical response to small molecules, immune-targeting antibodies, immune checkpoint blockade or cellular immunotherapy. Profound quantitative and qualitative dysfunction of numerous immune effector cell types that confer anti-myeloma immunity further supports myelomagenesis, disease progression and the emergence of drug resistance. Identification of tumor intrinsic and extrinsic resistance mechanisms may direct the design of rationally-designed drug combinations that prevent or overcome drug resistance to improve patient survival. Here, we summarize various mechanisms of immune escape as a means to inform novel strategies that may restore and improve host anti-myeloma immunity.
Collapse
Affiliation(s)
| | - Elena V Murphy
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - Ehsan Malek
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - James J Driscoll
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA.
| |
Collapse
|
28
|
Verheye E, Bravo Melgar J, Deschoemaeker S, Raes G, Maes A, De Bruyne E, Menu E, Vanderkerken K, Laoui D, De Veirman K. Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. Int J Mol Sci 2022; 23:904. [PMID: 35055096 PMCID: PMC8778019 DOI: 10.3390/ijms23020904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapeutic approaches, including adoptive cell therapy, revolutionized treatment in multiple myeloma (MM). As dendritic cells (DCs) are professional antigen-presenting cells and key initiators of tumor-specific immune responses, DC-based immunotherapy represents an attractive therapeutic approach in cancer. The past years, various DC-based approaches, using particularly ex-vivo-generated monocyte-derived DCs, have been tested in preclinical and clinical MM studies. However, long-term and durable responses in MM patients were limited, potentially attributed to the source of monocyte-derived DCs and the immunosuppressive bone marrow microenvironment. In this review, we briefly summarize the DC development in the bone marrow niche and the phenotypical and functional characteristics of the major DC subsets. We address the known DC deficiencies in MM and give an overview of the DC-based vaccination protocols that were tested in MM patients. Lastly, we also provide strategies to improve the efficacy of DC vaccines using new, improved DC-based approaches and combination therapies for MM patients.
Collapse
Affiliation(s)
- Emma Verheye
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jesús Bravo Melgar
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anke Maes
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium; (J.B.M.); (S.D.); (G.R.)
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kim De Veirman
- Laboratory of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (E.V.); (A.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
29
|
Clara JA, Childs RW. Harnessing natural killer cells for the treatment of multiple myeloma. Semin Oncol 2022; 49:69-85. [DOI: 10.1053/j.seminoncol.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
|
30
|
Cuesta-Mateos C, Terrón F, Herling M. CCR7 in Blood Cancers - Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Front Oncol 2021; 11:736758. [PMID: 34778050 PMCID: PMC8589249 DOI: 10.3389/fonc.2021.736758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto la Princesa (IIS-IP), Madrid, Spain.,Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Fernando Terrón
- Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Marco Herling
- Clinic of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Huang J, Xu K, Yu L, Pu Y, Wang T, Sun R, Liang G, Yin L, Zhang J, Pu Y. Immunosuppression characterized by increased Treg cell and IL-10 levels in benzene-induced hematopoietic toxicity mouse model. Toxicology 2021; 464:152990. [PMID: 34673135 DOI: 10.1016/j.tox.2021.152990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Benzene is a typical hematopoietic toxic substance, that can cause serious blood and circulatory system diseases such as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia, but the immunological mechanism by which this occurs is not clear. T helper cells play a key role in regulating the immune balance in the body. In this study, benzene-induced hematopoietic toxicity BALB/c mice model was established, and changes in immune organs and T helper cell subsets (Th1, Th2, Th17 and Treg cells) were explored. At 28 days after subcutaneous injection of 150 mg/kg benzene, mice showed pancytopenia and obvious pathological damage to the bone marrow, spleen, and thymus. Flow cytometry revealed that the number of CD4+CD25+Foxp3+ Treg cells in the spleen increased significantly. The level of IL-10 in the spleen, serum, and bone marrow increased, while the levels of IL-17 in the spleen and serum decreased. Furthermore, the levels of CD4 and CD8 proteins in the spleen decreased. Immunofluorescence results showed that levels of Foxp3, a specific transcription factor that induced the differentiation of Treg cells, increased after exposure to benzene. Our results demonstrate that immunosuppression occurred in the benzene-induced hematopoietic toxicity model mice, and Treg cells and secreted IL-10 may play a key role in the process.
Collapse
Affiliation(s)
- Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
32
|
Cook J, Acosta-Medina AA, Peng KW, Lacy M, Russell S. Oncolytic virotherapy - Forging its place in the immunomodulatory paradigm for Multiple Myeloma. Cancer Treat Res Commun 2021; 29:100473. [PMID: 34673439 DOI: 10.1016/j.ctarc.2021.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
The treatment focus for multiple myeloma (MM) has recently pivoted towards immune modulating strategies, with T-cell redirection therapies currently at the forefront of drug development. Yet, despite this revolution in treatment, MM remains without a sustainable cure. At the same time, tremendous advancement has been made in recombinant and gene editing techniques for oncolytic viruses (OV), which have increased their tumor specificity, improved safety, and enhanced the oncolytic and immunostimulatory potential. These breakthrough developments in oncolytic virotherapy have opened new avenues for OVs to be used in combination with other immune-based therapies such as checkpoint inhibitors, chimeric antigen receptor T-cells (CAR-T) and bispecific T-cell engagers. In this review, the authors place the spotlight on systemic oncolytic virotherapy as an adaptable immunotherapeutic for MM, highlight the unique mechanism of OVs in activating the immune-suppressive marrow microenvironment, and lastly showcase the OV platforms and the promising combination strategies in the pipeline for MM.
Collapse
Affiliation(s)
- Joselle Cook
- Division of Hematology, Mayo Clinic, Rochester MN, United States.
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| | - Martha Lacy
- Division of Hematology, Mayo Clinic, Rochester MN, United States
| | - Stephen Russell
- Division of Hematology, Mayo Clinic, Rochester MN, United States; Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| |
Collapse
|
33
|
Hadjiaggelidou C, Katodritou E. Regulatory T-Cells and Multiple Myeloma: Implications in Tumor Immune Biology and Treatment. J Clin Med 2021; 10:4588. [PMID: 34640606 PMCID: PMC8509132 DOI: 10.3390/jcm10194588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is associated with both cellular and humoral immune deficiencies and, despite significant advances in treatment, remains an incurable disease. Regulatory T-cells (Tregs) represent a critical subset of CD4 T-cells, characterized by CD4 + CD25+ Forkhead box P3+ (FoxP3+) phenotype, able to control peripheral tolerance and responses to foreign and tumor antigens. Tregs are elevated in various types of cancer, including hematological malignancies; in MM, data regarding Tregs function and numbers and their correlation with survival parameters are controversial. Advances in cancer biology have shown that the tumor microenvironment plays an important role in tumor progression. In MM, the highly immunosuppressive nature of the bone marrow microenvironment has been significantly elucidated in the past decade and it is now well acknowledged that targeting only the tumor clone may not be able to cure MM. Tregs within the tumor microenvironment might play a significant role in the suppression of antitumor immune responses against cancer cells and are considered to predict poor outcome in cancer patients; nonetheless the exact prognostic significance of this cell subpopulation in malignancies is still a matter of debate. In this review, we discuss the role of Tregs as an essential cell population of the MM immune microenvironment.
Collapse
|
34
|
Dahlhoff J, Manz H, Steinfatt T, Delgado-Tascon J, Seebacher E, Schneider T, Wilnit A, Mokhtari Z, Tabares P, Böckle D, Rasche L, Martin Kortüm K, Lutz MB, Einsele H, Brandl A, Beilhack A. Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression. Leukemia 2021; 36:790-800. [PMID: 34584204 PMCID: PMC8885410 DOI: 10.1038/s41375-021-01422-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4+FoxP3+ regulatory T cells (Tregs) are highly abundant amongst CD4+ T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Julia Dahlhoff
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Hannah Manz
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Tim Steinfatt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany.,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany
| | - Julia Delgado-Tascon
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Elena Seebacher
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Theresa Schneider
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Amy Wilnit
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Zeinab Mokhtari
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Paula Tabares
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - David Böckle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Brandl
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany. .,Center for Interdisciplinary Clinical Research, University of Würzburg, Würzburg, Germany. .,Graduate School of Life Sciences, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
35
|
Expansion of cytotoxic natural killer cells in multiple myeloma patients using K562 cells expressing OX40 ligand and membrane-bound IL-18 and IL-21. Cancer Immunol Immunother 2021; 71:613-625. [PMID: 34282497 DOI: 10.1007/s00262-021-02982-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Natural killer (NK) cell-based immunotherapy is a promising treatment approach for multiple myeloma (MM), but obtaining a sufficient number of activated NK cells remains challenging. Here, we report an improved method to generate ex vivo expanded NK (eNK) cells from MM patients based on genetic engineering of K562 cells to express OX40 ligand and membrane-bound (mb) IL-18 and IL-21. METHODS K562-OX40L-mbIL-18/-21 cells were generated by transducing K562-OX40L cells with a lentiviral vector encoding mbIL-18 and mbIL-21, and these were used as feeder cells to expand NK cells from peripheral blood mononuclear cells of healthy donors (HDs) and MM patients in the presence of IL-2/IL-15. Purity, expansion rate, receptor expression, and functions of eNK cells were determined over four weeks of culture. RESULTS NK cell expansion was enhanced by short exposure of soluble IL-18 and IL-21 with K562-OX40L cells. Co-culture of NK cells with K562-OX40L-mbIL-18/-21 cells resulted in remarkable expansion of NK cells from HDs (9,860-fold) and MM patients (4,929-fold) over the 28-day culture period. Moreover, eNK cells showed increased expression of major activation markers and enhanced cytotoxicity towards target K562, U266, and RPMI8226 cells. CONCLUSIONS Our data suggest that genetically engineered K562 cells expressing OX40L, mbIL-18, and mbIL-21 improve the expansion of NK cells, increase activation signals, and enhance their cytolytic activity towards MM cells.
Collapse
|
36
|
Giannakoulas N, Ntanasis-Stathopoulos I, Terpos E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22094462. [PMID: 33923357 PMCID: PMC8123209 DOI: 10.3390/ijms22094462] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development and effectiveness of novel therapies in multiple myeloma have been established in large clinical trials. However, multiple myeloma remains an incurable malignancy despite significant therapeutic advances. Accumulating data have elucidated our understanding of the genetic background of the malignant plasma cells along with the role of the bone marrow microenvironment. Currently, the interaction among myeloma cells and the components of the microenvironment are considered crucial in multiple myeloma pathogenesis. Adhesion molecules, cytokines and the extracellular matrix play a critical role in the interplay among genetically transformed clonal plasma cells and stromal cells, leading to the proliferation, progression and survival of myeloma cells. In this review, we provide an overview of the multifaceted role of the bone marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma.
Collapse
Affiliation(s)
- Nikolaos Giannakoulas
- Department of Hematology of University Hospital of Larisa, Faculty of Medicine, University of Thessaly, 41110 Larisa, Greece;
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Correspondence:
| |
Collapse
|
37
|
Rubio MT, Dhuyser A, Nguyen S. Role and Modulation of NK Cells in Multiple Myeloma. HEMATO 2021. [DOI: 10.3390/hemato2020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.
Collapse
|
38
|
Damasceno D, Almeida J, Teodosio C, Sanoja-Flores L, Mayado A, Pérez-Pons A, Puig N, Arana P, Paiva B, Solano F, Romero A, Matarraz S, van den Bossche WBL, Flores-Montero J, Durie B, van Dongen JJM, Orfao A. Monocyte Subsets and Serum Inflammatory and Bone-Associated Markers in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13061454. [PMID: 33810169 PMCID: PMC8004952 DOI: 10.3390/cancers13061454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Monocyte/macrophages have been shown to be altered in monoclonal gammopathy of undetermined significance (MGUS), smoldering (SMM) and active multiple myeloma (MM), with an impact on the disruption of the homeostasis of the normal bone marrow (BM) microenvironment. METHODS We investigated the distribution of different subsets of monocytes (Mo) in blood and BM of newly-diagnosed untreated MGUS (n = 23), SMM (n = 14) and MM (n = 99) patients vs. healthy donors (HD; n = 107), in parallel to a large panel of cytokines and bone-associated serum biomarkers. RESULTS Our results showed normal production of monocyte precursors and classical Mo (cMo) in MGUS, while decreased in SMM and MM (p ≤ 0.02), in association with lower blood counts of recently-produced CD62L+ cMo in SMM (p = 0.004) and of all subsets of (CD62L+, CD62L- and FcεRI+) cMo in MM (p ≤ 0.02). In contrast, intermediate and end-stage non-classical Mo were increased in BM of MGUS (p ≤ 0.03), SMM (p ≤ 0.03) and MM (p ≤ 0.002), while normal (MGUS and SMM) or decreased (MM; p = 0.01) in blood. In parallel, increased serum levels of interleukin (IL)1β were observed in MGUS (p = 0.007) and SMM (p = 0.01), higher concentrations of serum IL8 were found in SMM (p = 0.01) and MM (p = 0.002), and higher serum IL6 (p = 0.002), RANKL (p = 0.01) and bone alkaline phosphatase (BALP) levels (p = 0.01) with decreased counts of FcεRI+ cMo, were restricted to MM presenting with osteolytic lesions. This translated into three distinct immune/bone profiles: (1) normal (typical of HD and most MGUS cases); (2) senescent-like (increased IL1β and/or IL8, found in a minority of MGUS, most SMM and few MM cases with no bone lesions); and (3) pro-inflammatory-high serum IL6, RANKL and BALP with significantly (p = 0.01) decreased blood counts of immunomodulatory FcεRI+ cMo-, typical of MM presenting with bone lesions. CONCLUSIONS These results provide new insight into the pathogenesis of plasma cell neoplasms and the potential role of FcεRI+ cMo in normal bone homeostasis.
Collapse
Affiliation(s)
- Daniela Damasceno
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Cristina Teodosio
- Leiden University Medical Center, Department of Immunology, 2333 ZA Leiden, The Netherlands; (C.T.); (W.B.L.v.d.B.); (J.J.M.v.D.)
| | - Luzalba Sanoja-Flores
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Institute of Biomedicine of Seville, Department of Hematology, University Hospital Virgen del Rocío of the Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, 41013 Seville, Spain
| | - Andrea Mayado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Alba Pérez-Pons
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Noemi Puig
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Service of Hematology, University Hospital of Salamanca (CAUSA) and IBSAL, 37007 Salamanca, Spain
| | - Paula Arana
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Spain;
| | - Bruno Paiva
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Fernando Solano
- Hematology Service, Hospital Nuestra Señora del Prado, Talavera de la Reina, 45600 Toledo, Spain;
| | - Alfonso Romero
- Primary Health Care Center “Miguel Armijo”, Primary Health Care of Salamanca, Conserjería de Sanidad de Castilla y León (SACYL), 37007 Salamanca, Spain;
| | - Sergio Matarraz
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Wouter B. L. van den Bossche
- Leiden University Medical Center, Department of Immunology, 2333 ZA Leiden, The Netherlands; (C.T.); (W.B.L.v.d.B.); (J.J.M.v.D.)
- Department of Immunology, Erasmus University Medical Center, 3015 GA Rotterdam, The Netherlands
| | - Juan Flores-Montero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
| | - Brian Durie
- Centro del Cáncer Cedars-Sinai Samuel Oschin, Los Angeles, CA 90048, USA;
| | - Jacques J. M. van Dongen
- Leiden University Medical Center, Department of Immunology, 2333 ZA Leiden, The Netherlands; (C.T.); (W.B.L.v.d.B.); (J.J.M.v.D.)
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (D.D.); (J.A.); (A.M.); (A.P.-P.); (S.M.); (J.F.-M.)
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto Carlos III, 28029 Madrid, Spain; (L.S.-F.); (N.P.); (B.P.)
- Correspondence:
| |
Collapse
|
39
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
40
|
IDO2 rs10109853 polymorphism affects the susceptibility to multiple myeloma. Clin Exp Med 2021; 21:323-329. [PMID: 33709342 DOI: 10.1007/s10238-020-00681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) of the IDO1 and IDO2 genes have been associated with some diseases. Here, we investigated the association of IDO1 and IDO2 SNPs with the susceptibility to multiple myeloma (MM) and their relationships with MM clinical features. We obtained genomic DNA from 100 patients with MM and 149 healthy race-matched controls and determined IDO1 promoter - 1849G/T (rs3824259) and IDO2 R248W (rs10109853) genotypes by using the polymerase chain reaction-restriction fragment length polymorphism method. The patients with MM had a significantly higher frequency of the IDO2 R248W RR genotype (high-activity type) (59.0% vs. 43.6%, odds ratio = 1.86, 95% confidence interval = 1.11-3.11, P = 0.017) compared with those in healthy controls. Patients with the IDO2 R248W RR genotype (high-activity type) were significantly younger and had a significantly lower frequency of International Staging System (ISS) stage III condition than those with the RW and WW genotypes (median 63 years vs. 69 years, P = 0.025; 15 [25.4%] vs. 50 [48.8%]). In addition, the IDO2 R248W RR genotype was significantly associated with a higher level of hemoglobin at diagnosis (mean ± standard deviation, 10.7 ± 2.36 vs. 9.27 ± 2.40 g/dL; P = 0.0032). Neither polymorphism significantly affected overall survival. Our study indicates that IDO2 R248W may be associated with the susceptibility to MM and severity of anemia.
Collapse
|
41
|
D'Souza C, Prince HM, Neeson PJ. Understanding the Role of T-Cells in the Antimyeloma Effect of Immunomodulatory Drugs. Front Immunol 2021; 12:632399. [PMID: 33746969 PMCID: PMC7973099 DOI: 10.3389/fimmu.2021.632399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are effective treatments for patients with multiple myeloma. IMiDs have pleotropic effects including targeting the myeloma cells directly, and improving the anti-myeloma immune response. In the absence of myeloma cells, lenalidomide and pomalidomide induce CD4+ T cell secretion of IL-2 and indirect activation of Natural Killer (NK) cells. In the context of T cell receptor ligation, IMiDs enhance T cell proliferation, cytokine release and Th1 responses, both in vivo and in vitro. Furthermore, combination treatment of IMiDs and myeloma-targeting monoclonal antibodies eg. daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7), checkpoint inhibitors, or bispecific T cell engagers showed synergistic effects, mainly via enhanced T and NK cell dependent cellular toxicity and T cell proliferation. Conversely, the corticosteroid dexamethasone can impair the immune modulatory effects of IMiDs, indicating that careful choice of myeloma drugs in combination with IMiDs is key for the best anti-myeloma therapeutic efficacy. This review presents an overview of the role for T cells in the overall anti-myeloma effects of immunomodulatory drugs.
Collapse
Affiliation(s)
- Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Clinical Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
McCachren SS, Dhodapkar KM, Dhodapkar MV. Co-evolution of Immune Response in Multiple Myeloma: Implications for Immune Prevention. Front Immunol 2021; 12:632564. [PMID: 33717170 PMCID: PMC7952530 DOI: 10.3389/fimmu.2021.632564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM), a malignant neoplasm of plasma cells that reside in the bone marrow (BM), is universally preceded by a precursor state termed monoclonal gammopathy of undetermined significance (MGUS). Many individuals with MGUS never progress to MM or progress over many years. Therefore, MGUS provides a unique opportunity to surveil changes in the BM tumor microenvironment throughout disease progression. It is increasingly appreciated that MGUS cells carry many of the genetic changes found in MM. Prior studies have also shown that MGUS cells can be recognized by the immune system, leading to early changes in the BM immune environment compared to that of healthy individuals, including alterations in both innate and adaptive immunity. Progression to clinical MM is associated with attrition of T cells with stem memory-like features and instead accumulation of T cells with more terminally differentiated features. Recent clinical studies have suggested that early application of immune-modulatory drugs, which are known to activate both innate and adaptive immunity, can delay the progression to clinical MM. Understanding the biology of how the immune response and tumors coevolve over time is needed to develop novel immune-based approaches to achieve durable and effective prevention of clinical malignancy.
Collapse
Affiliation(s)
- Samuel S. McCachren
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
| |
Collapse
|
43
|
Joshua DE, Vuckovic S, Favaloro J, Lau KHA, Yang S, Bryant CE, Gibson J, Ho PJ. Treg and Oligoclonal Expansion of Terminal Effector CD8 + T Cell as Key Players in Multiple Myeloma. Front Immunol 2021; 12:620596. [PMID: 33708212 PMCID: PMC7940512 DOI: 10.3389/fimmu.2021.620596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The classical paradigm of host-tumor interaction, i.e. elimination, equilibrium, and escape (EEE), is reflected in the clinical behavior of myeloma which progresses from the premalignant condition, Monoclonal Gammopathy of Unknown Significance (MGUS). Despite the role of other immune cells, CD4+ regulatory T cells (Treg) and cytotoxic CD8+ T cells have emerged as the dominant effectors of host control of the myeloma clone. Progression from MGUS to myeloma is associated with alterations in Tregs and terminal effector CD8+ T cells (TTE). These changes involve CD39 and CD69 expression, affecting the adenosine pathway and residency in the bone marrow (BM) microenvironment, together with oligoclonal expansion within CD8+ TTE cells. In this mini-review article, in the context of earlier data, we summarize our recent understanding of Treg involvement in the adenosine pathway, the significance of oligoclonal expansion within CD8+ TTE cells and BM-residency of CD8+ TTE cells in MGUS and newly diagnosed multiple myeloma patients.
Collapse
Affiliation(s)
- Douglas E Joshua
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Slavica Vuckovic
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James Favaloro
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ka Hei Aleks Lau
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Shihong Yang
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christian E Bryant
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John Gibson
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Phoebe Joy Ho
- Institute of Haematology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
45
|
Ninkovic S, Quach H. Shaping the Treatment Paradigm Based on the Current Understanding of the Pathobiology of Multiple Myeloma: An Overview. Cancers (Basel) 2020; 12:E3488. [PMID: 33238653 PMCID: PMC7700434 DOI: 10.3390/cancers12113488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable malignancy which despite progressive improvements in overall survival over the last decade remains characterised by recurrent relapse with progressively shorter duration of response and treatment-free intervals with each subsequent treatment. Efforts to unravel the complex and heterogeneous genomic alterations, the marked dysregulation of the immune system and the multifarious interplay between malignant plasma cells and those of the tumour microenvironment have not only led to improved understanding of myelomagenesis and disease progression but have facilitated the rapid development of novel therapeutics including immunotherapies and small molecules bringing us a step closer to therapies that no doubt will extend survival. Novel therapeutic combinations both in the upfront and relapsed setting as well as novel methods to assess response and guide management are rapidly transforming the management of myeloma.
Collapse
Affiliation(s)
- Slavisa Ninkovic
- Department of Haematology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
- Faculty of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Hang Quach
- Department of Haematology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
- Faculty of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
46
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
47
|
Shao Q, Deng L, Liu H, Liu Z, Chen J, Jiang F, Yan S, Fu R. Involvement of MM cell-derived exosomes in T lymphocytes immune responses. Oncol Lett 2020; 20:31. [PMID: 32774504 PMCID: PMC7405633 DOI: 10.3892/ol.2020.11892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes were reported to mediate cell communication in the tumor microenvironment; however, the effects of multiple myeloma (MM)-derived exosomes on the quantity and function of T cells remain unknown. Exosomes were extracted from MM cell lines (OPM2 and U266B1) by ultracentrifugation using a Total Exosome Isolation kit. Exosomes were co-cultured with CD4+ T, CD8+ T and regulatory T (Treg) cells that were isolated from healthy donors (HDs) and patients with MM using magnetic beads. Flow cytometry was used to detect T cells apoptosis and expression of perforin and granzyme B in CD8+ T cells. Cell viability was detected using Cell Counting kit-8, and interleukin 10 (IL-10) and transforming growth factor β (TGF-β) in cell supernatants were detected by ELISA. The apoptosis of HD-CD4+ T was higher in the OPM2 group, and viability in the U266B1 group was decreased. The apoptosis of HD-CD8+ T decreased in the OPM2 and U266B1 groups, and cell viability increased in the OPM2 and the U266B1 groups. Perforin of HD-CD8+ T in the U266B1 group was lower while perforin of MM-CD8+ T in OPM2 and U266B1 groups was markedly decreased. The apoptosis of HD-Treg was lower in the U266B1 group, but apoptosis of MM-Treg was higher in the U266B1 group. The viability of HD-Treg in U266B1 group increased but the viability of MM-Treg in OPM2 and U266B1 groups decreased. TGF-β from MM-Treg decreased in the OPM2 and U266B1 groups when compared with the control group (P<0.05). MM-derived exosomes promote apoptosis and inhibit proliferation of HD-CD4+ T, inhibit apoptosis and promote proliferation, but inhibit perforin of HD-CD8+ T, inhibit apoptosis and promote proliferation HD-Treg, and inhibit perforin of MM-CD8+ T and TGF-β secretion of MM-Treg.
Collapse
Affiliation(s)
- Qing Shao
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Ling Deng
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Fengjuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Siyang Yan
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
48
|
Alrasheed N, Lee L, Ghorani E, Henry JY, Conde L, Chin M, Galas-Filipowicz D, Furness AJS, Chavda SJ, Richards H, De-Silva D, Cohen OC, Patel D, Brooks A, Rodriguez-Justo M, Pule M, Herrero J, Quezada SA, Yong KL. Marrow-Infiltrating Regulatory T Cells Correlate with the Presence of Dysfunctional CD4 +PD-1 + Cells and Inferior Survival in Patients with Newly Diagnosed Multiple Myeloma. Clin Cancer Res 2020; 26:3443-3454. [PMID: 32220887 DOI: 10.1158/1078-0432.ccr-19-1714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune dysregulation is described in multiple myeloma. While preclinical models suggest a role for altered T-cell immunity in disease progression, the contribution of immune dysfunction to clinical outcomes remains unclear. We aimed to characterize marrow-infiltrating T cells in newly diagnosed patients and explore associations with outcomes of first-line therapy. EXPERIMENTAL DESIGN We undertook detailed characterization of T cells from bone marrow (BM) samples, focusing on immune checkpoints and features of immune dysfunction, correlating with clinical features and progression-free survival. RESULTS We found that patients with multiple myeloma had greater abundance of BM regulatory T cells (Tregs) which, in turn, expressed higher levels of the activation marker CD25 compared with healthy donors. Patients with higher frequencies of Tregs had shorter PFS and a distinct Treg immune checkpoint profile (increased PD-1, LAG-3) compared with patients with lower frequencies of Tregs. Analysis of CD4 and CD8 effectors revealed that low CD4effector (CD4eff):Treg ratio and increased frequency of PD-1-expressing CD4eff cells were independent predictors of early relapse over and above conventional risk factors, such as genetic risk and depth of response. Ex vivo functional analysis and RNA sequencing revealed that CD4 and CD8 cells from patients with greater abundance of CD4effPD-1+ cells displayed transcriptional and secretory features of dysfunction. CONCLUSIONS BM-infiltrating T-cell subsets, specifically Tregs and PD-1-expressing CD4 effectors, negatively influence clinical outcomes in newly diagnosed patients. Pending confirmation in larger cohorts and further mechanistic work, these immune parameters may inform new risk models, and present potential targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nouf Alrasheed
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lydia Lee
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Ehsan Ghorani
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Jake Y Henry
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, United Kingdom
| | - Melody Chin
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Daria Galas-Filipowicz
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Andrew J S Furness
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Selina J Chavda
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Huw Richards
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Dunnya De-Silva
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Oliver C Cohen
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dominic Patel
- Department of Histopathology, University College London, London, United Kingdom
| | - Anthony Brooks
- Institute of Child Health, University College London, London, United Kingdom
| | | | - Martin Pule
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, United Kingdom
| | - Sergio A Quezada
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom.
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Kwee L Yong
- Research Department of Haematology, University College London Cancer Institute, London, United Kingdom.
| |
Collapse
|
49
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
50
|
Shimizu K, Iyoda T, Yamasaki S, Kadowaki N, Tojo A, Fujii SI. NK and NKT Cell-Mediated Immune Surveillance against Hematological Malignancies. Cancers (Basel) 2020; 12:cancers12040817. [PMID: 32231116 PMCID: PMC7226455 DOI: 10.3390/cancers12040817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Recent cancer treatment modalities have been intensively focused on immunotherapy. The success of chimeric antigen receptor T cell therapy for treatment of refractory B cell acute lymphoblastic leukemia has pushed forward research on hematological malignancies. Among the effector types of innate lymphocytes, natural killer (NK) cells show great importance in immune surveillance against infectious and tumor diseases. Particularly, the role of NK cells has been argued in either elimination of target tumor cells or escape of tumor cells from immune surveillance. Therefore, an NK cell activation approach has been explored. Recent findings demonstrate that invariant natural killer T (iNKT) cells capable of producing IFN-γ when optimally activated can promptly trigger NK cells. Here, we review the role of NKT and/or NK cells and their interaction in anti-tumor responses by highlighting how innate immune cells recognize tumors, exert effector functions, and amplify adaptive immune responses. In addition, we discuss these innate lymphocytes in hematological disorders, particularly multiple myeloma and acute myeloid leukemia. The immune balance at different stages of both diseases is explored in light of disease progression. Various types of innate immunity-mediated therapeutic approaches, recent advances in clinical immunotherapies, and iNKT-mediated cancer immunotherapy as next-generation immunotherapy are then discussed.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan;
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| |
Collapse
|