1
|
Seifert N, Reinke S, Grund J, Müller-Meinhard B, Richter J, Heilmann T, Schlößer H, Kotrova M, Brüggemann M, Borchmann P, Bröckelmann PJ, Altenbuchinger M, Klapper W. T-cell diversity and exclusion of blood-derived T-cells in the tumor microenvironment of classical Hodgkin Lymphoma. Leukemia 2025; 39:684-693. [PMID: 39690183 PMCID: PMC11879864 DOI: 10.1038/s41375-024-02490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
The Tumor Microenvironment (TME) in classical Hodgkin Lymphoma (HL) contains abundant immune cells and only few neoplastic Hodgkin and Reed-Sternberg cells (HRSC). We analyzed the T-cell receptor (TCR) repertoire to detect T-cell expansion in the TME and blood. In contrast to solid cancer tissue, T-cells in the TME of HL are highly polyclonal at first diagnosis and show only minor clonal expansion during anti-PD1 immune checkpoint blockade (ICB). At relapse and during ICB, pre-amplified T-cell populations increase in the TME of solid cancers but to a much lesser extent in HL. In contrast, T-cell populations in the peripheral blood of HL patients display higher clonality than healthy controls reaching clonality levels comparable to solid cancer. However, pre-amplified blood T-cells in HL patients show only minor additional clonal expansion during ICB. Moreover, blood-derived T-cells do not repopulate the TME of HL to the same extent as observed in solid cancers. Thus, the T-cell repertoire in the TME of HL appears unique by a relatively low clonal T-cell content and the exclusion of clonally expanded T-cells from the peripheral blood. Exclusion of clonally expanded tumor-specific T-cells from the TME may present a novel mechanism of immune evasion in HL.
Collapse
Affiliation(s)
- Nicole Seifert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Reinke
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Johanna Grund
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Berit Müller-Meinhard
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Julia Richter
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | | | - Hans Schlößer
- Center of Molecular Medicine, Cologne Translational Immunology, University of Cologne, Cologne, Germany
| | - Michaela Kotrova
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Paul J Bröckelmann
- Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael Altenbuchinger
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany.
| |
Collapse
|
2
|
Mirjanić-Azarić B, Stanković S, Radić-Savić Z, Malčić-Zanić D, Ninić A, Vuković M, Nezić L, Skrbić R, Bogavac-Stanojević N. Assessment of the diagnostic value of serum cathepsin S and its correlation with HDL subclasses in patients with non-Hodgkin's lymphoma. J Med Biochem 2024; 43:711-719. [PMID: 39712508 PMCID: PMC11662951 DOI: 10.5937/jomb0-48959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 12/24/2024] Open
Abstract
Background Recent findings point to the key role of cathepsin S (CTSS) in the survival of malignant cells, as well as the significance of the anti-apoptotic properties of high-density lipoprotein (HDL) that contribute to enhanced cell survival. The purpose of this study is to analyse CTSS as a potential biomarker in lymphoma. Also, in order to better understand the role of CTSS in the origin and development of lymphoma, its association with cystatin C (Cys C), lipids, and inflammatory markers was analysed. Methods The study included 90 subjects: 11 Hodgkin (HL) and 44 B-cell non-Hodgkin lymphoma (NHL) patients, as well as 35 healthy subjects. CTSS was determined using the Invitrogen ELISA kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The non-denaturing 3%-31% polyacrylamide gradient gel electrophoresis method was used to separate plasma HDL particles. Results The level of CTSS was significantly higher in NHL patients than in control subjects: 12.20 (9.75-14.57) vs 9.97 (8.44-10.99), P<0.001. In NHL patients, there was a positive correlation between CTSS and the proportions of HDL3a, HDL3b, and the sum of the HDL3 subclasses (r=0.506, P<0.001; r=0.411, P=0.006, r=0.335, P=0.026, respectively). In addition, the area under the receiver operating characteristic curve (AUC curve) of CTSS was 0.766 (CI: 0.655-0.856) for NHL patients. There was no significant difference in CTSS values between the control group and patients with HL, nor significant correlations between CTSS and HDL subclasses in the HL group. Conclusions CTSS is significantly elevated in patients with NHL and has the potential to be a new diagnostic bio - marker for the detection of NHL. Also, this study was the first to unveil the association between serum CTSS levels and the proportions of anti-apoptotic HDL3a and HDL3b subclasses in NHL patients.
Collapse
Affiliation(s)
- Bosa Mirjanić-Azarić
- University of Banja Luka, Faculty of Medicine, Department of Medical Biochemistry, Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Siniša Stanković
- University Clinical Centre of the Republic of Srpska, Department of Nuclear Medicine, Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Zana Radić-Savić
- University of Banja Luka, Faculty of Medicine, Department of Medical Biochemistry, Banja Luka, The Republic of Srpska, Bosnia and Herzegovina
| | - Dragana Malčić-Zanić
- University of Banja Luka, Faculty of Medicine, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Ana Ninić
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, Belgrade, Serbia
| | - Marija Vuković
- University Clinical Centre of the Republic of Srpska, Institute of Laboratory Diagnostic, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Lana Nezić
- University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Ranko Skrbić
- University of Banja Luka, Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | | |
Collapse
|
3
|
Gonzalez-Kozlova E, Huang HH, Jagede OA, Tuballes K, Del Valle DM, Kelly G, Patel M, Xie H, Harris J, Argueta K, Nie K, Barcessat V, Moravec R, Altreuter J, Duose DY, Kahl BS, Ansell SM, Yu J, Cerami E, Lindsay JR, Wistuba II, Kim-Schulze S, Diefenbach CS, Gnjatic S. Tumor-Immune Signatures of Treatment Resistance to Brentuximab Vedotin with Ipilimumab and/or Nivolumab in Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1726-1737. [PMID: 38934093 PMCID: PMC11247952 DOI: 10.1158/2767-9764.crc-24-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
To investigate the cellular and molecular mechanisms associated with targeting CD30-expressing Hodgkin lymphoma (HL) and immune checkpoint modulation induced by combination therapies of CTLA4 and PD1, we leveraged Phase 1/2 multicenter open-label trial NCT01896999 that enrolled patients with refractory or relapsed HL (R/R HL). Using peripheral blood, we assessed soluble proteins, cell composition, T-cell clonality, and tumor antigen-specific antibodies in 54 patients enrolled in the phase 1 component of the trial. NCT01896999 reported high (>75%) overall objective response rates with brentuximab vedotin (BV) in combination with ipilimumab (I) and/or nivolumab (N) in patients with R/R HL. We observed a durable increase in soluble PD1 and plasmacytoid dendritic cells as well as decreases in plasma CCL17, ANGPT2, MMP12, IL13, and CXCL13 in N-containing regimens (BV + N and BV + I + N) compared with BV + I (P < 0.05). Nonresponders and patients with short progression-free survival showed elevated CXCL9, CXCL13, CD5, CCL17, adenosine-deaminase, and MUC16 at baseline or after one treatment cycle and a higher prevalence of NY-ESO-1-specific autoantibodies (P < 0.05). The results suggest a circulating tumor-immune-derived signature of BV ± I ± N treatment resistance that may be useful for patient stratification in combination checkpoint therapy. SIGNIFICANCE Identification of multi-omic immune markers from peripheral blood may help elucidate resistance mechanisms to checkpoint inhibitor and antibody-drug conjugate combinations with potential implications for treatment decisions in relapsed HL.
Collapse
Affiliation(s)
- Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Hsin-Hui Huang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Opeyemi A. Jagede
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kevin Tuballes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Diane M. Del Valle
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Jocelyn Harris
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Kimberly Argueta
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Vanessa Barcessat
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Radim Moravec
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland.
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Dzifa Y. Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Brad S. Kahl
- Washington University School of Medicine, New York, New York.
| | | | - Joyce Yu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ethan Cerami
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - James R. Lindsay
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
4
|
Müller‐Meinhard B, Seifert N, Grund J, Reinke S, Yalcin F, Kaul H, Borchmann S, von Tresckow B, Borchmann P, Plütschow A, Richter J, Engert A, Altenbuchinger M, Bröckelmann PJ, Klapper W. Human leukocyte antigen (HLA) class I expression on Hodgkin-Reed-Sternberg cells is an EBV-independent major determinant of microenvironment composition in classic Hodgkin lymphoma. Hemasphere 2024; 8:e84. [PMID: 38836098 PMCID: PMC11145947 DOI: 10.1002/hem3.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Hodgkin-Reed-Sternberg cells (HRSCs) in classic Hodgkin Lymphoma (HL) frequently lack expression of human leukocyte antigen class I (HLA-I), considered to hamper activation of cytotoxic T cells in the tumor microenvironment (TME). Here, we demonstrate HLA-I expression on HRSCs to be a strong determinant of TME composition whereas expression of HLA-II was associated with only minor differential gene expression in the TME. In HLA-I-positive HL the HRSC content and expression of CCL17/TARC in HRSCs are low, independent of the presence of Epstein-Barr virus in HRSCs. Additionally, HLA-I-positive HL shows a high content of CD8+ cytotoxic T cells. However, an increased expression of the inhibitory immune checkpoint LAG3 on CD8+ T cells in close proximity to HRSCs is observed. Suggesting interference with cytotoxic activity, we observed an absence of clonally expanded T cells in the TME. While HLA-I-positive HL is not associated with an unfavorable clinical course in our cohorts, they share features with the recently described H2 subtype of HL. Given the major differences in TME composition, immune checkpoint inhibitors may differ in their mechanism of action in HLA-I-positive compared to HLA-I-negative HL.
Collapse
Affiliation(s)
- Berit Müller‐Meinhard
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Nicole Seifert
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Johanna Grund
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Sarah Reinke
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Fatih Yalcin
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Helen Kaul
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Bastian von Tresckow
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Annette Plütschow
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Julia Richter
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Andreas Engert
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | | | - Paul J. Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD)CologneGermany
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| |
Collapse
|
5
|
Kaulen LD, Denisova E, Hinz F, Hai L, Friedel D, Henegariu O, Hoffmann DC, Ito J, Kourtesakis A, Lehnert P, Doubrovinskaia S, Karschnia P, von Baumgarten L, Kessler T, Baehring JM, Brors B, Sahm F, Wick W. Integrated genetic analyses of immunodeficiency-associated Epstein-Barr virus- (EBV) positive primary CNS lymphomas. Acta Neuropathol 2023; 146:499-514. [PMID: 37495858 PMCID: PMC10412493 DOI: 10.1007/s00401-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Evgeniya Denisova
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ling Hai
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Dirk C Hoffmann
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jakob Ito
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Pascal Lehnert
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sofia Doubrovinskaia
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Munich University Hospital, Ludwig Maximilians University (LMU) Munich, and German Cancer Consortium (DKTK) Partner Site, Munich, Germany
| | - Tobias Kessler
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joachim M Baehring
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA
- Department of Neurology, Yale School of Medicine, New Haven, USA
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neuro-Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Aoki T, Steidl C. Novel insights into Hodgkin lymphoma biology by single-cell analysis. Blood 2023; 141:1791-1801. [PMID: 36548960 PMCID: PMC10646771 DOI: 10.1182/blood.2022017147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid development of single-cell technologies mark a paradigm shift in cancer research. Various technology implementations represent powerful tools to understand cellular heterogeneity, identify minor cell populations that were previously hard to detect and define, and make inferences about cell-to-cell interactions at single-cell resolution. Applied to lymphoma, recent advances in single-cell RNA sequencing have broadened opportunities to delineate previously underappreciated heterogeneity of malignant cell differentiation states and presumed cell of origin, and to describe the composition and cellular subsets in the ecosystem of the tumor microenvironment (TME). Clinical deployment of an expanding armamentarium of immunotherapy options that rely on targets and immune cell interactions in the TME emphasizes the requirement for a deeper understanding of immune biology in lymphoma. In particular, classic Hodgkin lymphoma (CHL) can serve as a study paradigm because of its unique TME, featuring infrequent tumor cells among numerous nonmalignant immune cells with significant interpatient and intrapatient variability. Synergistic to advances in single-cell sequencing, multiplexed imaging techniques have added a new dimension to describing cellular cross talk in various lymphoma entities. Here, we comprehensively review recent progress using novel single-cell technologies with an emphasis on the TME biology of CHL as an application field. The described technologies, which are applicable to peripheral blood, fresh tissues, and formalin-fixed samples, hold the promise to accelerate biomarker discovery for novel immunotherapeutic approaches and to serve as future assay platforms for biomarker-informed treatment selection, including immunotherapies.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
The Medium Obtained from the Culture of Hodgkin Lymphoma Cells Affects the Biophysical Characteristics of a Fibroblast Cell Model. Bioengineering (Basel) 2023; 10:bioengineering10020197. [PMID: 36829691 PMCID: PMC9952528 DOI: 10.3390/bioengineering10020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The neoplastic Hodgkin-Reed-Sternberg (HRS) cells in Hodgkin lymphoma (HL) represent only 1-10% of cells and are surrounded by an inflammatory microenvironment. The HL cytokine network is a key point for the proliferation of HRS cells and for the maintenance of an advantageous microenvironment for HRS survival. In the tumor microenvironment (TME), the fibroblasts are involved in crosstalk with HRS cells. The aim of this work was to study the effect of lymphoma cell conditioned medium on a fibroblast cell population and evaluate modifications of cell morphology and proliferation. Hodgkin lymphoma-derived medium was used to obtain a population of "conditioned" fibroblasts (WS-1 COND). Differences in biophysical parameters were detected by the innovative device Celector®. Fibroblast-HL cells interactions were reproduced in 3D co-culture spheroids. WS-1 COND showed a different cellular morphology with an enlarged cytoplasm and enhanced metabolism. Area and diameter cell values obtained by Celector® measurement were increased. Co-culture spheroids created with WS-1 COND showed a tighter aggregation than those with non-conditioned WS-1. The presence of soluble factors derived from HRS cells in the conditioned medium was adequate for the proliferation of fibroblasts and conditioned fibroblasts in a 3D HL model allowed to develop a representative model of the in vivo TME.
Collapse
|
8
|
A new approach to the study of Hodgkin lymphoma by flow cytometry. Pathology 2023; 55:86-93. [PMID: 36137774 DOI: 10.1016/j.pathol.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 01/11/2023]
Abstract
Hodgkin lymphoma (HL) appears to originate from germinal centre B cells but lacks expression of most B cell markers. In contrast to non-Hodgkin B lymphomas, HL is not routinely diagnosed using flow cytometry techniques, and diagnosis is mainly based on immunohistochemical and cytomorphological pathology studies. Hodgkin and Reed-Sternberg cells are large and fragile, making them difficult to study by flow cytometry. The aim of this study was to characterise the CD71 expression pattern on CD4+ T cells from HL patients and to design a simple flow cytometry algorithm to complement the histopathological diagnosis of HL. The present study suggests the utility of a conventional staining protocol with a simple panel of seven markers (CD15, CD30, CD4, CD8, CD71, CD3, and CD45) and a well-defined analysis strategy. The proposed algorithm uses the CD71 ratio (calculated as the percentage of CD71+ CD4+ T cells divided by the percentage of CD71+ CD45+ CD3- lymphocytes), with a cut-off of 0.5 to establish diagnosis groups as suggestive (≥0.5) or not suggestive (<0.5) of HL. In HL, CD71 expression is higher on CD4+ T lymphocytes than on non-T lymphocytes. In addition, the CD4+ T cell population is increased in HL patients, with no change in amounts of CD8+ T cells. Application of the CD71 ratio algorithm yielded a sensitivity of 82% and specificity of 87%, with 84.61% of patients correctly diagnosed. Although histopathology remains the gold standard for definitive HL diagnosis, the proposed flow cytometry method provides a rapid method to guide the study that would allow a more robust and integrated diagnosis. Moreover, the procedure is easily applicable in most clinical laboratories as it does not require state-of-the-art cytometers and uses standard reagents.
Collapse
|
9
|
Driessen J, Kersten MJ, Visser L, van den Berg A, Tonino SH, Zijlstra JM, Lugtenburg PJ, Morschhauser F, Hutchings M, Amorim S, Gastinne T, Nijland M, Zwezerijnen GJC, Boellaard R, de Vet HCW, Arens AIJ, Valkema R, Liu RDK, Drees EEE, de Jong D, Plattel WJ, Diepstra A. Prognostic value of TARC and quantitative PET parameters in relapsed or refractory Hodgkin lymphoma patients treated with brentuximab vedotin and DHAP. Leukemia 2022; 36:2853-2862. [PMID: 36241696 DOI: 10.1038/s41375-022-01717-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Risk-stratified treatment strategies have the potential to increase survival and lower toxicity in relapsed/refractory classical Hodgkin lymphoma (R/R cHL) patients. This study investigated the prognostic value of serum (s)TARC, vitamin D and lactate dehydrogenase (LDH), TARC immunohistochemistry and quantitative PET parameters in 65 R/R cHL patients who were treated with brentuximab vedotin (BV) and DHAP followed by autologous stem-cell transplantation (ASCT) within the Transplant BRaVE study (NCT02280993). At a median follow-up of 40 months, the 3-year progression free survival (PFS) was 77% (95% CI: 67-88%) and the overall survival was 95% (90-100%). Significant adverse prognostic markers for progression were weak/negative TARC staining of Hodgkin Reed-Sternberg cells in the baseline biopsy, and a high standard uptake value (SUV)mean or SUVpeak on the baseline PET scan. After one cycle of BV-DHAP, sTARC levels were strongly associated with the risk of progression using a cutoff of 500 pg/ml. On the pre-ASCT PET scan, SUVpeak was highly prognostic for progression post-ASCT. Vitamin D, LDH and metabolic tumor volume had low prognostic value. In conclusion, we established the prognostic impact of sTARC, TARC staining, and quantitative PET parameters for R/R cHL, allowing the use of these parameters in prospective risk-stratified clinical trials. Trial registration: NCT02280993.
Collapse
Affiliation(s)
- Julia Driessen
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Pieternella J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sandy Amorim
- Department of Hematology, Hopital Saint Louis, Paris, France
| | - Thomas Gastinne
- Department of Hematology, Centre Hospitalier Universitaire, Nantes, France
| | - Marcel Nijland
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henrica C W de Vet
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anne I J Arens
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roelf Valkema
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roberto D K Liu
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Esther E E Drees
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Wouter J Plattel
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Filling the Gap: The Immune Therapeutic Armamentarium for Relapsed/Refractory Hodgkin Lymphoma. J Clin Med 2022; 11:jcm11216574. [PMID: 36362802 PMCID: PMC9656939 DOI: 10.3390/jcm11216574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Despite years of clinical progress which made Hodgkin lymphoma (HL) one of the most curable malignancies with conventional chemotherapy, refractoriness and recurrence may still affect up to 20–30% of patients. The revolution brought by the advent of immunotherapy in all kinds of neoplastic disorders is more than evident in this disease because anti-CD30 antibodies and checkpoint inhibitors have been able to rescue patients previously remaining without therapeutic options. Autologous hematopoietic cell transplantation still represents a significant step in the treatment algorithm for chemosensitive HL; however, the possibility to induce complete responses after allogeneic transplant procedures in patients receiving reduced-intensity conditioning regimens informs on its sensitivity to immunological control. Furthermore, the investigational application of adoptive T cell transfer therapies paves the way for future indications in this setting. Here, we seek to provide a fresh and up-to-date overview of the new immunotherapeutic agents dominating the scene of relapsed/refractory HL. In this optic, we will also review all the potential molecular mechanisms of tumor resistance, theoretically responsible for treatment failures, and we will discuss the place of allogeneic stem cell transplantation in the era of novel therapies.
Collapse
|
11
|
Cook MR, Dunleavy K. Targeting The Tumor Microenvironment in Lymphomas: Emerging Biological Insights and Therapeutic Strategies. Curr Oncol Rep 2022; 24:1121-1131. [DOI: 10.1007/s11912-022-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/03/2022]
|
12
|
Honoré B, Andersen MD, Wilken D, Kamper P, d’Amore F, Hamilton-Dutoit S, Ludvigsen M. Classic Hodgkin Lymphoma Refractory for ABVD Treatment Is Characterized by Pathologically Activated Signal Transduction Pathways as Revealed by Proteomic Profiling. Cancers (Basel) 2022; 14:cancers14010247. [PMID: 35008410 PMCID: PMC8750842 DOI: 10.3390/cancers14010247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Classic Hodgkin lymphoma (cHL) patients refractory to standard ABVD chemo-therapy are known to have a dismal prognosis. This has led to the hypothesis that ABVD treatment-sensitive and ABVD treatment-refractory tumours are biologically distinct. In this study, cHL patients refractory to standard ABVD treatment show subtle but significant differences in protein expression that enable clustering of the two response groups, thus indicating differences between ABVD sensitive and refractory patients at the molecular level, and thereby strengthening the hypothesis that ABVD sensitive and ABVD refractory tumours may be biologically distinct. Abstract In classic Hodgkin lymphoma (cHL), the tumour microenvironment (TME) is of major pathological relevance. The paucity of neoplastic cells makes it important to study the entire TME when searching for prognostic biomarkers. Cure rates in cHL have improved markedly over the last several decades, but patients with primary refractory disease still show inferior survival. We performed a proteomic comparison of pretreatment tumour tissue from ABVD treatment-refractory versus ABVD treatment-sensitive cHL patients, in order to identify biological differences correlating with treatment outcome. Formalin-fixed paraffin-embedded tumour tissues from 36 patients with cHL, 15 with treatment-refractory disease, and 21 with treatment-sensitive disease, were processed for proteomic investigation. Label-free quantification nano liquid chromatography tandem mass spectrometry was performed on the tissues. A total of 3920 proteins were detected and quantified between the refractory and sensitive groups. This comparison revealed several subtle but significant differences in protein expression which could identify subcluster characteristics of the refractory group. Bioinformatic analysis of the biological differences indicated that a number of pathologically activated signal transduction pathways are disturbed in ABVD treatment-refractory cHL.
Collapse
Affiliation(s)
- Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (B.H.); (D.W.)
| | - Maja Dam Andersen
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Diani Wilken
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (B.H.); (D.W.)
| | - Peter Kamper
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
| | - Francesco d’Amore
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Stephen Hamilton-Dutoit
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
13
|
Icardi A, Lompardia SL, Papademetrio DL, Rosales P, Díaz M, Pibuel MA, Alaniz L, Alvarez E. Hyaluronan in the Extracellular Matrix of Hematological and Solid Tumors. Its Biological Effects. BIOLOGY OF EXTRACELLULAR MATRIX 2022:161-196. [DOI: 10.1007/978-3-030-99708-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Immune-Proteome Profiling in Classical Hodgkin Lymphoma Tumor Diagnostic Tissue. Cancers (Basel) 2021; 14:cancers14010009. [PMID: 35008176 PMCID: PMC8750205 DOI: 10.3390/cancers14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
In classical Hodgkin Lymphoma (cHL), immunoediting via protein signaling is key to evading tumor surveillance. We aimed to identify immune-related proteins that distinguish diagnostic cHL tissues (=diagnostic tumor lysates, n = 27) from control tissues (reactive lymph node lysates, n = 30). Further, we correlated our findings with the proteome plasma profile between cHL patients (n = 26) and healthy controls (n = 27). We used the proximity extension assay (PEA) with the OlinkTM multiplex Immuno-Oncology panel, consisting of 92 proteins. Univariate, multivariate-adjusted analysis and Benjamini–Hochberg’s false discovery testing (=Padj) were performed to detect significant discrepancies. Proteins distinguishing cHL cases from controls were more numerous in plasma (30 proteins) than tissue (17 proteins), all Padj < 0.05. Eight of the identified proteins in cHL tissue (PD-L1, IL-6, CCL17, CCL3, IL-13, MMP12, TNFRS4, and LAG3) were elevated in both cHL tissues and cHL plasma compared with control samples. Six proteins distinguishing cHL tissues from controls tissues were significantly correlated to PD-L1 expression in cHL tissue (IL-6, MCP-2, CCL3, CCL4, GZMB, and IFN-gamma, all p ≤0.05). In conclusion, this study introduces a distinguishing proteomic profile in cHL tissue and potential immune-related markers of pathophysiological relevance.
Collapse
|
15
|
Myocardial Metabolic Response Predicts Chemotherapy Curative Potential on Hodgkin Lymphoma: A Proof-of-Concept Study. Biomedicines 2021; 9:biomedicines9080971. [PMID: 34440175 PMCID: PMC8393404 DOI: 10.3390/biomedicines9080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Genome sharing between cancer and normal tissues might imply a similar susceptibility to chemotherapy toxicity. The present study aimed to investigate whether curative potential of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) is predicted by the metabolic response of normal tissues in patients with Hodgkin lymphoma (HL). METHODS According to current guidelines, 86 patients with advanced-stage (IIB-IVB) HL, prospectively enrolled in the HD0607 trial (NCT00795613), underwent 18 F-fluorodeoyglucose PET/CT imaging at diagnosis and, at interim, after two ABVD courses, to decide regimen maintenance or its escalation. In both scans, myocardial FDG uptake was binarized according to its median value. Death and disease relapse were recorded to estimate progression-free survival (PFS) during a follow-up with median duration of 43.8 months (range 6.97-60). RESULTS Four patients (4.6%) died, while six experienced disease relapse (7%). Complete switch-off of cancer lesions and cardiac lighting predicted a favorable outcome at Kaplan-Mayer analyses. The independent nature and additive predictive value of their risk prediction were confirmed by the multivariate Cox regression analysis. CONCLUSION Susceptibility of HL lesions to chemotherapy is at least partially determined by factors featuring the host who developed it.
Collapse
|
16
|
Gallamini A, Kurlapski M, Zaucha JM. FDG-PET/CT for the Management of Post-Chemotherapy Residual Mass in Hodgkin lymphoma. Cancers (Basel) 2021; 13:cancers13163952. [PMID: 34439108 PMCID: PMC8391562 DOI: 10.3390/cancers13163952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary In the present review the authors report the predictive value of FDG/PET-CT (PET) on treatment outcome of Hodgkin lymphoma patients showing a post-chemotherapy residual mass, based on the published reports of PET-guided consolidation radiotherapy after different-intensity chemotherapy regimens such as ABVD or BEACOPPescalated. A special focus will be dedicated to the role of PET for assessing patients with a residual mass during and after immunotherapy with immune checkpoint inhibitors. Finally, the interpretation criteria of PET will be also reviewed, and the role of alternative imaging techniques discussed. Abstract In the present review, the authors report the published evidence on the use of functional imaging with FDG-PET/CT in assessing the final response to treatment in Hodgkin lymphoma. Despite a very high overall Negative Predictive Value of post-chemotherapy PET on treatment outcome ranging from 94% to 86%, according to different treatment intensity, the Positive Predicting Value proved much lower (40–25%). In the present review the Authors discuss the role of PET to guide consolidation RT over a RM after different chemotherapy regimens, both in early and in advanced-stage disease. A particular emphasis is dedicated to the peculiar issue of the qualitative versus semi-quantitative methods for End-of Therapy PET scan interpretation. A short hint will be given on the role of FDG-PET to assess the treatment outcome after immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Andrea Gallamini
- Research and Clinical Innovation Department, Antoine Lacassagne Cancer Centre, 06189 Nice, France
- Correspondence:
| | - Michał Kurlapski
- Haematology and Bone Marrow Transplantation Department, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.K.); (J.M.Z.)
| | - Jan Maciej Zaucha
- Haematology and Bone Marrow Transplantation Department, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.K.); (J.M.Z.)
| |
Collapse
|
17
|
Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1. Blood 2021; 136:2851-2863. [PMID: 33113552 DOI: 10.1182/blood.2020008553] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL) is the cancer type most susceptible to antibodies targeting programmed cell death protein 1 (PD1) and is characterized by scarce Hodgkin and Reed-Sternberg cells (HRSCs), perpetuating a unique tumor microenvironment (TME). Although anti-PD1 effects appear to be largely mediated by cytotoxic CD8+ T cells in solid tumors, HRSCs frequently lack major histocompatibility complex expression, and the mechanism of anti-PD1 efficacy in cHL is unclear. Rapid clinical responses and high interim complete response rates to anti-PD1 based first-line treatment were recently reported for patients with early-stage unfavorable cHL treated in the German Hodgkin Study Group phase 2 NIVAHL trial. To investigate the mechanisms underlying this very early response to anti-PD1 treatment, we analyzed paired biopsies and blood samples obtained from NIVAHL patients before and during the first days of nivolumab first-line cHL therapy. Mirroring the rapid clinical response, HRSCs had disappeared from the tissue within days after the first nivolumab application. The TME already shows a reduction in type 1 regulatory T cells and PD-L1+ tumor-associated macrophages at this early time point of treatment. Interestingly, a cytotoxic immune response and a clonal T-cell expansion were not observed in the tumors or peripheral blood. These early changes in the TME were distinct from alterations found in a separate set of cHL biopsies at relapse during anti-PD1 therapy. We identify a unique very early histologic response pattern to anti-PD1 therapy in cHL that is suggestive of withdrawal of prosurvival factors, rather than induction of an adaptive antitumor immune response, as the main mechanism of action.
Collapse
|
18
|
Hamdi L, Creidy R, Boudjemaa S, Hendel-Chavez H, Hugues P, Taoufik Y, Leblanc T, Coulomb A, Krzysiek R, Landman-Parker J, Besson C. Frequent altered distribution of peripheral B-lymphocyte subsets in pediatric and adolescent patients with classical Hodgkin lymphoma. Leuk Lymphoma 2020; 62:300-307. [PMID: 33095090 DOI: 10.1080/10428194.2020.1834090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Peripheral lymphopenia is a well-known negative prognostic marker in classical Hodgkin lymphoma (cHL). We characterized the peripheral B-cell compartment in a prospective cohort of 83 pediatric cHL patients. We observed significantly low total B-cell counts (<100 cells/µl) in 31 of 83 patients (37%). More specifically, there was a smaller peripheral IgDhighCD27- naïve B-cell pool among B-cell lymphopenic patients than for non-B-cell lymphopenic patients (p < 0.01). The B-cell count was lower in patients without in situ Epstein Barr Virus (EBV) expression than among those with in situ EBV expression (p = 0.03). Peripheral B-cell lymphopenia was associated with the presence of poor prognostic features, such as advanced lymphoma stage (p < 0.01) and the presence of B symptoms (p = 0.04). Of interest, B-cell lymphopenia resolved in all six studied patients in long-term remission. Our findings support that cHL tumor-associated factors interfere with the distribution of peripheral B-cell subsets.
Collapse
Affiliation(s)
| | - Rita Creidy
- Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Sabah Boudjemaa
- Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Houria Hendel-Chavez
- Service d'Hématologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de, Le Kremlin-Bicêtre, Paris, France
| | - Patricia Hugues
- Universite Paris-Saclay, Communaute Paris-Saclay, Villejuif, France
| | - Yassine Taoufik
- Service d'Hématologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de, Le Kremlin-Bicêtre, Paris, France
| | - Thierry Leblanc
- Service d'hemato-immunologie; Pole de Pediatrie Medicale, CHU Paris-Hopital Robert Debre, Paris
| | - Aurore Coulomb
- Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Roman Krzysiek
- Service d'Hématologie Biologique, Hôpital Bicêtre, Assistance Publique-Hôpitaux de, Le Kremlin-Bicêtre, Paris, France
| | - Judith Landman-Parker
- Service d'hematologie oncologie pediatrique, Sorbonne Universite, Hopital Armand-Trousseau APHP, Paris
| | - Caroline Besson
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe "Exposome et Hérédité", CESP, Villejuif, France.,Hematology-Oncology Unit, Centre Hospitalier de Versailles, Le Chesnay, France
| |
Collapse
|
19
|
Viviani S, Mazzocchi A, Pavoni C, Taverna F, Rossi A, Patti C, Romano A, Trentin L, Sorasio R, Guidetti A, Gottardi D, Tarella C, Cimminiello M, Zanotti R, Farina L, Ferreri AJM, Galbiati M, Corradini P, Gianni AM, Gallamini A, Rambaldi A. Early serum TARC reduction predicts prognosis in advanced-stage Hodgkin lymphoma patients treated with a PET-adapted strategy. Hematol Oncol 2020; 38:501-508. [PMID: 32602970 DOI: 10.1002/hon.2775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Among patients with advanced-stage classical Hodgkin lymphoma (cHL) receiving ABVD chemotherapy, PET performed after the first two treatment cycles (PET-2) has prognostic value. However, 15% of patients with a negative PET-2 will experience treatment failure. Here we prospectively evaluated serum thymus and activation-regulated chemokine (TARC) levels, to improve risk assessment in patients treated according to HD0607 PET-driven trial (#NCT00795613). In 266 patients with available serum samples, who have agreed to participate in a sub-study for assessment of the role of TARC monitoring, serum TARC levels were measured at baseline and at time of PET-2 by commercially available ELISA test kits. The primary end-point was to evaluate the association between TARC after 2 ABVD cycles and PFS. Median TARC-2 values were significantly higher in PET-2-positive patients compared to PET-2-negative patients (P = .001), and in patients with treatment failure compared to those in continuous CR (P = .01). The 4-year PFS significantly differed between patients with TARC-2 >800 pg/mL vs ≤800 pg/mL (64% vs 86%, P = .0001). Moreover, among PET-2-negative patients, elevated TARC-2 identified those with a worse prognosis (74% vs 89%; P = .01). In multivariable analysis, TARC-2 >800 pg/mL was a significant independent predictor of PFS in the whole study population (HR 2.39, P = .004) and among the PET-2-negative patients (HR 2.49, P = .02). In conclusion, our results indicate that TARC-2 serum levels above 800 pg/mL suggest the need for a stringent follow-up in PET-2-negative patients, and the evaluation of new drugs in PET-2-positive, who will likely fail to respond to intensification with escalated BEACOPP.
Collapse
Affiliation(s)
- Simonetta Viviani
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arabella Mazzocchi
- Immuno-hematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Pavoni
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Taverna
- Immuno-hematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Rossi
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Patti
- Division of Hematology 1, Azienda Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Alessandra Romano
- Department of Medical and Surgery Science, Hematology Unit, University of Catania, Catania, Italy
| | - Livio Trentin
- Department of Hematology, University of Padova, Padova, Italy
| | - Roberto Sorasio
- Division of Hematology, Azienda Ospedaliera Santa Croce e Carle, Cuneo, Italy
| | - Anna Guidetti
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniela Gottardi
- Division of Hematology, Ospedale Mauriziano Umberto I di Torino, Turin, Italy
| | - Corrado Tarella
- Hemato-Oncology Division, European Institute of Oncology IRCCS, Milan, Italy.,University Department "Scienze della Salute" (DISS), University of Milan, Milan, Italy
| | | | - Roberta Zanotti
- Hematology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Lucia Farina
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrés José Maria Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Marina Galbiati
- Immuno-hematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Corradini
- Department of Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Andrea Gallamini
- Division of Hematology, Azienda Ospedaliera Santa Croce e Carle, Cuneo, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.,Department of Oncology and Hematology, University of Milan, Milan, Italy
| |
Collapse
|
20
|
PD-L1/L2 protein levels rapidly increase on monocytes via trogocytosis from tumor cells in classical Hodgkin lymphoma. Leukemia 2020; 34:2405-2417. [PMID: 32089543 DOI: 10.1038/s41375-020-0737-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
In classical Hodgkin lymphoma (cHL)-characterized by the presence of Hodgkin and Reed-Sternberg (HRS) cells-tumor-associated macrophages (TAMs) play a pivotal role in tumor formation. However, the significance of direct contact between HRS cells and TAMs has not been elucidated. HRS cells and TAMs are known to express PD-L1, which leads to PD-1+ CD4+ T cell exhaustion in cHL. Here, we found that PD-L1/L2 expression was elevated in monocytes co-cultured with HRS cells within 1 h, but not in monocytes cultured with supernatants of HRS cells. Immunofluorescence analysis of PD-L1/L2 revealed that their upregulation resulted in membrane transfer called "trogocytosis" from HRS cells to monocytes. PD-L1/L2 upregulation was not observed in monocytes co-cultured with PD-L1/L2-deficient HRS cells, validating the hypothesis that there is a direct transfer of PD-L1/L2 from HRS cells to monocytes. In the patients, both ligands (PD-L1/L2) were upregulated in TAMs in contact with HRS cells, but not in TAMs distant from HRS cells, suggesting that trogocytosis occurs in cHL patients. Taken together, trogocytosis may be one of the mechanisms that induces rapid upregulation of PD-L1/L2 in monocytes to evade antitumor immunity through the suppression of T cells as mediated by MHC antigen presentation.
Collapse
|
21
|
Hannig J, Schäfer H, Ackermann J, Hebel M, Schäfer T, Döring C, Hartmann S, Hansmann ML, Koch I. Bioinformatics analysis of whole slide images reveals significant neighborhood preferences of tumor cells in Hodgkin lymphoma. PLoS Comput Biol 2020; 16:e1007516. [PMID: 31961873 PMCID: PMC6999891 DOI: 10.1371/journal.pcbi.1007516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/04/2020] [Accepted: 10/29/2019] [Indexed: 11/25/2022] Open
Abstract
In pathology, tissue images are evaluated using a light microscope, relying on the expertise and experience of pathologists. There is a great need for computational methods to quantify and standardize histological observations. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of tumor cells and their microenvironment are of special interest. Here, we systematically investigated tumor cell properties and their spatial neighborhood relations by a new application of statistical analysis to whole slide images of Hodgkin lymphoma, a tumor arising in lymph nodes, and inflammation of lymph nodes called lymphadenitis. We considered properties of more than 400, 000 immunohistochemically stained, CD30-positive cells in 35 whole slide images of tissue sections from subtypes of the classical Hodgkin lymphoma, nodular sclerosis and mixed cellularity, as well as from lymphadenitis. We found that cells of specific morphology exhibited significantly favored and unfavored spatial neighborhood relations of cells in dependence of their morphology. This information is important to evaluate differences between Hodgkin lymph nodes infiltrated by tumor cells (Hodgkin lymphoma) and inflamed lymph nodes, concerning the neighborhood relations of cells and the sizes of cells. The quantification of neighborhood relations revealed new insights of relations of CD30-positive cells in different diagnosis cases. The approach is general and can easily be applied to whole slide image analysis of other tumor types. In pathology, histological diagnosis is still challenging, in particular, for tumor diseases. Pathologists diagnose the disease and its stage of development on the basis of evaluation and interpretation of images of tissue sections. The quantification of experimental data to support decisions of diagnosis and prognosis, applying bioinformatics methods, is an important issue. Here, we introduce a new, general approach to analyze tissue images of tumor and non-tumor patients and to evaluate the distribution of tumor cells in the tissue. Moreover, we consider neighborhood relations between immunostained cells of different cell morphology. We focus on a special type of lymph node tumor, the Hodgkin lymphoma, exploring the two main types of the classical Hodgkin lymphoma, the nodular sclerosis and the mixed cellularity, and the non-tumor case, the lymphadenitis, representing an inflammation of the lymph node. We considered more than 400, 000 cells immunohistochemically stained with CD30 in 35 whole slide images of tissue sections. We found that cells of specific morphology exhibited significant relations to cells of certain morphology as spatial nearest neighbor. We could show different neighborhood patterns of CD30-positive cells between tumor and non-tumor. The approach is general and can easily be applied to other tumor types.
Collapse
Affiliation(s)
- Jennifer Hannig
- KITE - Kompetenzzentrum für Informationstechnologie, Technische Hochschule Mittelhessen, Friedberg, Germany
| | - Hendrik Schäfer
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marie Hebel
- Institute of Biochemistry II, Johann Wolfgang Goethe-University, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, University Hospital Frankfurt am Main, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Martin-Leo Hansmann
- Consultation and reference center for lymph node pathology at Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ina Koch
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
22
|
Nodular lymphocyte predominant Hodgkin lymphoma: pathology, clinical course and relation to T-cell/histiocyte rich large B-cell lymphoma. Pathology 2020; 52:142-153. [DOI: 10.1016/j.pathol.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
|
23
|
Bankov K, Döring C, Ustaszewski A, Giefing M, Herling M, Cencioni C, Spallotta F, Gaetano C, Küppers R, Hansmann ML, Hartmann S. Fibroblasts in Nodular Sclerosing Classical Hodgkin Lymphoma Are Defined by a Specific Phenotype and Protect Tumor Cells from Brentuximab-Vedotin Induced Injury. Cancers (Basel) 2019; 11:cancers11111687. [PMID: 31671543 PMCID: PMC6896072 DOI: 10.3390/cancers11111687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterized by a proliferation of fibroblasts in the tumor microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts. However, to date a deep molecular characterization of these fibroblasts is lacking. Thus, the aim of the present study is a comprehensive characterization of these fibroblasts. Gene expression profiling and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic phenotype characterized by myocardin (MYOCD) expression. Moreover, TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. As previously shown for other types of cancer-associated fibroblasts, treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin induced cell death. However, HRS cells adherent to fibroblasts were protected from Brentuximab-Vedotin induced injury. In summary, we confirm the importance of fibroblasts for HRS cell survival and identify TIMP3 which probably contributes as a major factor to the typical fibrosis observed in NS cHL.
Collapse
Affiliation(s)
- Katrin Bankov
- Dr. Senckenberg Institute of Pathology, Goethe University, 60590 Frankfurt am Main, Germany.
- Department of Internal Medicine 1, Hospital of the J.W. Goethe University, 60590 Frankfurt am Main, Germany.
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University, 60590 Frankfurt am Main, Germany.
| | - Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Marco Herling
- The Laboratory of Lymphocyte Signalling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, CECAD and CMMC, University of Cologne, 50937 Cologne, Germany.
| | - Chiara Cencioni
- National Research Council (CNR), Institute for Systems Analysis and Computer Science, 00185 Rome, Italy.
| | - Francesco Spallotta
- Department of Oncology, University of Turin, 10060 Candiolo (Turin), Italy.
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Turin), Italy.
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy.
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122 Essen, Germany.
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe University, 60590 Frankfurt am Main, Germany.
- Reference and Consultant Center for Lymph Node and Lymphoma Pathology, Goethe University, 60590 Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, 60438 Frankfurt am Main, Germany.
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University, 60590 Frankfurt am Main, Germany.
- Reference and Consultant Center for Lymph Node and Lymphoma Pathology, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Goncharova O, Flinner N, Bein J, Döring C, Donnadieu E, Rikirsch S, Herling M, Küppers R, Hansmann ML, Hartmann S. Migration Properties Distinguish Tumor Cells of Classical Hodgkin Lymphoma from Anaplastic Large Cell Lymphoma Cells. Cancers (Basel) 2019; 11:cancers11101484. [PMID: 31581676 PMCID: PMC6827161 DOI: 10.3390/cancers11101484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Anaplastic large cell lymphoma (ALCL) and classical Hodgkin lymphoma (cHL) are lymphomas that contain CD30-expressing tumor cells and have numerous pathological similarities. Whereas ALCL is usually diagnosed at an advanced stage, cHL more frequently presents with localized disease. The aim of the present study was to elucidate the mechanisms underlying the different clinical presentation of ALCL and cHL. Chemokine and chemokine receptor expression were similar in primary ALCL and cHL cases apart from the known overexpression of the chemokines CCL17 and CCL22 in the Hodgkin and Reed-Sternberg (HRS) cells of cHL. Consistent with the overexpression of these chemokines, primary cHL cases encountered a significantly denser T cell microenvironment than ALCL. Additionally to differences in the interaction with their microenvironment, cHL cell lines presented a lower and less efficient intrinsic cell motility than ALCL cell lines, as assessed by time-lapse microscopy in a collagen gel and transwell migration assays. We thus propose that the combination of impaired basal cell motility and differences in the interaction with the microenvironment hamper the dissemination of HRS cells in cHL when compared with the tumor cells of ALCL.
Collapse
Affiliation(s)
- Olga Goncharova
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Nadine Flinner
- Institute of Informatics/Frankfurt Institute for Advanced Studies, Goethe University, 60438 Frankfurt am Main, Germany.
| | - Julia Bein
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Emmanuel Donnadieu
- Inserm, U1016, Institut Cochin, CNRS, UMR8104 and Université Paris Descartes, F-75014 Paris, France.
| | - Sandy Rikirsch
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Marco Herling
- The Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, CECAD and CMMC, University of Cologne, 50937 Cologne, Germany.
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122 Essen, Germany.
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
- Reference and Consultant Center for Lymph Node and Lymphoma diagnostics, 60590 Frankfurt, Germany.
- Frankfurt Institute of Advanced Studies, 60438 Frankfurt am Main, Germany.
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
- Reference and Consultant Center for Lymph Node and Lymphoma diagnostics, 60590 Frankfurt, Germany.
| |
Collapse
|
25
|
Abstract
Classic Hodgkin lymphoma (cHL) is one of the most common lymphomas in the Western world. Advances in the management of cHL have led to high cure rates exceeding 80%. Nevertheless, relapse or refractory disease in a subset of patients and treatment-related toxicity still represents unsolved clinical problems. The introduction of targeted treatments such as PD-1 blockade and the CD30 antibody drug conjugate, brentuximab vedotin, has broadened treatment options in cHL, emphasizing the critical need to identify biomarkers with the goal to provide rationales for treatment selection, increase effective drug utilization, and minimize toxicity. The unique biology of cHL featuring low abundant tumor cells and numerous nonmalignant immune cells in the tumor microenvironment can provide various types of promising biomarkers related to the tumor cells directly, tumor microenvironment cross-talk, and host immune response. Here, we comprehensively review novel biomarkers including circulating tumor DNA and gene expression-based prognostic models that might guide the ideal management of cHL in the future.
Collapse
|
26
|
Zaucha JM, Chauvie S, Zaucha R, Biggii A, Gallamini A. The role of PET/CT in the modern treatment of Hodgkin lymphoma. Cancer Treat Rev 2019; 77:44-56. [PMID: 31260900 DOI: 10.1016/j.ctrv.2019.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/06/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
Abstract
Classical Hodgkin Lymphoma is distinguished from other lymphomas by its peculiar biology and heterogeneous chemosensitivity. Most of the patients respond to the standard first-line treatment and are cured, however, in selected cases, the disease relapses or remains primarily refractory. Among predictive/prognostic factors 18FDG positron emission tomography (PET), fully integrated with computed tomography (PET/CT) proved to be extremely useful in identifying patients with poor prognosis at the time of diagnosis, during and at the end of treatment. The aim of this review is to present the current role of PET/CT in cHL at staging, interim and end of therapy assessment and its ability to guide treatment with a response- and risk-adapted strategy in clinical practice. Finally, quantitative PET measurement and the concurrent use of PET with selected biomarkers are discussed.
Collapse
Affiliation(s)
- Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Poland.
| | - Stephane Chauvie
- Department of Medical Physics, Santa Croce e Carle Hospital, Cuneo, Italy
| | - Renata Zaucha
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Poland
| | - Alberto Biggii
- Department of Nuclear Medicine, Santa Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Gallamini
- Department of Research and Clinical Innovation, A. Lacassagne Cancer Center, Nice, France
| |
Collapse
|
27
|
Autocrine LTA signaling drives NF-κB and JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma. Blood 2019; 133:1489-1494. [PMID: 30696620 DOI: 10.1182/blood-2018-08-871293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/22/2019] [Indexed: 01/19/2023] Open
Abstract
Persistent NF-κB activation is a hallmark of the malignant Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL). Genomic lesions, Epstein-Barr virus infection, soluble factors, and tumor-microenvironment interactions contribute to this activation. Here, in an unbiased approach to identify the cHL cell-secreted key factors for NF-κB activation, we have dissected the secretome of cultured cHL cells by chromatography and subsequent mass spectrometry. We identified lymphotoxin-α (LTA) as the causative factor for autocrine and paracrine activation of canonical and noncanonical NF-κB in cHL cell lines. In addition to inducing NF-κB, LTA promotes JAK2/STAT6 signaling. LTA and its receptor TNFRSF14 are transcriptionally activated by noncanonical NF-κB, creating a continuous feedback loop. Furthermore, LTA shapes the expression of cytokines, receptors, immune checkpoint ligands and adhesion molecules, including CSF2, CD40, PD-L1/PD-L2, and VCAM1. Comparison with single-cell gene-activity profiles of human hematopoietic cells showed that LTA induces genes restricted to the lymphoid lineage, as well as those largely restricted to the myeloid lineage. Thus, LTA sustains autocrine NF-κB activation, impacts activation of several signaling pathways, and drives expression of genes essential for microenvironmental interactions and lineage ambiguity. These data provide a robust rationale for targeting LTA as a treatment strategy for cHL patients.
Collapse
|
28
|
Navarro-Tableros V, Gomez Y, Camussi G, Brizzi MF. Extracellular Vesicles: New Players in Lymphomas. Int J Mol Sci 2018; 20:E41. [PMID: 30583481 PMCID: PMC6337615 DOI: 10.3390/ijms20010041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Lymphomas are heterogeneous diseases, and the term includes a number of histological subtypes that are characterized by different clinical behavior and molecular phenotypes. Valuable information on the presence of lymphoma cell-derived extracellular vesicles (LCEVs) in the bloodstream of patients suffering from this hematological cancer has recently been provided. In particular, it has been reported that the number and phenotype of LCEVs can both change as the disease progresses, as well as after treatment. Moreover, the role that LCEVs play in driving tumor immune escape has been reported. This makes LCEVs potential novel clinical tools for diagnosis, disease progression, and chemoresistance. LCEVs express surface markers and convey specific molecules in accordance with their cell of origin, which can be used as targets and thus lead to the development of specific therapeutics. This may be particularly relevant since circulating LCEVs are known to save lymphoma cells from anti-cluster of differentiation (CD)20-induced complement-dependent cytotoxicity. Therefore, effort should be directed toward investigating the feasibility of using LCEVs as predictive biomarkers of disease progression and/or response to treatment that can be translated to clinical use. The use of liquid biopsies in combination with serum EV quantification and cargo analysis have been also considered as potential approaches that can be pursued in the future. Upcoming research will also focus on the identification of specific molecular targets in order to generate vaccines and/or antibodies against LCEVs. Finally, the removal of circulating LCEVs has been proposed as a simple and non-invasive treatment approach. We herein provide an overview of the role of LCEVs in lymphoma diagnosis, immune tolerance, and drug resistance. In addition, alternative protocols that utilize LCEVs as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin 10126, Italy.
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin 10126, Italy.
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin 10126, Italy.
| | | |
Collapse
|
29
|
Lei X, Muscat JE, Huang Z, Chen C, Xiu G, Chen J. Differential transcriptional changes in human alveolar epithelial A549 cells exposed to airborne PM 2.5 collected from Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33656-33666. [PMID: 30276685 DOI: 10.1007/s11356-018-3090-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Fine particulate matters (PM2.5) are the core pollutants of haze episode, which pose a serious threat to the human health of developing countries. However, the mechanisms involved in PM2.5-induced hazard influence are not to fully elucidated. In the present study, human lung epithelial cells (A549) were exposed to various concentrations of PM2.5 samples collected from Shanghai, China. Illumina RNA-Seq method with transcriptome, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were further employed to identify the detrimental effects of PM2.5 on A549 cells in vitro. A total of 712 differentially expressed genes were obtained from global transcriptome profiling of A549 cells after PM2.5 exposure. In addition, GO function enrichment analysis revealed that major differentially expressed genes (DEGs) involved in the biological process of the immune system and the response to the stress. KEGG pathway analysis further proposes that infectious disease, cancers, cardiovascular disease, and immune disease pathway were the key human disease events that occur in A549 cells under PM2.5 stress. The data obtained here shed light on the related biological process and gene signaling pathways affected by PM2.5 exposure. This study aids our understanding of the complicated mechanisms related to PM2.5-induced health effects and is informative for the prevention and treatment of PM2.5-induced systemic diseases.
Collapse
Affiliation(s)
- Xiaoning Lei
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Joshua E Muscat
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, PA, 17033, USA
| | - Zhongsi Huang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Jiahui Chen
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| |
Collapse
|
30
|
Zhao S, Molina A, Yu A, Hanson J, Cheung H, Li X, Natkunam Y. High frequency of CD74 expression in lymphomas: implications for targeted therapy using a novel anti-CD74-drug conjugate. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 5:12-24. [PMID: 30191677 PMCID: PMC6317062 DOI: 10.1002/cjp2.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
CD74 is a type II transmembrane glycoprotein that functions as an MHC class II chaperone and displays diverse roles in immune responses. Recently, anti‐CD74 immunotherapy has shown promise as an effective treatment strategy for lymphoid neoplasms in preclinical models. Using a human anti‐CD74 antibody (SP7219), we defined the expression of CD74 protein in both normal and over 790 neoplastic hematolymphoid tissue samples. We found that CD74 is expressed broadly in normal B‐cell compartments including primary and secondary lymphoid follicles and in the thymic medulla. The vast majority of lymphomas expressed CD74, including Hodgkin lymphomas (98%), B‐cell lymphomas (96%), extranodal NK/T‐cell lymphomas (88%), mature T‐cell lymphomas (80%), and plasma cell myeloma (75%). Our findings confirm and expand previous observations regarding the expression of CD74 and suggest that CD74 expression on tumor cells may be directly targeted for immunomodulatory therapy for lymphoid and plasma cell malignancies.
Collapse
Affiliation(s)
- Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
31
|
Ma Y, Yates JR. Proteomics and pulse azidohomoalanine labeling of newly synthesized proteins: what are the potential applications? Expert Rev Proteomics 2018; 15:545-554. [PMID: 30005169 PMCID: PMC6329588 DOI: 10.1080/14789450.2018.1500902] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Measuring the immediate changes in cells that arise from changing environmental conditions is crucial to understanding the underlying mechanisms involved. These changes can be measured with metabolic stable isotope fully labeled proteomes, but requires looking for changes in the midst of a large background. In addition, labeling efficiency can be an issue in primary and fully differentiated cells. Area covered: Azidohomoalanine (AHA), an analog of methionine, can be accepted by cellular translational machinery and incorporated into newly synthesized proteins (NSPs). AHA-NSPs can be coupled to biotin via CuAAC-mediated click-chemistry and enriched using avidin-based affinity purification. Thus, AHA-containing proteins or peptides can be enriched and efficiently separated from the whole proteome. In this review, we describe the development of mass spectrometry (MS) based AHA strategies and discuss their potential to measure proteins involved in immune response, secretome, gut microbiome, and proteostasis as well as their potential for clinical uses. Expert commentary: AHA strategies have been used to identify synthesis activity and to compare two biological conditions in various biological model organisms. In combination with instrument development, improved sample preparation and fractionation strategies, MS-based AHA strategies have the potential for broad application, and the methods should translate into clinical use.
Collapse
Affiliation(s)
- Yuanhui Ma
- a Departments of Molecular Medicine and Neurobiology , The Scripps Research Institute , La Jolla , CA , USA
| | - John R Yates
- a Departments of Molecular Medicine and Neurobiology , The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
32
|
Li Z, Ju X, Lee K, Clarke C, Hsu JL, Abadir E, Bryant CE, Pears S, Sunderland N, Heffernan S, Hennessy A, Lo TH, Pietersz GA, Kupresanin F, Fromm PD, Silveira PA, Tsonis C, Cooper WA, Cunningham I, Brown C, Clark GJ, Hart DNJ. CD83 is a new potential biomarker and therapeutic target for Hodgkin lymphoma. Haematologica 2018; 103:655-665. [PMID: 29351987 PMCID: PMC5865416 DOI: 10.3324/haematol.2017.178384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy and hematopoietic stem cell transplantation are effective treatments for most Hodgkin lymphoma patients, however there remains a need for better tumor-specific target therapy in Hodgkin lymphoma patients with refractory or relapsed disease. Herein, we demonstrate that membrane CD83 is a diagnostic and therapeutic target, highly expressed in Hodgkin lymphoma cell lines and Hodgkin and Reed-Sternberg cells in 29/35 (82.9%) Hodgkin lymphoma patient lymph node biopsies. CD83 from Hodgkin lymphoma tumor cells was able to trogocytose to surrounding T cells and, interestingly, the trogocytosing CD83+T cells expressed significantly more programmed death-1 compared to CD83-T cells. Hodgkin lymphoma tumor cells secreted soluble CD83 that inhibited T-cell proliferation, and anti-CD83 antibody partially reversed the inhibitory effect. High levels of soluble CD83 were detected in Hodgkin lymphoma patient sera, which returned to normal in patients who had good clinical responses to chemotherapy confirmed by positron emission tomography scans. We generated a human anti-human CD83 antibody, 3C12C, and its toxin monomethyl auristatin E conjugate, that killed CD83 positive Hodgkin lymphoma cells but not CD83 negative cells. The 3C12C antibody was tested in dose escalation studies in non-human primates. No toxicity was observed, but there was evidence of CD83 positive target cell depletion. These data establish CD83 as a potential biomarker and therapeutic target in Hodgkin lymphoma.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Kenneth Lee
- Sydney Medical School, University of Sydney, Australia
- Department of Anatomical Pathology, Concord Repatriation General Hospital, Sydney, Australia
| | - Candice Clarke
- Department of Anatomical Pathology, Concord Repatriation General Hospital, Sydney, Australia
| | - Jennifer L Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Christian E Bryant
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Suzanne Pears
- Animal Facility, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Scott Heffernan
- Animal Facility, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Geoffrey A Pietersz
- Burnet Institute, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Con Tsonis
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
| | - Wendy A Cooper
- Sydney Medical School, University of Sydney, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
- School of Medicine, University of Western Sydney, Australia
| | - Ilona Cunningham
- Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Christina Brown
- Sydney Medical School, University of Sydney, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Australia
| |
Collapse
|
33
|
The prognostic value of the myeloid-mediated immunosuppression marker Arginase-1 in classic Hodgkin lymphoma. Oncotarget 2018; 7:67333-67346. [PMID: 27637084 PMCID: PMC5341879 DOI: 10.18632/oncotarget.12024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 01/04/2023] Open
Abstract
Purpose Neutrophilia is hallmark of classic Hodgkin Lymphoma (cHL), but its precise characterization remains elusive. We aimed at investigating the immunosuppressive role of high-density neutrophils in HL. Experimental design First, N-HL function was evaluated in vitro, showing increased arginase (Arg-1) expression and activity compared to healthy subjects. Second, we measured serum level of Arg-1 (s-Arg-1) by ELISA in two independent, training (N = 40) and validation (N = 78) sets. Results s-Arg-1 was higher in patients with advanced stage (p = 0.045), B-symptoms (p = 0.0048) and a positive FDG-PET scan after two cycles of chemotherapy (PET-2, p = 0.012). Baseline levels of s-Arg-1 > 200 ng/mL resulted in 92% sensitivity and 56% specificity to predict a positive PET-2. Patients showing s-Arg-1 levels > 200 ng/mL had a shorter progression free survival (PFS). In multivariate analysis, PET-2 and s-Arg-1 at diagnosis were the only statistically significant prognostic variables related to PFS (respectively p = 0.0004 and p = 0.012). Moving from PET-2 status and s-Arg-1 level we constructed a prognostic score to predict long-term treatment outcome: low s-Arg-1 and negative PET-2 scan (score 0, N = 63), with a 3-Y PFS of 89.5%; either positive PET-2 or high s-Arg-1 (score 1, N = 46) with 3-Y PFS of 67.6%, and both positive markers (score 2, N = 9) with a 3-Y PFS of 37% (p = 0.0004). Conclusions We conclude that N-HL are immunosuppressive through increased Arg-1 expression, a novel potential biomarker for HL prognosis.
Collapse
|
34
|
|
35
|
Guo F, Ru Q, Zhang J, He S, Yu J, Zheng S, Wang J. Inflammation factors in hepatoblastoma and their clinical significance as diagnostic and prognostic biomarkers. J Pediatr Surg 2017; 52:1496-1502. [PMID: 28188039 DOI: 10.1016/j.jpedsurg.2017.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE The aims of this study were to identify inflammation factors in hepatoblastoma tissue that correlated with different clinical characteristics, and to explore the probability as predictive biomarkers for diagnosis and prognosis. METHODS SELDI-TOF-MS was performed to screen protein peaks that were significantly highly expressed in tumor tissue compared with adjacent liver tissue. After removing proteins larger than 30kDa, the targeted peaks were separated by solid phase extraction and tricine-SDS-PAGE. Protein fragments produced by in-gel digestion were identified by LC-MS/MS. Immunohistochemical assays further confirmed these results. Overall survival curves were graphed by Kaplan-Meier method and multivariate analysis was performed by Cox proportional hazards regression model. RESULTS Three protein peaks (m/z 12,138, m/z 13,462, and m/z 15,120) that were significantly upregulated in the tumor tissue were identified as macrophage migration inhibitory factor (MIF), chemokine (C-X-C motif) ligand 7 (CXCL7), and interleukin 25 (IL-25). These factors were closely related to clinical stage, lymph node metastasis, vascular invasion and serum AFP level. High expression of each inflammatory marker indicated poor prognosis. Multivariate analysis suggested that MIF, CXCL7, and IL-25 were prognostic factors independent of patient sex, age and tumor histological type. CONCLUSIONS MIF, CXCL7, and IL-25 might be considered as effective inflammation factors for diagnosis and prognosis of hepatoblastoma and as potential novel treatment targets through inhibition of inflammatory function. TYPE OF STUDY Prognosis study LEVEL OF EVIDENCE: Level I.
Collapse
Affiliation(s)
- Fei Guo
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Qin Ru
- Record Room, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Junjie Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Shen He
- Department of Psychiatry, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiekai Yu
- Institute of Cancer, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, PR China
| | - Shu Zheng
- Institute of Cancer, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, PR China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
36
|
Hsiao YC, Chu LJ, Chen JT, Yeh TS, Yu JS. Proteomic profiling of the cancer cell secretome: informing clinical research. Expert Rev Proteomics 2017; 14:737-756. [PMID: 28695748 DOI: 10.1080/14789450.2017.1353913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cancer represents one of the major causes of human deaths. Identification of proteins as biomarkers for early detection of cancer and therapeutic targets for cancer treatment are important issues in precision medicine. Secretome of cancer cells represents the collection of proteins secreted or shed from cancer cells. Proteomic profiling of the cancer cell secretome has been proven to be a convenient and efficient way to discover cancer biomarker and/or therapeutic targets. Areas covered: There have been numerous reviews describing the history and application of secretome analysis in cancer biomarker/therapeutic target research. The present review focuses on the technological advancement for profiling low-molecular-mass proteins in secretome, the latest information regarding the new candidate biomarkers and molecular mechanisms discovered on the basis of cancer cell secretome analysis, as well as the previously discovered candidate biomarkers that enter into clinical trials. Expert commentary: Current technologies for protein sample preparation/separation and MS-based protein identification have allowed in-depth analysis of cancer cell secretome. Future efforts should focus on the comprehensiveness of cancer cell secretome, meta-analysis of different secretome datasets and integrated analysis via combining other omics datasets, as well as the incorporation of MS-based biomarker verification pipeline into both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Yung-Chin Hsiao
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Lichieh Julie Chu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jeng-Ting Chen
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Ta-Sen Yeh
- c Department of Surgery , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Jau-Song Yu
- a Molecular Medicine Research Center , Chang Gung University , Taoyuan , Taiwan.,b Liver Research Center , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan.,d Department of Cell and Molecular Biology , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
37
|
Fowler NH, Cheah CY, Gascoyne RD, Gribben J, Neelapu SS, Ghia P, Bollard C, Ansell S, Curran M, Wilson WH, O'Brien S, Grant C, Little R, Zenz T, Nastoupil LJ, Dunleavy K. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica 2017; 101:531-40. [PMID: 27132279 DOI: 10.3324/haematol.2015.139493] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is the cellular and molecular environment in which the tumor exists and with which it continuously interacts. In B-cell lymphomas, this microenvironment is intriguing in that it plays critical roles in the regulation of tumor cell survival and proliferation, fostering immune escape as well as the development of treatment resistance. The purpose of this review is to summarize the proceedings of the Second Annual Summit on the Immune Microenvironment in Hematologic Malignancies that took place on September 11-12, 2014 in Dublin, Ireland. We provide a timely overview of the composition and biological relevance of the cellular and molecular microenvironment interface and discuss the role of interactions between the microenvironment and neoplastic cells in a variety of B-cell lymphomas. In addition, we focus on various novel therapeutic strategies that target the tumor microenvironment, including agents that modulate B-cell receptor pathways and immune-checkpoints, chimeric antigen receptor T cells and immunomodulatory agents.
Collapse
Affiliation(s)
- Nathan H Fowler
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chan Yoon Cheah
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Department of Haematology, Pathwest Laboratory Medicine WA and Sir Charles Gairdner Hospital, Perth, Western Australia University of Western Australia, Perth, Canada
| | - Randy D Gascoyne
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Division of Experimental Oncology, IRCCS Istituto Scientifico San Raffaele, Milan, Italy Department of Onco-Hematology, Ospedale San Raffaele, Milan, Italy
| | | | | | - Michael Curran
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Richard Little
- Cancer Therapeutic Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | | | - Loretta J Nastoupil
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kieron Dunleavy
- Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
38
|
Small and big Hodgkin-Reed-Sternberg cells of Hodgkin lymphoma cell lines L-428 and L-1236 lack consistent differences in gene expression profiles and are capable to reconstitute each other. PLoS One 2017; 12:e0177378. [PMID: 28505189 PMCID: PMC5432067 DOI: 10.1371/journal.pone.0177378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/26/2017] [Indexed: 01/06/2023] Open
Abstract
The hallmark of classical Hodgkin lymphoma (cHL) is the presence of giant, mostly multinucleated Hodgkin-Reed-Sternberg (HRS) cells. Whereas it has recently been shown that giant HRS cells evolve from small Hodgkin cells by incomplete cytokinesis and re-fusion of tethered sister cells, it remains unsolved why this phenomenon particularly takes place in this lymphoma and what the differences between these cell types of variable sizes are. The aim of the present study was to characterize microdissected small and giant HRS cells by gene expression profiling and to assess differences of clonal growth behavior as well as susceptibility toward cytotoxic intervention between these different cell types to provide more insight into their distinct cellular potential. Applying stringent filter criteria, only two differentially expressed genes between small and giant HRS cells, SHFM1 and LDHB, were identified. With looser filter criteria, 13 genes were identified to be differentially overexpressed in small compared to giant HRS cells. These were mainly related to energy metabolism and protein synthesis, further suggesting that small Hodgkin cells resemble the proliferative compartment of cHL. SHFM1, which is known to be involved in the generation of giant cells, was downregulated in giant RS cells at the RNA level. However, reduced mRNA levels of SHFM1, LDHB and HSPA8 did not translate into decreased protein levels in giant HRS cells. In cell culture experiments it was observed that the fraction of small and big HRS cells was adjusted to the basic level several days after enrichment of these populations via cell sorting, indicating that small and big HRS cells can reconstitute the full spectrum of cells usually observed in the culture. However, assessment of clonal growth of HRS cells indicated a significantly reduced potential of big HRS cells to form single cell colonies. Taken together, our findings pinpoint to strong similarities but also some differences between small and big HRS cells.
Collapse
|
39
|
Li Y, Urban A, Midura D, Simon HG, Wang QT. Proteomic characterization of epicardial-myocardial signaling reveals novel regulatory networks including a role for NF-κB in epicardial EMT. PLoS One 2017; 12:e0174563. [PMID: 28358917 PMCID: PMC5373538 DOI: 10.1371/journal.pone.0174563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
Signaling between the epicardium and underlying myocardium is crucial for proper heart development. The complex molecular interactions and regulatory networks involved in this communication are not well understood. In this study, we integrated mass spectrometry with bioinformatics to systematically characterize the secretome of embryonic chicken EPDC-heart explant (EHE) co-cultures. The 150-protein secretome dataset established greatly expands the knowledge base of the molecular players involved in epicardial-myocardial signaling. We identified proteins and pathways that are implicated in epicardial-myocardial signaling for the first time, as well as new components of pathways that are known to regulate the crosstalk between epicardium and myocardium. The large size of the dataset enabled bioinformatics analysis to deduce networks for the regulation of specific biological processes and predicted signal transduction nodes within the networks. We performed functional analysis on one of the predicted nodes, NF-κB, and demonstrate that NF-κB activation is an essential step in TGFβ2/PDGFBB-induced cardiac epithelial-to-mesenchymal transition. In summary, we have generated a global perspective of epicardial-myocardial signaling for the first time, and our findings open exciting new avenues for investigating the molecular basis of heart development and regeneration.
Collapse
Affiliation(s)
- Yanyang Li
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alexander Urban
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Devin Midura
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Stanley Manne Children’s Research Institute, Chicago, Illinois, United States of America
- * E-mail: (QTW); (HGS)
| | - Q. Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (QTW); (HGS)
| |
Collapse
|
40
|
Atypical variants of nodular lymphocyte-predominant Hodgkin lymphoma show low microvessel density and vessels of distention type. Hum Pathol 2016; 60:129-136. [PMID: 27816718 DOI: 10.1016/j.humpath.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 01/25/2023]
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) presents different histopathologic growth patterns, including atypical forms showing overlapping histopathologic and clinical features with T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL). Because growth patterns are associated with vessel distribution, the aim of the present study was to compare angiogenesis in different NLPHL patterns with THRLBCL as well as other lymphomas. Atypical variants of NLPHL and THRLBCL (n=10 per group) both showed a low microvessel density (MVD; 1.16-1.31/μm2) with a diffuse vessel distribution. In contrast, in typical NLPHL (n=10), follicular areas with low MVD were retained, whereas an increase in vessels in the interfollicular areas was observed (MVD 1.35/μm2). THRLBCL and typical NLPHL could additionally be distinguished by differences in their molecular angiogenesis signature. Furthermore, the number of intravascular T cells was significantly reduced in THRLBCL (0.0028 T cells/mm2 vessel area) when compared with typical NLPHL (0.0059 T cells/mm2 vessel area), potentially reflecting the different composition of the microenvironment in these 2 lymphoma entities. The results of our study reveal a similar vascular pattern and angiogenesis behavior in atypical NLPHL variants and THRLBCL in contrast to the retained follicular pattern in typical NLPHL.
Collapse
|
41
|
Carbone A, Gloghini A, Caruso A, De Paoli P, Dolcetti R. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis. Int J Cancer 2016; 140:1233-1245. [DOI: 10.1002/ijc.30473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Antonino Carbone
- Department of Pathology; Centro di Riferimento Oncologico - IRCCS, National Cancer Institute; Aviano PN Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine; Fondazione IRCCS Istituto Nazionale dei Tumori; Milano Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine; University of Brescia Medical School; Brescia Italy
| | - Paolo De Paoli
- Molecular Virology Unit and Scientific Directorate; Centro di Riferimento Oncologico - IRCCS, National Cancer Institute; Aviano PN Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico - IRCCS; National Cancer Institute; Aviano PN Italy
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland; Brisbane QLD Australia
| |
Collapse
|
42
|
Witzke KE, Rosowski K, Müller C, Ahrens M, Eisenacher M, Megger DA, Knobloch J, Koch A, Bracht T, Sitek B. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins. J Proteome Res 2016; 16:137-146. [PMID: 27696881 DOI: 10.1021/acs.jproteome.6b00575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathrin E. Witzke
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kristin Rosowski
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christian Müller
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Maike Ahrens
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Dominik A. Megger
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Jürgen Knobloch
- Medical
Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine,
Bergmannsheil University Hospital, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Andrea Koch
- Medical
Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine,
Bergmannsheil University Hospital, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thilo Bracht
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Barbara Sitek
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
43
|
Vergara D, Simeone P, De Matteis S, Carloni S, Lanuti P, Marchisio M, Miscia S, Rizzello A, Napolitano R, Agostinelli C, Maffia M. Comparative proteomic profiling of Hodgkin lymphoma cell lines. MOLECULAR BIOSYSTEMS 2016; 12:219-32. [PMID: 26588820 DOI: 10.1039/c5mb00654f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Classical Hodgkin lymphoma (cHL) is a malignancy with complex pathogenesis. The hallmark of the disease is the presence of large mononucleated Hodgkin and bi- or multinucleated Reed/Sternberg (H/RS) cells. The origin of HRS cells in cHL is controversial as these cells show the coexpression of markers of several lineages. Using a proteomic approach, we compared the protein expression profile of cHL models of T- and B-cell derivation to find proteins differentially expressed in these cell lines. A total of 67 proteins were found differentially expressed between the two cell lines including metabolic proteins and proteins involved in the regulation of the cytoskeleton and/or cell migration, which were further validated by western blotting. Additionally, the expression of selected B- and T-cell antigens was also assessed by flow cytometry to reveal significant differences in the expression of different surface markers. Bioinformatics analysis was then applied to our dataset to find enriched pathways and networks, and to identify possible key regulators. In the present study, a proteomic approach was used to compare the protein expression profiles of two cHL cell lines. The identified proteins and/or networks, many of which not previously related to cHL, may be important to better define the pathogenesis of the disease, to identify novel diagnostic markers, and to design new therapeutic strategies.
Collapse
Affiliation(s)
- D Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy. and Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy.
| | - P Simeone
- Department of Medicine and Aging Science, School of Medicine and Health Science and Unit of Cytomorphology, Research Centre on Aging (Ce.S.I), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - S De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - S Carloni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - P Lanuti
- Department of Medicine and Aging Science, School of Medicine and Health Science and Unit of Cytomorphology, Research Centre on Aging (Ce.S.I), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - M Marchisio
- Department of Medicine and Aging Science, School of Medicine and Health Science and Unit of Cytomorphology, Research Centre on Aging (Ce.S.I), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - S Miscia
- Department of Medicine and Aging Science, School of Medicine and Health Science and Unit of Cytomorphology, Research Centre on Aging (Ce.S.I), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - A Rizzello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy. and Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy.
| | - R Napolitano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - C Agostinelli
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - M Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy. and Laboratory of Clinical Proteomic, "Giovanni Paolo II" Hospital, ASL-Lecce, Italy.
| |
Collapse
|
44
|
Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia 2016; 30:1805-15. [PMID: 27389058 DOI: 10.1038/leu.2016.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
The acquisition of a complete neoplastic phenotype requires cancer cells to develop escape mechanisms from the host immune system. This phenomenon, commonly referred to as 'immune evasion,' represents a hallmark of cancers and results from a Darwinian selection of the fittest tumor clones. First reported in solid tumors, cancer immunoescape characterizes several hematological malignancies. The biological bases of cancer immunoescape have recently been disclosed and include: (i) impaired human leukocyte antigen-mediated cancer cell recognition (B2M, CD58, CTIIA, CD80/CD86, CD28 and CTLA-4 mutations); (ii) deranged apoptotic mechanisms (reduced pro-apoptotic signals and/or increased expression of anti-apoptotic molecules); and (iii) changes in the tumor microenvironment involving regulatory T cells and tumor-associated macrophages. These immune-escape mechanisms characterize both Hodgkin and non-Hodgkin (B and T cell) lymphomas and represent a promising target for new anti-tumor therapies. In the present review, the principles of cancer immunoescape and their role in human lymphomagenesis are illustrated. Current therapies targeting these pathways and possible applications for lymphoma treatment are also addressed.
Collapse
|
45
|
Rengstl B, Schmid F, Weiser C, Döring C, Heinrich T, Warner K, Becker PSA, Wistinghausen R, Kameh-Var S, Werling E, Billmeier A, Seidl C, Hartmann S, Abken H, Küppers R, Hansmann ML, Newrzela S. Tumor-infiltrating HLA-matched CD4(+) T cells retargeted against Hodgkin and Reed-Sternberg cells. Oncoimmunology 2016; 5:e1160186. [PMID: 27471632 DOI: 10.1080/2162402x.2016.1160186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022] Open
Abstract
Hodgkin lymphoma (HL) presents with a unique histologic pattern. Pathognomonic Hodgkin and Reed-Sternberg (HRS) cells usually account for less than 1% of the tumor and are embedded in a reactive infiltrate mainly comprised of CD4(+) T cells. HRS cells induce an immunosuppressive microenvironment and thereby escape antitumor immunity. To investigate the impact of interactions between HRS cells and T cells, we performed long-term co-culture studies that were further translated into a xenograft model. Surprisingly, we revealed a strong antitumor potential of allogeneic CD4(+) T cells against HL cell lines. HRS and CD4(+) T cells interact by adhesion complexes similar to immunological synapses. Tumor-cell killing was likely based on the recognition of allogeneic major histocompatibility complex class II (MHC-II) receptor, while CD4(+) T cells from MHC-II compatible donors did not develop any antitumor potential in case of HL cell line L428. However, gene expression profiling (GEP) of co-cultured HRS cells as well as tumor infiltration of matched CD4(+) T cells indicated cellular interactions. Moreover, matched CD4(+) T cells could be activated to kill CD30(+) HRS cells when redirected with a CD30-specific chimeric antigen receptor. Our work gives novel insights into the crosstalk between HRS and CD4(+) T cells, suggesting the latter as potent effector cells in the adoptive cell therapy of HL.
Collapse
Affiliation(s)
- Benjamin Rengstl
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Frederike Schmid
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Christian Weiser
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Tim Heinrich
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Kathrin Warner
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt am Main, Germany; Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Petra S A Becker
- Institute for Transfusion Medicine and Immunohematology, Red Cross Blood Donor Service , Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Robin Wistinghausen
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Sima Kameh-Var
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Eva Werling
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Arne Billmeier
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Christian Seidl
- Institute for Transfusion Medicine and Immunohematology, Red Cross Blood Donor Service , Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School , Essen, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School , Frankfurt am Main, Germany
| |
Collapse
|
46
|
Hofmann A, Thiesler T, Gerrits B, Behnke S, Sobotzki N, Omasits U, Bausch-Fluck D, Bock T, Aebersold R, Moch H, Tinguely M, Wollscheid B. Surfaceome of classical Hodgkin and non-Hodgkin lymphoma. Proteomics Clin Appl 2016; 9:661-70. [PMID: 26076441 DOI: 10.1002/prca.201400146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE Classical Hodgkin lymphoma (cHL) is characterized by a low percentage of tumor cells in a background of diverse, reactive immune cells. cHL cells commonly derive from preapoptotic germinal-center B cells and are characterized by the loss of B-cell markers and the varying expression of other hematopoietic lineage markers. This phenotypic variability and the scarcity of currently available cHL-specific cell surface markers can prevent clear distinction of cHL from related lymphomas. EXPERIMENTAL DESIGN We applied the cell surface capture technology to directly measure the pool of cell surface exposed proteins in four cHL and four non-Hodgkin lymphoma (NHL) cell lines. RESULTS More than 1000 membrane proteins, including 178 cluster of differentiation annotated proteins, were identified and allowed the generation of lymphoma surfaceome maps. The functional properties of identified cell surface proteins enable, but also limit the information exchange of lymphoma cells with their microenvironment. CONCLUSION AND CLINICAL RELEVANCE Selected candidate proteins with potential diagnostic value were evaluated on a tissue microarray (TMA). Primary lymphoma tissues of 126 different B cell-derived lymphoma cases were included in the TMA analysis. The TMA analysis indicated gamma-glutamyltranspeptidase 1 as a potential additional marker that can be included in a panel of markers for differential diagnosis of cHL versus NHL.
Collapse
Affiliation(s)
- Andreas Hofmann
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Ph.D. Program in Molecular Life Sciences, University of Zurich (UZH)/ETH Zurich, Zurich, Switzerland
| | - Thore Thiesler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bertran Gerrits
- Functional Genomics Center Zurich, UZH/ETH Zurich, Zurich, Switzerland
| | - Silvia Behnke
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nadine Sobotzki
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ulrich Omasits
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Damaris Bausch-Fluck
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Thomas Bock
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, UZH, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marianne Tinguely
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
From a pathologist's point of view: Histiocytic cells in Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Pathol Res Pract 2015; 211:901-4. [DOI: 10.1016/j.prp.2015.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Wein F, Küppers R. The role of T cells in the microenvironment of Hodgkin lymphoma. J Leukoc Biol 2015; 99:45-50. [PMID: 26320264 DOI: 10.1189/jlb.3mr0315-136r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
The cellular microenvironment in HL is dominated by a mixed infiltrate of inflammatory cells with typically only 1 or a few percent of HRS tumor cells. HRS cells orchestrate this infiltrate by the secretion of a multitude of chemokines. T cells are usually the largest population of cells in the HL tissue, encompassing Th cells, T(regs), and CTLs. Th cells and T(regs) presumably provide essential survival signals for the HRS cells, and the T(regs) also play an important role in rescuing HRS cells from an attack by CTLs and NK cells. The interference with this complex interplay of HRS cells with other immune cells in the microenvironment may provide novel strategies for targeted immunotherapies.
Collapse
Affiliation(s)
- Frederik Wein
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
49
|
Carlo-Stella C, Santoro A. Microenvironment-related biomarkers and novel targets in classical Hodgkin's lymphoma. Biomark Med 2015. [DOI: 10.2217/bmm.15.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Classical Hodgkin's lymphoma accounts for approximately 10% of all malignant lymphomas. Although most patients can be cured with modern treatment strategies, approximately 25% of them experience either primary or secondary chemorefractoriness or disease relapse, thus requiring novel treatments. Increasing preclinical and clinical evidences have demonstrated the role of microenvironment in the molecular pathogenesis of classical Hodgkin's lymphoma and elucidated the complex cross-talk between the malignant Hodgkin Reed–Sternberg cells and the nonmalignant, reactive cells of the microenvironment, strongly supporting novel therapeutic approaches aimed at targeting Hodgkin's Reed–Sternberg cells along with reactive cells in order to overcome chemorefractoriness. In the near future, these novel therapies will also be tested in chemosensitive patients to reduce long-term toxicities of chemo-radiotherapy.
Collapse
Affiliation(s)
- Carmelo Carlo-Stella
- Department of Hematology & Oncology, Humanitas Cancer Center, Humanitas Clinical & Research Center, Via Manzoni 56, 20089 Rozzano (Milano), Italy
- Department of Medical Biotechnology & Translational Medicine, University of Milano, Milano, Italy
| | - Armando Santoro
- Department of Hematology & Oncology, Humanitas Cancer Center, Humanitas Clinical & Research Center, Via Manzoni 56, 20089 Rozzano (Milano), Italy
| |
Collapse
|
50
|
Loginov VI, Dmitriev AA, Senchenko VN, Pronina IV, Khodyrev DS, Kudryavtseva AV, Krasnov GS, Gerashchenko GV, Chashchina LI, Kazubskaya TP, Kondratieva TT, Lerman MI, Angeloni D, Braga EA, Kashuba VI. Tumor Suppressor Function of the SEMA3B Gene in Human Lung and Renal Cancers. PLoS One 2015; 10:e0123369. [PMID: 25961819 PMCID: PMC4427300 DOI: 10.1371/journal.pone.0123369] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/05/2015] [Indexed: 12/26/2022] Open
Abstract
The SEMA3B gene is located in the 3p21.3 LUCA region, which is frequently affected in different types of cancer. The objective of our study was to expand our knowledge of the SEMA3B gene as a tumor suppressor and the mechanisms of its inactivation. In this study, several experimental approaches were used: tumor growth analyses and apoptosis assays in vitro and in SCID mice, expression and methylation assays and other. With the use of the small cell lung cancer cell line U2020 we confirmed the function of SEMA3B as a tumor suppressor, and showed that the suppression can be realized through the induction of apoptosis and, possibly, associated with the inhibition of angiogenesis. In addition, for the first time, high methylation frequencies have been observed in both intronic (32-39%) and promoter (44-52%) CpG-islands in 38 non-small cell lung carcinomas, including 16 squamous cell carcinomas (SCC) and 22 adenocarcinomas (ADC), and in 83 clear cell renal cell carcinomas (ccRCC). Correlations between the methylation frequencies of the promoter and the intronic CpG-islands of SEMA3B with tumor stage and grade have been revealed for SCC, ADC and ccRCC. The association between the decrease of the SEMA3B mRNA level and hypermethylation of the promoter and the intronic CpG-islands has been estimated in renal primary tumors (P < 0.01). Using qPCR, we observed on the average 10- and 14-fold decrease of the SEMA3B mRNA level in SCC and ADC, respectively, and a 4-fold decrease in ccRCC. The frequency of this effect was high in both lung (92-95%) and renal (84%) tumor samples. Moreover, we showed a clear difference (P < 0.05) of the SEMA3B relative mRNA levels in ADC with and without lymph node metastases. We conclude that aberrant expression and methylation of SEMA3B could be suggested as markers of lung and renal cancer progression.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- CpG Islands
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Membrane Glycoproteins/genetics
- Mice, SCID
- Neoplasms, Squamous Cell/genetics
- Neoplasms, Squamous Cell/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Promoter Regions, Genetic
- Semaphorins/genetics
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
Collapse
Affiliation(s)
- Vitaly I. Loginov
- Laboratory of Pathogenomics and Transcriptomics, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Center of Medical Genetics, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | - Alexey A. Dmitriev
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Pathomorphology, P.A. Herzen Moscow Cancer Research Institute, Ministry of Healthcare of the Russian Federation, 125284, Moscow, Russia
| | - Vera N. Senchenko
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Irina V. Pronina
- Laboratory of Pathogenomics and Transcriptomics, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Center of Medical Genetics, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | - Dmitry S. Khodyrev
- Laboratory of Genetics, Federal Research Clinical Center of Federal Medical and Biological Agency of Russia, 115682, Moscow, Russia
| | - Anna V. Kudryavtseva
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Pathomorphology, P.A. Herzen Moscow Cancer Research Institute, Ministry of Healthcare of the Russian Federation, 125284, Moscow, Russia
| | - George S. Krasnov
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Laboratory of Biotechnology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, 105064, Moscow, Russia
| | - Ganna V. Gerashchenko
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine
| | - Larisa I. Chashchina
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine
| | - Tatiana P. Kazubskaya
- Research Institute of Clinical Oncology, N.N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | - Tatiana T. Kondratieva
- Research Institute of Clinical Oncology, N.N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | | | - Debora Angeloni
- The Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
- Istituto Toscano Tumori, 56124, Pisa, Italy
| | - Eleonora A. Braga
- Laboratory of Pathogenomics and Transcriptomics, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Center of Medical Genetics, Russian Academy of Medical Sciences, 115478, Moscow, Russia
- Laboratory of Post Genomic Molecular Genetic Research, Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Vladimir I. Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|