1
|
Pashos ARS, Meyer AR, Bussey-Sutton C, O'Connor ES, Coradin M, Coulombe M, Riemondy KA, Potlapelly S, Strahl BD, Hansson GC, Dempsey PJ, Brumbaugh J. H3K36 methylation regulates cell plasticity and regeneration in the intestinal epithelium. Nat Cell Biol 2025; 27:202-217. [PMID: 39779942 DOI: 10.1038/s41556-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration. While precise gene expression controls these processes, the regulatory mechanisms that restrict or promote cell plasticity are poorly understood. Here we use the mouse small intestine as a model system to study cell plasticity. We find that H3K36 methylation reinforces expression of cell-type-associated genes to maintain specialized cell identity in intestinal epithelial cells. Depleting H3K36 methylation disrupts lineage commitment and activates regenerative gene expression. Correspondingly, we observe rapid and reversible remodelling of H3K36 methylation following injury-induced regeneration. These data suggest a fundamental role for H3K36 methylation in reinforcing specialized lineages and regulating cell plasticity and regeneration.
Collapse
Affiliation(s)
- Alison R S Pashos
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne R Meyer
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cameron Bussey-Sutton
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erin S O'Connor
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marilyne Coulombe
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Potlapelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Peter J Dempsey
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
3
|
Wallace L, Obeng EA. Noncoding rules of survival: epigenetic regulation of normal and malignant hematopoiesis. Front Mol Biosci 2023; 10:1273046. [PMID: 38028538 PMCID: PMC10644717 DOI: 10.3389/fmolb.2023.1273046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Hematopoiesis is an essential process for organismal development and homeostasis. Epigenetic regulation of gene expression is critical for stem cell self-renewal and differentiation in normal hematopoiesis. Increasing evidence shows that disrupting the balance between self-renewal and cell fate decisions can give rise to hematological diseases such as bone marrow failure and leukemia. Consequently, next-generation sequencing studies have identified various aberrations in histone modifications, DNA methylation, RNA splicing, and RNA modifications in hematologic diseases. Favorable outcomes after targeting epigenetic regulators during disease states have further emphasized their importance in hematological malignancy. However, these targeted therapies are only effective in some patients, suggesting that further research is needed to decipher the complexity of epigenetic regulation during hematopoiesis. In this review, an update on the impact of the epigenome on normal hematopoiesis, disease initiation and progression, and current therapeutic advancements will be discussed.
Collapse
Affiliation(s)
| | - Esther A. Obeng
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
4
|
The histone demethylase KDM5C functions as a tumor suppressor in AML by repression of bivalently marked immature genes. Leukemia 2023; 37:593-605. [PMID: 36631623 PMCID: PMC9991918 DOI: 10.1038/s41375-023-01810-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Epigenetic regulators are frequently mutated in hematological malignancies including acute myeloid leukemia (AML). Thus, the identification and characterization of novel epigenetic drivers affecting AML biology holds potential to improve our basic understanding of AML and to uncover novel options for therapeutic intervention. To identify novel tumor suppressive epigenetic regulators in AML, we performed an in vivo short hairpin RNA (shRNA) screen in the context of CEBPA mutant AML. This identified the Histone 3 Lysine 4 (H3K4) demethylase KDM5C as a tumor suppressor, and we show that reduced Kdm5c/KDM5C expression results in accelerated growth both in human and murine AML cell lines, as well as in vivo in Cebpa mutant and inv(16) AML mouse models. Mechanistically, we show that KDM5C act as a transcriptional repressor through its demethylase activity at promoters. Specifically, KDM5C knockdown results in globally increased H3K4me3 levels associated with up-regulation of bivalently marked immature genes. This is accompanied by a de-differentiation phenotype that could be reversed by modulating levels of several direct and indirect downstream mediators. Finally, the association of KDM5C levels with long-term disease-free survival of female AML patients emphasizes the clinical relevance of our findings and identifies KDM5C as a novel female-biased tumor suppressor in AML.
Collapse
|
5
|
Overbeeke C, Tak T, Koenderman L. The journey of neutropoiesis: how complex landscapes in bone marrow guide continuous neutrophil lineage determination. Blood 2022; 139:2285-2293. [PMID: 34986245 PMCID: PMC11022826 DOI: 10.1182/blood.2021012835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are the most abundant white blood cell, and they differentiate in homeostasis in the bone marrow from hematopoietic stem cells (HSCs) via multiple intermediate progenitor cells into mature cells that enter the circulation. Recent findings support a continuous model of differentiation in the bone marrow of heterogeneous HSCs and progenitor populations. Cell fate decisions at the levels of proliferation and differentiation are enforced through expression of lineage-determining transcription factors and their interactions, which are influenced by intrinsic (intracellular) and extrinsic (extracellular) mechanisms. Neutrophil homeostasis is subjected to positive-feedback loops, stemming from the gut microbiome, as well as negative-feedback loops resulting from the clearance of apoptotic neutrophils by mature macrophages. Finally, the cellular kinetics regarding the replenishing of the mature neutrophil pool is discussed in light of recent contradictory data.
Collapse
Affiliation(s)
- Celine Overbeeke
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Schönberger K, Obier N, Romero-Mulero MC, Cauchy P, Mess J, Pavlovich PV, Zhang YW, Mitterer M, Rettkowski J, Lalioti ME, Jäcklein K, Curtis JD, Féret B, Sommerkamp P, Morganti C, Ito K, Ghyselinck NB, Trompouki E, Buescher JM, Pearce EL, Cabezas-Wallscheid N. Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell 2022; 29:131-148.e10. [PMID: 34706256 PMCID: PMC9093043 DOI: 10.1016/j.stem.2021.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.
Collapse
Affiliation(s)
- Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Julian Mess
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Polina V Pavlovich
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Yu Wei Zhang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jasmin Rettkowski
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Maria-Eleni Lalioti
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Karin Jäcklein
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS) et Université de Strasbourg (UNISTRA), U1258 Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
| | - Pia Sommerkamp
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS) et Université de Strasbourg (UNISTRA), U1258 Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
| | - Eirini Trompouki
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.
| |
Collapse
|
7
|
Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers (Basel) 2021; 13:cancers13071746. [PMID: 33917538 PMCID: PMC8038780 DOI: 10.3390/cancers13071746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The genome is stored in the limited space of the nucleus in a highly condensed form. The regulation of this packaging contributes to determining the accessibility of genes and is important for cell function. Genes affecting the genome’s packaging are frequently mutated in bone marrow cells that give rise to the different types of blood cells. Here, we first discuss the molecular functions of these genes and their role in blood generation under healthy conditions. Then, we describe how their mutations relate to a subset of diseases including blood cancers. Finally, we provide an overview of the current efforts of using and developing drugs targeting these and related genes. Abstract Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.
Collapse
|
8
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
9
|
Abstract
Adult stem cells undergo both replicative and chronological aging in their niches, with catastrophic declines in regenerative potential with age. Due to repeated environmental insults during aging, the chromatin landscape of stem cells erodes, with changes in both DNA and histone modifications, accumulation of damage, and altered transcriptional response. A body of work has shown that altered chromatin is a driver of cell fate changes and a regulator of self-renewal in stem cells and therefore a prime target for juvenescence therapeutics. This review focuses on chromatin changes in stem cell aging and provides a composite view of both common and unique epigenetic themes apparent from the studies of multiple stem cell types.
Collapse
Affiliation(s)
- Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
10
|
Genome-Wide Mapping of Bivalent Histone Modifications in Hepatic Stem/Progenitor Cells. Stem Cells Int 2019; 2019:9789240. [PMID: 31065285 PMCID: PMC6466853 DOI: 10.1155/2019/9789240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 01/20/2023] Open
Abstract
The "bivalent domain," a distinctive histone modification signature, is characterized by repressive trimethylation of histone H3 at lysine 27 (H3K27me3) and active trimethylation of histone H3 at lysine 4 (H3K4me3) marks. Maintenance and dynamic resolution of these histone marks play important roles in regulating differentiation processes in various stem cell systems. However, little is known regarding their roles in hepatic stem/progenitor cells. In the present study, we conducted the chromatin immunoprecipitation (ChIP) assay followed by high-throughput DNA sequencing (ChIP-seq) analyses in purified delta-like 1 protein (Dlk+) hepatic stem/progenitor cells and successfully identified 562 genes exhibiting bivalent domains within 2 kb of the transcription start site. Gene ontology analysis revealed that these genes were enriched in developmental functions and differentiation processes. Microarray analyses indicated that many of these genes exhibited derepression after differentiation toward hepatocyte and cholangiocyte lineages. Among these, 72 genes, including Cdkn2a and Sox4, were significantly upregulated after differentiation toward hepatocyte or cholangiocyte lineages. Knockdown of Sox4 in Dlk+ cells suppressed colony propagation and resulted in increased numbers of albumin+/cytokeratin 7+ progenitor cells in colonies. These findings implicate that derepression of Sox4 expression is required to induce normal differentiation processes. In conclusion, combined ChIP-seq and microarray analyses successfully identified bivalent genes. Functional analyses of these genes will help elucidate the epigenetic machinery underlying the terminal differentiation of hepatic stem/progenitor cells.
Collapse
|
11
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
12
|
Wahlestedt M, Ladopoulos V, Hidalgo I, Sanchez Castillo M, Hannah R, Säwén P, Wan H, Dudenhöffer-Pfeifer M, Magnusson M, Norddahl GL, Göttgens B, Bryder D. Critical Modulation of Hematopoietic Lineage Fate by Hepatic Leukemia Factor. Cell Rep 2017; 21:2251-2263. [PMID: 29166614 PMCID: PMC5714592 DOI: 10.1016/j.celrep.2017.10.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022] Open
Abstract
A gradual restriction in lineage potential of multipotent stem/progenitor cells is a hallmark of adult hematopoiesis, but the underlying molecular events governing these processes remain incompletely understood. Here, we identified robust expression of the leukemia-associated transcription factor hepatic leukemia factor (Hlf) in normal multipotent hematopoietic progenitors, which was rapidly downregulated upon differentiation. Interference with its normal downregulation revealed Hlf as a strong negative regulator of lymphoid development, while remaining compatible with myeloid fates. Reciprocally, we observed rapid lymphoid commitment upon reduced Hlf activity. The arising phenotypes resulted from Hlf binding to active enhancers of myeloid-competent cells, transcriptional induction of myeloid, and ablation of lymphoid gene programs, with Hlf induction of nuclear factor I C (Nfic) as a functionally relevant target gene. Thereby, our studies establish Hlf as a key regulator of the earliest lineage-commitment events at the transition from multipotency to lineage-restricted progeny, with implications for both normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Martin Wahlestedt
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Vasileios Ladopoulos
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK
| | - Isabel Hidalgo
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Manuel Sanchez Castillo
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK
| | - Petter Säwén
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Haixia Wan
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Monika Dudenhöffer-Pfeifer
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Mattias Magnusson
- Lund University, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Sölvegatan 17, 221 84 Lund, Sweden
| | - Gudmundur L Norddahl
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK
| | - David Bryder
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden; StemTherapy, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
13
|
The Regulatory Capacity of Bivalent Genes-A Theoretical Approach. Int J Mol Sci 2017; 18:ijms18051069. [PMID: 28513551 PMCID: PMC5454979 DOI: 10.3390/ijms18051069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023] Open
Abstract
Bivalent genes are frequently associated with developmental and lineage specification processes. Resolving their bivalency enables fast changes in their expression, which potentially can trigger cell fate decisions. Here, we provide a theoretical model of bivalency that allows for predictions on the occurrence, stability and regulatory capacity of this prominent modification state. We suggest that bivalency enables balanced gene expression heterogeneity that constitutes a prerequisite of robust lineage priming in somatic stem cells. Moreover, we demonstrate that interactions between the histone and DNA methylation machineries together with the proliferation activity control the stability of the bivalent state and can turn it into an unmodified state. We suggest that deregulation of these interactions underlies cell transformation processes as associated with acute myeloid leukemia (AML) and provide a model of AML blast formation following deregulation of the Ten-eleven Translocation (TET) pathway.
Collapse
|
14
|
García-Prat L, Muñoz-Cánoves P. Aging, metabolism and stem cells: Spotlight on muscle stem cells. Mol Cell Endocrinol 2017; 445:109-117. [PMID: 27531569 DOI: 10.1016/j.mce.2016.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population.
Collapse
Affiliation(s)
- Laura García-Prat
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra; University (UPF) y CIBERNED, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra; University (UPF) y CIBERNED, Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
15
|
Sheikh BN, Metcalf D, Voss AK, Thomas T. MOZ and BMI1 act synergistically to maintain hematopoietic stem cells. Exp Hematol 2017; 47:83-97.e8. [DOI: 10.1016/j.exphem.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
16
|
Liu M, Zhou J, Chen Z, Cheng ASL. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol 2016; 241:10-24. [PMID: 27770445 DOI: 10.1002/path.4832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The tumour microenvironment plays an instrumental role in cancer development, progression and treatment response/resistance. Accumulating evidence is underscoring the fundamental importance of epigenetic regulation in tumour immune evasion. Following many pioneering discoveries demonstrating malignant transformation through epigenetic anomalies ('epimutations'), there is also a growing emphasis on elucidating aberrant epigenetic mechanisms that reprogramme the milieu of tumour-associated immune and stromal cells towards an immunosuppressive state. Pharmacological inhibition of DNA methylation and histone modifications can augment the efficiency of immune checkpoint blockage, and unleash anti-tumour T-cell responses. However, these non-specific agents also represent a 'double-edged sword', as they can also reactivate gene transcription of checkpoint molecules, interrupting immune surveillance programmes. By understanding the impact of epigenetic control on the tumour microenvironment, rational combinatorial epigenetic and checkpoint blockage therapies have the potential to harness the immune system for the treatment of cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Man Liu
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Jingying Zhou
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
17
|
Kramer A, Challen GA. The epigenetic basis of hematopoietic stem cell aging. Semin Hematol 2016; 54:19-24. [PMID: 28088983 DOI: 10.1053/j.seminhematol.2016.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022]
Abstract
Highly proliferative tissues such as the gut, skin, and bone marrow lose millions of cells each day to normal attrition and challenge from different biological adversities. To achieve a lifespan beyond the longevity of individual cell types, tissue-specific stem cells sustain these tissues throughout the life of a human. For example, the lifespan of erythrocytes is about 100 days and adults make about two million new erythrocytes every second. A small pool of hematopoietic stem cells (HSCs) in the bone marrow is responsible for the lifetime maintenance of these populations. However, there are changes that occur within the HSC pool during aging. Biologically, these changes manifest as blunted immune responses, decreased bone marrow cellularity, and increased risk of myeloid diseases. Understanding the molecular mechanisms underlying dysfunction of aging HSCs is an important focus of biomedical research. With advances in modern health care, the average age of the general population is ever increasing. If molecular or pharmacological interventions could be discovered that rejuvenate aging HSCs, it could reduce the burden of age related immune system compromise as well as open up new opportunities for treatment of hematological disorders with regenerative therapy.
Collapse
Affiliation(s)
- Ashley Kramer
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Grant A Challen
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO; Developmental, Regenerative and Stem Cell Biology Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, MO.
| |
Collapse
|
18
|
Yang J, Ge H, Poulton CJ, Hogan SL, Hu Y, Jones BE, Henderson CD, McInnis EA, Pendergraft WF, Jennette JC, Falk RJ, Ciavatta DJ. Histone modification signature at myeloperoxidase and proteinase 3 in patients with anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Clin Epigenetics 2016; 8:85. [PMID: 27752292 PMCID: PMC5057507 DOI: 10.1186/s13148-016-0251-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/02/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by destructive vascular inflammation. Two prominent ANCA autoantigens are myeloperoxidase (MPO) and proteinase 3 (PR3), and transcription of MPO and PRTN3, the genes encoding the autoantigens, is associated with disease activity. We investigated whether patients with AAV have alterations in histone modifications, particularly those associated with transcriptional activation, at MPO and PRTN3. RESULTS We identified a network of genes regulating histone modifications that were differentially expressed in AAV patients compared to healthy controls. We focused on four genes (EHMT1 and EHMT2, ING4, and MSL1) and found their expression correlated with expression of MPO and PRTN3. Methylation of histone H3K9, catalyzed by EHMT1 and EHMT2 and associated with gene silencing, was most depleted at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Acetylation of histone H4K16, modified by complexes containing ING4 and MSL1 and associated with gene activation, was most enriched at MPO and PRTN3 in patients with active disease and the highest MPO and PRTN3 expression. Methylation at H3K4, a mark of transcriptional activation, was enriched at MPO and PRTN3 in patients and healthy controls. CONCLUSIONS MPO and PRTN3 in neutrophils of AAV patients with active disease have a distinct pattern of histone modifications, which implicates epigenetic mechanisms in regulating expression of autoantigen genes and suggests that the epigenome may be involved in AAV pathogenesis.
Collapse
Affiliation(s)
- Jiajin Yang
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Heng Ge
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Xian Jiaotong University, 157 Xiwu Road, Xian, Shaanxi 710004 People's Republic of China
| | - Caroline J Poulton
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Susan L Hogan
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yichun Hu
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Britta E Jones
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Candace D Henderson
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Elizabeth A McInnis
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William F Pendergraft
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - J Charles Jennette
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ronald J Falk
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Dominic J Ciavatta
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Campus Box 7264, Chapel Hill, NC 27599 USA
| |
Collapse
|
19
|
Vandevoorde C, Vral A, Vandekerckhove B, Philippé J, Thierens H. Radiation Sensitivity of Human CD34+Cells Versus Peripheral Blood T Lymphocytes of Newborns and Adults: DNA Repair and Mutagenic Effects. Radiat Res 2016; 185:580-90. [DOI: 10.1667/rr14109.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Vedi A, Santoro A, Dunant CF, Dick JE, Laurenti E. Molecular landscapes of human hematopoietic stem cells in health and leukemia. Ann N Y Acad Sci 2016; 1370:5-14. [PMID: 26663266 DOI: 10.1111/nyas.12981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Blood cells are organized as a hierarchy with hematopoietic stem cells (HSCs) at the root. The advent of genomic technologies has opened the way for global characterization of the molecular landscape of HSCs and their progeny, both in mouse and human models, at the genetic, transcriptomic, epigenetic, and proteomics levels. Here, we outline our current understanding of the molecular programs that govern human HSCs and how dynamic changes occurring during HSC differentiation are necessary for well-regulated blood formation under homeostasis and upon injury. A large body of evidence is accumulating on how the programs of normal hematopoiesis are modified in acute myeloid leukemia, an aggressive adult malignancy driven by leukemic stem cells. We summarize these findings and their clinical implications.
Collapse
Affiliation(s)
- Aditi Vedi
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Paediatric Oncology, Royal Marsden Hospital, Sutton, London, United Kingdom
| | - Antonella Santoro
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elisa Laurenti
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Julian LM, Carpenedo RL, Rothberg JLM, Stanford WL. Formula G1: Cell cycle in the driver's seat of stem cell fate determination. Bioessays 2016; 38:325-32. [DOI: 10.1002/bies.201500187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lisa M. Julian
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
| | - Richard L. Carpenedo
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
| | - Janet L. Manias Rothberg
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
| | - William L. Stanford
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
- Department of Biochemistry; Microbiology and Immunology; University of Ottawa; Ottawa ON Canada
- Ottawa Institute of Systems Biology; Ottawa; Ontario Canada
| |
Collapse
|
22
|
Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells Int 2015; 2016:5178965. [PMID: 26798358 PMCID: PMC4699043 DOI: 10.1155/2016/5178965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.
Collapse
|
23
|
Low-Cell-Number Epigenome Profiling Aids the Study of Lens Aging and Hematopoiesis. Cell Rep 2015; 13:1505-1518. [PMID: 26549448 PMCID: PMC5466415 DOI: 10.1016/j.celrep.2015.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022] Open
Abstract
Understanding how chromatin modification regulates development and disease can be limited by available material. Despite recent progress, balancing high-quality and reliable mapping using chromatin-immunoprecipitation-based deep sequencing (ChIP-seq) remains a challenge. We report two techniques, recovery via protection (RP)-ChIP-seq and favored amplification RP-ChIP-seq (FARP-ChIP-seq), that provide reproducible mapping in as few as 500 cells. RP-ChIP-seq allows detection of age-associated epigenetic changes in a single mouse lens, whereas FARP-ChIP-seq accurately maps histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), and multi-potent progenitors (MPPs) from one mouse. These datasets not only highlight genes that may be involved in lens aging but also indicate a lack of H3K4me3/H3K27me3 bivalency on hematopoietic genes in HSCs.
Collapse
|
24
|
Lin Q, Chauvistré H, Costa IG, Gusmao EG, Mitzka S, Hänzelmann S, Baying B, Klisch T, Moriggl R, Hennuy B, Smeets H, Hoffmann K, Benes V, Seré K, Zenke M. Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids Res 2015; 43:9680-93. [PMID: 26476451 PMCID: PMC4787753 DOI: 10.1093/nar/gkv1056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/03/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development.
Collapse
Affiliation(s)
- Qiong Lin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Heike Chauvistré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52062 Aachen, Germany
| | - Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Saskia Mitzka
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Sonja Hänzelmann
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Bianka Baying
- Genomics Core Facilities GeneCore, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Theresa Klisch
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, University of Veterinary Medicine, Medical University Vienna, 1090 Vienna, Austria
| | - Benoit Hennuy
- GIGA-Genomics, University of Liège, 4000 Liège, Belgium
| | - Hubert Smeets
- Department of Genetics and Cell Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands Research Schools CARIM and GROW, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Kurt Hoffmann
- Institute of Molecular Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Vladimir Benes
- Genomics Core Facilities GeneCore, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristin Seré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
25
|
Sokolik C, Liu Y, Bauer D, McPherson J, Broeker M, Heimberg G, Qi LS, Sivak DA, Thomson M. Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. Cell Syst 2015; 1:117-129. [PMID: 26405695 DOI: 10.1016/j.cels.2015.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells occupy variable environments where they must distinguish stochastic fluctuations from developmental cues. Here, we use optogenetics to investigate how the pluripotency network in embryonic stem (ES) cells achieves a robust response to differentiation cues but not to gene expression fluctuations. We engineered ES cells in which we could quantitatively ontrol the endogenous mechanism of neural differentiation through a light-inducible Brn2 transgene and monitor differentiation status through a genome-integrated Nanog-GFP reporter. By exposing cells to pulses of Brn2, we find that the pluripotency network rejects Brn2 inputs that are below specific magnitude or duration thresholds, but allows rapid differentiation when both thresholds are satisfied. The filtering properties of the network arise through its positive feedback architecture and the intrinsic half-life of Nanog, which determines the duration threshold in the network. Together our results suggest that the dynamic properties of positive-feedback networks might determine how inputs are classified as signal or noise by stem cells.
Collapse
Affiliation(s)
- Cameron Sokolik
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - Yanxia Liu
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - David Bauer
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - Jade McPherson
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - Michael Broeker
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - Graham Heimberg
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - Lei S Qi
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - David A Sivak
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA
| | - Matt Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco; San Francisco, California, 94158. USA ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco; San Francisco, California, 94158. USA
| |
Collapse
|
26
|
Varagnolo L, Lin Q, Obier N, Plass C, Dietl J, Zenke M, Claus R, Müller AM. PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells. Sci Rep 2015. [PMID: 26198814 PMCID: PMC4510577 DOI: 10.1038/srep12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different H3K4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs.
Collapse
Affiliation(s)
- Linda Varagnolo
- Institute of Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | - Qiong Lin
- Department of Cell Biology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nadine Obier
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Dietl
- Department of Gynecology and Obstetrics, Medical University of Würzburg, Germany
| | - Martin Zenke
- Department of Cell Biology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Rainer Claus
- 1] Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany [2] Department of Medicine, Div. Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany
| | - Albrecht M Müller
- Institute of Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Abstract
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA.
| |
Collapse
|
28
|
Zhang J, Taylor RJ, La Torre A, Wilken MS, Cox KE, Reh TA, Vetter ML. Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev Biol 2015; 403:128-38. [PMID: 25989023 DOI: 10.1016/j.ydbio.2015.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Epigenetic regulation, including histone modification, is a critical component of gene regulation, although precisely how this contributes to the development of complex tissues such as the neural retina is still being explored. We show that during retinal development in mouse, there are dynamic patterns of expression of the polycomb repressive complex 2 (PRC2) catalytic subunit EZH2 in retinal progenitors and some differentiated cells, as well as dynamic changes in the histone modification H3K27me3. Using conditional knockout of Ezh2 using either Pax6-αCre or Six3-Cre, we find selective reduction in postnatal retinal progenitor proliferation, disruption of retinal lamination, and enhanced differentiation of several late born cell types in the early postnatal retina, including photoreceptors and Müller glia, which are ultimately increased in number and become reactive. RNA-seq identifies many non-retinal genes upregulated with loss of Ezh2, including multiple Hox genes and the cell cycle regulator Cdkn2a, which are established targets of EZH2-mediated repression. ChIP analysis confirms loss of the H3K27me3 modification at these loci. Similar gene upregulation is observed in retinal explants treated with an EZH2 chemical inhibitor. There is considerable overlap with EZH2-regulated genes reported in non-neural tissues, suggesting that EZH2 can regulate similar genes in multiple lineages. Our findings reveal a conserved role for EZH2 in constraining the expression of potent developmental regulators to maintain lineage integrity and retinal progenitor proliferation, as well as regulating the timing of late differentiation.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Russell J Taylor
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Anna La Torre
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, Seattle, WA, United States; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
| | - Kristen E Cox
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
29
|
Kawamura K, Kinoshita M, Sekida S, Sunanaga T. Histone methylation codes involved in stemness, multipotency, and senescence in budding tunicates. Mech Ageing Dev 2014; 145:1-12. [PMID: 25543066 DOI: 10.1016/j.mad.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/24/2014] [Accepted: 12/20/2014] [Indexed: 12/19/2022]
Abstract
We examined the dynamics of nuclear histone H3 trimethylation related to cell differentiation and aging in a budding tunicate, Polyandrocarpa misakiensis. Throughout zooidal life, multipotent epithelial and coelomic cell nuclei showed strong trimethylation signals at H3 lysine27 (H3K27me3), consistent with the results of western blotting. Epidermal H3K27me3 repeatedly appeared in protruding buds and disappeared in senescent adult zooids. The budding-specific cytostatic factor TC14-3 allowed aging epidermal cells to restore H3K27me3 signals and mitochondrial gene activities via mitochondrial transcription factor a, all of which were made ineffective by an H3K27me3 inhibitor. Chromatin immunoprecipitation showed that TC14-3 enhances H3K27me3 of transdifferentiation-related genes and consequently downregulates the expression of these genes. In contrast, trimethylation signals at H3 lysine4 (H3K4me3) appeared transiently in transdifferentiating bud cells and stably lasted in undifferentiated adult cells without affecting H3K27me3. A transdifferentiation-related gene external signal-regulated kinase heavily underwent H3K4me3 in developing buds, which could be reproduced by retinoic acid. These results indicate that in P. misakiensis, TC14-3-driven H3K27 trimethylation is a default state of bud and zooid cells, which serves as the histone code for cell longevity. H3K27me3 and H3K4me3 double-positive signals are involved in cell stemness, and absence of signals is the indication of senescence.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | - Miyuki Kinoshita
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| | - Satoko Sekida
- Laboratory of Cell Biology, Graduate School of Kuroshio Science, Kochi University, Kochi 780-8520, Japan
| | - Takeshi Sunanaga
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780-8520, Japan
| |
Collapse
|
30
|
Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull KF, Chen R, Gu H, Bock C, Meissner A, Göttgens B, Darlington GJ, Li W, Goodell MA. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014; 14:673-88. [PMID: 24792119 DOI: 10.1016/j.stem.2014.03.002] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/16/2013] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-β signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.
Collapse
Affiliation(s)
- Deqiang Sun
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Luo
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin Rodriguez
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Xia
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca Hannah
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, Hills Road, CB2 0XY Cambridge, UK
| | - Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thuc Le
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and the Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and the Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongcang Gu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christoph Bock
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | | | - Berthold Göttgens
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, Hills Road, CB2 0XY Cambridge, UK
| | | | - Wei Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Borghesi L. Hematopoiesis in steady-state versus stress: self-renewal, lineage fate choice, and the conversion of danger signals into cytokine signals in hematopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:2053-8. [PMID: 25128551 DOI: 10.4049/jimmunol.1400936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-term hematopoietic stem cells (LT-HSCs) replenish the innate and adaptive immune compartments throughout life. Although significant progress has defined the major transcription factors that regulate lineage specification, the architectural proteins that globally coordinate DNA methylation, histone modification, and changes in gene expression are poorly defined. Provocative new studies establish the chromatin organizer special AT-rich binding protein 1 (Satb1) as one such global regulator in LT-HSCs. Satb1 is a nuclear organizer that partitions chromatin through the formation of cage-like structures. By integrating epigenetic and transcriptional pathways, Satb1 coordinates LT-HSC division, self-renewal, and lymphoid potential. Unexpected among the assortment of genes under Satb1 control in hematopoietic stem cells (HSCs) are cytokines, a finding that takes on additional importance with the provocative finding that short-term HSCs and downstream multipotent progenitors are potent and biologically relevant cytokine secretors during stress-mediated hematopoiesis. Together, these studies reveal a new mechanism of fate regulation and an unforeseen functional capability of HSCs.
Collapse
Affiliation(s)
- Lisa Borghesi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
32
|
Klauke K, Broekhuis MJC, Weersing E, Dethmers-Ausema A, Ritsema M, González MV, Zwart E, Bystrykh LV, de Haan G. Tracing dynamics and clonal heterogeneity of Cbx7-induced leukemic stem cells by cellular barcoding. Stem Cell Reports 2014; 4:74-89. [PMID: 25434821 PMCID: PMC4297865 DOI: 10.1016/j.stemcr.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.
Collapse
Affiliation(s)
- Karin Klauke
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands.
| | - Mathilde J C Broekhuis
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Ellen Weersing
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Albertina Dethmers-Ausema
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Martha Ritsema
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Marta Vilà González
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Erik Zwart
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Leonid V Bystrykh
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands
| | - Gerald de Haan
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, the Netherlands.
| |
Collapse
|
33
|
Cross talk between histone deacetylase 4 and STAT6 in the transcriptional regulation of arginase 1 during mouse dendritic cell differentiation. Mol Cell Biol 2014; 35:63-75. [PMID: 25332236 DOI: 10.1128/mcb.00805-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
l-Arginine and l-arginine-metabolizing enzymes play important roles in the biology of some types of myeloid cells, including macrophage and myeloid-derived suppressor cells. In this study, we found evidence that arginase 1 (Arg1) is required for the differentiation of mouse dendritic cells (DCs). Expression of Arg1 was robustly induced during monocyte-derived DC differentiation. Ectopic expression of Arg1 significantly promoted monocytic DC differentiation in a granulocyte-macrophage colony-stimulating factor culture system and also facilitated the differentiation of CD8α(+) conventional DCs in the presence of Flt3 ligand. Knockdown of Arg1 reversed these effects. Mechanistic studies showed that the induced expression of Arg1 in differentiating DCs was caused by enhanced recruitment of histone deacetylase 4 (HDAC4) to the Arg1 promoter region, which led to a reduction in the acetylation of both the histone 3 and STAT6 proteins and subsequent transcriptional activation of Arg1. Further investigation identified a novel STAT6 binding site within the Arg1 promoter that mediated its regulation by STAT6 and HDAC4. These observations suggest that the cross talk between HDAC4 and STAT6 is an important regulatory mechanism of Arg1 transcription in DCs. Moreover, overexpression of Arg1 clearly abrogated the ability of HDAC inhibitors to suppress DC differentiation. In conclusion, we show that Arg1 is a novel regulator of myeloid DC differentiation.
Collapse
|
34
|
Pimkin M, Kossenkov AV, Mishra T, Morrissey CS, Wu W, Keller CA, Blobel GA, Lee D, Beer MA, Hardison RC, Weiss MJ. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Res 2014; 24:1932-44. [PMID: 25319996 PMCID: PMC4248311 DOI: 10.1101/gr.164178.113] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-associated cis-regulatory modules (CRMs) in multipotential progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential progenitor via overlapping and divergent functions of shared hematopoietic transcription factors.
Collapse
Affiliation(s)
- Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Pediatric Residency Program, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia 19019, Pennsylvania, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
35
|
Tang H, An S, Zhen H, Chen F. Characterization of combinatorial histone modifications on lineage-affiliated genes during hematopoietic stem cell myeloid commitment. Acta Biochim Biophys Sin (Shanghai) 2014; 46:894-901. [PMID: 25205219 DOI: 10.1093/abbs/gmu078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells capable of self-renewal and multilineage differentiation. Mechanisms regulating the maintenance of HSCs' multipotency and differentiation are still unclear. In this study, we observed the role of combinatorial histone modification pattern in the maintenance of HSCs' pluripotency and differentiation. HSCs (CD34(+)CD38(low)) were collected from human umbilical cord blood and induced to differentiate to committed cells in vitro. The histone modifications on lineage-specific transcription factors/genes in multipotent HSCs and differentiated progenies, including megakaryocytes, granulocytes, and erythrocytes, were analyzed by chromatin immunoprecipitation-quantitative polymerase chain reaction. Our results showed that a certain level of acH4 and acH3 together with high level of H3K4me2, low level of H3K4me3, and a certain level of H3K9me3 and H3K27me3 were present in lineage-specific genes in CD34(+)CD38(low) HSCs. As CD34(+)CD38(low) cells differentiated into granulocytes, erythroid cells, and megakaryocytes, the modification levels of acH3, acH4, and H3K4me2 on lineage-specific genes remained the same or elevated, while H3K4me3 level was increased greatly. At the same time, H3K9me3 and H3K27me3 modification levels became lower. In non-lineage-specific genes, the acH3 and acH4 levels were decreased, and H3K4me3 level remained at low level, while H3K9me3 and H3K27me3 levels were increased drastically. Our data suggest that combinatorial histone modification patterns have implicated function in maintaining the multipotency of HSCs and keeping the accuracy of gene expression program during HSC differentiation.
Collapse
Affiliation(s)
- Huarong Tang
- Department of Radiation Therapy, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shimin An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huanying Zhen
- Department of Physiology, Central South University, Xiangya School of Medicine, Changsha 410013, China
| | - Fangping Chen
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
36
|
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14:529-45. [PMID: 25060579 PMCID: PMC4153685 DOI: 10.1038/nri3702] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
37
|
Rothenberg EV. The chromatin landscape and transcription factors in T cell programming. Trends Immunol 2014; 35:195-204. [PMID: 24703587 PMCID: PMC4039984 DOI: 10.1016/j.it.2014.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/02/2014] [Accepted: 03/03/2014] [Indexed: 12/24/2022]
Abstract
T cell development from multipotent progenitors to specialized effector subsets of mature T cells is guided by the iterative action of transcription factors. At each stage, transcription factors interact not only with an existing landscape of histone modifications and nucleosome packing, but also with other bound factors, while they modify the landscape for later-arriving factors in ways that fundamentally affect the control of gene expression. This review covers insights from genome-wide analyses of transcription factor binding and resulting chromatin conformation changes that reveal roles of cytokine signaling in effector T cell programming, the ways in which one factor can completely transform the impacts of previously bound factors, and the ways in which the baseline chromatin landscape is established during early T cell lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125 USA.
| |
Collapse
|
38
|
Park SJ, Umemoto T, Saito-Adachi M, Shiratsuchi Y, Yamato M, Nakai K. Computational promoter modeling identifies the modes of transcriptional regulation in hematopoietic stem cells. PLoS One 2014; 9:e93853. [PMID: 24710559 PMCID: PMC3977923 DOI: 10.1371/journal.pone.0093853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/07/2014] [Indexed: 01/19/2023] Open
Abstract
Extrinsic and intrinsic regulators are responsible for the tight control of hematopoietic stem cells (HSCs), which differentiate into all blood cell lineages. To understand the fundamental basis of HSC biology, we focused on differentially expressed genes (DEGs) in long-term and short-term HSCs, which are closely related in terms of cell development but substantially differ in their stem cell capacity. To analyze the transcriptional regulation of the DEGs identified in the novel transcriptome profiles obtained by our RNA-seq analysis, we developed a computational method to model the linear relationship between gene expression and the features of putative regulatory elements. The transcriptional regulation modes characterized here suggest the importance of transcription factors (TFs) that are expressed at steady state or at low levels. Remarkably, we found that 24 differentially expressed TFs targeting 21 putative TF-binding sites contributed significantly to transcriptional regulation. These TFs tended to be modulated by other nondifferentially expressed TFs, suggesting that HSCs can achieve flexible and rapid responses via the control of nondifferentially expressed TFs through a highly complex regulatory network. Our novel transcriptome profiles and new method are powerful tools for studying the mechanistic basis of cell fate decisions.
Collapse
Affiliation(s)
- Sung-Joon Park
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Terumasa Umemoto
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Mihoko Saito-Adachi
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoshiko Shiratsuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenta Nakai
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Belle JI, Nijnik A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 2014; 50:161-74. [PMID: 24647359 DOI: 10.1016/j.biocel.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022]
Abstract
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada.
| |
Collapse
|
40
|
Vigano MA, Ivanek R, Balwierz P, Berninger P, van Nimwegen E, Karjalainen K, Rolink A. An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants. Eur J Immunol 2014; 44:1181-93. [PMID: 24374622 DOI: 10.1002/eji.201344022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
Abstract
Cellular differentiation of the T-cell branch of the immune system begins with the HSC, which undergoes a series of stages characterized by progressive restriction in multipotency and acquisition of specific lineage identity At the molecular level, the restriction of cell potential, commitment, and differentiation to a specific lineage is achieved through the coordinated control of gene expression and epigenetic mechanisms. Here, we analyzed and compared the gene expression profiles and the genome-wide histone modification marks H3K4me3 (H3 lysine 4 trimethylation) and H3K27me3 (H3 lysine 27 trimethylation) in (i) in vitro propagated HSCs, (ii) in vitro generated and propagated pro-T cells derived from these stem cells, and (iii) double-positive thymocytes derived from these pro-T cells after injection into Rag-deficient mice. The combined analyses of the different datasets in this unique experimental system highlighted the importance of both transcriptional and epigenetic repression in shaping the early phases of T-cell development.
Collapse
Affiliation(s)
- Maria Alessandra Vigano
- Developmental and Molecular Immunology Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
42
|
|
43
|
Xu Y, Lee J, Yuan Y, Mitra R, Liang S, Müller P, Ji Y. Nonparametric Bayesian Bi-Clustering for Next Generation Sequencing Count Data. BAYESIAN ANALYSIS 2013; 8:759-780. [PMID: 26246865 PMCID: PMC4523245 DOI: 10.1214/13-ba822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Histone modifications (HMs) play important roles in transcription through post-translational modifications. Combinations of HMs, known as chromatin signatures, encode specific messages for gene regulation. We therefore expect that inference on possible clustering of HMs and an annotation of genomic locations on the basis of such clustering can contribute new insights about the functions of regulatory elements and their relationships to combinations of HMs. We propose a nonparametric Bayesian local clustering Poisson model (NoB-LCP) to facilitate posterior inference on two-dimensional clustering of HMs and genomic locations. The NoB-LCP clusters HMs into HM sets and lets each HM set define its own clustering of genomic locations. Furthermore, it probabilistically excludes HMs and genomic locations that are irrelevant to clustering. By doing so, the proposed model effectively identifies important sets of HMs and groups regulatory elements with similar functionality based on HM patterns.
Collapse
Affiliation(s)
- Yanxun Xu
- Department of Statistics, Rice University, Houston, TX, U.S.A. ; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A
| | - Juhee Lee
- Department of Statistics, The Ohio State University, Columbus, Ohio, U.S.A
| | - Yuan Yuan
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, U.S.A
| | - Riten Mitra
- Department of Mathematics, University of Texas Austin, Austin, TX, U.S.A
| | - Shoudan Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A
| | - Peter Müller
- Department of Mathematics, University of Texas Austin, Austin, TX, U.S.A
| | - Yuan Ji
- NorthShore University HealthSystem, Chicago, IL, U.S.A
| |
Collapse
|
44
|
Rothenberg EV. Epigenetic mechanisms and developmental choice hierarchies in T-lymphocyte development. Brief Funct Genomics 2013; 12:512-24. [PMID: 23922132 DOI: 10.1093/bfgp/elt027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three interlocking problems in gene regulation are: how to explain genome-wide targeting of transcription factors in different cell types, how prior transcription factor action can establish an 'epigenetic state' that changes the options for future transcription factor action, and how directly a sequence of developmental decisions can be memorialized in a hierarchy of repression structures applied to key genes of the 'paths not taken'. This review uses the finely staged process of T-cell lineage commitment as a test case in which to examine how changes in developmental status are reflected in changes in transcription factor expression, transcription factor binding distribution across genomic sites, and chromatin modification. These are evaluated in a framework of reciprocal effects of previous chromatin structure features on transcription factor access and of transcription factor binding on other factors and on future chromatin structure.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA. Tel.: +1 626 395 4992; Fax: +1 626 449 0756;
| |
Collapse
|
45
|
Vosshenrich CAJ, Di Santo JP. Developmental programming of natural killer and innate lymphoid cells. Curr Opin Immunol 2013; 25:130-8. [PMID: 23490162 DOI: 10.1016/j.coi.2013.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
In recent years we have witnessed a blooming interest in innate lymphoid cell (ILC) biology thanks to the discovery of novel lineages of ILC that are phenotypically and functionally distinct from NK cells. While the importance of these novel ILC subsets as essential functional components of the early immune responses are now clearly established, many questions remain as to how early ILC developmental fates are determined and how specific effector functions associated with individual ILC subsets are achieved. As the founding member of the ILC family, properties of NK cells have defining attributes that characterize this group of innate effectors. Analysing their developmental rules may provide clues to principles that guide ILC development in general.
Collapse
|
46
|
Abstract
The concept of cancer as a stem cell disease has slowly gained ground over the last decade. A 'stem-like' state essentially necessitates that some cells in the developing tumor express the properties of remaining quiescent, self-renewing and regenerating tumors through establishment of aberrant cellular hierarchies. Alternatively, such capacities may also be reacquired through a de-differentiation process. The abnormal cellular differentiation patterns involved during either process during carcinogenesis are likely to be driven through a combination of genetic events and epigenetic regulation. The role(s) of the latter is increasingly being appreciated in acquiring the requisite genomic specificity and flexibility required for phenotypic plasticity, specifically in a context wherein genome sequences are not altered for differentiation to ensue. In this chapter, the recent advances in elucidating epigenetic mechanisms that govern the self-renewal, differentiation and regenerative potentials of cancer stem cells will be presented.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, 411 007, India,
| |
Collapse
|
47
|
Koide S, Wendt GR, Iwama A. Epigenetic regulation of hematopoietic stem cells. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
Yamazaki J, Estecio MR, Lu Y, Long H, Malouf GG, Graber D, Huo Y, Ramagli L, Liang S, Kornblau SM, Jelinek J, Issa JPJ. The epigenome of AML stem and progenitor cells. Epigenetics 2012; 8:92-104. [PMID: 23249680 DOI: 10.4161/epi.23243] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is sustained by a population of cancer stem cells (CSCs or cancer-initiating cell). The mechanisms underlying switches from CSCs to non-CSCs in vivo remain to be understood. We address this issue in AML from the aspect of epigenetics using genome-wide screening for DNA methylation and selected histone modifications. We found no major differences in DNA methylation, especially in promoter CpG islands, between CSCs and non-CSCs. By contrast, we found thousands of genes that change H3K4me3 and/or H3K27me3 status between stem and progenitor cells as well as between progenitor and mature cells. Stem cell related pathways and proliferation or metabolism related pathways characterize genes differentially enriched for H3K4me3/H3K27me3 in stem and progenitor populations. Bivalent genes in stem cells are more plastic during differentiation and are more likely to lose H3K4me3 than to lose H3K27me3, consistent with increasingly closed chromatin state with differentiation. Our data indicates that histone modifications but not promoter DNA methylation are involved in switches from CSCs to non-CSCs in AML.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li J, Zhao Z, Carter C, Ehrlich LIR, Bedford MT, Richie ER. Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. THE JOURNAL OF IMMUNOLOGY 2012; 190:597-604. [PMID: 23248263 DOI: 10.4049/jimmunol.1102513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that methylates histones and transcriptional regulators. We previously reported that the absence of CARM1 partially blocks thymocyte differentiation at embryonic day 18.5 (E18.5). In this study, we find that reduced thymopoiesis in Carm1(-/-) mice is due to a defect in the fetal hematopoietic compartment rather than in the thymic stroma. To determine the cellular basis for impaired thymopoiesis, we examined the number and function of fetal liver (FL) and bone marrow cells. Despite markedly reduced cellularity of hematopoietic progenitors in E18.5 bone marrow, the number of long-term hematopoietic stem cells and downstream subsets was not reduced in Carm1(-/-) E14.5 or E18.5 FL. Nevertheless, competitive reconstitution assays revealed a deficit in the ability of Carm1(-/-) FL cells to contribute to hematopoiesis. Furthermore, impaired differentiation of Carm1(-/-) FL cells in a CARM1-sufficient host showed that CARM1 is required cell autonomously in hematopoietic cells. Coculture of Carm1(-/-) FL cells on OP9-DL1 monolayers showed that CARM1 is required for survival of hematopoietic progenitors under conditions that promote differentiation. Taken together, this report demonstrates that CARM1 is a key epigenetic regulator of hematopoiesis that affects multiple lineages at various stages of differentiation.
Collapse
Affiliation(s)
- Jia Li
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lin X, Tirichine L, Bowler C. Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species. PLANT METHODS 2012; 8:48. [PMID: 23217141 PMCID: PMC3546051 DOI: 10.1186/1746-4811-8-48] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/05/2012] [Indexed: 05/18/2023]
Abstract
In this report we describe a chromatin immunoprecipitation (ChIP) protocol for two fully sequenced model diatom species Phaeodactylum tricornutum and Thalassiosira pseudonana. This protocol allows the extraction of satisfactory amounts of chromatin and gives reproducible results. We coupled the ChIP assay with real time quantitative PCR. Our results reveal that the two major histone marks H3K4me2 and H3K9me2 exist in P. tricornutum and T. pseudonana. As in other eukaryotes, H3K4me2 marks active genes whereas H3K9me2 marks transcriptionally inactive transposable elements. Unexpectedly however, T. pseudonana housekeeping genes also show a relative enrichment of H3K9me2. We also discuss optimization of the procedure, including growth conditions, cross linking and sonication. Validation of the protocol provides a set of genes and transposable elements that can be used as controls for studies using ChIP in each diatom species. This protocol can be easily adapted to other diatoms and eukaryotic phytoplankton species for genetic and biochemical studies.
Collapse
Affiliation(s)
- Xin Lin
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Génomique, Environnementale et Evolutive Section 3 CNRS UMR8197, 46 rue d’Ulm, Paris, 75005, France
| | - Leïla Tirichine
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Génomique, Environnementale et Evolutive Section 3 CNRS UMR8197, 46 rue d’Ulm, Paris, 75005, France
| | - Chris Bowler
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Inserm, U1024, CNRS, UMR 8197, Génomique, Environnementale et Evolutive Section 3 CNRS UMR8197, 46 rue d’Ulm, Paris, 75005, France
| |
Collapse
|