1
|
Bergsagel PL, Chesi M. Immunocompetent mouse models of multiple myeloma. Semin Hematol 2025; 62:50-57. [PMID: 39674742 PMCID: PMC11911088 DOI: 10.1053/j.seminhematol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/16/2024]
Abstract
Immunocompetent murine models of multiple myeloma are critical for understanding the pathogenesis of multiple myeloma and for the development of novel immunotherapeutics. Different models are available in Balb/c and C57Bl strains, each with different advantages and disadvantages. The availability of many transplantable cell lines allows for the conduct of experiments with large cohorts of mice bearing identical tumors, while cell lines that grow in vitro can be used for genetic manipulations. The introduction of human CRBN into these models allows for the study of IMiDs and cereblon based PROTACs in mice. New genetically engineered models based on germinal center cell activation of Nsd2 or Ccnd1 together with constitutive NFkB are being developed to model some of the important genetic subtypes of human multiple myeloma.
Collapse
Affiliation(s)
- Peter Leif Bergsagel
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ 85259.
| | - Marta Chesi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
2
|
Yu M, Zhou V, Pisano MD, Janz S, Cui X. Changes in the immune microenvironment during plasma cell tumor development in the IL6Myc mouse model of human multiple myeloma. Exp Cell Res 2024; 442:114273. [PMID: 39370095 DOI: 10.1016/j.yexcr.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Manya Yu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vivian Zhou
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael D Pisano
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Microbiology, A. T. Still University, Kirksville, MO, 63501, USA
| | - Siegfried Janz
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xing Cui
- Department of Oncology and Hematology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
3
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Pisano MD, Sun F, Cheng Y, Parashar D, Zhou V, Jing X, Sompallae R, Abrudan J, Zimmermann MT, Mathison A, Janz S, Pufall MA. IL6Myc mouse is an immunocompetent model for the development of aggressive multiple myeloma. Haematologica 2023; 108:3372-3383. [PMID: 37439384 PMCID: PMC10690922 DOI: 10.3324/haematol.2022.282538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
Multiple Myeloma (MM) is a plasma cell neoplasm originating in the bone marrow and is the second most common blood cancer in the United States. One challenge in understanding the pathogenesis of MM and improving treatment is a lack of immunocompetent mouse models. We previously developed the IL6Myc mouse that generates plasmacytomas at 100% penetrance that phenotypically resemble aggressive MM. Using comprehensive genomic analysis, we found that the IL6Myc tumors resemble aggressive MM by RNA and protein expression. We also found that IL6Myc tumors accumulated fusions and missense mutations in genes that overlap significantly with human myeloma, indicating that the mouse is good model for studying disease etiology. Lastly, we derived cell lines from IL6Myc tumors that express cell surface markers typical of MM and readily engraft into mice, home to the bone marrow, and induce osteolytic disease. The cell lines may be useful in developing immunotherapies directed against BAFF-R and TACI, though not BCMA, and may also be a good model for studying dexamethasone resistance. These data indicate that the IL6Myc model is useful for studying development of aggressive MM and for developing new treatments against such forms of the disease.
Collapse
Affiliation(s)
- Michael D Pisano
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Fumou Sun
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yan Cheng
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Deepak Parashar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Vivian Zhou
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Ramakrishna Sompallae
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Jenica Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Angela Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Holden Comprehensive Cancer Center, Iowa City, Iowa.
| |
Collapse
|
5
|
Ishibashi M, Takahashi M, Yamaya T, Imai Y. Current and Future PET Imaging for Multiple Myeloma. Life (Basel) 2023; 13:1701. [PMID: 37629558 PMCID: PMC10455506 DOI: 10.3390/life13081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Positron emission tomography (PET) is an imaging modality used for the noninvasive assessment of tumor staging and response to therapy. PET with 18F labeled fluorodeoxyglucose (18F-FDG PET) is widely used to assess the active and inactive lesions in patients with multiple myeloma (MM). Despite the availability of 18F-FDG PET for the management of MM, PET imaging is less sensitive than next-generation flow cytometry and sequencing. Therefore, the novel PET radiotracers 64Cu-LLP2A, 68Ga-pentixafor, and 89Zr-daratumumab have been developed to target the cell surface antigens of MM cells. Furthermore, recent studies attempted to visualize the tumor-infiltrating lymphocytes using PET imaging in patients with cancer to investigate their prognostic effect; however, these studies have not yet been performed in MM patients. This review summarizes the recent studies on PET with 18F-FDG and novel radiotracers for the detection of MM and the resulting preclinical research using MM mouse models and clinical studies. Novel PET technologies may be useful for developing therapeutic strategies for MM in the future.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (M.T.); (T.Y.)
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
6
|
Game of clones: Diverse implications for clonal hematopoiesis in lymphoma and multiple myeloma. Blood Rev 2022; 56:100986. [PMID: 35753868 DOI: 10.1016/j.blre.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Clonal hematopoiesis (CH) refers to the disproportionate expansion of hematopoietic stem cell clones and their corresponding progeny following the acquisition of somatic mutations. CH is common at the time of diagnosis in patients with blood cancers, including multiple myeloma (MM) and lymphoma. The presence of CH mutations correlates with IL-6 mediated inflammation and may result in lymphoma or MM modulation through microenvironment effects or by manifestations of the mutations themselves within the founding tumor clone. As might be expected with a variety of mutations and multiple potential mechanisms, CH exerts context-dependent effects, being protective in some settings and harmful in others. Though CH is very common in patients with hematologic malignancies, how it intersects with therapy and the natural disease course of these cancers are active areas of investigation. In lymphomas and MM specifically, patients have high rates of CH at diagnosis and are subsequently exposed to therapies, such as cytotoxic chemotherapy, that can cause CH progression to overt hematologic malignancy. The expanding diversity of treatment modalities for these cancers also increases the opportunities for CH to impact clinical outcome and modulate clinical responses. Here we review the basic biology and known health effects of CH, and we focus on the clinical relevance of CH in lymphoma and MM.
Collapse
|
7
|
Jia X, Bene J, Balázs N, Szabó K, Berta G, Herczeg R, Gyenesei A, Balogh P. Age-Associated B Cell Features of the Murine High-Grade B Cell Lymphoma Bc.DLFL1 and Its Extranodal Expansion in Abdominal Adipose Tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2866-2876. [PMID: 35867673 DOI: 10.4049/jimmunol.2100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
Diffuse large B cell lymphoma comprises a heterogeneous group of B cell-derived tumors, with different degrees of aggressiveness, as defined by their cellular origin and tissue microenvironment. Using the spontaneous Bc.DLFL1 lymphoma originating from a BALB/c mouse as a diffuse large B cell lymphoma model, in this study we demonstrate that the lymphoma cells display surface phenotype, IgH V-region somatic mutations, transcription factor characteristics and in vivo location to splenic extrafollicular regions of age-associated B cells (ABCs), corresponding to T-bet+ and Blimp-1+/CD138- plasmablasts derivation. The expansion of lymphoma cells within lymphoid tissues took place in a close arrangement with CD11c+ dendritic cells, whereas the extranodal infiltration occurred selectively in the mesentery and omentum containing resident gp38/podoplanin+ fibroblastic reticular cells. Antagonizing BAFF-R activity by mBR3-Fc soluble receptor fusion protein led to a significant delay of disease progression. The extranodal expansion of Bc.DLFL1 lymphoma within the omental and mesenteric adipose tissues was coupled with a significant change of the tissue cytokine landscape, including both shared alterations and tissue-specific variations. Our findings indicate that while Bc.DLFL1 cells of ABC origin retain the positioning pattern within lymphoid tissues of their physiological counterpart, they also expand in non-lymphoid tissues in a BAFF-dependent manner, where they may alter the adipose tissue microenvironment to support their extranodal growth.
Collapse
Affiliation(s)
- Xinkai Jia
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, University of Pécs, Pécs, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Katalin Szabó
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary; and
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary;
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Shi Y, Sun F, Cheng Y, Holmes B, Dhakal B, Gera JF, Janz S, Lichtenstein A. Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Mol Cancer Ther 2022; 21:502-510. [PMID: 35086951 PMCID: PMC8983490 DOI: 10.1158/1535-7163.mct-21-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Dysregulated c-myc is a determinant of multiple myeloma progression. Translation of c-myc can be achieved by an mTOR-mediated, cap-dependent mechanism or a cap-independent mechanism where a sequence in the 5'UTR of mRNA, termed the internal ribosome entry site (IRES), recruits the 40S ribosomal subunit. This mechanism requires the RNA-binding factor hnRNP A1 (A1) and becomes critical when cap-dependent translation is inhibited during endoplasmic reticulum (ER) stress. Thus, we studied the role of A1 and the myc IRES in myeloma biology. A1 expression correlated with enhanced c-myc expression in patient samples. Expression of A1 in multiple myeloma lines was mediated by c-myc itself, suggesting a positive feedback circuit where myc induces A1 and A1 enhances myc translation. We then deleted the A1 gene in a myc-driven murine myeloma model. A1-deleted multiple myeloma cells demonstrated downregulated myc expression and were inhibited in their growth in vivo. Decreased myc expression was due to reduced translational efficiency and depressed IRES activity. We also studied the J007 inhibitor, which prevents A1's interaction with the myc IRES. J007 inhibited myc translation and IRES activity and diminished myc expression in murine and human multiple myeloma lines as well as primary samples. J007 also inhibited tumor outgrowth in mice after subcutaneous or intravenous challenge and prevented osteolytic bone disease. When c-myc was ectopically reexpressed in A1-deleted multiple myeloma cells, tumor growth was reestablished. These results support the critical role of A1-dependent myc IRES translation in myeloma.
Collapse
Affiliation(s)
- Yijiang Shi
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Fumou Sun
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yan Cheng
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brent Holmes
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Binod Dhakal
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph F. Gera
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Siegfried Janz
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alan Lichtenstein
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| |
Collapse
|
9
|
Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, Knight JM, Rao S, Zhan F, Hari P, Janz S. Laboratory Mice - A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol 2021; 12:667054. [PMID: 34149703 PMCID: PMC8206561 DOI: 10.3389/fimmu.2021.667054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.
Collapse
Affiliation(s)
- Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sridhar Rao
- Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Ali M, Kowkuntla S, Delloro DJ, Galambos C, Hathi D, Janz S, Shokeen M, Tripathi C, Xu H, Yuk J, Zhan F, Tomasson MH, Bates ML. Chronic intermittent hypoxia enhances disease progression in myeloma-resistant mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R678-R686. [PMID: 30892915 DOI: 10.1152/ajpregu.00388.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity is the only known modifiable risk factor for multiple myeloma (MM), an incurable cancer of bone marrow plasma cells. The mechanism linking the two is unknown. Obesity is associated with an increased risk of sleep apnea, which results in chronic intermittent hypoxia (CIH), and drives solid tumor aggressiveness. Given the link between CIH and solid tumor progression, we tested the hypothesis that CIH drives the proliferation of MM cells in culture and their engraftment and progression in vivo. Malignant mouse 5TGM1 cells were cultured in CIH, static hypoxia, or normoxia as a control in custom, gas-permeable plates. Typically MM-resistant C57BL/6J mice were exposed to 10 h/day CIH (AHI = 12/h), static hypoxia, or normoxia for 7 days, followed by injection with 5TGM1 cells and an additional 28 days of exposure. CIH and static hypoxia slowed the growth of 5TGM1 cells in culture. CIH-exposed mice developed significantly more MM than controls (67 vs. 12%, P = 0.005), evidenced by hindlimb paralysis, gammopathy, bone lesions, and bone tumor formation. Static hypoxia was not a significant driver of MM progression and did not reduce survival (P = 0.117). Interestingly, 5TGM1 cells preferentially engrafted in the bone marrow and promoted terminal disease in CIH mice, despite a lower tumor burden, compared with the positive controls. These first experiments in the context of hematological cancer demonstrate that CIH promotes MM through mechanisms distinct from solid tumors and that sleep apnea may be a targetable risk factor in patients with or at risk for blood cancer.
Collapse
Affiliation(s)
- Mahmoud Ali
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Sandeep Kowkuntla
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Derick J Delloro
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, Colorado
| | - Deep Hathi
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Siegfried Janz
- Department of Pathology, University of Iowa , Iowa City, Iowa
| | - Monica Shokeen
- Department of Radiology, Washington University , St. Louis, Missouri
| | - Chakrapani Tripathi
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Hongwei Xu
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Jisung Yuk
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Michael H Tomasson
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa
| | - Melissa L Bates
- Department of Internal Medicine, Hematology and Oncology Division, University of Iowa , Iowa City, Iowa.,Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
11
|
Gu C, Jing X, Holman C, Sompallae R, Zhan F, Tricot G, Yang Y, Janz S. Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. BMC Cancer 2018; 18:1152. [PMID: 30463534 PMCID: PMC6249818 DOI: 10.1186/s12885-018-5015-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following up on previous work demonstrating the involvement of the transcription factor forkhead box M1 (FOXM1) in the biology and outcome of a high-risk subset of newly diagnosed multiple myeloma (nMM), this study evaluated whether FOXM1 gene expression may be further upregulated upon tumor recurrence in patients with relapsed multiple myeloma (rMM). Also assessed was the hypothesis that increased levels of FOXM1 diminish the sensitivity of myeloma cells to commonly used myeloma drugs, such as the proteasome inhibitor bortezomib (Bz) and the DNA intercalator doxorubicin (Dox). METHODS FOXM1 message was evaluated in 88 paired myeloma samples from patients with nMM and rMM, using gene expression microarrays as measurement tool. Sources of differential gene expression were identified and outlier analyses were performed using statistical methods. Two independent human myeloma cell lines (HMCLs) containing normal levels of FOXM1 (FOXM1N) or elevated levels of lentivirus-encoded FOXM1 (FOXM1Hi) were employed to determine FOXM1-dependent changes in cell proliferation, survival, efflux-pump activity, and drug sensitivity. Levels of retinoblastoma (Rb) protein were determined with the assistance of Western blotting. RESULTS Upregulation of FOXM1 occurred in 61 of 88 (69%) patients with rMM, including 4 patients that exhibited > 20-fold elevated expression peaks. Increased FOXM1 levels in FOXM1Hi myeloma cells caused partial resistance to Bz (1.9-5.6 fold) and Dox (1.5-2.9 fold) in vitro, using FOXM1N myeloma as control. Reduced sensitivity of FOXM1Hi cells to Bz was confirmed in vivo using myeloma-in-mouse xenografts. FOXM1-dependent regulation of total and phosphorylated Rb agreed with a working model of myeloma suggesting that FOXM1 governs both chromosomal instability (CIN) and E2F-dependent proliferation, using a mechanism that involves interaction with NIMA related kinase 2 (NEK2) and cyclin dependent kinase 6 (CDK6), respectively. CONCLUSIONS These findings enhanced our understanding of the emerging FOXM1 genetic network in myeloma and provided preclinical support for the therapeutic targeting of the FOXM1-NEK2 and CDK4/6-Rb-E2F pathways using small-drug CDK and NEK2 inhibitors. Clinical research is warranted to assess whether this approach may overcome drug resistance in FOXM1Hi myeloma and, thereby, improve the outcome of patients in which the transcription factor is expressed at high levels.
Collapse
Affiliation(s)
- Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Carol Holman
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Ramakrishna Sompallae
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Key Laboratory of Acupuncture and Medicine Research, Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242 USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53213 USA
| |
Collapse
|
12
|
Tomasson MH, Ali M, De Oliveira V, Xiao Q, Jethava Y, Zhan F, Fitzsimmons AM, Bates ML. Prevention Is the Best Treatment: The Case for Understanding the Transition from Monoclonal Gammopathy of Undetermined Significance to Myeloma. Int J Mol Sci 2018; 19:E3621. [PMID: 30453544 PMCID: PMC6274834 DOI: 10.3390/ijms19113621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an invariably fatal cancer of plasma cells. Despite tremendous advances in treatment, this malignancy remains incurable in most individuals. We postulate that strategies aimed at prevention have the potential to be more effective in preventing myeloma-related death than additional pharmaceutical strategies aimed at treating advanced disease. Here, we present a rationale for the development of prevention therapy and highlight potential target areas of study.
Collapse
Affiliation(s)
- Michael H Tomasson
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Mahmoud Ali
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Vanessa De Oliveira
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Qian Xiao
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
| | - Yogesh Jethava
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Fenghuang Zhan
- Department of Internal Medicine, Hematology, Oncology, and Bone Marrow Transplant Division, University of Iowa, Iowa City, IA 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Adam M Fitzsimmons
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Melissa L Bates
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
- Department of Health Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
13
|
Stubbs MC, Burn TC, Sparks R, Maduskuie T, Diamond S, Rupar M, Wen X, Volgina A, Zolotarjova N, Waeltz P, Favata M, Jalluri R, Liu H, Liu XM, Li J, Collins R, Falahatpisheh N, Polam P, DiMatteo D, Feldman P, Dostalik V, Thekkat P, Gardiner C, He X, Li Y, Covington M, Wynn R, Ruggeri B, Yeleswaram S, Xue CB, Yao W, Combs AP, Huber R, Hollis G, Scherle P, Liu PCC. The Novel Bromodomain and Extraterminal Domain Inhibitor INCB054329 Induces Vulnerabilities in Myeloma Cells That Inform Rational Combination Strategies. Clin Cancer Res 2018; 25:300-311. [PMID: 30206163 DOI: 10.1158/1078-0432.ccr-18-0098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Bromodomain and extraterminal domain (BET) proteins regulate the expression of many cancer-associated genes and pathways; BET inhibitors have demonstrated activity in diverse models of hematologic and solid tumors. We report the preclinical characterization of INCB054329, a structurally distinct BET inhibitor that has been investigated in phase I clinical trials. EXPERIMENTAL DESIGN We used multiple myeloma models to investigate vulnerabilities created by INCB054329 treatment that could inform rational combinations. RESULTS In addition to c-MYC, INCB054329 decreased expression of oncogenes FGFR3 and NSD2/MMSET/WHSC1, which are deregulated in t(4;14)-rearranged cell lines. The profound suppression of FGFR3 sensitized the t(4;14)-positive cell line OPM-2 to combined treatment with a fibroblast growth factor receptor inhibitor in vivo. In addition, we show that BET inhibition across multiple myeloma cell lines resulted in suppressed interleukin (IL)-6 Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling. INCB054329 displaced binding of BRD4 to the promoter of IL6 receptor (IL6R) leading to reduced levels of IL6R and diminished signaling through STAT3. Combination with JAK inhibitors (ruxolitinib or itacitinib) further reduced JAK-STAT signaling and synergized to inhibit myeloma cell growth in vitro and in vivo. This combination potentiated tumor growth inhibition in vivo, even in the MM1.S model of myeloma that is not intrinsically sensitive to JAK inhibition alone. CONCLUSIONS Preclinical data reveal insights into vulnerabilities created in myeloma cells by BET protein inhibition and potential strategies that can be leveraged in clinical studies to enhance the activity of INCB054329.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Rupar
- Incyte Corporation, Wilmington, Delaware
| | | | | | | | | | | | | | | | | | - Jun Li
- Incyte Corporation, Wilmington, Delaware
| | | | | | | | | | | | | | | | | | - Xin He
- Incyte Corporation, Wilmington, Delaware
| | - Yanlong Li
- Incyte Corporation, Wilmington, Delaware
| | | | | | | | | | | | | | | | - Reid Huber
- Incyte Corporation, Wilmington, Delaware
| | | | | | | |
Collapse
|
14
|
van Nieuwenhuijzen N, Spaan I, Raymakers R, Peperzak V. From MGUS to Multiple Myeloma, a Paradigm for Clonal Evolution of Premalignant Cells. Cancer Res 2018; 78:2449-2456. [PMID: 29703720 DOI: 10.1158/0008-5472.can-17-3115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) is a treatable, but incurable, malignancy of plasma cells (PC) in the bone marrow (BM). It represents the final stage in a continuum of PC dyscrasias and is consistently preceded by a premalignant phase termed monoclonal gammopathy of undetermined significance (MGUS). The existence of this well-defined premalignant phase provides the opportunity to study clonal evolution of a premalignant condition into overt cancer. Unraveling the mechanisms of malignant transformation of PC could enable early identification of MGUS patients at high risk of progression and may point to novel therapeutic targets, thereby possibly delaying or preventing malignant transformation. The MGUS-to-MM progression requires multiple genomic events and the establishment of a permissive BM microenvironment, although it is generally not clear if the various microenvironmental events are causes or consequences of disease progression. Advances in gene-sequencing techniques and the use of serial paired analyses have allowed for a more specific identification of driver lesions. The challenge in cancer biology is to identify and target those lesions that confer selective advantage and thereby drive evolution of a premalignant clone. Here, we review recent advances in the understanding of malignant transformation of MGUS to MM. Cancer Res; 78(10); 2449-56. ©2018 AACR.
Collapse
Affiliation(s)
- Niels van Nieuwenhuijzen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands.,Department of Hematology, University Medical Center, Utrecht, the Netherlands
| | - Ingrid Spaan
- Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands
| | - Reinier Raymakers
- Department of Hematology, University Medical Center, Utrecht, the Netherlands
| | - Victor Peperzak
- Laboratory of Translational Immunology, University Medical Center, Utrecht, the Netherlands.
| |
Collapse
|
15
|
ATP-degrading ENPP1 is required for survival (or persistence) of long-lived plasma cells. Sci Rep 2017; 7:17867. [PMID: 29259245 PMCID: PMC5736562 DOI: 10.1038/s41598-017-18028-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Survival of antibody-secreting plasma cells (PCs) is vital for sustained antibody production. However, it remains poorly understood how long-lived PCs (LLPCs) are generated and maintained. Here we report that ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is preferentially upregulated in bone marrow LLPCs compared with their splenic short-lived counterparts (SLPCs). We studied ENPP1-deficient mice (Enpp1−/−) to determine how the enzyme affects PC biology. Although Enpp1−/− mice generated normal levels of germinal center B cells and plasmablasts in periphery, they produced significantly reduced numbers of LLPCs following immunization with T-dependent antigens or infection with plasmodium C. chabaudi. Bone marrow chimeric mice showed B cell intrinsic effect of ENPP1 selectively on generation of bone marrow as well as splenic LLPCs. Moreover, Enpp1−/− PCs took up less glucose and had lower levels of glycolysis than those of wild-type controls. Thus, ENPP1 deficiency confers an energetic disadvantage to PCs for long-term survival and antibody production.
Collapse
|
16
|
Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, Chen F. Proteomic Characterization of the World Trade Center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep 2016; 6:36305. [PMID: 27833099 PMCID: PMC5105131 DOI: 10.1038/srep36305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
Several epidemiological studies suggested an increased incidence rate of multiple myeloma (MM) among first responders and other individuals who exposed to World Trade Center (WTC) dust. In this report, we provided evidence showing that WTC dust is potent in inducing mdig protein and/or mRNA in bronchial epithelial cells, B cells and MM cell lines. An increased mdig expression in MM bone marrow was observed, which is associated with the disease progression and prognosis of the MM patients. Through integrative genomics and proteomics approaches, we further demonstrated that mdig directly interacts with c-myc and JAK1 in MM cell lines, which contributes to hyperactivation of the IL-6-JAK-STAT3 signaling important for the pathogenesis of MM. Genetic silencing of mdig reduced activity of the major downstream effectors in the IL-6-JAK-STAT3 pathway. Taken together, these data suggest that WTC dust may be one of the key etiological factors for those who had been exposed for the development of MM by activating mdig and c-myc signaling circuit linked to the IL-6-JAK-STAT3 pathway essential for the tumorigenesis of the malignant plasma cells.
Collapse
Affiliation(s)
- Kai Wu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Transgenic mouse model of IgM + lymphoproliferative disease mimicking Waldenström macroglobulinemia. Blood Cancer J 2016; 6:e488. [PMID: 27813533 PMCID: PMC5148059 DOI: 10.1038/bcj.2016.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is a low-grade incurable immunoglobulin M+ (IgM+) lymphoplasmacytic lymphoma for which a genetically engineered mouse model of de novo tumor development is lacking. On the basis of evidence that the pro-inflammatory cytokine, interleukin 6 (IL6), and the survival-enhancing oncoprotein, B cell leukemia 2 (BCL2), have critical roles in the natural history of WM, we hypothesized that the enforced expression of IL6 and BCL2 in mice unable to perform immunoglobulin class switch recombination may result in a lymphoproliferative disease that mimics WM. To evaluate this possibility, we generated compound transgenic BALB/c mice that harbored the human BCL2 and IL6 transgenes, EμSV-BCL2-22 and H2-Ld-hIL6, on the genetic background of activation-induced cytidine deaminase (AID) deficiency. We designated these mice BCL2+IL6+AID- and found that they developed-with full genetic penetrance (100% incidence) and suitably short latency (93 days median survival)-a severe IgM+ lymphoproliferative disorder that recapitulated important features of human WM. However, the BCL2+IL6+AID- model also exhibited shortcomings, such as low serum IgM levels and histopathological changes not seen in patients with WM, collectively indicating that further refinements of the model are required to achieve better correlations with disease characteristics of WM.
Collapse
|
18
|
Giuliano A, Swift R, Arthurs C, Marote G, Abramo F, McKay J, Thomson C, Beltran M, Millar M, Priestnall S, Dobson J, Costantino-Casas F, Petrou T, McGonnell IM, Davies AJ, Weetman M, Garden OA, Masters JR, Thrasivoulou C, Ahmed A. Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma. PLoS One 2016; 11:e0161103. [PMID: 27559731 PMCID: PMC4999089 DOI: 10.1371/journal.pone.0161103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Swift
- Department of Clinical Sciences and Services, The Royal Veterinary College, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| | - Callum Arthurs
- Prostate Cancer Research Center at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Georgina Marote
- Department of Clinical Sciences and Services, The Royal Veterinary College, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| | - Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Jenny McKay
- IDEXX Laboratories Ltd., Grange House, West Yorkshire, United Kingdom
| | - Calum Thomson
- Dundee Imaging Facility, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mariana Beltran
- Dundee Imaging Facility, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael Millar
- Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon Priestnall
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, London, United Kingdom
| | - Jane Dobson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Terry Petrou
- Prostate Cancer Research Center at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Imelda M. McGonnell
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | | | | | - Oliver A. Garden
- Department of Clinical Sciences and Services, The Royal Veterinary College, London, United Kingdom
| | - John R. Masters
- Division of Surgery, University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University College London, London, United Kingdom
| | - Aamir Ahmed
- Prostate Cancer Research Center at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| |
Collapse
|
19
|
Preclinical animal models of multiple myeloma. BONEKEY REPORTS 2016; 5:772. [PMID: 26909147 DOI: 10.1038/bonekey.2015.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023]
Abstract
Multiple myeloma is an incurable plasma-cell malignancy characterized by osteolytic bone disease and immunosuppression. Murine models of multiple myeloma and myeloma bone disease are critical tools for an improved understanding of the pathogenesis of the disease and the development of novel therapeutic strategies. This review will cover commonly used immunocompetent and xenograft models of myeloma, describing the advantages and disadvantages of each model system. In addition, this review provides detailed protocols for establishing systemic and local models of myeloma using both murine and human myeloma cell lines.
Collapse
|
20
|
Sin SH, Kim Y, Eason A, Dittmer DP. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog 2015; 11:e1005135. [PMID: 26327622 PMCID: PMC4556645 DOI: 10.1371/journal.ppat.1005135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however, in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, suggesting that cooperative oncogenic events were missing. Myc was chosen as a possible candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV latency locus transgenic (latency) mice to Cα Myc transgenic (Myc) mice. By itself these Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lymphoma at a higher rate than single transgenic latency or Myc mice. These data indicate that the KSHV latency locus cooperates with the deregulated Myc pathways to further lymphoma progression. Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed in latent infection of B cells. We already showed that KSHV latency locus transgenic mice consistently develop B cell hyperplasia. To find out possible host contributions to lymphomagenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc mice developed plasmacytosis exemplified by increased frequency of plasma cells in the spleen, a high accelerated lymphoma development, and severe extramedullary hematopoiesis. These data show that the KSHV latency locus can cooperate with Myc activation in viral lymphomagenesis.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongbaek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anthony Eason
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Han SS, Tompkins VS, Son DJ, Han S, Yun H, Kamberos NL, Dehoedt CL, Gu C, Holman C, Tricot G, Zhan F, Janz S. CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Exp Hematol Oncol 2015; 4:9. [PMID: 25838973 PMCID: PMC4383050 DOI: 10.1186/s40164-015-0005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background Comparative genetic and biological studies on malignant tumor counterparts in human beings and laboratory mice may be powerful gene discovery tools for blood cancers, including neoplasms of mature B-lymphocytes and plasma cells such as Burkitt lymphoma (BL) and multiple myeloma (MM). Methods We used EMSA to detect constitutive NF-κB/STAT3 activity in BL- and MM-like neoplasms that spontaneously developed in single-transgenic IL6 (interleukin-6) or MYC (c-Myc) mice, or in double-transgenic IL6MYC mice. qPCR measurements and analysis of clinical BL and MM datasets were employed to validate candidate NF-κB/STAT3 target genes. Results qPCR demonstrated that IL6- and/or MYC-dependent neoplasms in mice invariably contain elevated mRNA levels of the NF-κB target genes, Cdkn1a and Fancd2. Clinical studies on human CDKN1A, which encodes the cell cycle inhibitor and tumor suppressor p21, revealed that high p21 message predicts poor therapy response and survival in BL patients. Similarly, up-regulation of FANCD2, which encodes a key member of the Fanconi anemia and breast cancer pathway of DNA repair, was associated with poor outcome of patients with MM, particularly those with high-risk disease. Conclusions Our findings suggest that CDKN1A and FANCD2 are potential oncotargets in BL and MM, respectively. Additionally, the IL-6- and/or MYC-driven mouse models of human BL and MM used in this study may lend themselves to the biological validation of CDKN1A and FANCD2 as molecular targets for new approaches to cancer therapy and prevention. Electronic supplementary material The online version of this article (doi:10.1186/s40164-015-0005-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Han
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Van S Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Dong-Ju Son
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701 South Korea
| | - Sangwoo Han
- Department of Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Hwakyung Yun
- Department of Biological Sciences, Hanseo University, Choognam, South Korea
| | - Natalie L Kamberos
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Casey L Dehoedt
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Chunyan Gu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Carol Holman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Guido Tricot
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| |
Collapse
|
22
|
Béguelin W, Sawh S, Chambwe N, Chan FC, Jiang Y, Choo JW, Scott DW, Chalmers A, Geng H, Tsikitas L, Tam W, Bhagat G, Gascoyne RD, Shaknovich R. IL10 receptor is a novel therapeutic target in DLBCLs. Leukemia 2015; 29:1684-94. [PMID: 25733167 DOI: 10.1038/leu.2015.57] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/30/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease with marked genomic instability and variable response to conventional R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) chemotherapy. More clinically aggressive cases of DLBCLs have high level of circulating interleukin 10 (IL10) cytokine and evidence of activated intracellular STAT3 (signal transducer and activator of transcription 3) signaling. We investigated the role of IL10 and its surface receptor in supporting the neoplastic phenotype of DLBCLs. We determined that IL10RA gene is amplified in 21% and IL10RB gene in 10% of primary DLBCLs. Gene expression of IL10, IL10RA and IL10RB was markedly elevated in DLBCLs. We hypothesized that DLBCLs depend for their proliferation and survival on IL10-STAT3 signaling and that blocking the IL10 receptor (IL10R) would induce cell death. We used anti-IL10R blocking antibody, which resulted in a dose-dependent cell death in all tested activated B-cell-like subtype of DLBCL cell lines and primary DLBCLs. Response of germinal center B-cell-like subtype of DLBCL cell lines to anti-IL10R antibody varied from sensitive to resistant. Cells underwent cell cycle arrest, followed by induction of apoptosis. Cell death depended on inhibition of STAT3 and, to a lesser extent, STAT1 signaling. Anti-IL10R treatment resulted in interruption of IL10-IL10R autostimulatory loop. We thus propose that IL10R is a novel therapeutic target in DLBCLs.
Collapse
Affiliation(s)
- W Béguelin
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - S Sawh
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - N Chambwe
- 1] The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA [2] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA [3] Tri-Instituitional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - F C Chan
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Y Jiang
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - J-W Choo
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - D W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - A Chalmers
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - H Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Tsikitas
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA
| | - W Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - G Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - R D Gascoyne
- 1] Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada [2] Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - R Shaknovich
- 1] Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA [2] Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Knittel G, Metzner M, Beck-Engeser G, Kan A, Ahrends T, Eilat D, Huppi K, Wabl M. Insertional hypermutation in mineral oil-induced plasmacytomas. Eur J Immunol 2014; 44:2785-801. [PMID: 24975032 PMCID: PMC4165787 DOI: 10.1002/eji.201344322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 01/07/2023]
Abstract
Unless stimulated by a chronic inflammatory agent, such as mineral oil, plasma cell tumors are rare in young BALB/c mice. This raises the questions: What do inflammatory tissues provide to promote mutagenesis? And what is the nature of mutagenesis? We determined that mineral oil-induced plasmacytomas produce large amounts of endogenous retroelements--ecotropic and polytropic murine leukemia virus and intracisternal A particles. Therefore, plasmacytoma formation might occur, in part, by de novo insertion of these retroelements, induced or helped by the inflammation. We recovered up to ten de novo insertions in a single plasmacytoma, mostly in genes with common retroviral integration sites. Additional integrations accompany tumor evolution from a solid tumor through several generations in cell culture. The high frequency of de novo integrations into cancer genes suggests that endogenous retroelements are coresponsible for plasmacytoma formation and progression in BALB/c mice.
Collapse
Affiliation(s)
- Gero Knittel
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Gabriele Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Ada Kan
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Tomasz Ahrends
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Konrad Huppi
- National Cancer Institute, Genetics Branch, Gene Silencing Section, Bethesda, MD 20892
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| |
Collapse
|
24
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Varzaneh FN, Keller B, Unger S, Aghamohammadi A, Warnatz K, Rezaei N. Cytokines in common variable immunodeficiency as signs of immune dysregulation and potential therapeutic targets - a review of the current knowledge. J Clin Immunol 2014; 34:524-43. [PMID: 24827633 DOI: 10.1007/s10875-014-0053-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/05/2014] [Indexed: 01/19/2023]
Abstract
Common variable immunodeficiency (CVID) is characterized by low levels of circulating immunoglobulins and compromised specific antibody response leading to frequent infections. Cytokines play an important role in the orchestration of the antibody response. Several previous studies have attempted to identify distinct cytokines responsible for the inflammatory changes and different manifestations of CVID, but there are conflicting results regarding the cytokine profiles in CVID patients. In light of this, an extensive review regarding the level of various cytokines and their potential therapeutic role in CVID patients was performed. This review delineates the contribution of interleukin (IL)-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-21, interferons, tumor necrosis factor (TNF)-α, IL-17, APRIL (a proliferation inducing ligand) and BAFF (B cell activating factor) in CVID disease and outline their potential therapeutic implications in these patients.
Collapse
Affiliation(s)
- Farnaz Najmi Varzaneh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
26
|
Ontiveros EP, Halwani A, Stunz LL, Kamberos N, Olivier AK, Janz S, Bishop GA. A new model of LMP1-MYC interaction in B cell lymphoma. Leuk Lymphoma 2014; 55:2917-23. [PMID: 24605938 DOI: 10.3109/10428194.2014.900762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epstein-Barr virus (EBV) is associated with aggressive B cell lymphomas (BCLs). Latent membrane protein 1 (LMP1) of EBV is an oncogenic protein required for EBV B cell transformation. However, LMP1 is a weak oncogene in mice. Mice expressing Myc inserted 5' of the Eμ enhancer (iMyc(Eμ)), mimicking the t(8;14) translocation of endemic Burkitt lymphoma, develop delayed onset BCLs. To investigate potential cooperation between LMP1 and oncogenic MYC, we produced mice expressing the LMP1 signaling domain via a hybrid CD40-LMP1 transgene (mCD40-LMP1), and the dysregulated MYC protein of aggressive EBV+ BCLs. mCD40-LMP1/iMyc(Eμ) mice trended toward earlier BCL onset. BCLs from mCD40-LMP1/iMyc(Eμ) mice expressed LMP1 and were transplantable into immunocompetent recipients. iMyc(Eμ) and mCD40-LMP1/iMyc(Eμ) mice developed BCLs with similar immunophenotypes. LMP1 signaling was intact in BCLs as shown by inducible interleukin-6. Additionally, LMP1 signaling to tumor cells induced the two isoforms of Pim1, a constitutively active prosurvival kinase implicated in lymphomagenesis.
Collapse
|
27
|
Duncan K, Rosean TR, Tompkins VS, Olivier A, Sompallae R, Zhan F, Tricot G, Acevedo MR, Ponto LLB, Walsh SA, Tygrett LT, Berger AJ, Waldschmidt T, Morse HC, Sunderland JJ, Janz S. (18)F-FDG-PET/CT imaging in an IL-6- and MYC-driven mouse model of human multiple myeloma affords objective evaluation of plasma cell tumor progression and therapeutic response to the proteasome inhibitor ixazomib. Blood Cancer J 2013; 3:e165. [PMID: 24292417 PMCID: PMC3880444 DOI: 10.1038/bcj.2013.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/22/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022] Open
Abstract
(18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are useful imaging modalities for evaluating tumor progression and treatment responses in genetically engineered mouse models of solid human cancers, but the potential of integrated FDG-PET/CT for assessing tumor development and new interventions in transgenic mouse models of human blood cancers such as multiple myeloma (MM) has not been demonstrated. Here we use BALB/c mice that contain the newly developed iMyc(ΔEμ) gene insertion and the widely expressed H2-L(d)-IL6 transgene to demonstrate that FDG-PET/CT affords an excellent research tool for assessing interleukin-6- and MYC-driven plasma cell tumor (PCT) development in a serial, reproducible and stage- and lesion-specific manner. We also show that FDG-PET/CT permits determination of objective drug responses in PCT-bearing mice treated with the investigational proteasome inhibitor ixazomib (MLN2238), the biologically active form of ixazomib citrate (MLN9708), that is currently in phase 3 clinical trials in MM. Overall survival of 5 of 6 ixazomib-treated mice doubled compared with mice left untreated. One outlier mouse presented with primary refractory disease. Our findings demonstrate the utility of FDG-PET/CT for preclinical MM research and suggest that this method will play an important role in the design and testing of new approaches to treat myeloma.
Collapse
Affiliation(s)
- K Duncan
- Department of Pathology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zarogoulidis P, Yarmus L, Darwiche K, Walter R, Huang H, Li Z, Zaric B, Tsakiridis K, Zarogoulidis K. Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res 2013; 9:16535. [PMID: 24078831 DOI: 10.1186/2090-5009-9-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interleukin 6 is a multifunctional cytokine. Its increased levels have been associated with elevated cancer risk, and also these levels have been found to be a prognostic factor for several cancer types. In addition, increased levels have been found in coronary heart disease, insulin resistant patients, advance stage cancer patients, atopy/asthma and in patients with blood circulating micrometastasis. Additionally several studies with different types of cancers have been performed to identify the correlation between interleukin-6 levels, stage, treatment response and severity of symptoms. The influence of interleukin-6 is performed mainly through the janus kinase-signal transducer and activator of transcription-zinc finger protein 1-2 signaling pathway. As a result, the increased levels of interleukin-6 are responsible for enhanced neo-angiogenesis, inhibition of cancer cell apoptosis and deregulation of the control mechanisms in the microenvironment. In addition, increased levels of inteleukin-6 have been found to increase the production of collagen and a-actin which induce interstitial lung disease. In the current mini review we will present information regarding the interleukin-6 and published results in several cancer studies and finally we will comment in future treatment approaches blocking this cytokine in cancer patients.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guo S, Zhi Y, Yang H, Yu Y, Wang Y, Zhang J, Wang G, Zhang L, Sun B, Zhang Y. Bcl-2 expression is associated with poor prognosis of solitary plasmacytoma of bone. Ann Hematol 2013; 93:471-7. [DOI: 10.1007/s00277-013-1897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/27/2013] [Indexed: 12/01/2022]
|
30
|
Burger R. Impact of interleukin-6 in hematological malignancies. ACTA ACUST UNITED AC 2013; 40:336-43. [PMID: 24273487 DOI: 10.1159/000354194] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022]
Abstract
Almost 3 decades have passed since the discovery and cloning of IL-6, and a tremendous amount of work has contributed to the current knowledge of the biological functions of this cytokine, its receptor, and the signaling pathways that are activated. The understanding of the role of IL-6 in human disease has led to the development of novel therapeutic strategies that block the biological functions of IL-6. In clinical studies, IL-6 and IL-6 receptor antibodies have proven efficacy in rheumatoid arthritis, systemic juvenile idiopathic arthritis, and Castleman's disease, conditions that are known to be driven by IL-6. The focus of this overview is the role of IL-6 in the pathophysiology of hematological malignancies.
Collapse
Affiliation(s)
- Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
31
|
Abstract
A basic requirement for the development of complex organ systems is that the cellular response to identical environmental cues can vary significantly between distinct cell types and developmental stages. While it is well established that paracrine signaling can similarly elicit diverse responses in distinct tumor types, the relevance of developmental stage-specific signaling responses to tumor development remains unclear. Here, we show that the same microenvironmental factor, IL-6, can both promote and prevent lymphoma development by acting on cells at distinct stages of hematopoietic development. Specifically, paracrine IL-6 signaling promotes the survival of transplanted hematopoietic stem cells following lethal irradiation, allowing for the persistence and expansion of progenitor cells bearing a cancer-promoting alteration. Conversely, IL-6 signaling also initiates a paracrine secretory program in the bone marrow that promotes B-cell differentiation and inhibits the development of B-cell malignancies. Thus, stage-specific responses to cytokines may promote progenitor cell expansion while also inhibiting neoplastic development within a single developmental lineage. Once transformed, the resulting B-cell lymphomas again use paracrine IL-6 signaling as a survival signal, highlighting the ability of tumor cells to co-opt pathways used for stem cell protection. These data not only suggest a complex regulation of tumor development by the preneoplastic microenvironment, but also that this regulation can decisively impact the outcome of well-established tumor modeling approaches.
Collapse
Affiliation(s)
- Luke A Gilbert
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
32
|
Zhao W, Su W, Kuang P, Zhang L, Liu J, Yin Z, Wang X. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol 2012. [PMID: 22641338 DOI: 10.3892/ijo.2012.1497.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hepatic stellate cells (HSCs) have immunosuppressive abilities and may be responsible for the occurrence and development of hepatocellular carcinoma (HCC). However, the mechanisms through which HSCs affect T-cell-mediated immune responses remain unclear. The aim of this study was to elucidate these mechanisms. We examined the effect of HSCs on T-cell proliferation and apoptosis, regulatory T cells (Treg cells) and T-cell-mediated cytotoxicity using mixed leukocyte reactions (MLRs). Furthermore, we examined the cytokines present in the supernatant and the effect of this supernatant on the proliferation and migration of cancer cells. Finally, we examined the effect of HSCs on HCC cells in vivo. We found that activated HSCs induced T-cell hyporesponsiveness, accelerated activated T-cell apoptosis, increased the number of Treg cells and inhibited T-cell-mediated cytotoxicity. HSCs also enhanced the expression of some cytokines and promoted the proliferation and migration of cancer cells. Furthermore, activated HSCs were able to induce HCC proliferation and Treg cells expansion in vivo. Activated HSCs may induce T cell anergy, thereby facilitating the immunologic escape of HCC cells.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Department of Hepatobiliary Surgery, Xiamen University, Xiamen, Fujian, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012; 38:904-10. [PMID: 22651903 DOI: 10.1016/j.ctrv.2012.04.007] [Citation(s) in RCA: 539] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 02/09/2012] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine which plays an important role in a wide range of biologic activities in different types of cell including tumor cells. IL-6 is involved in the host immune defense mechanism as well as the modulation of growth and differentiation in various malignancies. These effects are mediated by several signaling pathways, in particular the signal transducer and transcription activator 3 (Stat3). There exists abundant evidence demonstrating that deregulated overexpression of IL-6 was associated with tumor progression through inhibition of cancer cell apoptosis, stimulation of angiogenesis, and drug resistance. Clinical studies have revealed that increased serum IL-6 concentrations in patients are associated with advanced tumor stages of various cancers (e.g., multiple myeloma, non-small cell lung carcinoma, colorectal cancer, renal cell carcinoma, prostate cancer, breast cancer and ovarian cancer) and short survival in patients. Therefore, blocking IL-6 signaling is a potential therapeutic strategy for cancer (i.e., anti-IL-6 therapy) characterized by pathological IL-6 overproduction. Preliminary clinical evidence has shown that antibody targeted IL-6 therapy was well tolerated in cancer patients. In this review, we detail the progress of the current understanding of IL-6 signaling pathway in cancer as well as an antibody targeted IL-6 therapy for human cancer.
Collapse
Affiliation(s)
- Yuqi Guo
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | | | | | | | | |
Collapse
|
34
|
Zhao W, Su W, Kuang P, Zhang L, Liu J, Yin Z, Wang X. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol 2012; 41:457-64. [PMID: 22641338 PMCID: PMC3582803 DOI: 10.3892/ijo.2012.1497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/20/2012] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) have immunosuppressive abilities and may be responsible for the occurrence and development of hepatocellular carcinoma (HCC). However, the mechanisms through which HSCs affect T-cell-mediated immune responses remain unclear. The aim of this study was to elucidate these mechanisms. We examined the effect of HSCs on T-cell proliferation and apoptosis, regulatory T cells (Treg cells) and T-cell-mediated cytotoxicity using mixed leukocyte reactions (MLRs). Furthermore, we examined the cytokines present in the supernatant and the effect of this supernatant on the proliferation and migration of cancer cells. Finally, we examined the effect of HSCs on HCC cells in vivo. We found that activated HSCs induced T-cell hyporesponsiveness, accelerated activated T-cell apoptosis, increased the number of Treg cells and inhibited T-cell-mediated cytotoxicity. HSCs also enhanced the expression of some cytokines and promoted the proliferation and migration of cancer cells. Furthermore, activated HSCs were able to induce HCC proliferation and Treg cells expansion in vivo. Activated HSCs may induce T cell anergy, thereby facilitating the immunologic escape of HCC cells.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Department of Hepatobiliary Surgery, Xiamen University, Xiamen, Fujian, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Pasch W, Zhao X, Rezk SA. Solitary plasmacytoma of the bone involving young individuals, is there a role for preceding trauma? INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:463-467. [PMID: 22808301 PMCID: PMC3396066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/13/2012] [Indexed: 06/01/2023]
Abstract
Solitary plasmacytoma of the bone (SPB) is a rare plasma cell neoplasm that usually presents as a lytic lesion mainly localized within the axial skeleton. The occurrence of SPB in young individuals is exceedingly rare but has been sporadically reported before. We report a case of SPB involving a 21 year-old male with a prior history of trauma at the same site. We also reviewed all previous cases of SPB in young individuals that were accessible to us to investigate the incidence of prior trauma in such cases and to investigate a potential role that trauma may play in the pathogenesis of such lesions.
Collapse
Affiliation(s)
- Whitney Pasch
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
36
|
Bouquet C, Melchers F. Pim1 and Myc reversibly transform murine precursor B lymphocytes but not mature B lymphocytes. Eur J Immunol 2011; 42:522-32. [DOI: 10.1002/eji.201141987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 11/02/2011] [Indexed: 11/12/2022]
|
37
|
Role of Pirh2 in mediating the regulation of p53 and c-Myc. PLoS Genet 2011; 7:e1002360. [PMID: 22125490 PMCID: PMC3219591 DOI: 10.1371/journal.pgen.1002360] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2(-/-) mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor.
Collapse
|
38
|
Kang JG, Majerciak V, Uldrick TS, Wang X, Kruhlak M, Yarchoan R, Zheng ZM. Kaposi's sarcoma-associated herpesviral IL-6 and human IL-6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. J Pathol 2011; 225:378-89. [PMID: 21984125 DOI: 10.1002/path.2962] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/29/2011] [Accepted: 06/30/2011] [Indexed: 12/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral interleukin 6 (vIL-6) that mimics many activities of human IL-6 (hIL-6). Both vIL-6 and hIL-6 play important roles in stimulating the proliferation of tumours caused by KSHV. Here, we provide evidence that a miRNA pathway is involved in regulation of vIL-6 and hIL-6 expression through binding sites in their open reading frames (ORFs). We show a direct repression of vIL-6 by hsa-miR-1293 and hIL-6 by hsa-miR-608. The repression of vIL-6 by miR-1293 was reversed by disruption of the vIL-6 miR-1293 seed match through the introduction of point mutations. In addition, expression of vIL-6 or hIL-6 in KSHV-infected cells could be enhanced by transfection of the respective miRNA inhibitors. In situ hybridization of human lymph node sections revealed that miR-1293 is primarily expressed in the germinal centre but is deficient in the mantle zone of lymph nodes, where the expression of vIL-6 is often found in patients with KSHV-associated multicentric Castleman's disease, providing evidence of an anatomical correlation. Taking these factors together, our study indicates that IL-6 expression can be regulated by miRNA interactions in its ORF and provides evidence for the role of these interactions in the pathogenesis of KSHV-associated diseases.
Collapse
Affiliation(s)
- Jeong-Gu Kang
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Jian B, Yang S, Chen D, Chaudry I, Raju R. Influence of aging and hemorrhage injury on Sirt1 expression: possible role of myc-Sirt1 regulation in mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1446-51. [PMID: 21554952 DOI: 10.1016/j.bbadis.2011.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 02/02/2023]
Abstract
Trauma-hemorrhage (T-H) causes hypoxia and organ dysfunction. Mitochondrial dysfunction is a major factor for cellular injury due to T-H. Aging also has been known to cause progressive mitochondrial dysfunction. In order to study the effect of aging on T-H-induced mitochondrial dysfunction, we recently developed a rodent mitochondrial genechip with probesets representing mitochondrial and nuclear genes contributing to mitochondrial structure and function. Using this chip we recently identified signature mitochondrial genes altered following T-H in 6 and 22 month old rats; augmented expression of the transcription factor c-myc was the most pronounced. Based on reports of c-myc-IL6 collaboration and c-myc-Sirt1 negative regulation, we further investigated the expression of these regulatory factors with respect to aging and injury. Rats of ages 6 and 22 months were subjected to T-H or sham operation and left ventricular tissues were tested for cytosolic cytochrome c, mtDNA content, Sirt1 and mitochondrial biogenesis factors Foxo1, Ppara and Nrf-1. We observed increased cardiac cytosolic cytochrome c (sham vs T-H, p<0.03), decreased mitochondrial DNA content (sham vs T-H, p<0.05), and decreased Sirt1 expression (sham vs TH, p<0.05) following T-H and with progressing age. Additionally, expression of mitochondrial biogenesis regulating transcription factors Foxo1 and Nrf-1 was also decreased with T-H and aging. Based upon these observations we conclude that Sirt1 expression is negatively modulated by T-H causing downregulation of mitochondrial biogenesis. Thus, induction of Sirt1 is likely to produce salutary effects following T-H induced injury and hence, Sirt1 may be a potential molecular target for translational research in injury resolution.
Collapse
Affiliation(s)
- Bixi Jian
- Center for Surgical Research, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
40
|
Rego D, Kumar A, Nilchi L, Wright K, Huang S, Kozlowski M. IL-6 Production Is Positively Regulated by Two DistinctSrcHomology Domain 2-Containing Tyrosine Phosphatase-1 (SHP-1)–Dependent CCAAT/Enhancer-Binding Protein β and NF-κB Pathways and an SHP-1–Independent NF-κB Pathway in Lipopolysaccharide-Stimulated Bone Marrow-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 186:5443-56. [DOI: 10.4049/jimmunol.1003551] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Doetschman T, Sholl A, Chen HDR, Gard C, Hildeman DA, Bommireddy R. Divergent effects of calcineurin Aβ on regulatory and conventional T-cell homeostasis. Clin Immunol 2011; 138:321-30. [PMID: 21256088 DOI: 10.1016/j.clim.2010.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Calcineurin (CN) is a phosphatase that activates nuclear factor of activated T cells (NFAT). While the CN inhibitors cyclosporine A (CsA) and tacrolimus (FK506) can prevent graft rejection, they also cause inflammatory diseases. We investigated the role of calcineurin using mice deficient in the CN catalytic subunit Aβ (CNAβ). Cnab(-/-) mice exhibit defective thymocyte maturation, splenomegaly and hepatomegaly. Further, as Cnab(-/-) mice age, they exhibit spontaneous T-cell activation and enhanced production of proinflammatory cytokines (IL-4, IL-6, and IFNγ). FOXP3(+) T(reg) cells were significantly decreased in Cnab(-/-) mice likely contributing to increased T-cell activation. Interestingly, we found that CNAβ is critical for promotion of BCL-2 expression in FOXP3(+) T(reg) and for permitting TGFβ signaling, as TGFβ induces FOXP3 in control but not in Cnab(-/-) T-cells. Together, these data suggest that CNAβ is important for the production and maintenance of T(reg) cells and to ensure mature T-cell quiescence.
Collapse
Affiliation(s)
- Thomas Doetschman
- BIO5 Institute, Department of Cell Biology & Anatomy, University of Arizona, Tucson, AZ 85724-5217, USA
| | | | | | | | | | | |
Collapse
|
42
|
de Jong D, Janz S. Anaplastic plasmacytoma of mouse--establishing parallels between subtypes of mouse and human plasma cell neoplasia. J Pathol 2010; 221:242-7. [PMID: 20527018 DOI: 10.1002/path.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mouse models may provide an important tool for basic and applied research on human diseases. An ideal tumour model should replicate the phenotypic and molecular characteristics of human malignancy as well as the typical physiological effects and dissemination patterns. The histopathological and molecular genetic characterization of anaplastic plasmacytoma (APCT) in strain NSF.V(+) mice provides an example to achieve this goal for a specific lymphoma subtype. Firstly, it demonstrates that, like plasma-cell neoplasms in humans, those in mice occur as distinct subtypes. Secondly, it shows that mouse APCT exhibits striking parallels to possible human tumour counterparts for which good mouse models of de novo tumour development are sorely needed: IgM(+) multiple myeloma and Waldenström's macroglobulinaemia. Thirdly, it strongly suggests that insertional somatic mutagenesis, by either a murine leukaemia virus or an oncogenic transposon, would be an effective experimental approach to accelerating malignant transformation of mature B cells and plasma cells in mice and, thereby, tagging and uncovering cancer driver genes that may be of great relevance for the tumour initiation and progression in lymphoma.
Collapse
Affiliation(s)
- Daphne de Jong
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|