1
|
Thakkar D, Upasana K, Udayakumar DS, Rastogi N, Chadha R, Arora S, Jha B, Yadav A, Goel S, Saxena R, Yadav SP. Treatment of Pediatric Acute Lymphoblastic Leukemia in India as per modified BFM 95 protocol with Minimal Residual Disease monitoring. Hematology 2025; 30:2439733. [PMID: 39676322 DOI: 10.1080/16078454.2024.2439733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Background: Survival outcomes of Pediatric Acute Lymphoblastic Leukemia (ALL) in the developing world have lagged. Here we report improved outcomes of pediatric ALL from India.Methods: We analyzed outcomes of children with ALL treated at our center between 2016 and 2021. They were treated as per the modified BFM 95 protocol with Minimal Residual Disease (MRD) monitoring by flow cytometry (FCM).Results: We diagnosed and managed 68 patients, 57 being Precursor B (Pre B) cell ALL and the rest of T cell ALL. With BFM 95 protocol-based risk stratification, 19/68, 44/68 and 3/68 patients were Standard risk (SR), Medium risk (MR) and High risk (HR), respectively and 2/68 were not stratified due to Induction mortality. With MRD-based risk stratification, 52/68, 11/68 and 2/68 patients fell in the SR, MR and HR category, respectively and 3/68 patients were not classifiable by MRD (2 Induction deaths and 1 refractory disease) and 65/68 patients achieved morphological complete remission (CR) at the end of Induction. Five out of 68 ALL patients underwent allogeneic hematopoietic stem cell transplant (HSCT) in CR1. Ten out of 68 patients had a relapse, 6 of whom are alive and in CR2 till the last follow-up. The mean duration of follow-up was 1150 days (median 1219 days). Treatment-related mortality was 4.4% in our cohort. The Event Free Survival (EFS) of our cohort was 79.4% and Overall Survival (OS) was 88.2% at a median follow-up of 1219 days.Conclusion: Survival outcomes have improved for children with ALL with modifications in BFM 95 protocol and incorporation of MRD assessment.
Collapse
Affiliation(s)
- Dhwanee Thakkar
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Medanta, Gurgaon, India
| | - K Upasana
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Medanta, Gurgaon, India
| | | | - Neha Rastogi
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Medanta, Gurgaon, India
| | - Ritu Chadha
- Department of Hematopathology, Medanta, Gurgaon, India
| | - Sunisha Arora
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Medanta, Gurgaon, India
| | - Bhawna Jha
- Department of Hematopathology, Medanta, Gurgaon, India
| | - Anjali Yadav
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Medanta, Gurgaon, India
| | - Shalini Goel
- Department of Hematopathology, Medanta, Gurgaon, India
| | - Renu Saxena
- Department of Hematopathology, Medanta, Gurgaon, India
| | - Satya Prakash Yadav
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Medanta, Gurgaon, India
| |
Collapse
|
2
|
Muggeo P, Grassi M, D'Ascanio V, Forte J, Brescia V, Di Serio F, Piacente L, Giordano P, Santoro N, Faienza MF. Bone Remodeling in Children with Acute Lymphoblastic Leukemia: A Two-Year Prospective Longitudinal Study. Int J Mol Sci 2025; 26:4307. [PMID: 40362542 DOI: 10.3390/ijms26094307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Childhood leukemia survivors are at risk of long-term complications. Data on bone remodeling in childhood acute lymphoblastic leukemia (ALL) are limited. This 2-year prospective longitudinal study investigated bone remodeling and bone turnover markers at diagnosis, during treatment, and until stopping treatment, in ALL patients < 18 years, to clarify the influence of leukemia itself and/or chemotherapy on bone. METHODS A total of 22 ALL children (12 males, age 5.5 ± 3.6 years) underwent blood sampling at the 5 time point (T0-T4). Osteoprotegerin (OPG), receptor-activator-NF-B-ligand (RANKL), osteocalcin (OC), C-terminal-telopeptide-type-I-collagen (CTX), bone-alkaline-phosphatase (bALP), tartrate-resistant acid-phosphatase-5b (TRACP5b), procollagen-type-I-N-terminal-propeptide (P1NP), Dickkopf-1 (DKK-1), and sclerostin were assessed. Data from patients at T0 were compared to a control group of healthy children. We used the principal component analysis (PCA) for statistics. RESULTS Levels of CTX, OC, P1NP, and bALP resulted lower in ALL children than controls (p = 0.009 for CTX and p < 0.001 for the others), also DKK1 and sclerostin (p < 0.0001 and p = 0.023). RANKL ed OPG were higher in patients. During T0-T4, CTX, OC, P1NP, TRACP5b, and bALP showed a significant increase, in particular at T0-T1 (end-of-induction). Less evident changes were detected onwards. CONCLUSIONS The onset of leukemia has been revealed as a key point in determining a slowing of bone remodeling in ALL children.
Collapse
Affiliation(s)
- Paola Muggeo
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy
| | - Massimo Grassi
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy
| | - Vito D'Ascanio
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), 70126 Bari, Italy
| | - Jessica Forte
- Pediatric Department, Ospedale Della Murgia "F. Perinei", 70022 Altamura, Italy
| | - Vincenzo Brescia
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | - Francesca Di Serio
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | - Laura Piacente
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Nicola Santoro
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
3
|
Kato M, Okamoto Y, Imamura T, Kada A, Saito AM, Iijima-Yamashita Y, Deguchi T, Ohki K, Fukushima T, Anami K, Sanada M, Taki T, Hashii Y, Inukai T, Kiyokawa N, Kosaka Y, Yoshida N, Yuza Y, Yanagimachi M, Watanabe K, Sato A, Imai C, Taga T, Adachi S, Horibe K, Manabe A, Koh K. JCCG ALL-B12: Evaluation of Intensified Therapies With Vincristine/Dexamethasone Pulses and Asparaginase and Augmented High-Dose Methotrexate for Pediatric B-ALL. J Clin Oncol 2025; 43:567-577. [PMID: 39531610 PMCID: PMC11809717 DOI: 10.1200/jco.24.00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The JCCG ALL-B12 clinical trial aimed to evaluate the effectiveness of unvalidated treatment phases for pediatric ALL and develop a safety-focused treatment framework. PATIENTS AND METHODS Patients age 1-19 years with newly diagnosed B-ALL were enrolled in this study. These patients were stratified into standard-risk (SR), intermediate-risk (IR), and high-risk (HR) groups. Randomized comparisons assessed the effectiveness of vincristine (VCR)/dexamethasone pulses in the SR group, evaluated the effects of L-asparaginase (ASP) intensification in the IR group, and compared standard consolidation including block-type treatment with experimental consolidation with high-dose methotrexate (HD-MTX) intensified with VCR and ASP in the HR group. RESULTS Of 1,936 patients enrolled, 1,804 were eligible for the experimental treatment. The overall 5-year event-free survival and overall survival rates were 85.2% (95% CI, 83.5 to 86.8) and 94.3% (95% CI, 93.1 to 95.3), respectively. The cumulative incidence of relapse and postremission nonrelapse mortality was 13.2% (95% CI, 11.6 to 14.8) and 0.6% (95% CI, 0.3 to 1.0), respectively. Random assignment in the SR group showed no significant benefit from pulse therapy. In the IR group, ASP intensification had limited effects. In the HR group, standard block therapy and HD-MTX yielded equivalent outcomes. CONCLUSION The ALL-B12 trial achieved favorable outcomes in a nationwide cohort by stratifying treatment on the basis of risk and balancing treatment intensity. This study not only demonstrated that existing standard of care can be further refined but also indicated that improvement in outcomes with intensified chemotherapy has reached a plateau.
Collapse
Affiliation(s)
- Motohiro Kato
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Kada
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | - Akiko M. Saito
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | | | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takashi Fukushima
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Pediatric Oncology and Hematology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kenichi Anami
- Department of Medical Oncology, Hematology, and Infectious Diseases, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masashi Sanada
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | - Tomohiko Taki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Mitaka, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University, Suita, Japan
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Chuo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Yuki Yuza
- Department of Hematology-Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Chihaya Imai
- Department of Pediatrics, University of Toyama, Toyama, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keizo Horibe
- Clinical Research Center, NHO Nagoya Medical Center, Nagoya, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
4
|
Weiss-Haug AV, Haraszti RA, Hug S, Faul C, Bethge WA, Lengerke C. Allogeneic Hemopoietic Cell Transplantation as a Paradigm for Cellular Immunotherapy. Oncol Res Treat 2025; 48:280-293. [PMID: 39907999 DOI: 10.1159/000543928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Allogeneic hematopoietic cell transplantation (alloHCT) is an established curative treatment for hematological malignancies and other severe blood disorders. However, alloHCT is also known for its significant side effects. SUMMARY Here we review recent advances in targeted molecular therapy, immunotherapy, infectiology, and diagnostics that have enhanced the tolerability and efficacy of alloHCT, expanding its use to less fit and elderly patients. We analyze developments in conditioning regimens, donor selection, and the management of graft versus host disease (GVHD) and infections and discuss posttransplantation strategies to prevent relapse. KEY MESSAGE In a fresh perspective, alloHCT can serve as a platform to enhance the potential of emerging targeted and immune therapies.
Collapse
Affiliation(s)
- Alisha Vanessa Weiss-Haug
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Reka Agnes Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Stefan Hug
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Faul
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Wolfgang Andreas Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Aertgeerts M, Meyers S, Gielen O, Lamote J, Dewaele B, Tajdar M, Maertens J, De Bie J, De Keersmaecker K, Boeckx N, Michaux L, Uyttebroeck A, Demeyer S, Segers H, Cools J. Single-cell DNA and surface protein characterization of high hyperdiploid acute lymphoblastic leukemia at diagnosis and during treatment. Hemasphere 2025; 9:e70085. [PMID: 39944233 PMCID: PMC11814536 DOI: 10.1002/hem3.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 02/19/2025] Open
Abstract
High hyperdiploid (HeH) B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent subtype of childhood ALL. This leukemia is characterized by trisomies and tetrasomies of specific chromosomes and additional point mutations. Here, we used single-cell targeted DNA and antibody sequencing to determine the clonal evolution of HeH B-ALL during development and chemotherapy treatment. Chromosomal copy number changes were mostly stable over all the leukemia cells, while mutations were typically subclonal. Within all 13 cases, at least one RAS mutant (KRAS or NRAS) subclone was detected (range: 1 to 4 subclones with RAS mutations), indicating the importance of RAS signaling in HeH B-ALL development. NSD2 mutations were detected in 4 out of 13 cases and always in a subclone with RAS signaling mutations. Single-cell DNA sequencing detected residual leukemia cells during chemotherapy treatment, and analysis of chromosomal copy number changes aided in the accurate detection of these cells. Our single-cell data demonstrate that chromosomal changes are acquired prior to additional mutations and that RAS signaling mutations are present in all HeH cases, often as subclonal mutations. This single-cell multi-omics study enabled us to extensively characterize the genetic and surface protein heterogeneity in patients with HeH B-ALL.
Collapse
Affiliation(s)
- Margo Aertgeerts
- Department of OncologyKU LeuvenLeuvenBelgium
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
| | - Sarah Meyers
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Olga Gielen
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Jochen Lamote
- Center for Cancer BiologyVIBLeuvenBelgium
- VIB Flow Core LeuvenVIB TechnologiesLeuvenBelgium
| | - Barbara Dewaele
- Department of Human GeneticsKU LeuvenLeuvenBelgium
- Center of Human GeneticsUZ LeuvenLeuvenBelgium
| | - Mercedeh Tajdar
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Department of Laboratory MedicineUZ LeuvenLeuvenBelgium
| | - Johan Maertens
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Microbiology, Immunology and TransplantationKU LeuvenLeuvenBelgium
- Department of HematologyUZ LeuvenLeuvenBelgium
| | | | - Kim De Keersmaecker
- Department of OncologyKU LeuvenLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
| | - Nancy Boeckx
- Department of OncologyKU LeuvenLeuvenBelgium
- Department of Laboratory MedicineUZ LeuvenLeuvenBelgium
| | - Lucienne Michaux
- Department of Human GeneticsKU LeuvenLeuvenBelgium
- Center of Human GeneticsUZ LeuvenLeuvenBelgium
| | - Anne Uyttebroeck
- Department of OncologyKU LeuvenLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Pediatric Hematology and OncologyUZ LeuvenLeuvenBelgium
| | - Sofie Demeyer
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Heidi Segers
- Department of OncologyKU LeuvenLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Pediatric Hematology and OncologyUZ LeuvenLeuvenBelgium
| | - Jan Cools
- Center for Cancer BiologyVIBLeuvenBelgium
- Leuvens Kanker Instituut (LKI)KU Leuven – UZ LeuvenLeuvenBelgium
- Department of Human GeneticsKU LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Argyriadi EA, Steffen IG, Chen-Santel C, Lissat A, Attarbaschi A, Bourquin JP, Henze G, von Stackelberg A. Prognostic relevance of treatment deviations in children with relapsed acute lymphoblastic leukemia who were treated in the ALL-REZ BFM 2002 study. Leukemia 2025; 39:337-345. [PMID: 39663406 PMCID: PMC11794146 DOI: 10.1038/s41375-024-02474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
Relapsed Acute Lymphoblastic Leukemia (ALL) is among the most common causes of cancer-associated deaths in children. However, little is known about the implications of deviations from ALL treatment protocols on survival rates. The present study elucidates the various characteristics of treatment deviations in children with relapsed ALL included in the ALL-REZ BFM 2002 (i.e., Relapse Berlin-Frankfurt- Münster) trial and determines their prognostic relevance for relapse and death rates. Among 687 patients, 100 were identified with treatment deviations, further classified, and examined by occurrence time, cause and type. Protocol deviation was considered a time-dependent variable and its impact on Disease Free Survival (DFS) and Overall Survival (OS) was examined using the time-dependent model Mantel Byar. Five years after the relapse diagnosis, deviations were significantly related to both inferior DFS (38%) and OS (57%) rates compared to protocol conformed treatment (DFS = 61%; OS = 70%, P < 0.001). Based on multivariate analyses, protocol deviation proved to be an independent adverse prognostic factor of DFS. Moreover, deviations triggered by chemotherapy-induced toxicity were associated with a higher relapse rate compared to deviations due to insufficient response. Therefore, to avoid impairment of results by deviations, future clinical trials, and treatment strategies should focus on less toxic treatments and stricter protocol compliance.
Collapse
Affiliation(s)
- Eleni A Argyriadi
- Department of Pediatric Oncology Hematology, Charité- Universitätsmedizin Berlin, Berlin, Germany.
| | - Ingo G Steffen
- Department of Pediatric Oncology Hematology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Chen-Santel
- Universitätsklinikum Leipzig, Klinik und Poliklinik für Kinder- und Jugendmedizin, Abteilung für Pädiatrische Onkologie, Hämatologie und Hämostaseologie, Leipzig, Germany
| | - Andrej Lissat
- Department of Pediatric Oncology Hematology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Guenter Henze
- Department of Pediatric Oncology Hematology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology Hematology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Krstevska Bozhinovikj E, Matevska-Geshkovska N, Staninova Stojovska M, Gjorgievska E, Jovanovska A, Ridova N, Panovska Stavridis I, Kocheva S, Dimovski A. Presence of minimal residual disease determined by next-generation sequencing is not a reliable prognostic biomarker in children with acute lymphoblastic leukemia. Leuk Lymphoma 2025:1-8. [PMID: 39844437 DOI: 10.1080/10428194.2025.2456100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
The role of next-generation sequencing (NGS) for minimal residual disease (MRD) assessment in pediatric acute lymphoblastic leukemia (ALL) is still under consideration. Fifty pediatric patients were prospectively evaluated for specific clonal rearrangements of immunoglobulin and T-cell receptor genes using NGS analysis at diagnosis and on days 33 and 78 from therapy onset. The prognostic value or the NGS-MRD status was analyzed after a median follow-up of 4 years. All but one patient with negative NGS-MRD status on day 33 are in clinical remission. A total of 29 (58%) patients were NGS-MRD positive on day 33, of which 9 (18%) patients remained positive on day 78. However, only a small percentage of the patients with positive NGS-MRD status on day 33 and day 78 relapsed: 21% (6/29) and 33% (3/9), respectively. Positive NGS-MRD status is not a reliable prognostic biomarker in children with ALL and warrants careful consideration in disease stratification.
Collapse
Affiliation(s)
- Elizabeta Krstevska Bozhinovikj
- Faculty of Pharmacy, Center for Biomolecular Pharmaceutical Analyses, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nadica Matevska-Geshkovska
- Faculty of Pharmacy, Center for Biomolecular Pharmaceutical Analyses, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Marija Staninova Stojovska
- Faculty of Pharmacy, Center for Biomolecular Pharmaceutical Analyses, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Emilija Gjorgievska
- Faculty of Pharmacy, Center for Biomolecular Pharmaceutical Analyses, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Aleksandra Jovanovska
- Faculty of Medicine, University Clinic for Children's Diseases, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nevenka Ridova
- Faculty of Medicine, University Clinic for Hematology, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Irina Panovska Stavridis
- Faculty of Medicine, University Clinic for Hematology, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Svetlana Kocheva
- Faculty of Medicine, University Clinic for Children's Diseases, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Aleksandar Dimovski
- Faculty of Pharmacy, Center for Biomolecular Pharmaceutical Analyses, University Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
8
|
Tang X, Liu S, Hu Y, Chen F, Wang L, Li T, Liu Y, Zhou G, Liu S, Liu S, Wen F, Wang Y, Mai H, Xiao J. Clearing MRD positivity with blinatumomab in pediatric B-cell acute lymphoblastic leukemia: insights from droplet digital PCR and flow cytometry. Ann Hematol 2025; 104:559-564. [PMID: 39668199 PMCID: PMC11868138 DOI: 10.1007/s00277-024-06126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Blinatumomab has shown to improve survival outcomes in B-cell acute lymphoblastic leukemia (B-ALL) patients with measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC). However, data on blinatumomab clearing MRD with high sensitivity remain scarce. This study evaluates the effectiveness of blinatumomab in eradicating low levels of MRD, as detected by droplet digital PCR (ddPCR) but undetectable by MFC, in children with B-ALL. Patients (n = 9) whose MRD was undetectable by MFC but detectable by ddPCR after chemotherapy and followed by blinatumomab consolidation were included retrospectively. After the administration of blinatumomab, 5 out of 9 patients (55.56%) successfully achieved undetectable levels of ddPCR-MRD. Notably, among the 4 patients with BCR::ABL1 gene-positive acute lymphoblastic leukemia (ALL), only one achieved gene negativity. Starting from the initiation of blinatumomab treatment, with a median follow-up of 12 months, all patients remained in complete remission. Our study was the first to demonstrate that blinatumomab could further eradicate ddPCR MRD after patients achieve MFC-MRD undetectable status in B-ALL patients.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Siyu Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
| | - Yanni Hu
- Department of Hematology and Oncology, Children Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tonghui Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guichi Zhou
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shilin Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Huirong Mai
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Jianwen Xiao
- Department of Hematology and Oncology, Children Hospital of Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| |
Collapse
|
9
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024; 43:1385-1399. [PMID: 39102101 PMCID: PMC11554931 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
10
|
Domenech C, Kicinski M, De Moerloose B, Piette C, Chahla WA, Kornreich L, Pasquet M, Uyttebroeck A, Theron A, Poirée M, Arfeuille C, Bakkus M, Grardel N, Paillard C, Freycon C, Millot F, Simon P, Philippet P, Pluchart C, Suciu S, Rohrlich P, Ferster A, Bertrand Y, Cavé H. Results of the prospective EORTC Children Leukemia Group study 58081 in precursor B- and T-cell acute lymphoblastic leukemia. Hemasphere 2024; 8:e70025. [PMID: 39540141 PMCID: PMC11558101 DOI: 10.1002/hem3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
Here, we report the results of the prospective cohort study EORTC-CLG 58081 and compare them to the control arm of the randomized phase 3 trial EORTC-CLG 58951, on which treatment recommendations were built. In both studies, patients aged 1-18 years with BCR::ABL1 negative acute lymphoblastic leukemia of the B-lineage (B-ALL) or T-lineage (T-ALL) were treated using a BFM backbone without cranial irradiation. Similarly to the control arm of 58951, prednisolone (PRED) 60 mg/m2/day was used for induction therapy, but a few modifications were made. Dexamethasone (DXM) was used in average-risk 2 (AR2) T-ALL and B-ALL during induction, 10 and 6 mg/m2/day, respectively. Leucovorin rescue was delayed to 42 h instead of 36 h after initiation of high-dose methotrexate, and a postconsolidation MRD time point was added to stratify patients. Between 2011 and 2017, 835 patients were prospectively enrolled in the 58081 study. Overall, the 5-year event-free survival (EFS) was 84.8% versus 83.6% (hazard ratio [HR], 0.96 [95% confidence interval [CI]: 0.76-1.21]) for 58081 versus 58951 considered as a control group, respectively, 84.3% versus 84.9% (HR, 1.06 [99% CI: 0.75-1.49]) in B-ALL but 87.3% versus 76.6% (HR, 0.59 [99% CI: 0.28-1.24]) in T-ALL. The comparison between the two studies regarding EFS differed by risk group (p = 0.012). The HR was 2.15 (99% CI: 0.67-6.85) for very low-risk but 0.34 (99% CI: 0.13-0.89) for AR2. The particularly favorable results observed in the T-ALLs and AR2 subgroups suggest the benefit of using DXM in specific patient groups and highlight the importance of risk stratification.
Collapse
Affiliation(s)
- Carine Domenech
- Department of Pediatric Hematology‐Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de LyonUniversité Lyon1LyonFrance
| | | | - Barbara De Moerloose
- Department of Pediatric Hematology‐OncologyGhent University HospitalGhentBelgium
| | - Caroline Piette
- Department of Paediatrics, Division of Haematology‐OncologyUniversity Hospital Liège and University of LiègeLiègeBelgium
| | | | - Laure Kornreich
- Department of Hemato‐OncologyHUDERF‐HUB (ULB)BrusselsBelgium
| | | | - Anne Uyttebroeck
- Department of PediatricsUniversity Hospital GasthuisbergLeuvenBelgium
| | - Alexandre Theron
- Department of Pediatric Hematology OncologyCHU de MontpellierMontpellierFrance
| | | | - Chloé Arfeuille
- Département de GénétiqueAssistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert DebréParisFrance
- Department of Research‐INSERM UMR 1131Université Paris CitéFrance
| | - Marleen Bakkus
- Department of Molecular HematologyUZ BrusselBrusselsBelgium
| | | | - Catherine Paillard
- Department of Paediatric Haematology and OncologyCHU HautepierreStrasbourg
| | | | - Frédéric Millot
- Department of Pediatric Hematology‐OncologyCHUPoitiersFrance
| | - Pauline Simon
- Department of Pediatric Hematology‐OncologyCHRUBesançonFrance
| | - Pierre Philippet
- Department of Pediatric Hemato‐OncologyCHC MontLégiaLiègeBelgium
| | | | - Stefan Suciu
- Department of StatisticEORTC HeadquartersBrusselsBelgium
| | | | - Alina Ferster
- Department of Hemato‐OncologyHUDERF‐HUB (ULB)BrusselsBelgium
| | - Yves Bertrand
- Department of Pediatric Hematology‐Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de LyonUniversité Lyon1LyonFrance
| | - Hélène Cavé
- Département de GénétiqueAssistance Publique des Hôpitaux de Paris (AP‐HP), Hôpital Robert DebréParisFrance
- Department of Research‐INSERM UMR 1131Université Paris CitéFrance
| | | |
Collapse
|
11
|
Stutterheim J, van der Waarden R, de Groot-Kruseman HA, Sonneveld E, de Haas V, Dandis R, van der Schoot CE, van der Velden VHJ, Pieters R. Are measurable residual disease results after consolidation therapy useful in children with acute lymphoblastic leukemia? Leukemia 2024; 38:2376-2381. [PMID: 39256602 PMCID: PMC11518975 DOI: 10.1038/s41375-024-02386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Measurable residual disease (MRD) is regularly tested at later timepoints after the end of first consolidation (EOC) in children with acute lymphoblastic leukemia (ALL). The question remains whether this is useful for detecting (molecular) relapse. We investigated the clinical relevance of MRD after EOC in intermediate risk patients treated on DCOG-ALL-10 (n = 271) and DCOG-ALL-9 (n = 122), with MRD <0.05% at EOC. EOC MRD-negative patients (n = 178) had excellent outcomes, irrespective of MRD results at later timepoints; 6-year cumulative incidence of relapse (6-y CIR) of 7.4% (95% CI, 3.9%-12.3%) for those with MRD negativity at all later timepoints compared to 3.8% (95% CI, 0.3%-16.8%) for those with one or more later timepoints being positive (p = 0.51). Patients with positive EOC MRD (n = 91) of whom the subsequent timepoints were MRD negative (n = 43), had comparable good outcomes, 6-y CIR of 7.0% (95% CI, 1.8%-17.2%). In contrast, patients being MRD positive at EOC and MRD positive at one or more subsequent timepoints (n = 48) had a higher risk of relapse, 6-y CIR 29.4% (95% CI, 17.2%-42.8%), p < 0.001. These findings were confirmed in the validation cohort of ALL-9 as well as using the updated EuroMRD guidelines. In EOC MRD-negative patients, subsequent MRD measurements can be abandoned. For EOC MRD-positive patients the subsequent MRD measurement might be informative for further risk stratification.
Collapse
Affiliation(s)
- Janine Stutterheim
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Hester A de Groot-Kruseman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| | - Valérie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| | - Rana Dandis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| |
Collapse
|
12
|
付 文, 方 拥. [Prognostic factors in children with acute T-lymphoblastic leukemia: a single-center clinical study of the CCCG-ALL-2015 protocol]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1078-1085. [PMID: 39467678 PMCID: PMC11527409 DOI: 10.7499/j.issn.1008-8830.2402079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES To explore the clinical characteristics of children with acute T-lymphoblastic leukemia (T-ALL) and analyze their relationship with prognosis. METHODS A retrospective analysis was conducted on the clinical data and follow-up results of 50 children with T-ALL who were treated using the CCCG-ALL-2015 protocol at the Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University from November 2015 to December 2019. Kaplan-Meier survival analysis and Cox regression analysis were employed to identify factors affecting prognosis. RESULTS Among the 50 T-ALL patients, there were 7 cases of relapse. There was no statistically significant difference in the baseline clinical data between the relapse group and the non-relapse group (P>0.05). However, the positive rate of minimal residual disease (MRD) (≥0.01%) on day 46 after induction remission therapy in the relapse group was significantly higher than that in the non-relapse group (P=0.037). The 5-year overall survival rate for the 50 patients was (87±5)%, and the 5-year event-free survival rate was (86±5)%. Multivariate Cox regression analysis indicated that the MRD level on day 46 after induction remission therapy was an independent prognostic factor (HR=0.104, 95%CI: 0.015-0.740, P=0.024). CONCLUSIONS MRD is of significant importance for the prognosis of T-ALL children. Personalized treatment should be provided based on MRD levels to prevent relapse and improve prognosis in these patients.
Collapse
|
13
|
Salceda-Rivera V, Ortiz-Lazareno PC, Hernández-Flores G, Vazquez-Urrutia JR, Meza-Arroyo J, Pardo-Zepeda M, Romo-Rubio H, Barba-Barba C, Sánchez-Zubieta F, Barrón-Gallardo CA, Gonzalez-Ramella O, Bravo-Cuellar A. Very early remission and increased apoptosis with the use of Pentoxifylline in children with acute lymphoblastic leukemia. Front Oncol 2024; 14:1401262. [PMID: 39421449 PMCID: PMC11484046 DOI: 10.3389/fonc.2024.1401262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Despite the improvement in survival in acute lymphoblastic leukemia (ALL), there are still cases with evasion of chemotherapy-induced apoptosis. The IKK/NF-κB signaling pathway contributes to antiapoptotic gene expression. Pentoxifylline (PTX) inhibits IkB phosphorylation, blocking NF-κB and antiapoptotic activity. Methods We conducted a randomized, double-blind clinical trial on pediatric ALL patients undergoing induction therapy, assigning them to PTX or placebo group. Bone marrow aspirates were obtained on days 1, 8, 15, and 22. Apoptosis was assessed using Annexin-V/propidium iodide. Results Results indicated that the PTX group exhibited higher apoptosis on day-8 (41.3% vs. 19.4%, p =0.029) and day-15 (35.0% vs. 14.2%, p <0.01). On day-8, the PTX group displayed an MRD of 0.25% vs. 18.2% (p <0.01) in placebo group; on day-15, the PTX group demonstrated an MRD of 0.09% vs. 1.4% (p =0.02). Patients achieving an MRD <0.01% on day-8 demonstrated a 3-year Overall Survival (OS) of 81.6% vs. 58.3% (p =0.03); on day-15, patients with MRD <0.01% had a 3-year OS of 77.9% vs. 54.5% (p =0.03). The PTX group achieved an MRD of <0.01% earlier on days-8 and 15, along with a higher apoptosis rate, indicating a more favorable therapeutic response. In the entire cohort, patients achieving MRD <0.01% on day-8 or 15 displayed superior OS. Conclusion Our study demonstrates that PTX enhances apoptosis and reduces MRD in pediatric acute lymphoblastic leukemia patients. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02451774.
Collapse
Affiliation(s)
- Violeta Salceda-Rivera
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Pablo C. Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Georgina Hernández-Flores
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
| | - Jorge R. Vazquez-Urrutia
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, School of Medicine, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Jesus Meza-Arroyo
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Monzerrat Pardo-Zepeda
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Hugo Romo-Rubio
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Cesar Barba-Barba
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Fernando Sánchez-Zubieta
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
- Departamento de Clinicas de Reproduccion Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Carlos Alfredo Barrón-Gallardo
- Departamento Académico de Disciplinas Especializantes de Ciencias de la Salud, Universidad Autonoma de Guadalajara, Zapopan, JAL, Mexico
| | - Oscar Gonzalez-Ramella
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, School of Medicine, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Alejandro Bravo-Cuellar
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, JAL, Mexico
| |
Collapse
|
14
|
Witek MA, Larkey NE, Bartakova A, Hupert ML, Mog S, Cronin JK, Vun J, August KJ, Soper SA. Microfluidic Affinity Selection of B-Lineage Cells from Peripheral Blood for Minimal Residual Disease Monitoring in Pediatric B-Type Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2024; 25:10619. [PMID: 39408948 PMCID: PMC11477226 DOI: 10.3390/ijms251910619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Assessment of minimal residual disease (MRD) is the most powerful predictor of outcome in B-type acute lymphoblastic leukemia (B-ALL). MRD, defined as the presence of leukemic cells in the blood or bone marrow, is used for the evaluation of therapy efficacy. We report on a microfluidic-based MRD (MF-MRD) assay that allows for frequent evaluation of blood for the presence of circulating leukemia cells (CLCs). The microfluidic chip affinity selects B-lineage cells, including CLCs using anti-CD19 antibodies poised on the wall of the microfluidic chip. Affinity-selected cells are released from the capture surface and can be subjected to immunophenotyping to enumerate the CLCs, perform fluorescence in situ hybridization (FISH), and/or molecular analysis of the CLCs' mRNA/gDNA. During longitudinal testing of 20 patients throughout induction and consolidation therapy, the MF-MRD performed 116 tests, while only 41 were completed with multiparameter flow cytometry (MFC-MRD) using a bone marrow aspirate, as standard-of-care. Overall, 57% MF-MRD tests were MRD(+) as defined by CLC numbers exceeding a threshold of 5 × 10-4%, which was determined to be the limit of quantitation. Above a threshold of 0.01%, MFC-MRD was positive in 34% of patients. The MF offered the advantage of the opportunity for efficiently processing small volumes of blood (2 mL), which is important in the care of pediatric patients, especially infants. The minimally invasive means of blood collection are of high value when treating patients whose MRD is typically tested using an invasive bone marrow biopsy. MF-MRD detection can be useful for stratification of patients into risk groups and monitoring of patient well-being after completion of treatment for early recognition of potential impending disease recurrence.
Collapse
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Nicholas E. Larkey
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alena Bartakova
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
| | | | - Shalee Mog
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Jami K. Cronin
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Judy Vun
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Keith J. August
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
15
|
Zaj N, Kopyt W, Kamizela E, Zarychta J, Kowalczyk A, Lejman M, Zawitkowska J. Diagnostic and Therapeutic Challenge Caused by Candida albicans and Aspergillus spp. Infections in a Pediatric Patient as a Complication of Acute Lymphoblastic Leukemia Treatment: A Case Report and Literature Review. Pathogens 2024; 13:772. [PMID: 39338963 PMCID: PMC11435145 DOI: 10.3390/pathogens13090772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Fungal infections constitute a significant challenge and continue to be a predominant cause of treatment failure in pediatric leukemia cases. Despite the implementation of antifungal prophylaxis, these infections contribute to approximately 20% of cases in children undergoing treatment for acute lymphoblastic leukemia (ALL). The aim of this study is to highlight the diagnostic and therapeutic challenges associated with invasive fungal infections (IFIs). We also present a review of the epidemiology, risk factors, treatment, and a clinical presentation of IFI in patients with ALL. This case report details the clinical course of confirmed Candida albicans (C. albicans) and Aspergillus spp. infections during the consolidation phase of ALL treatment in a 5-year-old pediatric patient. This male patient did not experience any complications until Day 28 of protocol II. Then, the patient's condition deteriorated. Blood culture detected the growth of C. albicans. Despite the implementation of targeted therapy, the boy's condition did not show improvement. The appearance of respiratory symptoms necessitated a computed tomography (CT) of the chest, which revealed multiple nodular densities atypical for C. albicans etiology. In spite of ongoing antifungal treatment, the lesions depicted in the CT scans showed no regression. A lung biopsy ultimately identified Aspergillus species as the source of the infection. Overcoming fungal infections poses a considerable challenge; therefore, an accurate diagnosis and the prompt initiation of targeted therapy are crucial in managing these infections in patients with leukemia.
Collapse
Affiliation(s)
- Natalia Zaj
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Emilia Kamizela
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Cain LE, Mirochnik O, Stevens MM, Kellie SJ, Padhye B, Keogh SJ, Govender D, Ryan J, Dalla-Pozza L, Bateman CM. Low-Level BCR::ABL1 Transcript at Diagnosis in Childhood Leukemia: A 10-Year Single Institution Study. Genes Chromosomes Cancer 2024; 63:e23269. [PMID: 39291932 DOI: 10.1002/gcc.23269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/20/2023] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is a high risk form of ALL associated with dismal outcomes in the pre-tyrosine kinase inhibitor (TKI) era. Addition of a TKI to chemotherapy improves outcomes. Therefore, testing for the presence of the Philadelphia chromosome by at least two methods at the time of diagnosis is critical. Diagnostic testing may include karyotype, fluorescent in situ hybridisation (FISH), and RT-PCR for the BCR::ABL1 transcript. The significance of low-level BCR::ABL1 transcript by RT-PCR in the absence of the Philadelphia chromosome on karyotype or by FISH is unknown. METHODS This is a retrospective review of children diagnosed with acute leukemia at our institution from 2010 to 2020. Those positive for the BCR::ABL1 transcript by qualitative RT-PCR, and negative for t(9;22) by karyotype or FISH were analyzed for demographics, cytogenetic and molecular features at diagnosis and relapse, treatment and outcomes. The Kaplan-Meier method was used to estimate event-free and overall survival. RESULTS Forty-seven of 306 (15%) patients with Ph- ALL had low-level BCR::ABL1 detected by RT-PCR. Most (77%) had B-cell ALL. The e1a2 transcript was detected most frequently, in 43 (91%) patients. BCR::ABL1 was quantifiable in 12/43 (28%) patients, with a median of 0.0008% (range 0.0003-0.095%). Seven patients (15%) relapsed. No patient with low-level BCR::ABL1 at diagnosis developed Ph + ALL at relapse. There was no difference in 5-year event-free (77% versus 81%, p = 0.407) or overall survival (86% versus 91%, p = 0.3) between children with low-level BCR::ABL1 (n = 47) and those without (n = 259). CONCLUSION BCR::ABL1 low-level positivity in children with newly diagnosed Ph- ALL is a relatively common finding and did not adversely affect outcome for patients treated using a contemporary risk-adapted approach.
Collapse
Affiliation(s)
- Lucy E Cain
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Oksana Mirochnik
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Michael M Stevens
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Stewart J Kellie
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bhavna Padhye
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Steven J Keogh
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Dinisha Govender
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Jessica Ryan
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Luciano Dalla-Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Caroline M Bateman
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Yan N, Wang ZL, Wang XJ, Gale RP, Zhou YL, Zhao MY, Wu LX, Liao MY, Yang J, Wang CY, Zhu JH, Jiang H, Jiang Q, Liu YR, Chang YJ, Xu LP, Zhang XH, Ma TH, Huang XJ, Ruan GR. Measurable residual disease testing by next generation sequencing is more accurate compared with multiparameter flow cytometry in adults with B-cell acute lymphoblastic leukemia. Cancer Lett 2024; 598:217104. [PMID: 38969163 DOI: 10.1016/j.canlet.2024.217104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Results of measurable residual disease (MRD)-testing by next-generation sequencing (NGS) correlate with relapse risk in adults with B-cell acute lymphoblastic leukemia (ALL) receiving chemotherapy or an allotransplant from a human leukocyte antigen (HLA)-identical relative or HLA-matched unrelated donor. We studied cumulative incidence of relapse (CIR) and survival prediction accuracy using a NGS-based MRD-assay targeting immunoglobulin genes after 2 courses of consolidation chemotherapy cycles in 93 adults with B-cell ALL most receiving HLA-haplotype-matched related transplants. Prediction accuracy was compared with MRD-testing using multi-parameter flow cytometry (MPFC). NGS-based MRD-testing detected residual leukemia in 28 of 65 subjects with a negative MPFC-based MRD-test. In Cox regression multi-variable analyses subjects with a positive NGS-based MRD-test had a higher 3-year CIR (Hazard Ratio [HR] = 3.37; 95 % Confidence Interval [CI], 1.34-8.5; P = 0.01) and worse survival (HR = 4.87 [1.53-15.53]; P = 0.007). Some data suggest a lower CIR and better survival in NGS-MRD-test-positive transplant recipients but allocation to transplant was not random. Our data indicate MRD-testing by NGS is more accurate compared with testing by MPFC in adults with B-cell ALL in predicting CIR and survival. (Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTROPC-14005546]).
Collapse
Affiliation(s)
- Nan Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zi-Long Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Juan Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Robert Peter Gale
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK
| | - Ya-Lan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming-Yue Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Li-Xin Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming-Yue Liao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jie Yang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Chun-Yang Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Jian-Hua Zhu
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tong-Hui Ma
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, China.
| | - Guo-Rui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
18
|
Pourhassan H, Murphy L, Aldoss I. Glucocorticoid Therapy in Acute Lymphoblastic Leukemia: Navigating Short-Term and Long-Term Effects and Optimal Regimen Selection. Curr Hematol Malig Rep 2024; 19:175-185. [PMID: 38867099 DOI: 10.1007/s11899-024-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE OF REVIEW Glucocorticoids are a mainstay in acute lymphoblastic leukemia treatment and lack of early response is predictive for overall disease prognosis. Given the vital position of glucocorticoids and well known long and short-term side effects associated with differing glucocorticoids, we aim to highlight the wide breadth of historical and more contemporary data to describe the current landscape of glucocorticoid use in this arena. RECENT FINDINGS Emerging studies aim to overcome issues such as steroid resistance and to optimize the antileukemic effects of glucocorticoids while aiming to mitigate the risks and side effects associated with their exposure. Glucocorticoids have and likely always will be a fundamental component of acute lymphoblastic leukemia treatment and understanding how to navigate short- and long-term effects and how to optimize regimens is at the heart of continued treatment success.
Collapse
Affiliation(s)
- Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
19
|
Rujkijyanont P, Inaba H. Diagnostic and treatment strategies for pediatric acute lymphoblastic leukemia in low- and middle-income countries. Leukemia 2024; 38:1649-1662. [PMID: 38762553 DOI: 10.1038/s41375-024-02277-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
The survival rate of children and adolescents with acute lymphoblastic leukemia (ALL), the most common pediatric cancer, has improved significantly in high-income countries (HICs), serving as an excellent example of how humans can overcome catastrophic diseases. However, the outcomes in children with ALL in low- and middle-income countries (LMICs), where approximately 80% of the global population live, are suboptimal because of limited access to diagnostic procedures, chemotherapeutic agents, supportive care, and financial assistance. Although the implementation of therapeutic strategies in resource-limited countries could theoretically follow the same path of improvement as modeled in HICs, intensification of chemotherapy may simply result in increased toxicities. With the advent of genetic diagnosis, molecular targeted therapy, and immunotherapy, the management of ALL is changing dramatically in HICs. Multidisciplinary collaborations between institutions in LMICs and HICs will provide access to strategies that are suitable for institutions in LMICs, enabling them to minimize toxicities while improving outcomes. This article summarizes important aspects of the diagnosis and treatment of pediatric ALL that were mostly developed in HICs but that can be realistically implemented by institutions in countries with limited resources through resource-adapted multidisciplinary collaborations.
Collapse
Affiliation(s)
- Piya Rujkijyanont
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Hiroto Inaba
- Leukemia/Lymphoma Division, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
20
|
陈 霞, 雷 小, 管 贤, 窦 颖, 温 贤, 郭 玉, 高 惠, 于 洁. [Risk factors for recurrence of childhood acute lymphoblastic leukemia after treatment with the Chinese Children's Cancer Group ALL-2015 protocol]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:701-707. [PMID: 39014946 PMCID: PMC11562041 DOI: 10.7499/j.issn.1008-8830.2401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To investigate the cumulative incidence of recurrence (CIR) in children with acute lymphoblastic leukemia (ALL) after treatment with the Chinese Children's Cancer Group ALL-2015 (CCCG-ALL-2015) protocol and the risk factors for recurrence. METHODS A retrospective analysis was conducted on the clinical data of 852 children who were treated with the CCCG-ALL-2015 protocol from January 2015 to December 2019. CIR was calculated, and the risk factors for the recurrence of B-lineage acute lymphoblastic leukemia (B-ALL) were analyzed. RESULTS Among the 852 children with ALL, 146 (17.1%) experienced recurrence, with an 8-year CIR of 19.8%±1.6%. There was no significant difference in 8-year CIR between the B-ALL group and the acute T lymphocyte leukemia group (P>0.05). For the 146 children with recurrence, recurrence was mainly observed in the very early stage (n=62, 42.5%) and the early stage (n=46, 31.5%), and there were 42 children with bone marrow recurrence alone (28.8%) in the very early stage and 27 children with bone marrow recurrence alone (18.5%) in the early stage. The Cox proportional-hazards regression model analysis showed that positive MLLr fusion gene (HR=4.177, 95%CI: 2.086-8.364, P<0.001) and minimal residual disease≥0.01% on day 46 (HR=2.013, 95%CI: 1.163-3.483, P=0.012) were independent risk factors for recurrence in children with B-ALL after treatment with the CCCG-ALL-2015 protocol. CONCLUSIONS There is still a relatively high recurrence rate in children with ALL after treatment with the CCCG-ALL-2015 protocol, mainly bone marrow recurrence alone in the very early stage and the early stage, and minimal residual disease≥0.01% on day 46 and positive MLLr fusion gene are closely associated with the recurrence of B-ALL.
Collapse
|
21
|
Taurino G, Dander E, Chiu M, Pozzi G, Maccari C, Starace R, Silvestri D, Griffini E, Bianchi MG, Carubbi C, Andreoli R, Mirandola P, Valsecchi MG, Rizzari C, D'Amico G, Bussolati O. Asparagine transport through SLC1A5/ASCT2 and SLC38A5/SNAT5 is essential for BCP-ALL cell survival and a potential therapeutic target. Br J Haematol 2024; 205:175-188. [PMID: 38736325 DOI: 10.1111/bjh.19516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Laboratory of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Chiara Maccari
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rita Starace
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Erika Griffini
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, Parco Area Delle Scienze 11/A, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Laboratory of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- CERT-Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Laboratory of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Grazia Valsecchi
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Carmelo Rizzari
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, Parco Area Delle Scienze 11/A, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Østergaard A, Fiocco M, de Groot-Kruseman H, Moorman AV, Vora A, Zimmermann M, Schrappe M, Biondi A, Escherich G, Stary J, Imai C, Imamura T, Heyman M, Schmiegelow K, Pieters R. ETV6::RUNX1 Acute Lymphoblastic Leukemia: how much therapy is needed for cure? Leukemia 2024; 38:1477-1487. [PMID: 38844578 PMCID: PMC11216990 DOI: 10.1038/s41375-024-02287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
Recent trials show 5-year survival rates >95% for ETV6::RUNX1 Acute Lymphoblastic Leukemia (ALL). Since treatment has many side effects, an overview of cumulative drug doses and intensities between eight international trials is presented to characterize therapy needed for cure. A meta-analysis was performed as a comprehensive summary of survival outcomes at 5 and 10 years. For drug dose comparison in non-high risk trial arms, risk group distribution was applied to split the trials into two groups: trial group A with ~70% (range: 63.5-75%) of patients in low risk (LR) (CCLSG ALL2004, CoALL 07-03, NOPHO ALL2008, UKALL2003) and trial group B with ~45% (range: 38.7-52.7%) in LR (AIEOP-BFM ALL 2000, ALL-IC BFM ALL 2002, DCOG ALL10, JACLS ALL-02). Meta-analysis did not show evidence of heterogeneity between studies in trial group A LR and medium risk (MR) despite differences in treatment intensity. Statistical heterogeneity was present in trial group B LR and MR. Trials using higher cumulative dose and intensity of asparaginase and pulses of glucocorticoids and vincristine showed better 5-year event-free survival but similar overall survival. Based on similar outcomes between trials despite differences in therapy intensity, future trials should investigate, to what extent de-escalation is feasible for ETV6::RUNX1 ALL.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Department of Biomedical Science, Section Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester de Groot-Kruseman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- United Kingdom Acute Lymphoblastic Leukaemia (UKALL) study group, Liverpool, UK
| | - Ajay Vora
- United Kingdom Acute Lymphoblastic Leukaemia (UKALL) study group, Liverpool, UK
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Martin Zimmermann
- Department of Paediatric Haematology and Oncology, Hannover Medical School, 30625, Hannover, Germany
- Berlin-Frankfurt-Münster Study Group (BFM), Frankfurt, Germany
| | - Martin Schrappe
- Berlin-Frankfurt-Münster Study Group (BFM), Frankfurt, Germany
- Department of Paediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
- Associazione Italiana di Ematologia e Oncologia Pediatrica (AIEOP), Bologna, Italy
| | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Childhood Acute Lymphoblastic Leukemia study group (CoALL), Hamburg, Germany
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Children's Cancer and Leukemia Study Group (CCLSG), Nagoya, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- Japan Childhood Leukemia Study Group (JACLS), Nagoya, Japan
| | - Mats Heyman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
- Nordic Society of Paediatric Haematology and Oncology (NOPHO), Nordic Countries, Uppsala, Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
- Nordic Society of Paediatric Haematology and Oncology (NOPHO), Nordic and Baltic Countries, Uppsala, Sweden
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands.
| |
Collapse
|
23
|
Ronceray L, Dworzak M, Dieckmann K, Ebetsberger-Dachs G, Glogova E, Haas OA, Jones N, Nebral K, Moser R, Lion T, Meister B, Panzer-Grümayer R, Strehl S, Peters C, Pötschger U, Urban C, Mann G, Attarbaschi A. Prospective use of molecular minimal residual disease for risk stratification in children and adolescents with acute lymphoblastic leukemia : Long-term results of the AIEOP-BFM ALL 2000 trial in Austria. Wien Klin Wochenschr 2024; 136:405-418. [PMID: 37535134 DOI: 10.1007/s00508-023-02249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Since 1979 Austrian children and adolescents with acute lymphoblastic leukemia (ALL) have been treated according to protocols of the Berlin-Frankfurt-Münster (BFM) study group. The Associazione Italiana di Ematologia e Oncologia Pediatrica and BFM (AIEOP-BFM) ALL 2000 study was designed to prospectively study patient stratification into three risk groups using minimal residual disease (MRD) on two time points during the patient's early disease course. The MRD levels were monitored by detection of clone-specific rearrangements of the immunoglobulin and T‑cell receptor genes applying a quantitative polymerase chain reaction-based technique. The 7‑year event-free survival (EFS) and overall survival rates for all 608 Austrian patients treated between June 1999 and December 2009 within the AIEOP-BFM 2000 study were 84 ± 2% and 91 ± 1%, respectively, with a median observation time of 6.58 years. Event-free survival for patients with precursor B‑cell and T‑cell ALL were 84 ± 2% (n = 521) and 84 ± 4% (n = 87; p = 0.460), respectively. The MRD assessment was feasible in 94% of the patients and allowed the definition of precursor B‑cell ALL patients with a low, intermediate or high risk of relapse even on top of clinically relevant subgroups. A similar finding with respect to MRD relevance in T‑ALL patients was not possible due to the small number of patients and events. Since this pivotal international AIEOP-BFM ALL 2000 trial, molecular response to treatment has been continuously used with additional refinements to stratify patients into different risk groups in all successive trials of the AIEOP-BFM ALL study group.
Collapse
Affiliation(s)
- Leila Ronceray
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria
| | - Michael Dworzak
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Karin Dieckmann
- Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg Ebetsberger-Dachs
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital Linz, Linz, Austria
| | - Evgenia Glogova
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Oskar A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Neil Jones
- Department of Pediatrics and Adolescent Medicine, University Clinics Salzburg, Salzburg, Austria
| | - Karin Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Reinhard Moser
- Department of Pediatrics and Adolescent Medicine, State Hospital Leoben, Leoben, Austria
| | - Thomas Lion
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Bernhard Meister
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Christina Peters
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria
| | - Ulrike Pötschger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Christian Urban
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Georg Mann
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| |
Collapse
|
24
|
Ahn WK, Yu K, Kim H, Lee ST, Choi JR, Han JW, Lyu CJ, Hahn S, Shin S. Monitoring measurable residual disease in paediatric acute lymphoblastic leukaemia using immunoglobulin gene clonality based on next-generation sequencing. Cancer Cell Int 2024; 24:218. [PMID: 38918782 PMCID: PMC11201849 DOI: 10.1186/s12935-024-03404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Assessment of measurable residual disease (MRD) is an essential prognostic tool for B-lymphoblastic leukaemia (B-ALL). In this study, we evaluated the utility of next-generation sequencing (NGS)-based MRD assessment in real-world clinical practice. METHOD The study included 93 paediatric patients with B-ALL treated at our institution between January 2017 and June 2022. Clonality for IGH or IGK rearrangements was identified in most bone marrow samples (91/93, 97.8%) obtained at diagnosis. RESULTS In 421 monitoring samples, concordance was 74.8% between NGS and multiparameter flow cytometry and 70.7% between NGS and reverse transcription-PCR. Elevated quantities of clones of IGH alone (P < 0.001; hazard ratio [HR], 22.2; 95% confidence interval [CI], 7.1-69.1), IGK alone (P = 0.011; HR, 5.8; 95% CI, 1.5-22.5), and IGH or IGK (P < 0.001; HR, 7.2; 95% CI, 2.6-20.0) were associated with an increased risk of relapse. Detection of new clone(s) in NGS was also associated with inferior relapse-free survival (P < 0.001; HR, 18.1; 95% CI, 3.0-108.6). Multivariable analysis confirmed age at diagnosis, BCR::ABL1-like mutation, TCF3::PBX1 mutation, and increased quantity of IGH or IGK clones during monitoring as unfavourable factors. CONCLUSION In conclusion, this study highlights the usefulness of NGS-based MRD as a routine assessment tool for prognostication of paediatric patients with B-ALL.
Collapse
Affiliation(s)
- Won Kee Ahn
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyunghee Yu
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hongkyung Kim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Dxome Co. Ltd, Seongnam-si, , Gyeonggi-do, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Dxome Co. Ltd, Seongnam-si, , Gyeonggi-do, Korea
| | - Jung Woo Han
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chuhl Joo Lyu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seungmin Hahn
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Chen C, Wang J, Kang M, Wu P, Zhu L, Fang Y, Xue Y. Identification of a novel MEF2C::SS18L1 fusion in childhood acute B-lymphoblastic leukemia. J Cancer Res Clin Oncol 2024; 150:314. [PMID: 38907739 PMCID: PMC11193691 DOI: 10.1007/s00432-024-05846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE Leukemia-associated fusion genes are closely related to the occurrence, development, diagnosis, and treatment of leukemia. DNA microarrays and second-generation sequencing have discovered multiple B-ALL fusion genes. We identified a novel MEF2C::SS18L1 fusion gene in a child diagnosed with B-ALL. This study investigates the oncogenicity and prognosis of this fusion gene in B-ALL. METHODS A child with B-ALL who has a MEF2C::SS18L1 fusion is reported as a newly discovered case. Compared the breakpoints, structural domains, clinical phenotypes, and differential expression genes of MEF2C::SS18L1 and MEF2D::SS18.Using "ONCOFUSE" software, the carcinogenicity of MEF2C::SS18L1 is predicted. Using whole transcriptome sequencing, we analyze the breakpoints and the secondary structure of the fusion protein. Further, we compared the structures, differentially expressed genes, and clinical phenotypes of MEF2D and MEF2C fusion genes by DESeq, GO functional enrichment, and flow cytometry immunophenotyping analysis. RESULTS Whole transcriptome sequencing identified a MEF2C::SS18L1 fusion transcript in a 3-year-old child with B-ALL. The MADS box, MEF structural domain, HJURP_C structural domain, and TAD I structural domain of MEF2C, and the QPGY structural domain of SS18L1, make up the fusion protein. "Oncofuse" found a 0.99 Bayesian probability that the fusion gene drives cancer. The breakpoint positions, fusion protein secondary structures, differentially expressed genes, and clinical characteristics of this patient were identical to those with MEF2D::SS18 fusion gene. CONCLUSION We identified a novel MEF2C::SS18L1 fusion gene in childhood ALL, which shares similar structural and clinical characteristics with MEF2D::SS18. Further studies with more samples should be conducted in future.
Collapse
Affiliation(s)
- Chuqin Chen
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Jiali Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Peng Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Liwen Zhu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, 72# Guangzhou Road, Nanjing, 210008, Jiangsu Province, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
van der Velden VHJ, Dombrink I, Alten J, Cazzaniga G, Clappier E, Drandi D, Eckert C, Fronkova E, Hancock J, Kotrova M, Kraemer R, Montonen M, Pfeifer H, Pott C, Raff T, Trautmann H, Cavé H, Schäfer BW, van Dongen JJM, Trka J, Brüggemann M. Analysis of measurable residual disease by IG/TR gene rearrangements: quality assurance and updated EuroMRD guidelines. Leukemia 2024; 38:1315-1322. [PMID: 38744919 PMCID: PMC11147754 DOI: 10.1038/s41375-024-02272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Minimal/measurable residual disease (MRD) diagnostics using real-time quantitative PCR analysis of rearranged immunoglobulin and T-cell receptor gene rearrangements are nowadays implemented in most treatment protocols for patients with acute lymphoblastic leukemia (ALL). Within the EuroMRD Consortium, we aim to provide comparable, high-quality MRD diagnostics, allowing appropriate risk-group classification for patients and inter-protocol comparisons. To this end, we set up a quality assessment scheme, that was gradually optimized and updated over the last 20 years, and that now includes participants from around 70 laboratories worldwide. We here describe the design and analysis of our quality assessment scheme. In addition, we here report revised data interpretation guidelines, based on our newly generated data and extensive discussions between experts. The main novelty is the partial re-definition of the "positive below quantitative range" category by two new categories, "MRD low positive, below quantitative range" and "MRD of uncertain significance". The quality assessment program and revised guidelines will ensure reproducible and accurate MRD data for ALL patients. Within the Consortium, similar programs and guidelines have been introduced for other lymphoid diseases (e.g., B-cell lymphoma), for new technological platforms (e.g., digital droplet PCR or Next-Generation Sequencing), and for other patient-specific MRD PCR-based targets (e.g., fusion genes).
Collapse
Affiliation(s)
- Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Isabel Dombrink
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Alten
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Giovanni Cazzaniga
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Emmanuelle Clappier
- Hematology Laboratory, Saint-Louis Hospital, Paris Cité University, Paris, France
- Université Paris-Cité, Paris, France
| | - Daniela Drandi
- Department of Molecular Biotechnology and health sciences, Hematology Division, University of Torino, Torino, Italy
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Fronkova
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jeremy Hancock
- Bristol MRD Group, Bristol Genetics Laboratory, Southmead Hospital, Bristol, UK
| | - Michaela Kotrova
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rebekka Kraemer
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mirkka Montonen
- Tyks Laboratories, Genomics Department, Turku University Hospital, Turku, Finland
| | - Heike Pfeifer
- Department of Hematology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christiane Pott
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thorsten Raff
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
- Military Medical City Hospital, Doha, Qatar
| | - Heiko Trautmann
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hélène Cavé
- Hematology Laboratory, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Genetics, University Hospital Robert Debré, Paris, France
| | | | - Jacques J M van Dongen
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
- European Scientific foundation for Laboratory Hemato Oncology (ESLHO), Zutphen, The Netherlands
- Department of Immunology, LUMC, Leiden, The Netherlands
| | - Jan Trka
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Monika Brüggemann
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
27
|
Abdoul-Azize S, Hami R, Riou G, Derambure C, Charbonnier C, Vannier JP, Guzman ML, Schneider P, Boyer O. Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling. Nat Commun 2024; 15:4557. [PMID: 38811530 PMCID: PMC11136999 DOI: 10.1038/s41467-024-48818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Glucocorticoid (GC) resistance in childhood relapsed B-cell acute lymphoblastic leukemia (B-ALL) represents an important challenge. Despite decades of clinical use, the mechanisms underlying resistance remain poorly understood. Here, we report that in B-ALL, GC paradoxically induce their own resistance by activating a phospholipase C (PLC)-mediated cell survival pathway through the chemokine receptor, CXCR4. We identify PLC as aberrantly activated in GC-resistant B-ALL and its inhibition is able to induce cell death by compromising several transcriptional programs. Mechanistically, dexamethasone (Dex) provokes CXCR4 signaling, resulting in the activation of PLC-dependent Ca2+ and protein kinase C signaling pathways, which curtail anticancer activity. Treatment with a CXCR4 antagonist or a PLC inhibitor improves survival of Dex-treated NSG mice in vivo. CXCR4/PLC axis inhibition significantly reverses Dex resistance in B-ALL cell lines (in vitro and in vivo) and cells from Dex resistant ALL patients. Our study identifies how activation of the PLC signalosome in B-ALL by Dex limits the upfront efficacy of this chemotherapeutic agent.
Collapse
Affiliation(s)
| | - Rihab Hami
- Univ Brest, Inserm, UMR 1101, F-29200, Brest, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
| | | | | | | | - Monica L Guzman
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pascale Schneider
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Pediatric Immuno-Hemato-Oncology, F-76000, Rouen, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
28
|
Verbeek MWC, van der Velden VHJ. The Evolving Landscape of Flowcytometric Minimal Residual Disease Monitoring in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:4881. [PMID: 38732101 PMCID: PMC11084622 DOI: 10.3390/ijms25094881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Detection of minimal residual disease (MRD) is a major independent prognostic marker in the clinical management of pediatric and adult B-cell precursor Acute Lymphoblastic Leukemia (BCP-ALL), and risk stratification nowadays heavily relies on MRD diagnostics. MRD can be detected using flow cytometry based on aberrant expression of markers (antigens) during malignant B-cell maturation. Recent advances highlight the significance of novel markers (e.g., CD58, CD81, CD304, CD73, CD66c, and CD123), improving MRD identification. Second and next-generation flow cytometry, such as the EuroFlow consortium's eight-color protocol, can achieve sensitivities down to 10-5 (comparable with the PCR-based method) if sufficient cells are acquired. The introduction of targeted therapies (especially those targeting CD19, such as blinatumomab or CAR-T19) introduces several challenges for flow cytometric MRD analysis, such as the occurrence of CD19-negative relapses. Therefore, innovative flow cytometry panels, including alternative B-cell markers (e.g., CD22 and CD24), have been designed. (Semi-)automated MRD assessment, employing machine learning algorithms and clustering tools, shows promise but does not yet allow robust and sensitive automated analysis of MRD. Future directions involve integrating artificial intelligence, further automation, and exploring multicolor spectral flow cytometry to standardize MRD assessment and enhance diagnostic and prognostic robustness of MRD diagnostics in BCP-ALL.
Collapse
Affiliation(s)
| | - Vincent H. J. van der Velden
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
29
|
Choi Y, Kim BK, Won JH, Yoo JW, Choi W, Jung S, Kim JY, Choi IY, Chung NG, Lee JW, Choi JY, Kang HJ, Lee H. A Study to Evaluate the Effectiveness and Safety of Prephase Steroid Treatment before Remission Induction Chemotherapy in Patients with Pediatric Acute Lymphoblastic Leukemia Using Common Data Model-Based Real-World Data: A Retrospective Observational Study. Clin Epidemiol 2024; 16:293-304. [PMID: 38681782 PMCID: PMC11049150 DOI: 10.2147/clep.s454263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Background Rapid reduction of leukemic cells in the bone marrow during remission induction chemotherapy (RIC) can lead to significant complications such as tumor lysis syndrome (TLS). We investigated whether prephase steroid treatment before RIC could decrease TLS incidence and improve overall survival in pediatric patients with acute lymphoblastic leukemia (ALL). Methods Data were extracted from the Common Data Model databases in two tertiary-care hospitals in Seoul, South Korea. Patients were classified into the treated or untreated group if they had received RIC with prephase steroid treatment ≥7 days before RIC in 2012-2021 or not, respectively. Stabilized Inverse Probability of Treatment Weighting (sIPTW) was applied to ensure compatibility between the treated and untreated groups. The incidence of TLS within 14 days of starting RIC, overall survival (OS), and the incidence of adverse events of special interest were the primary endpoints. Multiple sensitivity analyses were performed. Results Baseline characteristics were effectively balanced between the treated (n=308.4) and untreated (n=246.6) groups after sIPTW. Prephase steroid treatment was associated with a significant 88% reduction in the risk of TLS (OR 0.12, 95% CI: 0.03-0.41). OS was numerically greater in the treated group than in the untreated group although the difference was not statistically significant (HR 0.64, 95% CI 0.25-1.64). The treated group experienced significantly elevated risks for hyperbilirubinemia and hyperglycemia. The reduction in TLS risk by prephase steroid treatment was maintained in all of the sensitivity analyses. Conclusion Prephase steroid treatment for ≥7 days before RIC in pediatric patients with ALL reduces the risk of TLS, while careful monitoring for toxicities is necessary. If adequately analyzed, real-world data can provide crucial effectiveness and safety information for proper management of pediatric patients with ALL, for whom prospective randomized studies may be difficult to perform for ethical and practical reasons.
Collapse
Affiliation(s)
- Yoona Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Center for Convergence Approaches in Drug Development, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Bo Kyung Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Jung-Hyun Won
- Center for Convergence Approaches in Drug Development, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jae Won Yoo
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Wona Choi
- Department of Medical Informatics, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Surin Jung
- Department of Medical Informatics, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Yoon Kim
- Department of Medical Informatics, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, the Catholic University of Korea, Seoul, Republic of Korea
| | - In Young Choi
- Department of Medical Informatics, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Howard Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Center for Convergence Approaches in Drug Development, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
30
|
Conter V, Valsecchi MG, Cario G, Zimmermann M, Attarbaschi A, Stary J, Niggli F, Dalla Pozza L, Elitzur S, Silvestri D, Locatelli F, Möricke A, Engstler G, Smisek P, Bodmer N, Barbaric D, Izraeli S, Rizzari C, Boos J, Buldini B, Zucchetti M, von Stackelberg A, Matteo C, Lehrnbecher T, Lanvers-Kaminsky C, Cazzaniga G, Gruhn B, Biondi A, Schrappe M. Four Additional Doses of PEG-L-Asparaginase During the Consolidation Phase in the AIEOP-BFM ALL 2009 Protocol Do Not Improve Outcome and Increase Toxicity in High-Risk ALL: Results of a Randomized Study. J Clin Oncol 2024; 42:915-926. [PMID: 38096462 DOI: 10.1200/jco.23.01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 03/08/2024] Open
Abstract
PURPOSE The AIEOP-BFM ALL 2009 protocol included, at the end of the induction phase, a randomized study of patients with high-risk (HR) ALL to investigate if an intensive exposure to pegylated L-asparaginase (PEG-ASNASE, 2,500 IU/sqm once a week × 4) on top of BFM consolidation phase IB allowed us to decrease minimal residual disease (MRD) and improve outcome. PATIENTS AND METHODS A total of 1,097 patients presented, from June 2010 to February 2017, with one or more of the following HR criteria: KMT2A::AFF1 rearrangement, hypodiploidy, prednisone poor response, poor bone marrow response at day 15 (Flow MRD ≥10%), or no complete remission (CR) at the end of induction. Of them, 809 (85.1%) were randomly assigned to receive (404) or not receive (405) four weekly doses of PEG-ASNASE. RESULTS By intention to treat (ITT) analysis, there was no significant difference in the proportion of patients with polimerase chain reaction MRD ≥5 × 10-4 at the end of phase IB in the experimental versus control arm (13.9% v 17.0%, P = .25). The 5-year event-free survival (median follow-up 6.3 years) by ITT in the experimental and control arms was 70.4% (2.3) versus 75.0% (2.2; P = .18), and the 5-year overall survival was 81.5% (2.0) versus 84.0% (1.9; P = .25), respectively. The corresponding 5-year cumulative incidence of death in CR was 9.5% (1.5) versus 5.7% (1.2; P = .08), and that of relapse was 17.7% (1.9) versus 17.2% (1.9), respectively (P = .94). Adverse reactions in phase IB occurred in 22.2% and 8.9% of patients in the experimental and control arm, respectively (P < .001). CONCLUSION Additional PEG-ASNASE in phase IB did not translate into a benefit for decreasing relapse incidence but was associated with higher toxicity. Further improvements with conventional chemotherapy might be difficult in the context of intensive treatment protocols.
Collapse
Affiliation(s)
- Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gunnar Cario
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Jan Stary
- Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Felix Niggli
- University Children Hospital Zurich, Department of Oncology, Zurich, Switzerland
| | - Luciano Dalla Pozza
- The Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sarah Elitzur
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù, Rome, Catholic University of the Sacred Heart, Rome, Italy
| | - Anja Möricke
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gernot Engstler
- Department of Pediatric Hematology and Oncology, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Petr Smisek
- Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Nicole Bodmer
- University Children Hospital Zurich, Department of Oncology, Zurich, Switzerland
| | - Draga Barbaric
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Shai Izraeli
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Carmelo Rizzari
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Joachim Boos
- Department of Paediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Barbara Buldini
- Pediatric Hematology, Oncology, and Stem Cell Transplant Division, Maternal and Child Health Department, Padua University, Padua, Italy
| | - Massimo Zucchetti
- Department of Oncology, Laboratory of Cancer Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Arend von Stackelberg
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germary
| | - Cristina Matteo
- Department of Oncology, Laboratory of Cancer Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Thomas Lehrnbecher
- Department of Pediatrics, Division of Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Claudia Lanvers-Kaminsky
- Department of Paediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Martin Schrappe
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
31
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Hayashi H, Makimoto A, Yuza Y. Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective. Cancers (Basel) 2024; 16:723. [PMID: 38398113 PMCID: PMC10887299 DOI: 10.3390/cancers16040723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common disease in pediatric oncology. The history of developmental therapeutics for ALL began in the 1960s with the repetition of "unreliable" medical interventions against this lethal disease. By the 1990s, the development of multi-agent chemotherapy and various types of supportive care rendered ALL treatable. Highly sophisticated, molecular, diagnostic techniques have enabled highly accurate prediction of the relapse risk, and the application of risk-adapted treatments has increased the survival rate in the standard-risk group to nearly 100% in most European nations and North America. Incorporation of state-of-the-art, molecularly targeted agents and novel treatments, including cell and immunotherapy, is further improving outcomes even in the high-risk group. On the other hand, the financial burden of treating children with ALL has increased, imperiling the availability of these diagnostic and treatment strategies to patients in low- and middle-income countries (LMICs). The fundamental treatment strategy, consisting of corticosteroid and classical cytotoxic therapy, has achieved fairly good outcomes and should be feasible in LMICs as well. The present review will discuss the history of developmental therapeutics for childhood ALL in various countries through an extensive literature review with the aim of proposing a model for a treatment backbone for pediatric ALL. The discussion will hopefully benefit LMICs and be useful as a base for future clinical trials of novel treatments.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan; (A.M.); (Y.Y.)
| | - Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan; (A.M.); (Y.Y.)
- Department of Laboratory Medicine, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan; (A.M.); (Y.Y.)
| |
Collapse
|
33
|
Nadeem S, Elahi E, Iftikhar I, Umar S, Ahsan B, Ahmad U, Bokhari SW. Management of Acute Lymphoblastic Leukemia During Pregnancy: A Case Report and Review of the Literature. Cureus 2024; 16:e52489. [PMID: 38371059 PMCID: PMC10874130 DOI: 10.7759/cureus.52489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) during pregnancy necessitates treatment with high-dose chemotherapy, which can threaten the lives of both the mother and fetus. The aim of the treatment not only focuses on selecting and administering optimal chemotherapy with appropriate doses to the mother but also reflects the crucial understanding of the fetal gestational age at the time of administration of chemotherapy to minimize fetal exposure. We describe the case of a 19-year-old patient diagnosed with ALL at 29 weeks gestation. She received treatment in the third trimester with the Berlin-Frankfurt-Munster (BFM) 2000 induction chemotherapy protocol consisting of a combination of daunorubicin, vincristine, pegaspargase, prednisolone, and intrathecal (IT) methotrexate and gave birth to a healthy baby girl via vaginal delivery four weeks after initiating the induction of chemotherapy.
Collapse
Affiliation(s)
- Saleha Nadeem
- Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Ehsan Elahi
- Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Imran Iftikhar
- Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Sobia Umar
- Medical Onocology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Bushra Ahsan
- Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Usman Ahmad
- Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| | - Syed W Bokhari
- Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK
| |
Collapse
|
34
|
Raetz EA, Rebora P, Conter V, Schrappe M, Devidas M, Escherich G, Imai C, De Moerloose B, Schmiegelow K, Burns MA, Elitzur S, Pieters R, Attarbaschi A, Yeoh A, Pui CH, Stary J, Cario G, Bodmer N, Moorman AV, Buldini B, Vora A, Valsecchi MG. Outcome for Children and Young Adults With T-Cell ALL and Induction Failure in Contemporary Trials. J Clin Oncol 2023; 41:5025-5034. [PMID: 37487146 PMCID: PMC10642910 DOI: 10.1200/jco.23.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Historically, patients with T-cell acute lymphoblastic leukemia (T-ALL) who fail to achieve remission at the end of induction (EOI) have had poor long-term survival. The goal of this study was to examine the efficacy of contemporary therapy, including allogeneic hematopoietic stem cell transplantation (HSCT) in first remission (CR1). METHODS Induction failure (IF) was defined as the persistence of at least 5% bone marrow (BM) lymphoblasts and/or extramedullary disease after 4-6 weeks of induction chemotherapy. Disease features and clinical outcomes were reported in 325 of 6,167 (5%) patients age 21 years and younger treated in 14 cooperative study groups between 2000 and 2018. RESULTS With a median follow-up period of 6.4 years (range, 0.3-17.9 years), the 10-year overall survival (OS) was 54.7% (SE = 2.9), which is significantly higher than the 27.6% (SE = 2.9) observed in the historical cohort from 1985 to 2000. There was no significant impact of sex, age, white blood cell count, central nervous system disease status, T-cell maturity, or BM disease burden at EOI on OS. Postinduction complete remission (CR) was achieved in 93% of patients with 10-year OS of 59.6% (SE = 3.1%) and disease-free survival (DFS) of 56.3% (SE = 3.1%). Among the patients who achieved CR, 72% underwent HSCT and their 10-year DFS (with a 190-day landmark) was significantly better than nontransplanted patients (63.8% [SE = 3.6] v 45.5% [SE = 7.1]; P = .005), with OS of 66.2% (SE = 3.6) versus 50.8% (SE = 6.8); P = .10, respectively. CONCLUSION Outcomes for patients age 21 years and younger with T-ALL and IF have improved in the contemporary treatment era with a DFS benefit among those undergoing HSCT in CR1. However, outcomes still lag considerably behind those who achieve remission at EOI, warranting investigation of new treatment approaches.
Collapse
Affiliation(s)
- Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Paola Rebora
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Martin Schrappe
- Pediatrics I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Gabriele Escherich
- Clinic of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Denmark
| | - Melissa A. Burns
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sarah Elitzur
- Schneider Children's Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Allen Yeoh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Gunnar Cario
- Pediatrics I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nicole Bodmer
- Pediatric Hematology and Oncology, Kinderspital Zurich, Zurich, Switzerland
| | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Newcastle University Centre for Cancer, Clinical and Translational Institute, Newcastle University, Newcastle, United Kingdom
| | - Barbara Buldini
- Department of Woman and Child Health, University of Padua, Padua, Italy
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, United Kingdom
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
35
|
Feng Y, Qi S, Liu X, Zhang L, Hu Y, Shen Q, Gong X, Zhang W, Wang J, Yan W, Wang T, Wang H, Song Z, Zhu X, Gale RP, Chen J. Have we been qualifying measurable residual disease correctly? Leukemia 2023; 37:2168-2172. [PMID: 37704711 PMCID: PMC10624632 DOI: 10.1038/s41375-023-02026-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Junxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
36
|
Oikonomou A, Valsecchi L, Quadri M, Watrin T, Scharov K, Procopio S, Tu JW, Vogt M, Savino AM, Silvestri D, Valsecchi MG, Biondi A, Borkhardt A, Bhatia S, Cazzaniga G, Fazio G, Bardini M, Palmi C. High-throughput screening as a drug repurposing strategy for poor outcome subgroups of pediatric B-cell precursor Acute Lymphoblastic Leukemia. Biochem Pharmacol 2023; 217:115809. [PMID: 37717691 DOI: 10.1016/j.bcp.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Although a great cure rate has been achieved for pediatric BCP-ALL, approximately 15% of patients do not respond to conventional chemotherapy and experience disease relapse. A major effort to improve the cure rates by treatment intensification would result in an undesirable increase in treatment-related toxicity and mortality, raising the need to identify novel therapeutic approaches. High-throughput (HTP) drug screening enables the profiling of patients' responses in vitro and allows the repurposing of compounds currently used for other diseases, which can be immediately available for clinical application. The aim of this study was to apply HTP drug screening to identify potentially effective compounds for the treatment of pediatric BCP-ALL patients with poor prognosis, such as patients with Down Syndrome (DS) or carrying rearrangements involving PAX5 or KMT2A/MLL genes. Patient-derived Xenografts (PDX) samples from 34 BCP-ALL patients (9 DS CRLF2r, 15 PAX5r, 10 MLLr), 7 human BCP-ALL cell lines and 14 hematopoietic healthy donor samples were screened on a semi-automated HTP drug screening platform using a 174 compound library (FDA/EMA-approved or in preclinical studies). We identified 9 compounds active against BCP-ALL (ABT-199/venetoclax, AUY922/luminespib, dexamethasone, EC144, JQ1, NVP-HSP990, paclitaxel, PF-04929113 and vincristine), but sparing normal cells. Ex vivo validations confirmed that the BCL2 inhibitor venetoclax exerts an anti-leukemic effect against all three ALL subgroups at nanomolar concentrations. Overall, this study points out the benefit of HTP screening application for drug repurposing to allow the identification of effective and clinically translatable therapeutic agents for difficult-to-treat childhood BCP-ALL subgroups.
Collapse
Affiliation(s)
| | - Luigia Valsecchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Manuel Quadri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Titus Watrin
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Simona Procopio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Jia-Wey Tu
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Melina Vogt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Angela Maria Savino
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy; Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy; Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Italy.
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
37
|
Barsan V, Li Y, Prabhu S, Baggott C, Nguyen K, Pacenta H, Phillips CL, Rossoff J, Stefanski H, Talano JA, Moskop A, Baumeister S, Verneris MR, Myers GD, Karras NA, Cooper S, Qayed M, Hermiston M, Satwani P, Krupski C, Keating A, Fabrizio V, Chinnabhandar V, Kunicki M, Curran KJ, Mackall CL, Laetsch TW, Schultz LM. Tisagenlecleucel utilisation and outcomes across refractory, first relapse and multiply relapsed B-cell acute lymphoblastic leukemia: a retrospective analysis of real-world patterns. EClinicalMedicine 2023; 65:102268. [PMID: 37954907 PMCID: PMC10632672 DOI: 10.1016/j.eclinm.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Background Tisagenlecleucel was approved by the Food and Drug Administration (FDA) in 2017 for refractory B-cell acute lymphoblastic leukemia (B-ALL) and B-ALL in ≥2nd relapse. Outcomes of patients receiving commercial tisagenlecleucel upon 1st relapse have yet to be established. We aimed to report real-world tisagenlecleucel utilisation patterns and outcomes across indications, specifically including patients treated in 1st relapse, an indication omitted from formal FDA approval. Methods We conducted a retrospective analysis of real-world tisagenlecleucel utilisation patterns across 185 children and young adults treated between August 30, 2017 and March 6, 2020 from centres participating in the Pediatric Real-World CAR Consortium (PRWCC), within the United States. We described definitions of refractory B-ALL used in the real-world setting and categorised patients by reported Chimeric Antigen Receptor (CAR) T-cell indication, including refractory, 1st relapse and ≥2nd relapse B-ALL. We analysed baseline patient characteristics and post-tisagenlecleucel outcomes across defined cohorts. Findings Thirty-six percent (n = 67) of our cohort received tisagenlecleucel following 1st relapse. Of 66 evaluable patients, 56 (85%, 95% CI 74-92%) achieved morphologic complete response. Overall-survival (OS) and event-free survival (EFS) at 1-year were 69%, (95% CI 58-82%) and 49%, (95% CI 37-64%), respectively, with survival outcomes statistically comparable to remaining patients (OS; p = 0.14, EFS; p = 0.39). Notably, toxicity was increased in this cohort, warranting further study. Interestingly, of 30 patients treated for upfront refractory disease, 23 (77%, 95% CI 58-90%) had flow cytometry and/or next-generation sequencing (NGS) minimum residual disease (MRD)-only disease at the end of induction, not meeting the historic morphologic definition of refractory. Interpretation Our findings suggested that tisagenlecleucel response and survival rates overlap across patients treated with upfront refractory B-ALL, B-ALL ≥2nd relapse and B-ALL in 1st relapse. We additionally highlighted that definitions of refractory B-ALL are evolving beyond morphologic measures of residual disease. Funding St. Baldrick's/Stand Up 2 Cancer, Parker Institute for Cancer Immunotherapy, Virginia and D.K. Ludwig Fund for Cancer Research.
Collapse
Affiliation(s)
- Valentin Barsan
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Yimei Li
- Department of Pediatrics, Children's Hospital of Philadelphia/University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Snehit Prabhu
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Christina Baggott
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Khanh Nguyen
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Holly Pacenta
- Cook Children’s Hospital, 1500 Cooper St 5th Floor, Fort Worth, TX 76104, USA
- Department of Pediatrics, The University of Texas Southwestern Medical Center/Children’s Health, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| | - Christine L. Phillips
- Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
- Cincinnati Children’s Hospital Medical Center, Cancer and Blood Disease Institute, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Jenna Rossoff
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611, USA
| | - Heather Stefanski
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Julie-An Talano
- Department of Pediatric Hematology Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Amy Moskop
- Department of Pediatric Hematology Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Susanne Baumeister
- Dana Farber/Boston Children’s Hospital, 450 Brookline Avenue Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Michael R. Verneris
- University of Colorado, Anschutz Medical Campus, Colorado Children’s Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | | | - Nicole A. Karras
- Department of Pediatrics, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Stacy Cooper
- Department of Oncology, Sidney Kimmel Cancer Center at John Hopkins School of Medicine, Baltimore, MD, USA
| | - Muna Qayed
- Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | - Michelle Hermiston
- University of California San Francisco Benioff Children’s Hospital, 1975 4th St., San Francisco, CA 94158, USA
| | - Prakash Satwani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Christa Krupski
- Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
- Cincinnati Children’s Hospital Medical Center, Cancer and Blood Disease Institute, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Amy Keating
- University of Colorado, Anschutz Medical Campus, Colorado Children’s Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Vanessa Fabrizio
- University of Colorado, Anschutz Medical Campus, Colorado Children’s Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Vasant Chinnabhandar
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Michael Kunicki
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Kevin J. Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Crystal L. Mackall
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford Cancer Institute, 265 Campus Drive, Stanford, CA 94305, USA
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Room H0101, Stanford, CA 94305-5623, USA
| | - Theodore W. Laetsch
- Department of Pediatrics, Children's Hospital of Philadelphia/University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Liora M. Schultz
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| |
Collapse
|
38
|
Arunachalam AK, Selvarajan S, Mani T, Janet NB, Maddali M, Lionel SA, Kulkarni U, Korula A, Aboobacker FN, Abraham A, George B, Balasubramanian P, Mathews V. Clinical significance of end of induction measurable residual disease monitoring in B-cell acute lymphoblastic leukemia: A single center experience. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:440-452. [PMID: 37555390 DOI: 10.1002/cyto.b.22139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The assessment of measurable residual disease (MRD) has emerged as a powerful prognostic tool for both pediatric and adult acute lymphoblastic leukemia (ALL). This retrospective study aimed to evaluate the prognostic relevance of the end of induction MRD in B-cell acute lymphoblastic leukemia (B ALL) patients. The study included 481 patients who underwent treatment for B ALL between August 2012 and March 2019 and had their MRD at the end of induction assessed by flow cytometry. Baseline demographic characteristics were collected from the patient's clinical records. Event free survival (EFS) and relapse free survival (RFS) were calculated using Kaplan-Meier analysis and survival estimates were compared using the log-rank test. End of induction MRD and baseline karyotype were the strongest predictors of EFS and RFS on multivariate analysis. The EFS was inversely related to the MRD value and the outcomes were similar in patients without morphological remission at the end of induction and patients in remission with MRD ≥1.0%. Even within the subgroups of ALL based on age, karyotype, BCR::ABL1 translocation and the treatment protocol, end of induction MRD positive patients had poor outcomes compared to patients who were MRD negative. The study outcome would help draft end of induction MRD-based treatment guidelines for the management of B ALL patients.
Collapse
Affiliation(s)
| | - Sushil Selvarajan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Thenmozhi Mani
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Madhavi Maddali
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
39
|
Zhou Y, Su Y, Xu Y, Shi M. Editorial: Immunotherapy for hematological malignancies in children. Front Pediatr 2023; 11:1315218. [PMID: 37954428 PMCID: PMC10634529 DOI: 10.3389/fped.2023.1315218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Affiliation(s)
- Yusi Zhou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yang Su
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Yutong Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
40
|
Jia MZ, Li WJ, Wang CJ, Zhang Q, Gao C, Huang XT, Zhu T, Zhang RD, Cui L, Li ZG. Tracing back of relapse clones by Ig/TCR gene rearrangements reveals complex patterns of recurrence in pediatric acute lymphoblastic leukemia. Int J Lab Hematol 2023; 45:717-725. [PMID: 37194559 DOI: 10.1111/ijlh.14100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Relapse remained the major obstacle to improving the prognosis of children with acute lymphoblastic leukemia (ALL). This study aimed to investigate the changing patterns of Ig/TCR gene rearrangements between diagnosis and relapse and the clinical relevance and to explore the mechanism of leukemic relapse. METHODS Clonal Ig/TCR gene rearrangements were screened by multiplex PCR amplification in 85 paired diagnostic and relapse bone marrow (BM) samples from children with ALL. The new rearrangements presented at relapse were quantitatively assessed by the RQ-PCR approach targeting the patient-specific junctional region sequence in 19 diagnostic samples. The relapse clones were further back-traced to diagnostic and follow-up BM samples from 12 patients. RESULTS Comparison of Ig/TCR gene rearrangements between diagnosis and relapse showed that 40 (57.1%) B-ALL and 5 (33.3%) T-ALL patients exhibited a change from diagnosis to relapse, and 25 (35.7%) B-ALL patients acquired new rearrangements at relapse. The new relapse rearrangements were present in 15 of the 19 (78.9%) diagnostic samples as shown by RQ-PCR, with a median level of 5.26 × 10-2 . The levels of minor rearrangements correlated with B immunophenotype, WBC counts, age at diagnosis, and recurrence time. Furthermore, back-tracing rearrangements in 12 patients identified three patterns of relapse clone dynamics, which suggested the recurrence mechanisms not only through clonal selection of pre-existing subclones but also through an ongoing clonal evolution during remission and relapse. CONCLUSION Backtracking Ig/TCR gene rearrangements in relapse clones of pediatric ALL revealed complex patterns of clonal selection and evolution for leukemic relapse.
Collapse
Affiliation(s)
- Ming-Zhu Jia
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Wei-Jing Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chan-Juan Wang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
| | - Qing Zhang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chao Gao
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiao-Tong Huang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ting Zhu
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Rui-Dong Zhang
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
| | - Lei Cui
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zhi-Gang Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Álvarez-Zúñiga CD, Garza-Veloz I, Martínez-Rendón J, Ureño-Segura M, Delgado-Enciso I, Martinez-Fierro ML. Circulating Biomarkers Associated with the Diagnosis and Prognosis of B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:4186. [PMID: 37627214 PMCID: PMC10453581 DOI: 10.3390/cancers15164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological disease characterized by the dysfunction of the hematopoietic system that leads to arrest at a specific stage of stem cells development, suppressing the average production of cellular hematologic components. BCP-ALL is a neoplasm of the B-cell lineage progenitor. BCP-ALL is caused and perpetuated by several mechanisms that provide the disease with its tumor potential and genetic and cytological characteristics. These pathological features are used for diagnosis and the prognostication of BCP-ALL. However, most of these paraclinical tools can only be obtained by bone marrow aspiration, which, as it is an invasive study, can delay the diagnosis and follow-up of the disease, in addition to the anesthetic risk it entails for pediatric patients. For this reason, it is crucial to find noninvasive and accessible ways to supply information concerning diagnosis, prognosis, and the monitoring of the disease, such as circulating biomarkers. In oncology, a biomarker is any measurable indicator that demonstrates the presence of malignancy, tumoral behavior, prognosis, or responses to treatments. This review summarizes circulating molecules associated with BCP-ALL with potential diagnostic value, classificatory capacity during monitoring specific clinic features of the disease, and/or capacity to identify each BCP-ALL stage regarding its evolution and outcome of the patients with BCP-ALL. In the same way, we provide and classify biomarkers that may be used in further studies focused on clinical approaches or therapeutic target identification for BCP-ALL.
Collapse
Affiliation(s)
- Claudia Daniela Álvarez-Zúñiga
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Jacqueline Martínez-Rendón
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Misael Ureño-Segura
- Hematology Service, Hospital General Zacatecas “Luz González Cosío”, Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico;
| | - Iván Delgado-Enciso
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico;
- School of Medicine, University of Colima, Colima 28040, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| |
Collapse
|
42
|
Zhuo Z, Wang Q, Li C, Zhang L, Zhang L, You R, Gong Y, Hua Y, Miao L, Bai J, Zhang C, Feng R, Chen M, Su F, Qu C, Xiao F. IGH rod-like tracer: An AlphaFold2 structural similarity extraction-based predictive biomarker for MRD monitoring in pre-B-ALL. iScience 2023; 26:107107. [PMID: 37408685 PMCID: PMC10319212 DOI: 10.1016/j.isci.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Sequence variation resulting from the evolution of IGH clones and immunophenotypic drift makes it difficult to track abnormal B cells in children with precursor B cell acute lymphoblastic leukemia (pre-B-ALL) by flow cytometry, qPCR, or next-generation sequencing (NGS). The V-(D)-J regions of immunoglobulin and T cell receptor of 47 pre-B-ALL samples were sequenced using the Illumina NovaSeq platform. The IGH rod-like tracer consensus sequence was extracted based on its rod-like alpha-helices structural similarity predicted by AlphaFold2. Additional data from published 203 pre-B-ALL samples were applied for validation. NGS-IGH (+) patients with pre-B-ALL had a poor prognosis. Consistent CDR3-coded protein structures in NGS-IGH (+) samples could be extracted as a potential follow-up marker for pre-B-ALL children during treatment. IGH rod-like tracer from quantitative immune repertoire sequencing may serve as a class of biomarker with significant predictive values for the dynamic monitoring of MRD in pre-B-ALL children.
Collapse
Affiliation(s)
- Zhongling Zhuo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, Peking University People’s Hospital, Beijing, China
| | - Qingchen Wang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanxin Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ying Hua
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Linzi Miao
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiefei Bai
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Yu Z, Xie L, Zhang J, Lin H, Niu T. The evolution of minimal residual disease: key insights based on a bibliometric visualization analysis from 2002 to 2022. Front Oncol 2023; 13:1186198. [PMID: 37534257 PMCID: PMC10391156 DOI: 10.3389/fonc.2023.1186198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023] Open
Abstract
Background The topic of minimal residual disease (MRD) has emerged as a crucial subject matter in the domain of oncology in recent years. The detection and monitoring of MRD have become essential for the diagnosis, treatment, and prognosis of various types of malignancy. Aims The purpose of this study is to explore the research trends, hotspots, and frontiers of MRD in the last two decades through bibliometric analysis. Methods We employed Web of Science databases to carry out a bibliometric visualization analysis of research on 8,913 academic papers about MRD research from 2002 to 2022. VOSviewer, CiteSpace, RStudio, and a bibliometric online analysis platform were mainly used to conduct co-occurrence analysis and cooperative relationship analysis of countries/regions, institutions, journals, and authors in the literature. Furthermore, co-occurrence, co-citation, and burst analyses of keyword and reference were also conducted to generate relevant knowledge maps. Results In the past 20 years, the number of MRD research papers has presented an overall rising trend, going through three stages: a plateau, development, and an explosion. The output of articles in the United States was notably superior and plays a dominant role in this field, and the Netherlands had the highest average citation per article. The most productive and influential institution was the University of Texas MD Anderson Cancer Center. Blood published the most papers and was the most cited journal. A collection of leading academics has come to the fore in the research field, the most prolific of which is Kantarjian HM. It was found that the application of MRD in "acute myeloid leukemia", "acute lymphoblastic leukemia", "multiple myeloma", as well as the detection technology of MRD, are the research hotspots and frontiers in this domain. Furthermore, we analyzed the co-citation network of references and found that the top 10 co-cited references were all associated with MRD in hematological malignancies. Conclusion This bibliometric visualization analysis conducted a thorough exploration into the research hotspots and trends in MRD from 2002 to 2022. Our findings can aid researchers in recognizing possible collaborations, guiding future research directions, and fostering the growth of MRD detection and monitoring technologies.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Jing Zhang
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Sienkiewicz-Oleszkiewicz B, Salamonowicz-Bodzioch M, Słonka J, Kałwak K. Antifungal Drug-Drug Interactions with Commonly Used Pharmaceutics in European Pediatric Patients with Acute Lymphoblastic Leukemia. J Clin Med 2023; 12:4637. [PMID: 37510753 PMCID: PMC10380616 DOI: 10.3390/jcm12144637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Leukemia is one of the leading childhood malignancies, with acute lymphoblastic leukemia (ALL) being the most common type. Invasive fungal disease is a concerning problem also at pediatric hemato-oncology units. Available guidelines underline the need for antifungal prophylaxis and give recommendations for proper treatment in various clinical scenarios. Nonetheless, antifungal agents are often involved in drug-drug interaction (DDI) occurrence. The prediction of those interactions in the pediatric population is complicated because of the physiological differences in adults, and the lack of pharmacological data. In this review, we discuss the potential DDIs between antifungal agents and commonly used pharmaceutics in pediatric hemato-oncology settings, with special emphasis on the use of liposomal amphotericin B and ALL treatment. We obtained information from Micromedex® and Drugs.com® interaction checking databases and checked the EudraVigilance® database to source the frequency of severe adverse drug reactions that resulted from antifungal drug interactions. Several major DDIs were identified, showing a favorable safety profile of echinocandins and liposomal amphotericin B. Interestingly, although there are numerous available drug interaction checking tools facilitating the identification of potential serious DDIs, it is important to use more than one tool, as the presented searching results may differ between particular checking programs.
Collapse
Affiliation(s)
- Beata Sienkiewicz-Oleszkiewicz
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland
| | - Małgorzata Salamonowicz-Bodzioch
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Justyna Słonka
- Gilead Sciences Poland Sp. z o.o., ul. Postepu 17A, 02-676 Warsaw, Poland
| | - Krzysztof Kałwak
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
45
|
Hunger SP, Tran TH, Saha V, Devidas M, Valsecchi MG, Gastier-Foster JM, Cazzaniga G, Reshmi SC, Borowitz MJ, Moorman AV, Heerema NA, Carroll AJ, Martin-Regueira P, Loh ML, Raetz EA, Schultz KR, Slayton WB, Cario G, Schrappe M, Silverman LB, Biondi A. Dasatinib with intensive chemotherapy in de novo paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (CA180-372/COG AALL1122): a single-arm, multicentre, phase 2 trial. Lancet Haematol 2023; 10:e510-e520. [PMID: 37407142 DOI: 10.1016/s2352-3026(23)00088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The outcome of children with Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukaemia significantly improved with the combination of imatinib and intensive chemotherapy. We aimed to investigate the efficacy of dasatinib, a second-generation ABL-class inhibitor, with intensive chemotherapy in children with newly diagnosed Ph-positive acute lymphoblastic leukaemia. METHODS CA180-372/COG AALL1122 was a joint Children's Oncology Group (COG) and European intergroup study of post-induction treatment of Ph-positive acute lymphoblastic leukaemia (EsPhALL) open-label, single-arm, phase 2 study. Eligible patients (aged >1 year to <18 years) with newly diagnosed Ph-positive acute lymphoblastic leukaemia and performance status of at least 60% received EsPhALL chemotherapy plus dasatinib 60 mg/m2 orally once daily from day 15 of induction. Patients with minimal residual disease of at least 0·05% after induction 1B or who were positive for minimal residual disease after the three consolidation blocks were classified as high risk and allocated to receive haematopoietic stem-cell transplantation (HSCT) in first complete remission. The remaining patients were considered standard risk and received chemotherapy plus dasatinib for 2 years. The primary endpoint was the 3-year event-free survival of dasatinib plus chemotherapy compared with external historical controls. The trial was considered positive if one of the following conditions was met: superiority over chemotherapy alone in the AIEOP-BFM 2000 high-risk group; or non-inferiority (with a margin of -5%) or superiority to imatinib plus chemotherapy in the EsPhALL 2010 cohort. All participants who received at least one dose of dasatinib were included in the safety and efficacy analyses. This trial was registered with ClinicalTrials.gov, NCT01460160, and recruitment is closed. FINDINGS Between March 13, 2012, and May 27, 2014, 109 patients were enrolled at 69 sites (including 51 COG sites in the USA, Canada, and Australia, and 18 EsPhALL sites in Italy and the UK). Three patients were ineligible and did not receive dasatinib. 106 patients were treated and included in analyses (49 [46%] female and 57 [54%] male; 85 [80%] White, 13 [12%] Black or African American, five [5%] Asian, and three [3%] other races; 24 [23%] Hispanic or Latino ethnicity). All 106 treated patients reached complete remission; 87 (82%) were classified as standard risk and 19 (18%) met HSCT criteria and were classified as high risk, but only 15 (14%) received HSCT in first complete remission. The 3-year event-free survival of dasatinib plus chemotherapy was superior to chemotherapy alone (65·5% [90% Clopper-Pearson CI 57·7 to 73·7] vs 49·2% [38·0 to 60·4]; p=0·032), and was non-inferior to imatinib plus chemotherapy (59·1% [51·8 to 66·2], 90% CI of the treatment difference: -3·3 to 17·2), but not superior to imatinib plus chemotherapy (65·5% vs 59·1%; p=0·27). The most frequent grade 3-5 adverse events were febrile neutropenia (n=93) and bacteraemia (n=21). Nine remission deaths occurred, which were due to infections (n=5), transplantation-related (n=2), due to cardiac arrest (n=1), or had an unknown cause (n=1). No dasatinib-related deaths occurred. INTERPRETATION Dasatinib plus EsPhALL chemotherapy is safe and active in paediatric Ph-positive acute lymphoblastic leukaemia. 3-year event-free survival was similar to that of previous Ph-positive acute lymphoblastic leukaemia trials despite the limited use of HSCT in first complete remission. FUNDING Bristol Myers Squibb.
Collapse
Affiliation(s)
- Stephen P Hunger
- Department of Pediatrics and The Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Vaskar Saha
- Children's Cancer Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Tata Translational Cancer Research Centre, Tata Medical Center, Kolkata, India
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Maria Grazia Valsecchi
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Julie M Gastier-Foster
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA; Department of Pathology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Genetics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael J Borowitz
- Department of Pathology and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nyla A Heerema
- Department of Pathology, Ohio State University College of Medicine, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mignon L Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Kirk R Schultz
- Pediatric Hematology-Oncology, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - William B Slayton
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Gunnar Cario
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
46
|
Popov A, Henze G, Roumiantseva J, Budanov O, Belevtsev M, Verzhbitskaya T, Boyakova E, Movchan L, Tsaur G, Fadeeva M, Lagoyko S, Zharikova L, Miakova N, Litvinov D, Khlebnikova O, Streneva O, Stolyarova E, Ponomareva N, Novichkova G, Fechina L, Aleinikova O, Karachunskiy A. One-point flow cytometric MRD measurement to identify children with excellent outcome after intermediate-risk BCP-ALL: results of the ALL-MB 2008 study. J Cancer Res Clin Oncol 2023; 149:4629-4637. [PMID: 36169717 DOI: 10.1007/s00432-022-04378-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Measurement of minimal residual disease (MRD) with multicolor flow cytometry (MFC) has become an important tool in childhood acute lymphoblastic leukemia (ALL), mainly to identify rapid responders and reduce their therapy intensity. Protocols of the Moscow-Berlin (MB) group use a comparatively low (for standard risk; SR) or moderate (for intermediate risk; ImR) treatment intensity from the onset, based on initial patient characteristics. Recently, we reported that 90% of SR patients-50% B cell precursor (BCP-ALL)-MFC-MRD negative at end of induction (EOI)-had 95% event-free survival (EFS). METHODS: In the present study, we applied this method to children with initial ImR features. RESULTS In study MB 2008, 1105 children-32% of BCP-ALL patients-were assigned to the ImR group. Of these, 227 were treated in clinics affiliated with MFC laboratories of the MB group network, and included in this MFC-MRD pilot study. A single-point MFC-MRD measurement at the EOI with the threshold of 0.01% identified 65% of patients-20% of all BCP-ALL patients-with EFS of 93.5%. CONCLUSION Taking both studies together, the combination of clinical parameters and a one-point MRD measurement identifies 70% of BCP-ALL patients with an excellent outcome after low- or moderate-intensity therapy and avoids overtreatment of a significant proportion of patients.
Collapse
Affiliation(s)
- Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation.
| | - Guenter Henze
- Department of Pediatric Oncology Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Roumiantseva
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Oleg Budanov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikhail Belevtsev
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Elena Boyakova
- Moscow City Blood Center Named After OK Gavrilov, Moscow, Russian Federation
| | - Liudmila Movchan
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Maria Fadeeva
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Svetlana Lagoyko
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Liudmila Zharikova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Dmitry Litvinov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | | | - Olga Streneva
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Elena Stolyarova
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Galina Novichkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Olga Aleinikova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, 1, S. Mashela st, Moscow, 117998, Russian Federation
| |
Collapse
|
47
|
Saliba AN, Foà R. Minimal residual disease in Philadelphia-positive acute lymphoblastic leukemia: Maximizing the clinical yield of testing. Am J Hematol 2023. [PMID: 37314420 DOI: 10.1002/ajh.26993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Affiliation(s)
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
48
|
Rizzari C, Möricke A, Valsecchi MG, Conter V, Zimmermann M, Silvestri D, Attarbaschi A, Niggli F, Barbaric D, Stary J, Elitzur S, Cario G, Vinti L, Boos J, Zucchetti M, Lanvers-Kaminsky C, von Stackelberg A, Biondi A, Schrappe M. Incidence and Characteristics of Hypersensitivity Reactions to PEG-asparaginase Observed in 6136 Children With Acute Lymphoblastic Leukemia Enrolled in the AIEOP-BFM ALL 2009 Study Protocol. Hemasphere 2023; 7:e893. [PMID: 37275740 PMCID: PMC10237686 DOI: 10.1097/hs9.0000000000000893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
The incidence of hypersensitivity reactions (HSRs) to PEG-asparaginase (PEG-ASNase) was evaluated in 6136 children with ALL enrolled in the AIEOP-BFM ALL 2009 study. Patients with B-cell precursor-acute lymphoblastic leukemia (BCP-ALL) were stratified as standard-risk/medium-risk (MR)/high-risk (HR) and those with T-ALL as non-High/HR. PEG-ASNase was administered intravenously at 2500 IU/sqm/dose. All patients received 2 PEG-ASNase doses in induction; thereafter non-HR versus HR patients received 1 versus 6 PEG-ASNase doses, respectively. After the single regular dose of PEG-ASNase at the beginning of delayed intensification, BCP-ALL-MR patients were randomized to receive 9 additional PEG-ASNase doses every 2 weeks (experimental arm [EA]) versus none (standard arm [SA]); HR patients were randomized to receive, in consolidation, 4 weekly PEG-ASNase doses (EA) versus none (SA). The HSR cumulative incidence (CI) was estimated adjusting for competing risks. An HSR occurred in 472 of 6136 (7.7%) patients. T-non- HR/BCP-Standard-Risk, BCP-MR-SA, BCP-MR-EA, HR-SA and HR-EA patients had 1-year-CI-HSR (±SE) rates of 5.2% (0.5), 5.2% (0.5), 4.0% (0.8), 20.2% (1.2), and 6.4% (1.3), respectively. The randomized intensification of PEG-ASNase did not significantly impact on HSR incidence in BCP-MR patients (1-y-CI-HSR 3.8% [0.8] versus 3.2% [0.6] in MR-EA versus MR-SA; P = 0.55), while impacted significantly in HR patients (1-y-CI-HSR 6.4% [1.3] versus 17.9% [1.8] in HR-EA and HR-SA, respectively; P < 0.001). The CI-HSR was comparable among non-HR groups and was not increased by a substantial intensification of PEG-ASNase in the BCP-MR-EA group whilst it was markedly higher in HR-SA than in HR-EA patients, suggesting that, in such a chemotherapy context, a continuous exposure to PEG-ASNase reduces the risk of developing an HSR.
Collapse
Affiliation(s)
- Carmelo Rizzari
- Department of Pediatrics, IRCCS San Gerardo dei Tintori Foundation, Monza, Italy; Department of Medicine and Surgery, University of MIlano-Bicocca, Milano, Italy
| | - Anja Möricke
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Maria Grazia Valsecchi
- Department of Pediatrics, IRCCS San Gerardo dei Tintori Foundation, Monza, Italy; Department of Medicine and Surgery, University of MIlano-Bicocca, Milano, Italy
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentino Conter
- Department of Pediatrics, IRCCS San Gerardo dei Tintori Foundation, Monza, Italy; Department of Medicine and Surgery, University of MIlano-Bicocca, Milano, Italy
| | - Martin Zimmermann
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Silvestri
- Department of Pediatrics, IRCCS San Gerardo dei Tintori Foundation, Monza, Italy; Department of Medicine and Surgery, University of MIlano-Bicocca, Milano, Italy
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Felix Niggli
- University Children's Hospital, Zurich, Switzerland
| | - Draga Barbaric
- Cancer Centre for Children, Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Jan Stary
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Gunnar Cario
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Luciana Vinti
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Joachim Boos
- Department of Pediatric Hematology and Oncology, University Childrens' Hospital of Münster, Germany
| | - Massimo Zucchetti
- Department of Oncology Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Cancer Pharmacology, Milano, Italy
| | - Claudia Lanvers-Kaminsky
- Department of Pediatric Hematology and Oncology, University Childrens' Hospital of Münster, Germany
| | - Arend von Stackelberg
- Department of Pediatric Hematology and Oncology, Charité and Rudolf-Virchow-Hospital, Berlin, Germany
| | - Andrea Biondi
- Department of Pediatrics, IRCCS San Gerardo dei Tintori Foundation, Monza, Italy; Department of Medicine and Surgery, University of MIlano-Bicocca, Milano, Italy
| | - Martin Schrappe
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
49
|
Palmi C, Bresolin S, Junk S, Fazio G, Silvestri D, Zaliova M, Oikonomou A, Scharov K, Stanulla M, Moericke A, Zimmermann M, Schrappe M, Buldini B, Bhatia S, Borkhardt A, Saitta C, Galbiati M, Bardini M, Lo Nigro L, Conter V, Valsecchi MG, Biondi A, te Kronnie G, Cario G, Cazzaniga G. Definition and Prognostic Value of Ph-like and IKZF1plus Status in Children With Down Syndrome and B-cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e892. [PMID: 37304931 PMCID: PMC10256328 DOI: 10.1097/hs9.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Children with Down syndrome have an augmented risk for B-cell acute lymphoblastic leukemia (DS-ALL), which is associated with lower survival than in non-DS-ALL. It is known that cytogenetic abnormalities common in childhood ALL are less frequent in DS-ALL, while other genetic aberrancies (ie, CRLF2 overexpression and IKZF1 deletions) are increased. A possible cause for the lower survival of DS-ALL that we herewith evaluated for the first time was the incidence and prognostic value of the Philadelphia-like (Ph-like) profile and the IKZF1plus pattern. These features have been associated with poor outcome in non-DS ALL and therefore introduced in current therapeutic protocols. Forty-six out of 70 DS-ALL patients treated in Italy from 2000 to 2014 displayed Ph-like signature, mostly characterized by CRLF2 (n = 33) and IKZF1 (n = 16) alterations; only 2 cases were positive for ABL-class or PAX5-fusion genes. Moreover, in an Italian and German joint cohort of 134 DS-ALL patients, we observed 18% patients positive for IKZF1plus feature. Ph-like signature and IKZF1 deletion were associated with poor outcome (cumulative incidence of relapse: 27.7 ± 6.8% versus 13 ± 7%; P = 0.04 and 35.2 ± 8.6% versus 17 ± 3.9%; P = 0.007, respectively), which further worsens when IKZF1 deletion was co-occurring with P2RY8::CRLF2, qualifying for the IKZF1plus definition (13/15 patients had an event of relapse or treatment-related death). Notably, ex vivo drug screening revealed sensitivity of IKZF1plus blasts for drugs active against Ph-like ALL such as Birinapant and histone deacetylase inhibitors. We provided data in a large setting of a rare condition (DS-ALL) supporting that these patients, not associated with other high-risk features, need tailored therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy
| | - Stefanie Junk
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marketa Zaliova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Anja Moericke
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara Buldini
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
- Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Claudia Saitta
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Galbiati
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology and Oncology, Azienda Policlinico-San Marco, Catania, Italy
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Maria Grazia Valsecchi
- Statistics, University of Milan Bicocca, Monza, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Italy
| | - Geertruy te Kronnie
- Women’s and Children’s Health Department, Hematology-Oncology Clinic and Laboratory, University-Hospital of Padua, Italy
| | - Gunnar Cario
- Pediatrics, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Medical Genetics, School of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| |
Collapse
|
50
|
Möricke A, Rizzari C, Alten J, Attarbaschi A, Beier R, Biondi A, Burkhardt B, Bodmer N, Boos J, Cario G, Conter V, Flotho C, Kulozik A, Lanvers-Kaminsky C, Mann G, Niggli F, Silvestri D, von Stackelberg A, Stanulla M, Valsecchi MG, Schrappe M, Zimmermann M. Hypersensitivity Reactions to Native E. coli L-asparaginase in Children With Acute Lymphoblastic Leukemia Treated in Trial ALL-BFM 2000: Impact of Treatment Schedule and Type of Glucocorticoid in Induction. Hemasphere 2023; 7:e888. [PMID: 37275738 PMCID: PMC10238044 DOI: 10.1097/hs9.0000000000000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/05/2023] [Indexed: 06/07/2023] Open
Affiliation(s)
- Anja Möricke
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, MBBM Foundation, Monza, Italy
| | - Julia Alten
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Austria
- St. Anna Kinderspital and Children’s Cancer Research Institute, Vienna, Austria
| | - Rita Beier
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Andrea Biondi
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, MBBM Foundation, Monza, Italy
| | - Birgit Burkhardt
- Department of Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | | | - Joachim Boos
- Department of Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Gunnar Cario
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Valentino Conter
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, MBBM Foundation, Monza, Italy
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Andreas Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | - Georg Mann
- St. Anna Kinderspital and Children’s Cancer Research Institute, Vienna, Austria
| | - Felix Niggli
- University Children’s Hospital, Zurich, Switzerland
| | - Daniela Silvestri
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Arend von Stackelberg
- Pediatric Hematology and Oncology, Charité Medical Center, Humboldt University, Berlin, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Maria-Grazia Valsecchi
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Martin Schrappe
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|