1
|
Gollowitzer A, Pein H, Rao Z, Waltl L, Bereuter L, Loeser K, Meyer T, Jafari V, Witt F, Winkler R, Su F, Große S, Thürmer M, Grander J, Hotze M, Harder S, Espada L, Magnutzki A, Gstir R, Weinigel C, Rummler S, Bonn G, Pachmayr J, Ermolaeva M, Harayama T, Schlüter H, Kosan C, Heller R, Thedieck K, Schmitt M, Shimizu T, Popp J, Shindou H, Kwiatkowski M, Koeberle A. Attenuated growth factor signaling during cell death initiation sensitizes membranes towards peroxidation. Nat Commun 2025; 16:1774. [PMID: 40000627 PMCID: PMC11861335 DOI: 10.1038/s41467-025-56711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cell death programs such as apoptosis and ferroptosis are associated with aberrant redox homeostasis linked to lipid metabolism and membrane function. Evidence for cross-talk between these programs is emerging. Here, we show that cytotoxic stress channels polyunsaturated fatty acids via lysophospholipid acyltransferase 12 into phospholipids that become susceptible to peroxidation under additional redox stress. This reprogramming is associated with altered acyl-CoA synthetase isoenzyme expression and caused by a decrease in growth factor receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase signaling, resulting in suppressed fatty acid biosynthesis, for specific stressors via impaired Akt-SREBP1 activation. The reduced availability of de novo synthesized fatty acids favors the channeling of polyunsaturated fatty acids into phospholipids. Growth factor withdrawal by serum starvation mimics this phenotype, whereas RTK ligands counteract it. We conclude that attenuated RTK signaling during cell death initiation increases cells' susceptibility to oxidative membrane damage at the interface of apoptosis and alternative cell death programs.
Collapse
Affiliation(s)
- André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Leonhard Bereuter
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Konstantin Loeser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Vajiheh Jafari
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916, Badalona, Spain
| | - Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria
| | - Silke Große
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Maria Thürmer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Alexander Magnutzki
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Günther Bonn
- ADSI-Austrian Drug Screening Institute, University of Innsbruck, 6020, Innsbruck, Austria
| | - Johanna Pachmayr
- Institute of Pharmacy, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur - CNRS UMR7275 - Inserm U1323, 06560, Valbonne, France
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University Jena, 07745, Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745, Jena, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Alliance Ruhr & University Hospital Essen, University Duisburg-Essen, 45141, Essen, Germany
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
- German Cancer Consortium (DKTK), partner site Essen/Duesseldorf, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147, Essen, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena e.V., Member of Leibniz Health Technology, 07745, Jena, Germany
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
- Institute of Pharmaceutical Sciences and Excellence Field BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
3
|
Guo H, Li D, Miao B, Feng K, Chen G, Gan R, Kang Z, Gao H. Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects. ULTRASONICS SONOCHEMISTRY 2025; 112:107215. [PMID: 39742686 PMCID: PMC11751549 DOI: 10.1016/j.ultsonch.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity. AP-Es (AP-E1, AP-E2, AP-E3) with different DE were prepared using mild ultrasound-assisted alkali de-esterification, followed by SAR analysis. Results revealed that AP-E3, with the lowest DE (5.08 ± 0.22 %), demonstrated a significant reduction in homogalacturonan (HG) domains and a corresponding increase in rhamnogalacturonan-I (RG-I) domains, which coincided with enhanced immunomodulatory effects. The molecular weights of AP-E1, AP-E2, and AP-E3 were determined to be 30.94 ± 0.83 kDa, 27.61 ± 0.65 kDa, and 22.17 ± 0.57 kDa, respectively. To further explore the underlying mechanism, transgenic zebrafish with fluorescent macrophages were utilized. A positive correlation was observed between AP-E3 concentration and the number of fluorescent microspheres engulfed by macrophages. Additionally, AP-E3 significantly upregulated the expression of key immune response genes (tnf-α, il-1β, il-6, cox-2, inos, and nf-κb) and restored the gut microbiota composition and abundance in chloramphenicol-induced immunocompromised zebrafish. Metabolomics analysis revealed that AP-E3 effectively restored metabolic homeostasis by activating multiple signaling pathways associated with signal transduction, immune regulation, and metabolism. These findings highlight the potential of low-esterified AP enriched with RG-I domains as a promising candidate for applications in immune modulation and gut health management.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China; Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China.
| | - Kanglin Feng
- Fruit and Vegetable Storage and Processing Research Center, Institute of Agricultural Products Processing, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guijing Chen
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu 610200, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Bermúdez MA, Garrido A, Pereira L, Garrido T, Balboa MA, Balsinde J. Rapid Movement of Palmitoleic Acid from Phosphatidylcholine to Phosphatidylinositol in Activated Human Monocytes. Biomolecules 2024; 14:707. [PMID: 38927110 PMCID: PMC11202010 DOI: 10.3390/biom14060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This work describes a novel route for phospholipid fatty acid remodeling involving the monounsaturated fatty acid palmitoleic acid. When administered to human monocytes, palmitoleic acid rapidly incorporates into membrane phospholipids, notably into phosphatidylcholine (PC). In resting cells, palmitoleic acid remains within the phospholipid pools where it was initially incorporated, showing no further movement. However, stimulation of the human monocytes with either receptor-directed (opsonized zymosan) or soluble (calcium ionophore A23187) agonists results in the rapid transfer of palmitoleic acid moieties from PC to phosphatidylinositol (PI). This is due to the activation of a coenzyme A-dependent remodeling route involving two different phospholipase A2 enzymes that act on different substrates to generate free palmitoleic acid and lysoPI acceptors. The stimulated enrichment of specific PI molecular species with palmitoleic acid unveils a hitherto-unrecognized pathway for lipid turnover in human monocytes which may play a role in regulating lipid signaling during innate immune activation.
Collapse
Affiliation(s)
- Miguel A. Bermúdez
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Garrido
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Pereira
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Garrido
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Lipid Metabolism and Inflammation Group, IBGM, CSIC-UVA, 47003 Valladolid, Spain
| | - Jesús Balsinde
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Monge P, Astudillo AM, Pereira L, Balboa MA, Balsinde J. Dynamics of Docosahexaenoic Acid Utilization by Mouse Peritoneal Macrophages. Biomolecules 2023; 13:1635. [PMID: 38002317 PMCID: PMC10669016 DOI: 10.3390/biom13111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, the incorporation of docosahexaenoic acid (DHA) in mouse resident peritoneal macrophages and its redistribution within the various phospholipid classes were investigated. Choline glycerophospholipids (PC) behaved as the major initial acceptors of DHA. Prolonged incubation with the fatty acid resulted in the transfer of DHA from PC to ethanolamine glycerophospholipids (PE), reflecting phospholipid remodeling. This process resulted in the cells containing similar amounts of DHA in PC and PE in the resting state. Mass spectrometry-based lipidomic analyses of phospholipid molecular species indicated a marked abundance of DHA in ether phospholipids. Stimulation of the macrophages with yeast-derived zymosan resulted in significant decreases in the levels of all DHA-containing PC and PI species; however, no PE or PS molecular species were found to decrease. In contrast, the levels of an unusual DHA-containing species, namely PI(20:4/22:6), which was barely present in resting cells, were found to markedly increase under zymosan stimulation. The levels of this phospholipid also significantly increased when the calcium-ionophore A23187 or platelet-activating factor were used instead of zymosan to stimulate the macrophages. The study of the route involved in the synthesis of PI(20:4/22:6) suggested that this species is produced through deacylation/reacylation reactions. These results define the increases in PI(20:4/22:6) as a novel lipid metabolic marker of mouse macrophage activation, and provide novel information to understand the regulation of phospholipid fatty acid turnover in activated macrophages.
Collapse
Affiliation(s)
- Patricia Monge
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alma M. Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Pereira
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain (A.M.A.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Kahnt AS, Schebb NH, Steinhilber D. Formation of lipoxins and resolvins in human leukocytes. Prostaglandins Other Lipid Mediat 2023; 166:106726. [PMID: 36878381 DOI: 10.1016/j.prostaglandins.2023.106726] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins are formed by the consecutive action of 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- or 15-lipoxygenases using arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid as substrate. Lipoxins are trihydroxylated oxylipins which are formed from arachidonic and eicosapentaenoic acid. The latter can also be converted to di- and trihydroxylated resolvins of the E series, whereas docosahexaenoic acid is the substrate for the formation of di- and trihydroxylated resolvins of the D series. Here, we summarize the formation of lipoxins and resolvins in leukocytes. From the data published so far, it becomes evident that FLAP is required for the biosynthesis of most of the lipoxins and resolvins. Even in the presence of FLAP, formation of the trihydroxylated SPMs (lipoxins, RvD1-RvD4, RvE1) in leukocytes is very low or undetectable which is obviously due to the extremely low epoxide formation by 5-LO from oxylipins such as 15-H(p)ETE, 18-H(p)EPE or 17-H(p)DHA. As a result, only the dihydroxylated oxylipins (5 S,15S-diHETE, 5 S,15S-diHEPE) and resolvins (RvD5, RvE2, RvE4) can be consistently detected using leukocytes as SPM source. However, the reported levels of these dihydroxylated lipid mediators are still much lower than those of the typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g. 5-HETE), leukotrienes or cyclooxygenase-derived prostaglandins. Since 5-LO expression is mainly restricted to leukocytes these cells are considered as the main source of SPMs. The low formation of trihydroxylated SPMs in leukocytes, the fact that they are hardly detected in biological samples as well as the lack of functional signaling by their receptors make it highly questionable that trihydroxylated SPMs play a role as endogenous mediators in the resolution of inflammation.
Collapse
Affiliation(s)
- Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
p53 Activates the Lipoxygenase Activity of ALOX15B via Inhibiting SLC7A11 to Induce Ferroptosis in Bladder Cancer Cells. J Transl Med 2023; 103:100058. [PMID: 36801644 DOI: 10.1016/j.labinv.2022.100058] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer is a malignant tumor of the urinary system and is one of the most common cancers worldwide. Lipoxygenases are closely related to the development of various cancers. However, the relationship between lipoxygenases and p53/SLC7A11-dependent ferroptosis in bladder cancer has not been reported. Here, we aimed to investigate the roles and internal mechanisms of lipid peroxidation and p53/SLC7A11-dependent ferroptosis in the development and progression of bladder cancer. First, ultraperformance liquid chromatography-tandem mass spectrometry was performed to measure the metabolite production of lipid oxidation in patients' plasma. The metabolic changes in patients with bladder cancer were discovered, revealing that stevenin, melanin, and octyl butyrate were upregulated. Then, the expressions of lipoxygenase family members were measured to screen out candidates with significant changes in bladder cancer tissues. Among various lipoxygenases, ALOX15B was significantly downregulated in bladder cancer tissues. Moreover, p53 and 4-hydroxynonenal (4-HNE) levels were decreased in bladder cancer tissues. Next, sh-ALOX15B, oe-ALOX15B, or oe-SLC7A11 plasmids were constructed and transfected into bladder cancer cells. Then, the p53 agonist Nutlin-3a, tert-butyl hydroperoxide, iron chelator deferoxamine, and the selective ferroptosis inhibitor ferr1 were added. The effects of ALOX15B and p53/SLC7A11 on bladder cancer cells were evaluated by in vitro and in vivo experiments. We revealed that knockdown of ALOX15B promoted bladder cancer cell growth, which was also found to protect bladder cancer cells from p53-induced ferroptosis. Furthermore, p53 activated ALOX15B lipoxygenase activity by suppressing SLC7A11. Taken together, p53 activated the lipoxygenase activity of ALOX15B via inhibiting SLC7A11 to induce ferroptosis in bladder cancer cells, which provided insight into the molecular mechanism of the occurrence and development of bladder cancer.
Collapse
|
8
|
Petan T, Manček-Keber M. Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radic Biol Med 2022; 188:351-362. [PMID: 35779690 DOI: 10.1016/j.freeradbiomed.2022.06.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Studies in the last decade have established the roles of oxidized phospholipids as modulators of various cellular processes, from inflammation and immunity to cell death. Oxidized lysophospholipids, formed through the activity of phospholipases and oxidative enzymes and lacking an acyl chain in comparison with parent phospholipids, are now emerging as novel bioactive lipid mediators. Their detection and structural characterization have been limited in the past due to low amounts and the complexity of their biosynthetic and removal pathways, but recent studies have unequivocally demonstrated their formation under inflammatory conditions. The involvement of oxidized lysophospholipids in immune regulation classifies them as damage-associated molecular patterns (DAMPs), which can promote sterile inflammation and contribute to autoimmune and chronic diseases as well as aging-related diseases. Their signaling pathways are just beginning to be revealed. As the first publications indicate that oxidized lysophospholipids use the same receptors as pathogen-associated molecular patterns (PAMPs), it is likely that the inhibition of signaling pathways activated by oxidized lysophospholipids would affect innate immunity per se. On the other hand, inhibition or modulation of their enzymatic formation, which would not interfere with the response to pathogens, might be beneficial and is potentially a promising new field of research.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Narzt MS, Kremslehner C, Golabi B, Nagelreiter IM, Malikovic J, Hussein AM, Plasenzotti R, Korz V, Lubec G, Gruber F, Lubec J. Molecular species of oxidized phospholipids in brain differentiate between learning- and memory impaired and unimpaired aged rats. Amino Acids 2022; 54:1311-1326. [PMID: 35817992 PMCID: PMC9372013 DOI: 10.1007/s00726-022-03183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
| | | | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Roberto Plasenzotti
- Center for Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria.
| |
Collapse
|
10
|
Hoebinger C, Rajcic D, Hendrikx T. Oxidized Lipids: Common Immunogenic Drivers of Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Front Cardiovasc Med 2022; 8:824481. [PMID: 35083304 PMCID: PMC8784685 DOI: 10.3389/fcvm.2021.824481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to inflammatory steatohepatitis (NASH) and cirrhosis, continues to rise, making it one of the major chronic liver diseases and indications for liver transplantation worldwide. The pathological processes underlying NAFLD not only affect the liver but are also likely to have systemic effects. In fact, growing evidence indicates that patients with NAFLD are at increased risk for developing atherosclerosis. Indeed, cardiovascular complications are the leading cause of mortality in NAFLD patients. Here, we aim to address common pathophysiological molecular pathways involved in chronic fatty liver disease and atherosclerosis. In particular, we focus on the role of oxidized lipids and the formation of oxidation-specific epitopes, which are important targets of host immunity. Acting as metabolic danger signals, they drive pro-inflammatory processes and thus contribute to disease progression. Finally, we summarize encouraging studies indicating that oxidized lipids are promising immunological targets to improve intervention strategies for NAFLD and potentially limit the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Constanze Hoebinger
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Medical University Vienna, Vienna, Austria.,Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
11
|
Turnbull RE, Sander KN, Turnbull J, Barrett DA, Goodall AH. Profiling oxylipins released from human platelets activated through the GPVI collagen receptor. Prostaglandins Other Lipid Mediat 2021; 158:106607. [PMID: 34942378 DOI: 10.1016/j.prostaglandins.2021.106607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
In addition to haemostasis, platelets are involved in pathological processes, often driven by material released upon activation. Interaction between collagen and glycoprotein VI (GPVI) is a primary platelet stimulus that liberates arachidonic acid and linoleic acid from membrane phospholipids. These are oxidised by cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) to eicosanoids and other oxylipins with various biological properties. Using liquid chromatography-tandem mass spectrometry we found that GPVI-stimulated platelets released significant levels of ten oxylipins; the well documented TxA2 and 12-HETE, PGD2 and PGE2, as well as 8-, 9-, 11-, and 15-HETE, 9- and 13-HODE.1 Levels of oxylipins released from washed platelets mirrored those from platelets stimulated in the presence of plasma, indicating generation from intracellular, rather than exogenous AA/LA. Inhibition of COX-1 with aspirin, as expected, completely abolished production of TxA2 and PGD/E2, but also significantly inhibited the release of 11-HETE (89 ± 3%) and 9-HODE (74 ± 6%), and reduced 15-HETE and 13-HODE by ∼33 %. Inhibition of 12-LOX by either esculetin or ML355 inhibited the release of all oxylipins apart from 15-HETE. These findings suggest routes to modify the production of bioactive molecules released by activated platelets.
Collapse
Affiliation(s)
- Robert E Turnbull
- Department of Cardiovascular Sciences, University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Katrin N Sander
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
12
|
Dong L, Li Y, Wu H. Platelet activating-factor acetylhydrolase II: A member of phospholipase A2 family that hydrolyzes oxidized phospholipids. Chem Phys Lipids 2021; 239:105103. [PMID: 34116047 DOI: 10.1016/j.chemphyslip.2021.105103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Intracellular platelet activating-factor acetylhydrolase type II (PAF-AH II) is a 40-kDa monomeric enzyme. It was originally identified as an enzyme that hydrolyzes the acetyl group of PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). As a member of phospholipase A2 super family, PAF-AH II has broad substrate specificity. It can hydrolyze phospholipids with relatively short-length or oxidatively modified sn-2 chains which endows it with various functions such as protection against oxidative stress, transacetylase activity and producing lipid mediators. PAF-AH II has been proven to be involved in several diseases such as allergic diseases, oxidative stress-induced injury and ischemia injury, thus it has drawn more attention from researchers. In this paper, we outline an entire summary of PAF-AH II, including its structure, substrate specificity, activity assay, inhibitors and biological activities.
Collapse
Affiliation(s)
- Linyue Dong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huali Wu
- Department of TCM Chemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Marsilio I, Caputi V, Latorre E, Cerantola S, Paquola A, Alcalde AI, Mesonero JE, O'Mahony SM, Bertazzo A, Giaroni C, Giron MC. Oxidized phospholipids affect small intestine neuromuscular transmission and serotonergic pathways in juvenile mice. Neurogastroenterol Motil 2021; 33:e14036. [PMID: 33222337 DOI: 10.1111/nmo.14036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidized phospholipid derivatives (OxPAPCs) act as bacterial lipopolysaccharide (LPS)-like damage-associated molecular patterns. OxPAPCs dose-dependently exert pro- or anti-inflammatory effects by interacting with several cellular receptors, mainly Toll-like receptors 2 and 4. It is currently unknown whether OxPAPCs may affect enteric nervous system (ENS) functional and structural integrity. METHODS Juvenile (3 weeks old) male C57Bl/6 mice were treated intraperitoneally with OxPAPCs, twice daily for 3 days. Changes in small intestinal contractility were evaluated by isometric neuromuscular responses to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity and serotonergic pathways were assessed by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (LMMPs). Tissue levels of serotonin (5-HT), tryptophan, and kynurenine were measured by HPLC coupled to UV/fluorescent detection. KEY RESULTS OxPAPC treatment induced enteric gliosis, loss of myenteric plexus neurons, and excitatory hypercontractility, and reduced nitrergic neurotransmission with no changes in nNOS+ neurons. Interestingly, these changes were associated with a higher functional response to 5-HT, altered immunoreactivity of 5-HT receptors and serotonin transporter (SERT) together with a marked decrease in 5-HT levels, shifting tryptophan metabolism toward kynurenine production. CONCLUSIONS AND INFERENCES OxPAPC treatment disrupted structural and functional integrity of the ENS, affecting serotoninergic tone and 5-HT tissue levels toward a higher kynurenine content during adolescence, suggesting that changes in intestinal lipid metabolism toward oxidation can affect serotoninergic pathways, potentially increasing the risk of developing functional gastrointestinal disorders during critical stages of development.
Collapse
Affiliation(s)
- Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eva Latorre
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,San Camillo Hospital, Treviso, Italy
| | - Andrea Paquola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ana I Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - José E Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2-(Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 2021; 64:401-421. [PMID: 32618335 PMCID: PMC7517362 DOI: 10.1042/ebc20190082] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.
Collapse
|
15
|
Gabbs M, Zahradka P, Taylor CG, Aukema HM. Time Course and Sex Effects of α-Linolenic Acid-Rich and DHA-Rich Supplements on Human Plasma Oxylipins: A Randomized Double-Blind Crossover Trial. J Nutr 2020; 151:513-522. [PMID: 33097936 PMCID: PMC7948207 DOI: 10.1093/jn/nxaa294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Differences in health effects of dietary α-linolenic acid (ALA) and DHA are mediated at least in part by differences in their effects on oxylipins. OBJECTIVES Time course and sex differences of plasma oxylipins in response to ALA- compared with DHA-rich supplements were examined. METHODS Healthy men and women, aged 19-34 y and BMI 18-28 kg/m2, were provided with capsules containing ∼4 g/d of ALA or DHA in a randomized double-blind crossover study with >6-wk wash-in and wash-out phases. Plasma PUFA and oxylipin (primary outcome) concentrations at days 0, 1, 3, 7, 14, and 28 of supplementation were analyzed by GC and HPLC-MS/MS, respectively. Sex differences, supplementation and time effects, and days to plateau were analyzed. RESULTS ALA supplementation doubled ALA concentrations, but had no effects on ALA oxylipins after 28 d, whereas DHA supplementation tripled both DHA and its oxylipins. Increases in DHA oxylipins were detected as early as day 1, and a plateau was reached by days 5-7 for 11 of 12 individual DHA oxylipins and for total DHA oxylipins. Nine individual DHA oxylipins reached a plateau in females with DHA supplementation, compared with only 4 in males. A similar time course and sex difference pattern occurred with EPA and its oxylipins with DHA supplementation. DHA compared with ALA supplementation also resulted in higher concentrations of 4 individual arachidonic acids, 1 linoleic acid, and 1 dihomo-γ-linolenic acid oxylipin, despite not increasing the concentrations of these fatty acids, further demonstrating that oxylipins do not always reflect their precursor PUFA. CONCLUSIONS DHA compared with a similar dose of ALA has greater effects on both n-3 and n-6 oxylipins in young, healthy adults, with differences in response to DHA supplementation occurring earlier and being greater in females. These findings can help explain differences in dietary effects of ALA and DHA.This study was registered at clinicaltrials.gov as NCT02317588.
Collapse
Affiliation(s)
- Melissa Gabbs
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
16
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
18
|
Dietary n-6 and n-3 PUFA alter the free oxylipin profile differently in male and female rat hearts. Br J Nutr 2020; 122:252-261. [PMID: 31405389 DOI: 10.1017/s0007114519001211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxylipins are bioactive lipid mediators synthesised from PUFA. The most well-known oxylipins are the eicosanoids derived from arachidonic acid (ARA), and many of them influence cardiac physiology in health and disease. Oxylipins are also formed from other n-3 and n-6 PUFA such as α-linolenic acid (ALA), EPA, DHA and linoleic acid (LA), but fundamental data on the heart oxylipin profile, and the effect of diet and sex on this profile, are lacking. Therefore, weanling female and male Sprague-Dawley rats were given American Institute of Nutrition (AIN)-93G-based diets modified in oil composition to provide higher levels of ALA, EPA, DHA, LA and LA + ALA, compared with control diets. After 6 weeks, free oxylipins in rat hearts were increased primarily by their precursor PUFA, except for EPA oxylipins, which were increased not only by dietary EPA but also by dietary ALA or DHA. Dietary DHA had a greater effect than ALA or EPA on reducing ARA oxylipins. An exception to the dietary n-3 PUFA-lowering effects on ARA oxylipins was observed for several ARA-derived PG metabolites that were higher in rats given EPA diets. Higher dietary LA increased LA oxylipins, but it had no effect on ARA oxylipins. Overall, heart oxylipins were higher in female rats, but this depended on dietary treatment: the female oxylipin:male oxylipin ratio was higher in rats provided the ALA compared with the DHA diet, with other diet groups having ratios in between. In conclusion, individual PUFA and sex have unique and interactive effects on the rat heart free oxylipin profile.
Collapse
|
19
|
Kumar NG, Contaifer D, Madurantakam P, Carbone S, Price ET, Van Tassell B, Brophy DF, Wijesinghe DS. Dietary Bioactive Fatty Acids as Modulators of Immune Function: Implications on Human Health. Nutrients 2019; 11:E2974. [PMID: 31817430 PMCID: PMC6950193 DOI: 10.3390/nu11122974] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Diet is major modifiable risk factor for cardiovascular disease that can influence the immune status of the individual and contribute to persistent low-grade inflammation. In recent years, there has been an increased appreciation of the role of polyunsaturated fatty acids (PUFA) in improving immune function and reduction of systemic inflammation via the modulation of pattern recognition receptors (PRR) on immune cells. Extensive research on the use of bioactive lipids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their metabolites have illustrated the importance of these pro-resolving lipid mediators in modulating signaling through PRRs. While their mechanism of action, bioavailability in the blood, and their efficacy for clinical use forms an active area of research, they are found widely administered as marine animal-based supplements like fish oil and krill oil to promote health. The focus of this review will be to discuss the effect of these bioactive fatty acids and their metabolites on immune cells and the resulting inflammatory response, with a brief discussion about modern methods for their analysis using mass spectrometry-based methods.
Collapse
Affiliation(s)
- Naren Gajenthra Kumar
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Parthasarathy Madurantakam
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23220, USA;
- VCU Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T. Price
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Benjamin Van Tassell
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Dayanjan S. Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
- da Vinci Center, Virginia Commonwealth University, Richmond, VA 23220, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|
20
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
21
|
Philippova M, Oskolkova OV, Bicker W, Schoenenberger AW, Resink TJ, Erne P, Bochkov VN. Analysis of fragmented oxidized phosphatidylcholines in human plasma using mass spectrometry: Comparison with immune assays. Free Radic Biol Med 2019; 144:167-175. [PMID: 31141712 DOI: 10.1016/j.freeradbiomed.2019.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Circulating oxidized phospholipids are increasingly recognized as biomarkers of atherosclerosis. Clinical association studies have been mainly performed using an immune assay based on monoclonal antibody E06, which recognizes a variety of molecular species of oxidized phosphatidylcholine (OxPC) in lipoproteins, cell membranes or covalently bound to plasma proteins. Accumulating evidence shows that individual molecular species of OxPC demonstrate different biological activities and have different half-life times. Therefore, it is likely that certain molecular species can be associated with pathology more strongly than others. This hypothesis can only be tested using LC-MS/MS allowing quantification of individual molecular species of OxPCs. In order to ensure that laborious LC-MS/MS methods do not simply replicate the results of a technically simpler E06-OxPCs assay, we have performed relative quantification of 8 truncated molecular species of OxPCs in plasma of 132 probands and compared the data with the results of the E06-OxPCs and OxLDL assays. We have found a strong correlation between individual molecular species of OxPCs but only a weak correlation of LC-MS/MS-OxPCs data with the E06-OxPCs assay and no correlation with the OxLDL assay. Furthermore, in contrast to the results of E06-OxPCs or OxLDL assays, 7 out of 8 OxPC species were associated with hypertension. The data suggest that the results of the LC-MS/MS-OxPCs assay do not replicate the results of two ELISA-based lipid oxidation tests and therefore may produce additional diagnostic information. These findings necessitate development of simplified mass spectrometric procedures for high-throughput and affordable analysis of selected molecular species of OxPCs.
Collapse
Affiliation(s)
- Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, ZLF 318 Hebelstrasse 20, 4031, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Wolfgang Bicker
- FTC-Forensic-Toxicological Laboratory Ltd., Gaudenzdorfer Gürtel 43-45, 1120, Vienna, Austria
| | - Andreas W Schoenenberger
- Department of Geriatrics, Inselspital, Bern University Hospital, University of Bern, Tiefenaustrasse 112, 3004, Bern, Switzerland
| | - Therese J Resink
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, ZLF 318 Hebelstrasse 20, 4031, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, ZLF 318 Hebelstrasse 20, 4031, Basel, Switzerland
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.
| |
Collapse
|
22
|
Colombo S, Criscuolo A, Zeller M, Fedorova M, Domingues MR, Domingues P. Analysis of oxidised and glycated aminophospholipids: Complete structural characterisation by C30 liquid chromatography-high resolution tandem mass spectrometry. Free Radic Biol Med 2019; 144:144-155. [PMID: 31150763 DOI: 10.1016/j.freeradbiomed.2019.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
The aminophospholipids (APL), phosphatidylethanolamine (PE) and phosphatidylserine (PS) are widely present in cell membranes and lipoproteins. Glucose and reactive oxygen species (ROS), such as the hydroxyl radical (•OH), can react with APL leading to an array of oxidised, glycated and glycoxidised derivatives. Modified APL have been implicated in inflammatory diseases and diabetes, and were identified as signalling molecules regulating cell death. However, the biological relevance of these molecules has not been completely established, since they are present in very low amounts, and new sensitive methodologies are needed to detect them in biological systems. Few studies have focused on the characterisation of APL modifications using liquid chromatography-tandem mass spectrometry (LC-MS/MS), mainly using C5 or C18 reversed phase (RP) columns. In the present study, we propose a new analytical approach for the characterisation of complex mixtures of oxidised, glycated and glycoxidised PE and PS. This LC approach was based on a reversed-phase C30 column combined with high-resolution MS, and higher energy C-trap dissociation (HCD) MS/MS. C30 RP-LC separated short and long fatty acyl oxidation products, along with glycoxidised APL bearing oxidative modifications on the glucose moiety and the fatty acyl chains. Functional isomers (e.g. hydroxy-hydroperoxy-APL and tri-hydroxy-APL) and positional isomers (e.g. 9-hydroxy-APL and 13-hydroxy-APL) were also discriminated by the method. HCD fragmentation patterns allowed unequivocal structural characterisation of the modified APL, and are translatable into targeted MS/MS fingerprinting of the modified derivatives in biological samples.
Collapse
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Angela Criscuolo
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199, Bremen, Germany; Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - Martin Zeller
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Germany
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
23
|
Snodgrass RG, Brüne B. Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Front Pharmacol 2019; 10:719. [PMID: 31333453 PMCID: PMC6620526 DOI: 10.3389/fphar.2019.00719] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the stereo-specific peroxidation of polyunsaturated fatty acids (PUFAs) to their corresponding hydroperoxy derivatives. Human macrophages express two arachidonic acid (AA) 15-lipoxygenating enzymes classified as ALOX15 and ALOX15B. ALOX15, which was first described in 1975, has been extensively characterized and its biological functions have been investigated in a number of cellular systems and animal models. In macrophages, ALOX15 functions to generate specific phospholipid (PL) oxidation products crucial for orchestrating the nonimmunogenic removal of apoptotic cells (ACs) as well as synthesizing precursor lipids required for production of specialized pro-resolving mediators (SPMs) that facilitate inflammation resolution. The discovery of ALOX15B in 1997 was followed by comprehensive analyses of its structural properties and reaction specificities with PUFA substrates. Although its enzymatic properties are well described, the biological functions of ALOX15B are not fully understood. In contrast to ALOX15 whose expression in human monocyte-derived macrophages is strictly dependent on Th2 cytokines IL-4 and IL-13, ALOX15B is constitutively expressed. This review aims to summarize the current knowledge on the regulation and functions of ALOX15 and ALOX15B in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Tyurina YY, St Croix CM, Watkins SC, Watson AM, Epperly MW, Anthonymuthu TS, Kisin ER, Vlasova II, Krysko O, Krysko DV, Kapralov AA, Dar HH, Tyurin VA, Amoscato AA, Popova EN, Bolevich SB, Timashev PS, Kellum JA, Wenzel SE, Mallampalli RK, Greenberger JS, Bayir H, Shvedova AA, Kagan VE. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J Leukoc Biol 2019; 106:57-81. [PMID: 31071242 PMCID: PMC6626990 DOI: 10.1002/jlb.3mir0119-004rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claudette M St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tamil S Anthonymuthu
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena R Kisin
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena N Popova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Sergey B Bolevich
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, West Virginia, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
25
|
Tyurina YY, Tyurin VA, Anthonymuthu T, Amoscato AA, Sparvero LJ, Nesterova AM, Baynard ML, Sun W, He R, Khaitovich P, Vladimirov YA, Gabrilovich DI, Bayır H, Kagan VE. "Redox lipidomics technology: Looking for a needle in a haystack". Chem Phys Lipids 2019; 221:93-107. [PMID: 30928338 PMCID: PMC6714565 DOI: 10.1016/j.chemphyslip.2019.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Anastasiia M Nesterova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Matthew L Baynard
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Wanyang Sun
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | - RongRong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | | | - Yuri A Vladimirov
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Pharmacology and Chemical Biology, Pittsburgh, PA, USA; Radiation Oncology, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
26
|
Liu GY, Moon SH, Jenkins CM, Sims HF, Guan S, Gross RW. Synthesis of oxidized phospholipids by sn-1 acyltransferase using 2-15-HETE lysophospholipids. J Biol Chem 2019; 294:10146-10159. [PMID: 31080170 DOI: 10.1074/jbc.ra119.008766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Indexed: 01/13/2023] Open
Abstract
Recently, oxidized phospholipid species have emerged as important signaling lipids in activated immune cells and platelets. The canonical pathway for the synthesis of oxidized phospholipids is through the release of arachidonic acid by cytosolic phospholipase A2α (cPLA2α) followed by its enzymatic oxidation, activation of the carboxylate anion by acyl-CoA synthetase(s), and re-esterification to the sn-2 position by sn-2 acyltransferase activity (i.e. the Lands cycle). However, recent studies have demonstrated the unanticipated significance of sn-1 hydrolysis of arachidonoyl-containing choline and ethanolamine glycerophospholipids by other phospholipases to generate the corresponding 2-arachidonoyl-lysolipids. Herein, we identified a pathway for oxidized phospholipid synthesis comprising sequential sn-1 hydrolysis by a phospholipase A1 (e.g. by patatin-like phospholipase domain-containing 8 (PNPLA8)), direct enzymatic oxidation of the resultant 2-arachidonoyl-lysophospholipids, and the esterification of oxidized 2-arachidonoyl-lysophospholipids by acyl-CoA-dependent sn-1 acyltransferase(s). To circumvent ambiguities associated with acyl migration or hydrolysis, we developed a synthesis for optically active (d- and l-enantiomers) nonhydrolyzable analogs of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC). sn-1 acyltransferase activity in murine liver microsomes stereospecifically and preferentially utilized the naturally occurring l-enantiomer of the ether analog of lysophosphatidylcholine. Next, we demonstrated the high selectivity of the sn-1 acyltransferase activity for saturated acyl-CoA species. Importantly, we established that 2-15-hydroxyeicosatetraenoic acid (HETE) ether-LPC sn-1 esterification is markedly activated by thrombin treatment of murine platelets to generate oxidized PC. Collectively, these findings demonstrate the enantiomeric specificity and saturated acyl-CoA selectivity of microsomal sn-1 acyltransferase(s) and reveal its participation in a previously uncharacterized pathway for the synthesis of oxidized phospholipids with cell-signaling properties.
Collapse
Affiliation(s)
- Gao-Yuan Liu
- From the Department of Chemistry, Washington University, Saint Louis, Missouri 63130 and.,Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine
| | - Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine
| | | | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine
| | - Richard W Gross
- From the Department of Chemistry, Washington University, Saint Louis, Missouri 63130 and .,Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine.,Developmental Biology, and.,Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
27
|
Phospholipid membranes drive abdominal aortic aneurysm development through stimulating coagulation factor activity. Proc Natl Acad Sci U S A 2019; 116:8038-8047. [PMID: 30944221 PMCID: PMC6475397 DOI: 10.1073/pnas.1814409116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a disease of the abdominal aorta where inflammation causes damage and can ultimately lead to rupture. When this happens, uncontrolled internal bleeding can lead to death within minutes. Many aneurysms are not detected until they rupture, and for those that are, treatments to stop them progressing are limited. Here we used biophysics and genetically modified mice to show that a new family of lipids (fats) made by circulating blood cells promote AAA formation in the vessel wall because they directly regulate blood clotting. An approach that prevents AAA development was identified, based on intravenous administration of lipids. The studies provide insights into how AAA develops and may lead to novel therapies for this disease. Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to ApoE−/− mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes (Alox12 or Alox15) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. Alox-deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that Alox deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with ApoE−/− deletion, and many were absent in Alox−/− mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.
Collapse
|
28
|
Tarancon-Diez L, Rodríguez-Gallego E, Rull A, Peraire J, Viladés C, Portilla I, Jimenez-Leon MR, Alba V, Herrero P, Leal M, Ruiz-Mateos E, Vidal F. Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine 2019; 42:86-96. [PMID: 30879922 PMCID: PMC6491381 DOI: 10.1016/j.ebiom.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 25% of elite controllers (ECs) lose their virological control by mechanisms that are only partially known. Recently, immunovirological and proteomic factors have been associated to the loss of spontaneous control. Our aim was to perform a metabolomic approach to identify the underlying mechanistic pathways and potential biomarkers associated with this loss of control. METHODS Plasma samples from EC who spontaneously lost virological control (Transient Controllers, TC, n = 8), at two and one year before the loss of control, were compared with a control group of EC who persistently maintained virological control during the same follow-up period (Persistent Controllers, PC, n = 8). The determination of metabolites and plasma lipids was performed by GC-qTOF and LC-qTOF using targeted and untargeted approaches. Metabolite levels were associated with the polyfunctionality of HIV-specific CD8+T-cell response. FINDINGS Our data suggest that, before the loss of control, TCs showed a specific circulating metabolomic profile characterized by aerobic glycolytic metabolism, deregulated mitochondrial function, oxidative stress and increased immunological activation. In addition, CD8+ T-cell polyfunctionality was strongly associated with metabolite levels. Finally, valine was the main differentiating factor between TCs and PCs. INTERPRETATION All these metabolomic differences should be considered not only as potential biomarkers but also as therapeutic targets in HIV infection. FUND: This work was supported by grants from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondos FEDER; Red de Investigación en Sida, Gilead Fellowship program, Spanish Ministry of Education and Spanish Ministry of Economy and Competitiveness.
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Esther Rodríguez-Gallego
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Rull
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joaquim Peraire
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Consuelo Viladés
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Irene Portilla
- Infectious Diseases, Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL - FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - María Reyes Jimenez-Leon
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Verónica Alba
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Manuel Leal
- Servicio de Medicina Interna, Hospital Viamed Santa Ángela de la Cruz, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain.
| | - Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
29
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|
30
|
O'Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci Signal 2019; 12:12/574/eaau2293. [PMID: 30914483 DOI: 10.1126/scisignal.aau2293] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatically oxidized phospholipids (eoxPLs) are formed through regulated processes by which eicosanoids or prostaglandins are attached to phospholipids (PLs) in immune cells. These eoxPLs comprise structurally diverse families of biomolecules with potent bioactivities, and they have important immunoregulatory roles in both health and disease. The formation of oxPLs through enzymatic pathways and their signaling capabilities are emerging concepts. This paradigm is changing our understanding of eicosanoid, prostaglandin, and PL biology in health and disease. eoxPLs have roles in cellular events such as ferroptosis, apoptosis, and blood clotting and diseases such as arthritis, diabetes, and cardiovascular disease. They are increasingly recognized as endogenous bioactive mediators and potential targets for drug development. This review will describe recent evidence that places eoxPLs and their biosynthetic pathways center stage in immunoregulation.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK.
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) 91054, Erlangen, Germany
| |
Collapse
|
31
|
Quehenberger O, Dahlberg-Wright S, Jiang J, Armando AM, Dennis EA. Quantitative determination of esterified eicosanoids and related oxygenated metabolites after base hydrolysis. J Lipid Res 2018; 59:2436-2445. [PMID: 30323111 DOI: 10.1194/jlr.d089516] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Eicosanoids and related metabolites (oxylipins) possess potent signaling properties, elicit numerous important physiologic responses, and serve as biomarkers of disease. In addition to their presence in free form, a considerable portion of these bioactive lipids is esterified to complex lipids in cell membranes and plasma lipoproteins. We developed a rapid and sensitive method for the analysis of esterified oxylipins using alkaline hydrolysis to release them followed by ultra-performance LC coupled with mass spectrometric analysis. Detailed evaluation of the data revealed that several oxylipins are susceptible to alkaline-induced degradation. Nevertheless, of the 136 metabolites we examined, 56 were reproducibly recovered after alkaline hydrolysis. We classified those metabolites that were resistant to alkaline-induced degradation and applied this methodology to quantify metabolite levels in a macrophage cell model and in plasma of healthy subjects. After alkaline hydrolysis of lipids, 34 metabolites could be detected and quantified in resting and activated macrophages, and 38 metabolites were recovered from human plasma at levels that were substantially greater than in free form. By carefully selecting internal standards and taking the observed experimental limitations into account, we established a robust method that can be reliably employed for the measurement of esterified oxylipins in biological samples.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Departments of Medicine,University of California at San Diego, La Jolla, CA 92093-0601 .,Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Signe Dahlberg-Wright
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Jiang Jiang
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Aaron M Armando
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Edward A Dennis
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601 .,Departments of Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601
| |
Collapse
|
32
|
Snodgrass RG, Zezina E, Namgaladze D, Gupta S, Angioni C, Geisslinger G, Lütjohann D, Brüne B. A Novel Function for 15-Lipoxygenases in Cholesterol Homeostasis and CCL17 Production in Human Macrophages. Front Immunol 2018; 9:1906. [PMID: 30197642 PMCID: PMC6117383 DOI: 10.3389/fimmu.2018.01906] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023] Open
Abstract
Arachidonate 15-lipoxygenase (ALOX15) and arachidonate 15-lipoxygenase, type B (ALOX15B) catalyze the dioxygenation of polyunsaturated fatty acids and are upregulated in human alternatively activated macrophages (AAMs) induced by Th2 cytokine interleukin-4 (IL-4) and/or interleukin-13. Known primarily for roles in bioactive lipid mediator synthesis, 15-lipoxygenases (15-LOXs) have been implicated in various macrophage functions including efferocytosis and ferroptosis. Using a combination of inhibitors and siRNAs to suppress 15-LOX isoforms, we studied the role of 15-LOXs in cellular cholesterol homeostasis and immune function in naïve and AAMs. Silencing or inhibiting the 15-LOX isoforms impaired sterol regulatory element binding protein (SREBP)-2 signaling by inhibiting SREBP-2 processing into mature transcription factor and reduced SREBP-2 binding to sterol regulatory elements and subsequent target gene expression. Silencing ALOX15B reduced cellular cholesterol and the cholesterol intermediates desmosterol, lanosterol, 24,25-dihydrolanosterol, and lathosterol as well as oxysterols in IL-4-stimulated macrophages. In addition, attenuating both 15-LOX isoforms did not generally affect IL-4 gene expression but rather uniquely impacted IL-4-induced CCL17 production in an SREBP-2-dependent manner resulting in reduced T cell migration to macrophage conditioned media. In conclusion, we identified a novel role for ALOX15B, and to a lesser extent ALOX15, in cholesterol homeostasis and CCL17 production in human macrophages.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ekaterina Zezina
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Sahil Gupta
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Carlo Angioni
- ZAFES/Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- ZAFES/Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
33
|
Higgins CB, Zhang Y, Mayer AL, Fujiwara H, Stothard AI, Graham MJ, Swarts BM, DeBosch BJ. Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARγ. JCI Insight 2018; 3:120794. [PMID: 30135298 PMCID: PMC6141168 DOI: 10.1172/jci.insight.120794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
The hepatic glucose fasting response is gaining traction as a therapeutic pathway to enhance hepatic and whole-host metabolism. However, the mechanisms underlying these metabolic effects remain unclear. Here, we demonstrate the epidermal-type lipoxygenase, eLOX3 (encoded by its gene, Aloxe3), is a potentially novel effector of the therapeutic fasting response. We show that Aloxe3 is activated during fasting, glucose withdrawal, or trehalose/trehalose analogue treatment. Hepatocyte-specific Aloxe3 expression reduced weight gain and hepatic steatosis in diet-induced and genetically obese (db/db) mouse models. Aloxe3 expression, moreover, enhanced basal thermogenesis and abrogated insulin resistance in db/db diabetic mice. Targeted metabolomics demonstrated accumulation of the PPARγ ligand 12-KETE in hepatocytes overexpressing Aloxe3. Strikingly, PPARγ inhibition reversed hepatic Aloxe3–mediated insulin sensitization, suppression of hepatocellular ATP production and oxygen consumption, and gene induction of PPARγ coactivator-1α (PGC1α) expression. Moreover, hepatocyte-specific PPARγ deletion reversed the therapeutic effect of hepatic Aloxe3 expression on diet-induced insulin intolerance. Aloxe3 is, therefore, a potentially novel effector of the hepatocellular fasting response that leverages both PPARγ-mediated and pleiotropic effects to augment hepatic and whole-host metabolism, and it is, thus, a promising target to ameliorate metabolic disease. The lipoxygenase ALOXE3 is an effector of the hepatic fasting response that improves insulin sensitivity by activating hepatic PPARγ.
Collapse
Affiliation(s)
| | | | | | - Hideji Fujiwara
- Department of Medicine, Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alicyn I Stothard
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, Michigan, USA
| | | | - Benjamin M Swarts
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Brian J DeBosch
- Department of Pediatrics and.,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Kono N, Arai H. Platelet-activating factor acetylhydrolases: An overview and update. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:922-931. [PMID: 30055287 DOI: 10.1016/j.bbalip.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/22/2023]
Abstract
Platelet-activating factor acetylhydrolases (PAF-AHs) are unique members of the phospholipase A2 family that can hydrolyze the acetyl group of PAF, a signaling phospholipid that has roles in diverse (patho)physiological processes. Three types of PAF-AH have been identified in mammals, one plasma type and two intracellular types [PAF-AH (I) and PAF-AH (II)]. Plasma PAF-AH and PAF-AH (II) are monomeric enzymes that are structurally similar, while PAF-AH (I) is a multimeric enzyme with no homology to other PAF-AHs. PAF-AH (I) shows a strong preference for an acetyl group, whereas plasma PAF-AH and PAF-AH (II) also hydrolyze phospholipids with oxidatively modified fatty acids. Plasma PAF-AH has been implicated in several diseases including cardiovascular disease. PAF-AH (I) is required for spermatogenesis and is increasingly recognized as an oncogenic factor. PAF-AH (II) was recently shown to act as a bioactive lipid-producing enzyme in mast cells and thus could be a drug target for allergic diseases. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan.
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| |
Collapse
|
35
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
36
|
O'Donnell VB, Rossjohn J, Wakelam MJ. Phospholipid signaling in innate immune cells. J Clin Invest 2018; 128:2670-2679. [PMID: 29683435 DOI: 10.1172/jci97944] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phospholipids comprise a large body of lipids that define cells and organelles by forming membrane structures. Importantly, their complex metabolism represents a highly controlled cellular signaling network that is essential for mounting an effective innate immune response. Phospholipids in innate cells are subject to dynamic regulation by enzymes, whose activities are highly responsive to activation status. Along with their metabolic products, they regulate multiple aspects of innate immune cell biology, including shape change, aggregation, blood clotting, and degranulation. Phospholipid hydrolysis provides substrates for cell-cell communication, enables regulation of hemostasis, immunity, thrombosis, and vascular inflammation, and is centrally important in cardiovascular disease and associated comorbidities. Phospholipids themselves are also recognized by innate-like T cells, which are considered essential for recognition of infection or cancer, as well as self-antigens. This Review describes the major phospholipid metabolic pathways present in innate immune cells and summarizes the formation and metabolism of phospholipids as well as their emerging roles in cell biology and disease.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jamie Rossjohn
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, and.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
37
|
Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, Dul M, Garcia-Diaz Y, Aldrovandi M, Heurich M, Hall J, Morrissey JH, Lacroix-Desmazes S, Delignat S, Jenkins PV, Collins PW, O'Donnell VB. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight 2018; 3:98459. [PMID: 29563336 PMCID: PMC5926910 DOI: 10.1172/jci.insight.98459] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell–derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid–phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed. Innate immune-derived enzymatically oxidized phospholipids enhance calcium-dependent coagulation factor function.
Collapse
Affiliation(s)
- David A Slatter
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Charles L Percy
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Keith Allen-Redpath
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Joshua M Gajsiewicz
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nick J Brooks
- Faculty of Natural Science, Department of Chemistry, Imperial College London, London, United Kingdom
| | - Aled Clayton
- Institute of Cancer and Genetics, Velindre Cancer Centre, School of Medicine, and
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Sarah N Lauder
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Andrew Watson
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Maria Dul
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yoel Garcia-Diaz
- School of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Meike Heurich
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Judith Hall
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - James H Morrissey
- Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - P Vincent Jenkins
- Haematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Peter W Collins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
38
|
Lu H, Zhang L, Zhao H, Li J, You H, Jiang L, Hu J. Activation of Macrophages in vitro by Phospholipids from Brain of Katsuwonus pelamis (Skipjack Tuna). J Oleo Sci 2018; 67:327-333. [PMID: 29459514 DOI: 10.5650/jos.ess17181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biological activities of phospholipids (PLs) have attracted people's attention, especially marine phospholipids with omega-3 polyunsaturated fatty acids DHA and EPA. In this study, we investigated the immunity activation of macrophages in vitro by phospholipids from skipjack brain. The phospholipids were extracted with hexane and ethanol ultrasonication instead of the traditional method of methanol and chloroform. The content of phospholipids from Skipjack brain was 19.59 g/kg by the method (the ratio of hexane and ethanol 2:1, 40 min, 35°C, 1:9 of the ratio of material to solvent, ultrasonic power 300W, ultrasonic extraction 2 times). The RAW264.7 macrophages were stimulated by the phospholipids from the Skipjack, by which the volume, viability and phagocytosis of macrophages were increased. The concentration of NO and the activity of SOD of the cells were also enhanced. The gene expressions of IL-1β, IL-6, iNOS and TNF-α mRNA assayed by RT-PCR were up-regulated. Phospholipids from brain of Skipjack Tuna could activate macrophages immunity which displayed to induce pro-inflammatroy cytokines mRNA expression.
Collapse
Affiliation(s)
- Hang Lu
- College of Food Science and Engineering, Dalian Ocean University
| | - Li Zhang
- College of Food Science and Engineering, Dalian Ocean University
| | - Hui Zhao
- College of Food Science and Engineering, Dalian Ocean University
| | - Jingjing Li
- College of Food Science and Engineering, Dalian Ocean University
| | - Hailin You
- College of Food Science and Engineering, Dalian Ocean University
| | - Lu Jiang
- College of Food Science and Engineering, Dalian Ocean University
| | - Jianen Hu
- College of Food Science and Engineering, Dalian Ocean University.,Fujian Province Key Laboratory for the Department of Bioactive Material from Marine Algae
| |
Collapse
|
39
|
Colombo S, Coliva G, Kraj A, Chervet JP, Fedorova M, Domingues P, Domingues MR. Electrochemical oxidation of phosphatidylethanolamines studied by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:223-233. [PMID: 29282829 DOI: 10.1002/jms.4056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Giulia Coliva
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
40
|
Regulated Cell Death. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123501 DOI: 10.1007/978-3-319-78655-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this chapter, the various subroutines of regulated cell death are neatly described by highlighting apoptosis and subforms of regulated necrosis such as necroptosis, ferroptosis, pyroptosis, and NETosis. Typically, all forms of regulated necrosis are defined by finite rupture of the plasma cell membrane. Apoptosis is characterized by an enzymatic machinery that consists of caspases which cause the morphologic features of this type of cell death. Mechanistically, apoptosis can be instigated by two major cellular signalling pathways: an intrinsic pathway that is initiated inside cells by mitochondrial release of pro-apoptotic factors or an extrinsic pathway that is initiated at the cell surface by various death receptors. In necroptosis, the biochemical processes are distinct from those found in apoptosis; in particular, there is no caspase activation. As such, necroptosis is a kinase-mediated cell death that relies on “receptor-interacting protein kinase 3” which mediates phosphorylation of the pseudokinase “mixed lineage kinase domain-like protein.” While ferroptosis is an iron-dependent, oxidative form of regulated necrosis that is biochemically characterized by accumulation of ROS from iron metabolism, oxidase activity, and lipid peroxidation products, pyroptosis is defined as a form of cell death (predominantly of phagocytes) that develops during inflammasome activation and is executed by caspase-mediated cleavage of the pore-forming protein gasdermin D. Finally, NETosis refers to a regulated death of neutrophils that is characterized by the release of chromatin-derived weblike structures released into the extracellular space. The chapter ends up with a discussion on the characteristic feature of regulated necrosis: the passive release of large amounts of constitutive DAMPs as a consequence of final plasma membrane rupture as well as the active secretion of inducible DAMPs earlier during the dying process. Notably, per cell death subroutine, the active secretion of inducible DAMPs varies, thereby determining different immunogenicity of dying cells.
Collapse
|
41
|
Lauder SN, Allen-Redpath K, Slatter DA, Aldrovandi M, O'Connor A, Farewell D, Percy CL, Molhoek JE, Rannikko S, Tyrrell VJ, Ferla S, Milne GL, Poole AW, Thomas CP, Obaji S, Taylor PR, Jones SA, de Groot PG, Urbanus RT, Hörkkö S, Uderhardt S, Ackermann J, Vince Jenkins P, Brancale A, Krönke G, Collins PW, O'Donnell VB. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Sci Signal 2017; 10:10/507/eaan2787. [PMID: 29184033 DOI: 10.1126/scisignal.aan2787] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood coagulation functions as part of the innate immune system by preventing bacterial invasion, and it is critical to stopping blood loss (hemostasis). Coagulation involves the external membrane surface of activated platelets and leukocytes. Using lipidomic, genetic, biochemical, and mathematical modeling approaches, we found that enzymatically oxidized phospholipids (eoxPLs) generated by the activity of leukocyte or platelet lipoxygenases (LOXs) were required for normal hemostasis and promoted coagulation factor activities in a Ca2+- and phosphatidylserine (PS)-dependent manner. In wild-type mice, hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) enhanced coagulation and restored normal hemostasis in clotting-deficient animals genetically lacking p12-LOX or 12/15-LOX activity. Murine platelets generated 22 eoxPL species, all of which were missing in the absence of p12-LOX. Humans with the thrombotic disorder antiphospholipid syndrome (APS) had statistically significantly increased HETE-PLs in platelets and leukocytes, as well as greater HETE-PL immunoreactivity, than healthy controls. HETE-PLs enhanced membrane binding of the serum protein β2GP1 (β2-glycoprotein 1), an event considered central to the autoimmune reactivity responsible for APS symptoms. Correlation network analysis of 47 platelet eoxPL species in platelets from APS and control subjects identified their enzymatic origin and revealed a complex network of regulation, with the abundance of 31 p12-LOX-derived eoxPL molecules substantially increased in APS. In summary, circulating blood cells generate networks of eoxPL molecules, including HETE-PLs, which change membrane properties to enhance blood coagulation and contribute to the excessive clotting and immunoreactivity of patients with APS.
Collapse
Affiliation(s)
- Sarah N Lauder
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Keith Allen-Redpath
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - David A Slatter
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Anne O'Connor
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Daniel Farewell
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Charles L Percy
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Jessica E Molhoek
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Sirpa Rannikko
- Department of Medical Microbiology and Immunology, Research Unit of Biomedicine, Finland and Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90220, Finland.,Nordlab Oulu, University Hospital, Oulu 90220, Finland
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Salvatore Ferla
- Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Alastair W Poole
- School of Physiology, Pharmacy and Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christopher P Thomas
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Samya Obaji
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Simon A Jones
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Phillip G de Groot
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Rolf T Urbanus
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Center Utrecht, Utrecht 3584 CX, Netherlands
| | - Sohvi Hörkkö
- Department of Medical Microbiology and Immunology, Research Unit of Biomedicine, Finland and Medical Research Center, University of Oulu, P.O. Box 5000, Oulu 90220, Finland.,Nordlab Oulu, University Hospital, Oulu 90220, Finland
| | - Stefan Uderhardt
- Department of Internal Medicine and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Jochen Ackermann
- Department of Internal Medicine and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - P Vince Jenkins
- Institute of Molecular Medicine, St James's Hospital, Dublin, Ireland
| | - Andrea Brancale
- Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Gerhard Krönke
- Department of Internal Medicine and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Peter W Collins
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. .,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. .,Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
42
|
Reis A. Oxidative Phospholipidomics in health and disease: Achievements, challenges and hopes. Free Radic Biol Med 2017; 111:25-37. [PMID: 28088624 DOI: 10.1016/j.freeradbiomed.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Phospholipid peroxidation products are recognized as important bioactive lipid mediators playing an active role as modulators in signalling events in inflammation, immunity and infection. The biochemical responses are determined by the oxidation structural features present in oxPL modulating biophysical and biological properties in model membranes and lipoproteins. In spite of the extensive work conducted with model systems over the last 20 years, the study of oxPL in biological systems has virtually stagnated. In fact, very little is known concerning the predominant oxPL in fluids and tissues, their basal levels, and any variations introduced with age, gender and ethnicity in health and disease. In consequence, knowledge on oxPL has not yet translated into clinical diagnostic, in the early and timely diagnosis of "silent" diseases such as atherosclerosis and cardiovascular diseases, or as prognosis tools in disease stratification and particularly useful in the context of multimorbidities. Their use as therapeutic solutions or the development of innovative functional biomaterials remains to be explored. This review summarizes the achievements made in the identification of oxPL revealing an enormous structural diversity. A brief overview of the challenges associated with the analysis of such diverse array of products is given and a critical evaluation on key aspects in the analysis pipeline that need to be addressed. Once these issues are addressed, Oxidative Phospholipidomics will hopefully lead to major breakthrough discoveries in biochemistry, pharmaceutical, and clinical areas for the upcoming 20 years. This article is part of Special Issue entitled 4-Hydroxynonenal and Related Lipid Oxidation Products.
Collapse
Affiliation(s)
- Ana Reis
- Mass Spectrometry Centre, Department of Chemistry, Campus Santiago, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
43
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
44
|
Contursi A, Sacco A, Grande R, Dovizio M, Patrignani P. Platelets as crucial partners for tumor metastasis: from mechanistic aspects to pharmacological targeting. Cell Mol Life Sci 2017; 74:3491-3507. [PMID: 28488110 PMCID: PMC11107532 DOI: 10.1007/s00018-017-2536-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/08/2023]
Abstract
Platelets are anucleated cells that circulate in the blood as sentinels of tissue integrity. In fact, they are rich in a plethora of proteins and other factors stored in different granules which they selectively release upon stimulation. Moreover, platelets synthesize a vast number of lipids and release various types of vesicles, including exosomes which are rich in genetic material. Platelets possess a central function to interact with other cell types, including inflammatory cells and cancer cells. Recent findings have enlightened the capacity of platelets to induce changes in the phenotype of cancer cells which acquire invasiveness thus enhancing their metastatic potential. Thus, it has been hypothesized that targeting the platelet may represent a novel strategy to prevent the development and progression of cancer. This is supported by the efficacy of the antiplatelet agent low-dose aspirin. Studies are ongoing to verify whether other antiplatelet agents share the anticancer effectiveness of aspirin.
Collapse
Affiliation(s)
- Annalisa Contursi
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Angela Sacco
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosalia Grande
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Melania Dovizio
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy
| | - Paola Patrignani
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, and CeSI-MeT (Centro Scienze dell' Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
45
|
Mesaros C, Arroyo AD, Blair IA, Snyder NW. Coenzyme A thioester formation of 11- and 15-oxo-eicosatetraenoic acid. Prostaglandins Other Lipid Mediat 2017; 130:1-7. [PMID: 28238887 PMCID: PMC5446925 DOI: 10.1016/j.prostaglandins.2017.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Release of arachidonic acid (AA) by cytoplasmic phospholipase A2 (cPLA2), followed by metabolism through cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH), results in the formation of the eicosanoids 11-oxo- and 15-oxo-eicosatetraenoic acid (oxo-ETE). Both 11-oxo- and 15-oxo-ETE have been identified in human biospecimens but their function and further metabolism is poorly described. The oxo-ETEs contain an α,β-unsaturated ketone and a free carboxyclic acid, and thus may form Michael adducts with a nucleophile or a thioester with the free thiol of Coenzyme A (CoA). To examine the potential for eicosanoid-CoA formation, which has not previously been a metabolic route examined for this class of lipids, we applied a semi-targeted neutral loss scanning approach following arachidonic acid treatment in cell culture and detected inducible long-chain acyl-CoAs including a predominant AA-CoA peak. Interestingly, a series of AA-inducible acyl-CoAs at lower abundance but higher mass, likely corresponding to eicosanoid metabolites, was detected. Using a targeted LC-MS/MS approach we detected the formation of CoA thioesters of both 11-oxo- and 15-oxo-ETE and monitored the kinetics of their formation. Subsequently, we demonstrated that these acyl-CoA species undergo up to four double bond reductions. We confirmed the generation of 15-oxo-ETE-CoA in human platelets via LC-high resolution MS. Acyl-CoA thioesters of eicosanoids may provide a route to generate reducing equivalents, substrates for fatty acid oxidation, and substrates for acyl-transferases through cPLA2-dependent eicosanoid metabolism outside of the signaling contexts traditionally ascribed to eicosanoid metabolites.
Collapse
Affiliation(s)
- Clementina Mesaros
- Penn SRP and Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alejandro D Arroyo
- Penn SRP and Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ian A Blair
- Penn SRP and Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
46
|
O'Donnell VB, Murphy RC. Directing eicosanoid esterification into phospholipids. J Lipid Res 2017; 58:837-839. [PMID: 28242788 DOI: 10.1194/jlr.c075986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CV14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO
| |
Collapse
|
47
|
Lauder SN, Tyrrell VJ, Allen-Redpath K, Aldrovandi M, Gray D, Collins P, Jones SA, Taylor PR, O'Donnell V. Myeloid 12/15-LOX regulates B cell numbers and innate immune antibody levels in vivo. Wellcome Open Res 2017; 2:1. [PMID: 28239665 PMCID: PMC5321417 DOI: 10.12688/wellcomeopenres.10308.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background. The myeloid enzyme 12/15-lipoxygenase (LOX), which generates bioactive oxidized lipids, has been implicated in numerous inflammatory diseases, with several studies demonstrating an improvement in pathology in mice lacking the enzyme. However, the ability of 12/15-LOX to directly regulate B cell function has not been studied. Methods. The influence of 12/15-LOX on B cell phenotype and function, and IgM generation, was compared using wildtype (WT) and 12/15-LOX (
Alox15-/-) deficient mice. The proliferative and functional capacity of splenic CD19
+ B cells was measured
in vitro in response to various toll-like receptor agonists. Results. WT and
Alox15-/- displayed comparable responses. However
in vivo, splenic B cell numbers were significantly elevated in
Alox15-/- mice with a corresponding elevation in titres of total IgM in lung, gut and serum, and lower serum IgM directed against the 12/15-LOX product, 12-hydroxyeicosatetraenoic acid-phosphatidylethanolamine (HETE-PE). Discussion. Myeloid 12/15-LOX can regulate B cell numbers and innate immune antibody levels
in vivo, potentially contributing to its ability to regulate inflammatory disease. Furthermore, the alterations seen in 12/15-LOX deficiency likely result from changes in the equilibrium of the immune system that develop from birth. Further studies in disease models are warranted to elucidate the contribution of 12/15-LOX mediated alterations in B cell numbers and innate immune antibody generation to driving inflammation
in vivo.
Collapse
Affiliation(s)
- Sarah N Lauder
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Keith Allen-Redpath
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - David Gray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Peter Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Simon A Jones
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Valerie O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.,Institute of Infection & Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
48
|
Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayır H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017; 13:81-90. [PMID: 27842066 PMCID: PMC5506843 DOI: 10.1038/nchembio.2238] [Citation(s) in RCA: 1902] [Impact Index Per Article: 237.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Germany
- Department of Chemistry, University of Pittsburgh, Germany
- Department of Radiation Oncology, University of Pittsburgh, Germany
| | - Gaowei Mao
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Feng Qu
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | | | - Sebastian Doll
- Department of Helmholtz Zentrum München, Institute of Developmental Genetics, Germany
| | | | - Haider Hussain Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Bing Liu
- Department of Computational and Systems Biology, University of Pittsburgh, New York
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Vladimir B. Ritov
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Alexandr A. Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Dariush Mohammadyani
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Qin Yang
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Bettina Proneth
- Department of Helmholtz Zentrum München, Institute of Developmental Genetics, Germany
| | | | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, New York
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, New York
| | - Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Germany
| | | | - Brent R. Stockwell
- Department of Biological Sciences and Chemistry, Columbia University, New York
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
| | - Marcus Conrad
- Department of Helmholtz Zentrum München, Institute of Developmental Genetics, Germany
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Germany
- Department of Critical Care Medicine, University of Pittsburgh, New York
| |
Collapse
|
49
|
Abstract
Ageing, infections and inflammation result in oxidative stress that can irreversibly damage cellular structures. The oxidative damage of lipids in membranes or lipoproteins is one of these deleterious consequences that not only alters lipid function but also leads to the formation of neo-self epitopes - oxidation-specific epitopes (OSEs) - which are present on dying cells and damaged proteins. OSEs represent endogenous damage-associated molecular patterns that are recognized by pattern recognition receptors and the proteins of the innate immune system, and thereby enable the host to sense and remove dangerous biological waste and to maintain homeostasis. If this system is dysfunctional or overwhelmed, the accumulation of OSEs can trigger chronic inflammation and the development of diseases, such as atherosclerosis and age-related macular degeneration. Understanding the molecular components and mechanisms that are involved in this process will help to identify individuals with an increased risk of developing chronic inflammation, and will also help to indicate novel modes of therapeutic intervention.
Collapse
|
50
|
Anthonymuthu TS, Kenny EM, Bayır H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res 2016; 1640:57-76. [PMID: 26872597 PMCID: PMC4870119 DOI: 10.1016/j.brainres.2016.02.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Lipid peroxidation can be broadly defined as the process of inserting a hydroperoxy group into a lipid. Polyunsaturated fatty acids present in the phospholipids are often the targets for peroxidation. Phospholipids are indispensable for normal structure of membranes. The other important function of phospholipids stems from their role as a source of lipid mediators - oxygenated free fatty acids that are derived from lipid peroxidation. In the CNS, excessive accumulation of either oxidized phospholipids or oxygenated free fatty acids may be associated with damage occurring during acute brain injury and subsequent inflammatory responses. There is a growing body of evidence that lipid peroxidation occurs after severe traumatic brain injury in humans and correlates with the injury severity and mortality. Identification of the products and sources of lipid peroxidation and its enzymatic or non-enzymatic nature is essential for the design of mechanism-based therapies. Recent progress in mass spectrometry-based lipidomics/oxidative lipidomics offers remarkable opportunities for quantitative characterization of lipid peroxidation products, providing guidance for targeted development of specific therapeutic modalities. In this review, we critically evaluate previous attempts to use non-specific antioxidants as neuroprotectors and emphasize new approaches based on recent breakthroughs in understanding of enzymatic mechanisms of lipid peroxidation associated with specific death pathways, particularly apoptosis. We also emphasize the role of different phospholipases (calcium-dependent and -independent) in hydrolysis of peroxidized phospholipids and generation of pro- and anti-inflammatory lipid mediators. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- Tamil Selvan Anthonymuthu
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elizabeth Megan Kenny
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA; Childrens׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|