1
|
Xie L, Zhang H, Xu L. The Role of Eosinophils in Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101413. [PMID: 39349246 PMCID: PMC11719855 DOI: 10.1016/j.jcmgh.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previously, eosinophils were primarily regarded as effector toxic cells involved in allergic diseases and parasitic infections. Nevertheless, new research has shown that eosinophils are diverse and essential for immune regulation and tissue homeostasis. Their functional plasticity has been observed in patients with inflammatory diseases, cancer, infections, and other disorders. Although eosinophils are infrequently observed within the liver during periods of homeostasis, they are recruited to the liver in various liver diseases, including liver parasitosis, acute liver injury, autoimmune liver disease, and hepatocellular carcinoma. Furthermore, eosinophils have demonstrated the capacity to promote liver regeneration. This article explores the multifaceted roles of eosinophils in liver diseases, aiming to provide insights that could lead to more effective clinical therapies for these conditions.
Collapse
Affiliation(s)
- Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Masuda MY, Pyon GC, Luo H, LeSuer WE, Putikova A, Dao A, Ortiz DR, Schulze AR, Fritz N, Kobayashi T, Iijima K, Klein-Szanto AJ, Shimonosono M, Flashner S, Morimoto M, Pai RK, Rank MA, Nakagawa H, Kita H, Wright BL, Doyle AD. Epithelial overexpression of IL-33 induces eosinophilic esophagitis dependent on IL-13. J Allergy Clin Immunol 2024; 153:1355-1368. [PMID: 38310974 PMCID: PMC11070306 DOI: 10.1016/j.jaci.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.
Collapse
Affiliation(s)
- Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, and Mayo Clinic Arizona, Scottsdale, Ariz
| | - Grace C Pyon
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Huijun Luo
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - William E LeSuer
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Arina Putikova
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Adelyn Dao
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Danna R Ortiz
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Aliviya R Schulze
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Nicholas Fritz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Ariz
| | - Takao Kobayashi
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Koji Iijima
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | | | - Masataka Shimonosono
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Masaki Morimoto
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Rish K Pai
- Division of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, and Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
3
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
4
|
Shen K, Zhang M, Zhao R, Li Y, Li C, Hou X, Sun B, Liu B, Xiang M, Lin J. Eosinophil extracellular traps in asthma: implications for pathogenesis and therapy. Respir Res 2023; 24:231. [PMID: 37752512 PMCID: PMC10523707 DOI: 10.1186/s12931-023-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Asthma is a common, chronic inflammatory disease of the airways that affects millions of people worldwide and is associated with significant healthcare costs. Eosinophils, a type of immune cell, play a critical role in the development and progression of asthma. Eosinophil extracellular traps (EETs) are reticular structures composed of DNA, histones, and granulins that eosinophils form and release into the extracellular space as part of the innate immune response. EETs have a protective effect by limiting the migration of pathogens and antimicrobial activity to a controlled range. However, chronic inflammation can lead to the overproduction of EETs, which can trigger and exacerbate allergic asthma. In this review, we examine the role of EETs in asthma.
Collapse
Affiliation(s)
- Kunlu Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Zhang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiheng Zhao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiao Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xin Hou
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Bingqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Xiang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
- Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
David C, Hamel Y, Smahi A, Diot E, Benhamou Y, Girszyn N, Le Gallou T, Lifermann F, Godmer P, Maurier F, Cottin V, Grados A, Aumaitre O, Néel A, Pugnet G, Masson C, Puéchal X, Mouthon L, Guillevin L, Bienvenu T, Terrier B. Identification of EPX Variants in Human Eosinophilic Granulomatosis With Polyangiitis (Churg-Strauss). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1960-1963.e3. [PMID: 36868475 DOI: 10.1016/j.jaip.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Affiliation(s)
- Clémence David
- Service de Médecine Interne, Hôpital Cochin, Paris, France; Centre de Référence National des Maladies Auto-Immunes et Systémiques Rares, Hôpital Cochin, Paris, France
| | - Yamina Hamel
- INSERM, UMR 1163, Imagine Institute, Paris, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Asma Smahi
- INSERM, UMR 1163, Imagine Institute, Paris, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cite, Paris, France
| | - Elisabeth Diot
- Service de Médecine Interne, Hôpital Bretonneau, Tours, France
| | - Ygal Benhamou
- Service de Médecine Interne, CHU de Rouen, Rouen, France
| | | | | | - François Lifermann
- Service de Médecine Interne, Centre Hospitalier Dax-Côte d'Argent, Dax, France
| | - Pascal Godmer
- Service de Médecine Interne, CH Bretagne Atlantique, Vannes, France
| | | | - Vincent Cottin
- Service de Pneumologie, Hôpital Louis Pradel, Lyon, France
| | - Aurélie Grados
- Service de Médecine Interne, Centre Hospitalier de Niort, Niort, France
| | - Olivier Aumaitre
- Service de Médecine Interne, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Antoine Néel
- Service de Médecine Interne, CHU de Nantes, Nantes, France
| | - Grégory Pugnet
- Service de Médecine Interne, CHU Toulouse Purpan, Toulouse, France
| | - Cecile Masson
- Plateforme de Bioinformatique, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Xavier Puéchal
- Service de Médecine Interne, Hôpital Cochin, Paris, France; Centre de Référence National des Maladies Auto-Immunes et Systémiques Rares, Hôpital Cochin, Paris, France
| | - Luc Mouthon
- Service de Médecine Interne, Hôpital Cochin, Paris, France; Centre de Référence National des Maladies Auto-Immunes et Systémiques Rares, Hôpital Cochin, Paris, France
| | - Loïc Guillevin
- Service de Médecine Interne, Hôpital Cochin, Paris, France; Centre de Référence National des Maladies Auto-Immunes et Systémiques Rares, Hôpital Cochin, Paris, France
| | - Thierry Bienvenu
- Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, Paris, France
| | - Benjamin Terrier
- Service de Médecine Interne, Hôpital Cochin, Paris, France; Centre de Référence National des Maladies Auto-Immunes et Systémiques Rares, Hôpital Cochin, Paris, France.
| |
Collapse
|
6
|
Marongiu M, Pérez-Mejías G, Orrù V, Steri M, Sidore C, Díaz-Quintana A, Mulas A, Busonero F, Maschio A, Walter K, Tardaguila M, Akbari P, Soranzo N, Fiorillo E, Gorospe M, Schlessinger D, Díaz-Moreno I, Cucca F, Zoledziewska M. GWAS of genetic factors affecting white blood cell morphological parameters in Sardinians uncovers influence of chromosome 11 innate immunity gene cluster on eosinophil morphology. Hum Mol Genet 2023; 32:790-797. [PMID: 36136759 PMCID: PMC9941829 DOI: 10.1093/hmg/ddac238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.
Collapse
Affiliation(s)
- Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ)- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-CSIC, 41092 Sevilla, Spain
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ)- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-CSIC, 41092 Sevilla, Spain
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Klaudia Walter
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, Cambridge, UK
| | - Manuel Tardaguila
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, Cambridge, UK
| | - Parsa Akbari
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge CB1 8RN, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge CB1 8RN, UK
| | - Nicole Soranzo
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge CB1 8RN, UK
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB2 0QQ, UK
- Genomics Research Centre, Human Technopole, 20157 Milan, Italy
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - David Schlessinger
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge CB1 8RN, UK
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ)- Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-CSIC, 41092 Sevilla, Spain
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Sardinia, Italy
| |
Collapse
|
7
|
Syeda MZ, Hong T, Zhang C, Ying S, Shen H. Eosinophils: A Friend or Foe in Human Health and Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 9:26-38. [PMID: 36756082 PMCID: PMC9900469 DOI: 10.1159/000528156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
Background Since their discovery, around 150 years, eosinophils research has been a field of changing perspective, and new directions are emerging since then. Summary Initially, eosinophils were perceived as terminally differentiated cytotoxic effector cells. Clearly, eosinophils are capable of playing functions other than immune responses, which is not surprising given their intricate interactions with pathogens as well as other circulating leukocytes. Attempts to comprehend the eosinophil biology and functions have yielded remarkable insights into their roles in human health and sickness. The use of FDA-approved eosinophils-targeting biologics has provided exciting opportunities to directly explore the contributions of eosinophils in disease etiology in humans. Key Messages In this review, we will focus on the eosinophils' lifecycle and discuss the current state of knowledge from mouse models and retrospective human studies demonstrating eosinophils' roles in the pathogenesis of human diseases such as asthma, cancer, and kidney disorders. Despite three recently approved anti-eosinophil agents, a number of key questions and challenges remain far from settled, thereby generating opportunity to further explore this enigmatic cell. A comprehensive understanding of eosinophils biology and function will surely aid in developing improved therapeutic strategies against eosinophils-associated disorders.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tu Hong
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China,*Songmin Ying,
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China,**Huahao Shen,
| |
Collapse
|
8
|
Choi KM, Joo MS, Kang G, Woo WS, Kim KH, Jeong SH, Son MY, Kim DH, Park CI. First report of eosinophil peroxidase in starry flounder (Platichthys stellatus): Gene identification and gene expression profiling. FISH & SHELLFISH IMMUNOLOGY 2021; 118:155-159. [PMID: 34461259 DOI: 10.1016/j.fsi.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Eosinophils are granular leukocytes that are evolutionarily preserved in the innate immune system of some invertebrates and vertebrates, and these cells can directly remove invading microorganisms and secrete various cytokines, and are also involved in homeostasis. These eosinophils are made up of specific granular proteins that can be differentiated from other cells, and eosinophil peroxidase (EPX) is a peroxidase released only from eosinophils that plays an important role in maintaining the main function and homeostasis of eosinophils. We obtained the sequence information of EPX for the first time from the starry flounder (Platichthys stellatus), and predicted it by amino acid sequencing to confirm sequence alignment and phylogenetic characteristics with other species. Based on analysis of the expression characteristics of PsEPX mRNA in healthy P. stellatus, it was expressed at the highest level in peripheral blood lymphocytes (PBLs) and was also expressed at a relatively high level in the head kidney and intestine, which are immune-related tissues. After artificial infection with Streptococcus parauberis and viral haemorrhagic septicaemia virus, which are the causes of major pathogenic diseases, the expression level of PsEPX was significantly regulated, which showed specific characteristics of pathogens or tissues. These results suggest that PsEPX is an important component of the immune system of P. stellatus and is considered a basic research case for the study of the immunological function of eosinophils in fish.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Son Ha Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min Young Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
9
|
Lung eosinophils elicited during allergic and acute aspergillosis express RORγt and IL-23R but do not require IL-23 for IL-17 production. PLoS Pathog 2021; 17:e1009891. [PMID: 34464425 PMCID: PMC8437264 DOI: 10.1371/journal.ppat.1009891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/13/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to the mold, Aspergillus, is ubiquitous and generally has no adverse consequences in immunocompetent persons. However, invasive and allergic aspergillosis can develop in immunocompromised and atopic individuals, respectively. Previously, we demonstrated that mouse lung eosinophils produce IL-17 in response to stimulation by live conidia and antigens of A. fumigatus. Here, we utilized murine models of allergic and acute pulmonary aspergillosis to determine the association of IL-23, IL-23R and RORγt with eosinophil IL-17 expression. Following A. fumigatus stimulation, a population of lung eosinophils expressed RORγt, the master transcription factor for IL-17 regulation. Eosinophil RORγt expression was demonstrated by flow cytometry, confocal microscopy, western blotting and an mCherry reporter mouse. Both nuclear and cytoplasmic localization of RORγt in eosinophils were observed, although the former predominated. A population of lung eosinophils also expressed IL-23R. While expression of IL-23R was positively correlated with expression of RORγt, expression of RORγt and IL-17 was similar when comparing lung eosinophils from A. fumigatus-challenged wild-type and IL-23p19-/- mice. Thus, in allergic and acute models of pulmonary aspergillosis, lung eosinophils express IL-17, RORγt and IL-23R. However, IL-23 is dispensable for production of IL-17 and RORγt. Humans regularly inhale spores of Aspergillus fumigatus, a common environmental fungus. While such exposure is of little consequence to most, in persons with impaired immune systems it can cause a spectrum of diseases ranging from invasive aspergillosis to allergic aspergillosis. A type of white blood cell called the eosinophil is a defining feature of allergic aspergillosis. Despite their importance, the contribution of eosinophils to this disease state is poorly understood. We previously demonstrated that eosinophils produce the cytokine IL-17 in murine models of aspergillosis models. Here, we defined the contributions of two molecules, the transcription factor RORγt and the cytokine IL-23, to eosinophil IL-17 production. These two molecules are important for optimal IL-17 production in other cell types. We discovered a population of lung eosinophils express RORγt. While expression of the receptor for IL-23 (IL-23R) was positively correlated with expression of RORγt, using mice deficient in IL-23, we showed IL-23 was not required for expression of RORγt and IL-17. Thus, challenge of lungs with live A. fumigatus or its antigens skews lung eosinophils towards IL-17 production by a pathway that is independent of IL-23. Our results advance our understanding of eosinophil plasticity and have implications for the development of therapeutic approaches for treating allergic lung diseases.
Collapse
|
10
|
Persaud AT, Bennett SA, Thaya L, Burnie J, Guzzo C. Human monocytes store and secrete preformed CCL5, independent of de novo protein synthesis. J Leukoc Biol 2021; 111:573-583. [PMID: 34114669 DOI: 10.1002/jlb.3a0820-522rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Monocytes are a subset of circulating peripheral blood mononuclear cells with diverse roles in immunity, including sentinel roles in cytokine secretion. Conventionally, cytokines require an inductive stimulus for their expression and secretion, resulting in a time lag from the time of stimulation to when the proteins are packaged and secreted. Because cytokines are the main communicators in the immune system, their temporal expression is a key factor in coordinating responses to efficiently resolve infection. Herein, we identify that circulating human monocytes contain preformed cytokines that are stored intracellularly, in both resting and activated states. Having preformed cytokines bypasses the time lag associated with de novo synthesis, allowing monocytes to secrete immune mediators immediately upon activation or sensing of microbe-associated molecular patterns. We demonstrate here that, out of several cytokines evaluated, human monocytes contain a previously undescribed reservoir of the preformed chemokine CCL5. Furthermore, we showed that CCL5 could be secreted from monocytes treated with the protein synthesis inhibitor (cycloheximide) and Golgi blocker (brefeldin A). We examined the possibility for uptake of extracellular CCL5 from platelet aggregates and observed no significant levels of platelet binding to our enriched monocyte preparations, indicating that the source of preformed CCL5 was not from platelets. Preformed CCL5 was observed to be distributed throughout the cytoplasm and partially colocalized with CD63+ and Rab11A+ membranes, implicating endosomal compartments in the intracellular storage and trafficking of CCL5.
Collapse
Affiliation(s)
- Arvin Tejnarine Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Stephen Andrew Bennett
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, Akuthota P, Roufosse F, Rothenberg ME. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu Rev Immunol 2021; 39:719-757. [PMID: 33646859 PMCID: PMC8317994 DOI: 10.1146/annurev-immunol-093019-125918] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| | - David J Jackson
- Guy's and St Thomas' Hospitals, London WC2R 2LS, United Kingdom;
- Department of Immunobiology, King's College London, London WC2R 2LS, United Kingdom
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy Unit, Humanitas Clinical and Research Center IRCCS, 20089 Milan, Italy;
| | - Sameer K Mathur
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792, USA;
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ian D Pavord
- Respiratory Medicine Unit, Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford OX3 9DU, United Kingdom;
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Florence Roufosse
- Médecine Interne, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA;
| |
Collapse
|
12
|
Mai E, Limkar AR, Percopo CM, Rosenberg HF. Generation of Mouse Eosinophils in Tissue Culture from Unselected Bone Marrow Progenitors. Methods Mol Biol 2021; 2241:37-47. [PMID: 33486726 DOI: 10.1007/978-1-0716-1095-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human eosinophilic leukocytes are found in peripheral blood and tissues at homeostasis and at elevated levels in atopic disorders. As inbred strains of mice (Mus musculus) are currently the models of choice for the study of disease mechanisms in vivo, a full understanding of mouse eosinophils is critical for interpretation of experimental findings. Toward this end, several years ago we presented a protocol for generating mouse eosinophils in tissue culture from unselected bone marrow progenitors (Dyer et al., J Immunol 181: 4004-4009, 2008). This method has been implemented widely and has proven to be effective for generating phenotypically normal eosinophils from numerous mouse strains and genotypes. Here we provide a detailed version of this protocol, along with suggestions and notes for its careful execution. We have also included several protocol variations and suggestions for improvements.
Collapse
Affiliation(s)
- Eric Mai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ajinkya R Limkar
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caroline M Percopo
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Aoki A, Hirahara K, Kiuchi M, Nakayama T. Eosinophils: Cells known for over 140 years with broad and new functions. Allergol Int 2021; 70:3-8. [PMID: 33032901 DOI: 10.1016/j.alit.2020.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are multifunctional leukocytes, being involved in the host defense against helminth infection, tissue homeostasis and repair of injured tissue. However, eosinophils also play critical roles in shaping the pathogenesis of allergic diseases, including fibrotic responses in allergic diseases. Eosinophils consist of various granules that are a source of cytokines, chemokines, enzymes, extracellular matrix and growth factors. Recent studies have revealed that eosinophil extracellular trap cell death (EETosis) exacerbates eosinophilic inflammation by releasing the products, including Charcot-Leyden crystals (CLCs). In type 2 inflammatory diseases, memory-type pathogenic helper T (Tpath) cells are involved in shaping the pathogenesis of eosinophilic inflammation by recruiting and activating eosinophils in vivo. We herein review the molecular mechanisms underlying the development of eosinophils and the various functions of granules, including CLCs, during eosinophilic inflammation. We also discuss the double-edged roles of eosinophils in tissue repair and type 2 immune inflammation.
Collapse
Affiliation(s)
- Ami Aoki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; AMED-PRIME, AMED, Chiba, Japan.
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
14
|
Sezin T, Ferreirós N, Jennrich M, Ochirbold K, Seutter M, Attah C, Mousavi S, Zillikens D, Geisslinger G, Sadik CD. 12/15-Lipoxygenase choreographs the resolution of IgG-mediated skin inflammation. J Autoimmun 2020; 115:102528. [DOI: 10.1016/j.jaut.2020.102528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/11/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
|
15
|
Obata-Ninomiya K, Domeier PP, Ziegler SF. Basophils and Eosinophils in Nematode Infections. Front Immunol 2020; 11:583824. [PMID: 33335529 PMCID: PMC7737499 DOI: 10.3389/fimmu.2020.583824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths remain one of the most prolific pathogens in the world. Following infection helminths interact with various epithelial cell surfaces, including skin, lung, and gut. Recent works have shown that epithelial cells produce a series of cytokines such as TSLP, IL-33, and IL-25 that lead to the induction of innate and acquired type 2 immune responses, which we named Type 2 epithelial cytokines. Although basophils and eosinophils are relatively rare granulocytes under normal conditions (0.5% and 5% in peripheral blood, respectively), both are found with increased frequency in type 2 immunity, including allergy and helminth infections. Recent reports showed that basophils and eosinophils not only express effector functions in type 2 immune reactions, but also manipulate the response toward helminths. Furthermore, basophils and eosinophils play non-redundant roles in distinct responses against various nematodes, providing the potential to intervene at different stages of nematode infection. These findings would be helpful to establish vaccination or therapeutic drugs against nematode infections.
Collapse
Affiliation(s)
| | - Phillip P Domeier
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
16
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Aberrant expression of NKL homeobox genes HMX2 and HMX3 interferes with cell differentiation in acute myeloid leukemia. PLoS One 2020; 15:e0240120. [PMID: 33048949 PMCID: PMC7553312 DOI: 10.1371/journal.pone.0240120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
The NKL-code describes normal expression patterns of NKL homeobox genes in hematopoiesis. Aberrant expression of NKL homeobox gene subclass members have been reported in several hematopoietic malignancies including acute myeloid leukemia (AML). Here, we analyzed the oncogenic role of the HMX-group of NKL homeobox genes in AML. Public expression profiling data–available for HMX1 and HMX2—indicate aberrant activity of HMX2 in circa 2% AML patients overall, rising to 31% in those with KMT2A/MLL rearrangements whereas HMX1 expression remains inconspicuous. AML cell lines EOL-1, MV4-11 and MOLM-13 expressed both, HMX2 and neighboring HMX3 genes, and harbored KMT2A aberrations, suggesting their potential functional association. Surprisingly, knockdown experiments in these cell lines demonstrated that KMT2A inhibited HMX2/3 which, in turn, did not regulate KMT2A expression. Furthermore, karyotyping and genomic profiling analysis excluded rearrangements of the HMX2/3 locus in these cell lines. However, comparative expression profiling and subsequent functional analyses revealed that IRF8, IL7- and WNT-signalling activated HMX2/3 expression while TNFa/NFkB- signalling proved inhibitory. Whole genome sequencing of EOL-1 identified two mutations in the regulatory upstream regions of HMX2/3 resulting in generation of a consensus ETS-site and transformation of a former NFkB-site into an SP1-site. Reporter-gene assays demonstrated that both mutations contributed to HMX2/3 activation, modifying ETS1/ELK1- and TNFalpha-mediated gene regulation. Moreover, DMSO-induced eosinophilic differentiation of EOL-1 cells coincided with HMX2/3 downregulation while knockdown of HMX2 induced cell differentiation, collectively supporting a fundamental role for these genes in myeloid differentiation arrest. Finally, target genes of HMX2/3 were identified in EOL-1 and included suppression of differentiation gene EPX, and activation of fusion gene FIP1L1-PDGFRA and receptor-encoding gene HTR7, both of which enhanced oncogenic ERK-signalling. Taken together, our study documents a leukemic role for deregulated NKL homeobox genes HMX2 and HMX3 in AML, revealing molecular mechanisms of myeloid differentiation arrest.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
17
|
Abstract
The human eosinophil has long been thought to favorably influence innate mucosal immunity but at times has also been incriminated in disease pathophysiology. Research into eosinophil biology has uncovered a number of interesting contributions by eosinophils to health and disease. However, it appears that not all eosinophils from all species are created equal. It remains unclear, for example, exactly how having eosinophils benefits the human host when helminth infections in the developed world have become scarce. This review focuses on our current state of knowledge as it relates to human eosinophils. When information is lacking, we discuss lessons learned from mouse studies that may or may not directly apply to human biology and disease. It is an exciting time to be an "eosinophilosopher" because the use of biologic agents that selectively target eosinophils provides an unprecedented opportunity to define the contribution of this cell to eosinophil-associated human diseases.
Collapse
Affiliation(s)
- Amy D Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
18
|
Grozdanovic MM, Doyle CB, Liu L, Maybruck BT, Kwatia MA, Thiyagarajan N, Acharya KR, Ackerman SJ. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J Allergy Clin Immunol 2020; 146:377-389.e10. [PMID: 31982451 DOI: 10.1016/j.jaci.2020.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/28/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The human eosinophil Charcot-Leyden crystal (CLC) protein is a member of the Galectin superfamily and is also known as galectin-10 (Gal-10). CLC/Gal-10 forms the distinctive hexagonal bipyramidal crystals that are considered hallmarks of eosinophil participation in allergic responses and related inflammatory reactions; however, the glycan-containing ligands of CLC/Gal-10, its cellular function(s), and its role(s) in allergic diseases are unknown. OBJECTIVE We sought to determine the binding partners of CLC/Gal-10 and elucidate its role in eosinophil biology. METHODS Intracellular binding partners were determined by ligand blotting with CLC/Gal-10, followed by coimmunoprecipitation and coaffinity purifications. The role of CLC/Gal-10 in eosinophil function was determined by using enzyme activity assays, confocal microscopy, and short hairpin RNA knockout of CLC/Gal-10 expression in human CD34+ cord blood hematopoietic progenitors differentiated to eosinophils. RESULTS CLC/Gal-10 interacts with both human eosinophil granule cationic ribonucleases (RNases), namely, eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3), and with murine eosinophil-associated RNases. The interaction is independent of glycosylation and is not inhibitory toward endoRNase activity. Activation of eosinophils with INF-γ induces the rapid colocalization of CLC/Gal-10 with eosinophil-derived neurotoxin/RNS2 and CD63. Short hairpin RNA knockdown of CLC/Gal-10 in human cord blood-derived CD34+ progenitor cells impairs eosinophil granulogenesis. CONCLUSIONS CLC/Gal-10 functions as a carrier for the sequestration and vesicular transport of the potent eosinophil granule cationic RNases during both differentiation and degranulation, enabling their intracellular packaging and extracellular functions in allergic inflammation.
Collapse
Affiliation(s)
- Milica M Grozdanovic
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Christine B Doyle
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Li Liu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Brian T Maybruck
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Mark A Kwatia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Nethaji Thiyagarajan
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill.
| |
Collapse
|
19
|
Doyle AD, Mukherjee M, LeSuer WE, Bittner TB, Pasha SM, Frere JJ, Neely JL, Kloeber JA, Shim KP, Ochkur SI, Ho T, Svenningsen S, Wright BL, Rank MA, Lee JJ, Nair P, Jacobsen EA. Eosinophil-derived IL-13 promotes emphysema. Eur Respir J 2019; 53:13993003.01291-2018. [PMID: 30728205 DOI: 10.1183/13993003.01291-2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
The inflammatory responses in chronic airway diseases leading to emphysema are not fully defined. We hypothesised that lung eosinophilia contributes to airspace enlargement in a mouse model and to emphysema in patients with chronic obstructive pulmonary disease (COPD).A transgenic mouse model of chronic type 2 pulmonary inflammation (I5/hE2) was used to examine eosinophil-dependent mechanisms leading to airspace enlargement. Human sputum samples were collected for translational studies examining eosinophilia and matrix metalloprotease (MMP)-12 levels in patients with chronic airways disease.Airspace enlargement was identified in I5/hE2 mice and was dependent on eosinophils. Examination of I5/hE2 bronchoalveolar lavage identified elevated MMP-12, a mediator of emphysema. We showed, in vitro, that eosinophil-derived interleukin (IL)-13 promoted alveolar macrophage MMP-12 production. Airspace enlargement in I5/hE2 mice was dependent on MMP-12 and eosinophil-derived IL-4/13. Consistent with this, MMP-12 was elevated in patients with sputum eosinophilia and computed tomography evidence of emphysema, and also negatively correlated with forced expiratory volume in 1 s.A mouse model of chronic type 2 pulmonary inflammation exhibited airspace enlargement dependent on MMP-12 and eosinophil-derived IL-4/13. In chronic airways disease patients, lung eosinophilia was associated with elevated MMP-12 levels, which was a predictor of emphysema. These findings suggest an underappreciated mechanism by which eosinophils contribute to the pathologies associated with asthma and COPD.
Collapse
Affiliation(s)
- Alfred D Doyle
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Manali Mukherjee
- Division of Respirology, Dept of Medicine, McMaster University and St Joseph's Healthcare, Hamilton, ON, Canada
| | - William E LeSuer
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Tyler B Bittner
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Saif M Pasha
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Justin J Frere
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Joseph L Neely
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jake A Kloeber
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kelly P Shim
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Sergei I Ochkur
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Terence Ho
- Division of Respirology, Dept of Medicine, McMaster University and St Joseph's Healthcare, Hamilton, ON, Canada
| | - Sarah Svenningsen
- Division of Respirology, Dept of Medicine, McMaster University and St Joseph's Healthcare, Hamilton, ON, Canada
| | - Benjamin L Wright
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Matthew A Rank
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - James J Lee
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Deceased
| | - Parameswaran Nair
- Division of Respirology, Dept of Medicine, McMaster University and St Joseph's Healthcare, Hamilton, ON, Canada
| | - Elizabeth A Jacobsen
- Division of Pulmonary Medicine, Dept of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
20
|
Yan B, Lou H, Wang Y, Li Y, Meng Y, Qi S, Wang M, Xiao L, Wang C, Zhang L. Epithelium-derived cystatin SN enhances eosinophil activation and infiltration through IL-5 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2019; 144:455-469. [PMID: 30974106 DOI: 10.1016/j.jaci.2019.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The interaction between epithelial cells and immune cells plays an important role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP); however, the mechanism or mechanisms underlying TH-biased inflammation in this process are largely unknown. Profiling protein expression in patients with CRSwNP by using shotgun proteomics suggested that cystatin SN (CST1), a type 2 cysteine protease inhibitor, might play a role because this was expressed with the greatest difference in patients with eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) and those with noneosinophilic chronic rhinosinusitis with nasal polyps (nonECRSwNP). OBJECTIVES We sought to investigate the expression and role of CST1 in modulating eosinophilic inflammation in patients with CRSwNP. METHODS Sinonasal tissues were collected from 192 patients with ECRSwNP, 52 patients with nonECRSwNP, and 40 control subjects. CST1 mRNA expression, localization, and concentration in the tissues were measured by using real-time PCR, in situ hybridization, immunohistochemistry, and an ELISA. Recombinant CST1 was used to further explore the function of the molecule in dispersed nasal polyp cells and eosinophils extracted from polyp tissues and peripheral blood. RESULTS CST1 was mainly expressed by epithelial cells and significantly increased in patients with ECRSwNP but decreased in patients with nonECRSwNP compared with that in control subjects. CST1 expression was further increased in patients with ECRSwNP and comorbid asthma and correlated with eosinophil percentages in tissue samples. CST1 was induced by IL-4 and IL-13 in tissue from both patients with ECRSwNP and those with nonECRSwNP and repressed by IL-17A in patients with nonECRSwNP in the presence of neutrophils. CST1 enhanced eosinophil activation and recruitment through induction of IL-5. CONCLUSION Epithelium-derived CST1 modulates eosinophil activation and recruitment, expression of which could be regulated by TH2 and TH17 cytokines.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yifan Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Sihan Qi
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Lei Xiao
- Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program. Blood 2019; 133:2413-2426. [PMID: 30917956 DOI: 10.1182/blood.2018872218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Eosinophils and neutrophils are critical for host defense, yet gaps in understanding how granulocytes differentiate from hematopoietic stem cells (HSCs) into mature effectors remain. The pseudokinase tribbles homolog 1 (Trib1) is an important regulator of granulocytes; knockout mice lack eosinophils and have increased neutrophils. However, how Trib1 regulates cellular identity and function during eosinophilopoiesis is not understood. Trib1 expression markedly increases with eosinophil-lineage commitment in eosinophil progenitors (EoPs), downstream of the granulocyte/macrophage progenitor (GMP). Using hematopoietic- and eosinophil-lineage-specific Trib1 deletion, we found that Trib1 regulates both granulocyte precursor lineage commitment and mature eosinophil identity. Conditional Trib1 deletion in HSCs reduced the size of the EoP pool and increased neutrophils, whereas deletion following eosinophil lineage commitment blunted the decrease in EoPs without increasing neutrophils. In both modes of deletion, Trib1-deficient mice expanded a stable population of Ly6G+ eosinophils with neutrophilic characteristics and functions, and had increased CCAAT/enhancer binding protein α (C/EBPα) p42. Using an ex vivo differentiation assay, we found that interleukin 5 (IL-5) supports the generation of Ly6G+ eosinophils from Trib1-deficient cells, but is not sufficient to restore normal eosinophil differentiation and development. Furthermore, we demonstrated that Trib1 loss blunted eosinophil migration and altered chemokine receptor expression, both in vivo and ex vivo. Finally, we showed that Trib1 controls eosinophil identity by modulating C/EBPα. Together, our findings provide new insights into early events in myelopoiesis, whereby Trib1 functions at 2 distinct stages to guide eosinophil lineage commitment from the GMP and suppress the neutrophil program, promoting eosinophil terminal identity and maintaining lineage fidelity.
Collapse
|
22
|
Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C. Pinniped- and Cetacean-Derived ETosis Contributes to Combating Emerging Apicomplexan Parasites ( Toxoplasma gondii, Neospora caninum) Circulating in Marine Environments. BIOLOGY 2019; 8:biology8010012. [PMID: 30857289 PMCID: PMC6466332 DOI: 10.3390/biology8010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Leukocytes play a major role in combating infections either by phagocytosis, release of antimicrobial granules, or extracellular trap (ET) formation. ET formation is preceded by a certain leukocyte cell death form, known as ETosis, an evolutionarily conserved mechanism of the innate immune system also observed in marine mammals. Besides several biomolecules and microbial stimuli, marine mammal ETosis is also trigged by various terrestrial protozoa and metazoa, considered nowadays as neozoan parasites, which are circulating in oceans worldwide and causing critical emerging marine diseases. Recent studies demonstrated that pinniped- and cetacean-derived polymorphonuclear neutrophils (PMNs) and monocytes are able to form different phenotypes of ET structures composed of nuclear DNA, histones, and cytoplasmic peptides/proteases against terrestrial apicomplexan parasites, e.g., Toxoplasma gondii and Neospora caninum. Detailed molecular analyses and functional studies proved that marine mammal PMNs and monocytes cast ETs in a similar way as terrestrial mammals, entrapping and immobilizing T. gondii and N. caninum tachyzoites. Pinniped- and cetacean leukocytes induce vital and suicidal ETosis, with highly reliant actions of nicotinamide adenine dinucleotide phosphate oxidase (NOX), generation of reactive oxygen species (ROS), and combined mechanisms of myeloperoxidase (MPO), neutrophil elastase (NE), and DNA citrullination via peptidylarginine deiminase IV (PAD4).This scoping review intends to summarize the knowledge on emerging protozoans in the marine environment and secondly to review limited data about ETosis mechanisms in marine mammalian species.
Collapse
Affiliation(s)
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
23
|
Lacy P. Editorial: Searching for definitive evidence of the role of eosinophils in lung disease: are we there yet? J Leukoc Biol 2018; 102:571-573. [PMID: 28860205 DOI: 10.1189/jlb.3ce0317-127r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 11/24/2022] Open
Affiliation(s)
- Paige Lacy
- Pulmonary Research Group, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Percopo CM, Krumholz JO, Fischer ER, Kraemer LS, Ma M, Laky K, Rosenberg HF. Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. J Leukoc Biol 2018; 105:151-161. [PMID: 30285291 DOI: 10.1002/jlb.3ab0318-090rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
Eosinophil peroxidase (EPX) is a major constituent of the large cytoplasmic granules of both human and mouse eosinophilic leukocytes. Human EPX deficiency is a rare, autosomal-recessive disorder limited to the eosinophil lineage. Our intent was to explore the impact of EPX gene deletion on eosinophil content, structure, and function. In response to repetitive intranasal challenge with a filtrate of the allergen, Alternaria alternata, we found significantly fewer eosinophils peripherally and in the respiratory tracts of EPX-/- mice compared to wild-type controls; furthermore, both the major population (Gr1-/lo ) and the smaller population of Gr1hi eosinophils from EPX-/- mice displayed lower median fluorescence intensities (MFIs) for Siglec F. Quantitative evaluation of transmission electron micrographs of lung eosinophils confirmed the relative reduction in granule outer matrix volume in cells from the EPX-/- mice, a finding analogous to that observed in human EPX deficiency. Despite the reduced size of the granule matrix, the cytokine content of eosinophils isolated from allergen-challenged EPX-/ - and wild-type mice were largely comparable to one another, although the EPX-/- eosinophils contained reduced concentrations of IL-3. Other distinguishing features of lung eosinophils from allergen-challenged EPX-/- mice included a reduced fraction of surface TLR4+ cells and reduced MFI for NOD1. Interestingly, the EPX gene deletion had no impact on eosinophil-mediated clearance of gram-negative Haemophilus influenzae from the airways. As such, although no clinical findings have been associated with human EPX deficiency, our findings suggest that further evaluation for alterations in eosinophil structure and function may be warranted.
Collapse
Affiliation(s)
- Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Julia O Krumholz
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Laura S Kraemer
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Karen Laky
- Food Allergy Research Unit, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Inclan-Rico JM, Siracusa MC. First Responders: Innate Immunity to Helminths. Trends Parasitol 2018; 34:861-880. [PMID: 30177466 PMCID: PMC6168350 DOI: 10.1016/j.pt.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Helminth infections represent a significant public health concern resulting in devastating morbidity and economic consequences across the globe. Helminths migrate through mucosal sites causing tissue damage and the induction of type 2 immune responses. Antihelminth protection relies on the mobilization and activation of multiple immune cells, including type 2 innate lymphocytes (ILC2s), basophils, mast cells, macrophages, and hematopoietic stem/progenitor cells. Further, epithelial cells and neurons have been recognized as important regulators of type 2 immunity. Collectively, these pathways stimulate host-protective responses necessary for worm expulsion and the healing of affected tissues. In this review we focus on the innate immune pathways that regulate immunity to helminth parasites and describe how better understanding of these pathways may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
26
|
Khoury P, Akuthota P, Ackerman SJ, Arron JR, Bochner BS, Collins MH, Kahn JE, Fulkerson PC, Gleich GJ, Gopal-Srivastava R, Jacobsen EA, Leiferman KM, Francesca LS, Mathur SK, Minnicozzi M, Prussin C, Rothenberg ME, Roufosse F, Sable K, Simon D, Simon HU, Spencer LA, Steinfeld J, Wardlaw AJ, Wechsler ME, Weller PF, Klion AD. Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). J Leukoc Biol 2018; 104:69-83. [PMID: 29672914 PMCID: PMC6171343 DOI: 10.1002/jlb.5mr0118-028r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 02/05/2023] Open
Abstract
Eosinophil-associated diseases (EADs) are rare, heterogeneous disorders characterized by the presence of eosinophils in tissues and/or peripheral blood resulting in immunopathology. The heterogeneity of tissue involvement, lack of sufficient animal models, technical challenges in working with eosinophils, and lack of standardized histopathologic approaches have hampered progress in basic research. Additionally, clinical trials and drug development for rare EADs are limited by the lack of primary and surrogate endpoints, biomarkers, and validated patient-reported outcomes. Researchers with expertise in eosinophil biology and eosinophil-related diseases reviewed the state of current eosinophil research, resources, progress, and unmet needs in the field since the 2012 meeting of the NIH Taskforce on the Research of Eosinophil-Associated Diseases (TREAD). RE-TREAD focused on gaps in basic science, translational, and clinical research on eosinophils and eosinophil-related pathogenesis. Improved recapitulation of human eosinophil biology and pathogenesis in murine models was felt to be of importance. Characterization of eosinophil phenotypes, the role of eosinophil subsets in tissues, identification of biomarkers of eosinophil activation and tissue load, and a better understanding of the role of eosinophils in human disease were prioritized. Finally, an unmet need for tools for use in clinical trials was emphasized. Histopathologic scoring, patient- and clinician-reported outcomes, and appropriate coding were deemed of paramount importance for research collaborations, drug development, and approval by regulatory agencies. Further exploration of the eosinophil genome, epigenome, and proteome was also encouraged. Although progress has been made since 2012, unmet needs in eosinophil research remain a priority.
Collapse
Affiliation(s)
- Paneez Khoury
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, La Jolla, California, USA
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech, Inc., South San Francisco, California, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Margaret H Collins
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gerald J Gleich
- Departments of Dermatology and Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Rashmi Gopal-Srivastava
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Kristen M Leiferman
- Department of Dermatology, University of Utah Health, Salt Lake City, Utah, USA
| | - Levi-Schaffer Francesca
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Sameer K Mathur
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Michael Minnicozzi
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Kathleen Sable
- American Partnership For Eosinophilic Disorders, Atlanta, Georgia, USA
| | - Dagmar Simon
- Department of Dermatology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Lisa A Spencer
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Andrew J Wardlaw
- Institute for Lung Health, University of Leicester, Leicester, England
| | | | - Peter F Weller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy D Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Fairfax KA, Bolden JE, Robinson AJ, Lucas EC, Baldwin TM, Ramsay KA, Cole R, Hilton DJ, de Graaf CA. Transcriptional profiling of eosinophil subsets in interleukin-5 transgenic mice. J Leukoc Biol 2018; 104:195-204. [PMID: 29758105 PMCID: PMC6749942 DOI: 10.1002/jlb.6ma1117-451r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/15/2018] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. IL‐5 is a critical regulator of eosinophil development, controlling proliferation, differentiation, and maturation of the lineage. Mice that constitutively express IL‐5 have in excess of 10‐fold more eosinophils in the hematopoietic organs than their wild type (WT) counterparts. We have identified that much of this expansion is in a population of Siglec‐F high eosinophils, which are rare in WT mice. In this study, we assessed transcription in myeloid progenitors, eosinophil precursors, and Siglec‐F medium and Siglec‐F high eosinophils from IL‐5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilized these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend toward quiescence along the trajectory. Additionally, we found gene expression changes associated with constitutive IL‐5 signaling in eosinophil progenitors, many of which were not observed in eosinophils. Eosinophils in Interleukin‐5 transgenic mice can be subdivided by Siglec‐F expression, and are transcriptionally distinct.
Collapse
Affiliation(s)
- Kirsten A Fairfax
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Jessica E Bolden
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Aaron J Robinson
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Erin C Lucas
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Tracey M Baldwin
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Kerry A Ramsay
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Rebecca Cole
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Douglas J Hilton
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carolyn A de Graaf
- Division of Molecular Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
28
|
Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Elevated Systemic Levels of Eosinophil, Neutrophil, and Mast Cell Granular Proteins in Strongyloides Stercoralis Infection that Diminish following Treatment. Front Immunol 2018; 9:207. [PMID: 29479356 PMCID: PMC5811458 DOI: 10.3389/fimmu.2018.00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 01/21/2023] Open
Abstract
Infection with the helminth parasite Strongyloides stercoralis (Ss) is commonly clinically asymptomatic that is often accompanied by peripheral eosinophilia. Granulocytes are activated during helminth infection and can act as immune effector cells. Plasma levels of eosinophil and neutrophil granular proteins convey an indirect measure of granulocyte degranulation and are prominently augmented in numerous helminth-infected patients. In this study, we sought to examine the levels of eosinophil, neutrophil, and mast cell activation-associated granule proteins in asymptomatic Ss infection and to understand their kinetics following anthelmintic therapy. To this end, we measured the plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, neutrophil elastase, myeloperoxidase, neutrophil proteinase-3, mast cell tryptase, leukotriene C4, and mast cell carboxypeptidase-A3 in individuals with asymptomatic Ss infection or without Ss infection [uninfected (UN)]. We also estimated the levels of all of these analytes in infected individuals following definitive treatment of Ss infection. We demonstrated that those infected individuals have significantly enhanced plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, elastase, myeloperoxidase, mast cell tryptase, leukotriene C4, and carboxypeptidase-A3 compared to UN individuals. Following the treatment of Ss infection, each of these granulocyte-associated proteins drops significantly. Our data suggest that eosinophil, neutrophil, and mast cell activation may play a role in the response to Ss infection.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India
| | - Yukthi Bhootra
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India
| | | | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institutes of Health - National Institute of Research in Tuberculosis (ICMR) - International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Esnault S, Kelly EA. Essential Mechanisms of Differential Activation of Eosinophils by IL-3 Compared to GM-CSF and IL-5. Crit Rev Immunol 2018; 36:429-444. [PMID: 28605348 DOI: 10.1615/critrevimmunol.2017020172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Compelling evidence has demonstrated that the eosinophils bring negative biological outcomes in several diseases, including eosinophilic asthma and hypereosinophilic syndromes. Eosinophils produce and store a broad range of toxic proteins and other mediators that enhance the inflammatory response and lead to tissue damage. For instance, in asthma, a close relationship has been demonstrated between increased lung eosinophilia, asthma exacerbation, and loss of lung function. The use of an anti-IL-5 therapy in severe eosinophilic asthmatic patients is efficient to reduce exacerbations. However, anti-IL-5-treated patients still display a relatively high amount of functional lung tissue eosinophils, indicating that supplemental therapies are required to damper the eosinophil functions. Our recent published works suggest that compared to IL-5, IL-3 can more strongly and differentially affect eosinophil functions. In this review, we summarize our and other investigations that have compared the effects of the three β-chain receptor cytokines (IL-5, GM-CSF and IL-3) on eosinophil biology. We focus on how IL-3 differentially activates eosinophils compared to IL-5 or GM-CSF.
Collapse
Affiliation(s)
- Stephane Esnault
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, 600 Highland Avenue, CSC K4/928, Madison, WI 53792-9988
| | - Elizabeth A Kelly
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, 600 Highland Avenue, CSC K4/928, Madison, WI 53792-9988
| |
Collapse
|
30
|
Abstract
Human eosinophils have characteristic morphologic features, including a bilobed nucleus and cytoplasmic granules filled with cytotoxic and immunoregulatory proteins that are packaged in a specific manner. Eosinophil production in the bone marrow is exquisitely regulated by timely expression of a repertoire of transcription factors that work together via collaborative and hierarchical interactions to direct eosinophil development. In addition, proper granule formation, which occurs in a spatially organized manner, is an intrinsic checkpoint that must be passed for proper eosinophil production to occur. In eosinophil-associated disorders, eosinophils and their progenitors can be recruited in large numbers into tissues where they can induce proinflammatory organ damage in response to local signals. Eosinophils are terminally differentiated and do not proliferate once they leave the bone marrow. The cytokine IL-5 specifically enhances eosinophil production and, along with other mediators, promotes eosinophil activation. Indeed, eosinophil depletion with anti-IL-5 or anti-IL-5Rα is now proven to be clinically beneficial for several eosinophilic disorders, most notably severe asthma, and several therapeutics targeting eosinophil viability and production are now in development. Significant progress has been made in our understanding of eosinophil development and the consequences of tissue eosinophilia. Future research efforts focused on basic eosinophil immunobiology and translational efforts to assist in the diagnosis, treatment selection, and resolution of eosinophil-associated disorders will likely be informative and clinically helpful.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
31
|
Abstract
Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.
Collapse
Affiliation(s)
- Peter F Weller
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Lisa A Spencer
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Eosinophils are a subset of granulocytes generally associated with type 2 immune responses. They can contribute to protection against helminths but also mediate pro-inflammatory functions during allergic immune responses. Only recently, eosinophils were also found to exert many other functions such as regulation of glucose and fat metabolism, thermogenesis, survival of plasma cells, and antitumor activity. The mechanisms that control eosinophil development and survival are only partially understood. RECENT FINDINGS Here we review new findings regarding the role of cell-extrinsic and cell-intrinsic factors for eosinophilopoiesis and eosinophil homeostasis. Several reports provide new insights in the regulation of eosinophil development by transcription factors, miRNAs and epigenetic modifications. Danger signals like lipopolysaccharide or alarmins can activate eosinophils but also prolong their lifespan. We further reflect on the observations that eosinophil development is tightly controlled by the unfolded protein stress response and formation of cytoplasmic granules. SUMMARY Eosinophils emerge as important regulators of diverse biological processes. Their differentiation and survival is tightly regulated by factors that are still poorly understood. Newly identified pathways involved in eosinophilopoiesis and eosinophil homeostasis may lead to development of new therapeutic options for treatment of eosinophil-associated diseases.
Collapse
|
33
|
Abstract
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.
Collapse
|
34
|
Jacobsen EA, Ochkur SI, Doyle AD, LeSuer WE, Li W, Protheroe CA, Colbert D, Zellner KR, Shen HH, Irvin CG, Lee JJ, Lee NA. Lung Pathologies in a Chronic Inflammation Mouse Model Are Independent of Eosinophil Degranulation. Am J Respir Crit Care Med 2017; 195:1321-1332. [PMID: 27922744 DOI: 10.1164/rccm.201606-1129oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE The release of eosinophil granule proteins in the lungs of patients with asthma has been dogmatically linked with lung remodeling and airway hyperresponsiveness. However, the demonstrated inability of established mouse models to display the eosinophil degranulation occurring in human subjects has prevented a definitive in vivo test of this hypothesis. OBJECTIVES To demonstrate in vivo causative links between induced pulmonary histopathologies/lung dysfunction and eosinophil degranulation. METHODS A transgenic mouse model of chronic T-helper cell type 2-driven inflammation overexpressing IL-5 from T cells and human eotaxin 2 in the lung (I5/hE2) was used to test the hypothesis that chronic histopathologies and the development of airway hyperresponsiveness occur as a consequence of extensive eosinophil degranulation in the lung parenchyma. MEASUREMENT AND MAIN RESULTS Studies targeting specific inflammatory pathways in I5/hE2 mice surprisingly showed that eosinophil-dependent immunoregulative events and not the release of individual secondary granule proteins are the central contributors to T-helper cell type 2-induced pulmonary remodeling and lung dysfunction. Specifically, our studies highlighted a significant role for eosinophil-dependent IL-13 expression. In contrast, extensive degranulation leading to the release of major basic protein-1 or eosinophil peroxidase was not causatively linked to many of the induced pulmonary histopathologies. However, these studies did define a previously unappreciated link between the release of eosinophil peroxidase (but not major basic protein-1) and observed levels of induced airway mucin. CONCLUSIONS These data suggest that improvements observed in patients with asthma responding to therapeutic strategies ablating eosinophils may occur as a consequence of targeting immunoregulatory mechanisms and not by simply eliminating the destructive activities of these purportedly end-stage effector cells.
Collapse
Affiliation(s)
| | | | | | | | - Wen Li
- 2 Department of Medicine, Guizhou Provincial People's Hospital, Guizhou, China; and
| | - Cheryl A Protheroe
- 3 Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Dana Colbert
- 3 Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | - HuaHao H Shen
- 2 Department of Medicine, Guizhou Provincial People's Hospital, Guizhou, China; and
| | - Charles G Irvin
- 4 Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, Vermont
| | | | - Nancy A Lee
- 3 Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| |
Collapse
|
35
|
Abstract
With the advent of novel therapies targeting eosinophils, there has been renewed interest in understanding the basic biology of this unique cell. In this context, murine models and human studies have continued to highlight the role of the eosinophil in homeostatic functions and immunoregulation. This review will focus on recent advances in our understanding of eosinophil biology that are likely to have important consequences on the development and consequences of eosinophil-targeted therapies. Given the breadth of the topic, the discussion will be limited to three areas of interest: the eosinophil life cycle, eosinophil heterogeneity, and mechanisms of cell-cell communication.
Collapse
Affiliation(s)
- Amy Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Ochkur SI, Doyle AD, Jacobsen EA, LeSuer WE, Li W, Protheroe CA, Zellner KR, Colbert D, Shen HH, Irvin CG, Lee JJ, Lee NA. Frontline Science: Eosinophil-deficient MBP-1 and EPX double-knockout mice link pulmonary remodeling and airway dysfunction with type 2 inflammation. J Leukoc Biol 2017; 102:589-599. [PMID: 28515227 DOI: 10.1189/jlb.3hi1116-488rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eosinophils and the release of cationic granule proteins have long been implicated in the development of the type 2-induced pathologies linked with respiratory inflammation. Paradoxically, the ablation of the two genes encoding the most abundant of these granule proteins, major basic protein-1 (MBP-1) and eosinophil peroxidase (EPX), results in a near collapse of eosinophilopoiesis. The specificity of this lineage ablation and the magnitude of the induced eosinopenia provide a unique opportunity to clarify the importance of eosinophils in acute and chronic inflammatory settings, as well as to identify potential mechanism(s) of action linked with pulmonary eosinophils in those settings. Specifically, we examined these issues by assessing the induced immune responses and pathologies occurring in MBP-1-/-/EPX-/- mice after 1) ovalbumin sensitization/provocation in an acute allergen-challenge protocol, and 2) crossing MBP-1-/-/EPX-/- mice with a double-transgenic model of chronic type 2 inflammation (i.e., I5/hE2). Acute allergen challenge and constitutive cytokine/chemokine expression each induced the accumulation of pulmonary eosinophils in wild-type controls that was abolished in the absence of MBP-1 and EPX (i.e., MBP-1-/-/EPX-/- mice). The expression of MBP-1 and EPX was also required for induced lung expression of IL-4/IL-13 in each setting and, in turn, the induced pulmonary remodeling events and lung dysfunction. In summary, MBP-1-/-/EPX-/- mice provide yet another definitive example of the immunoregulatory role of pulmonary eosinophils. These results highlight the utility of this unique strain of eosinophil-deficient mice as part of in vivo model studies investigating the roles of eosinophils in health and disease settings.
Collapse
Affiliation(s)
- Sergei I Ochkur
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Alfred D Doyle
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Elizabeth A Jacobsen
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - William E LeSuer
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Wen Li
- Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China; and
| | - Cheryl A Protheroe
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Katie R Zellner
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dana Colbert
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - HuaHao H Shen
- Department of Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China; and
| | - Charlie G Irvin
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Nancy A Lee
- Division of Hematology/Oncology, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA;
| |
Collapse
|
37
|
Airway remodeling in asthma: what really matters. Cell Tissue Res 2017; 367:551-569. [PMID: 28190087 PMCID: PMC5320023 DOI: 10.1007/s00441-016-2566-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and “endotyped” human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.
Collapse
|
38
|
Hematopoietic Processes in Eosinophilic Asthma. Chest 2017; 152:410-416. [PMID: 28130045 DOI: 10.1016/j.chest.2017.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 01/21/2023] Open
Abstract
Airway eosinophilia is a hallmark of allergic asthma, and understanding mechanisms that promote increases in lung eosinophil numbers is important for effective pharmacotherapeutic development. It has become evident that expansion of hematopoietic compartments in the bone marrow (BM) promotes differentiation and trafficking of mature eosinophils to the airways. Hematopoietic progenitor cells egress the BM and home to the lungs, where in situ differentiation within the tissue provides an ongoing source of proinflammatory cells. In addition, hematopoietic progenitor cells in the airways can respond to locally derived alarmins to produce a panoply of cytokines, thereby themselves acting as effector proinflammatory cells that potentiate type 2 responses in eosinophilic asthma. In this review, we provide evidence for these findings and discuss novel targets for modulating eosinophilopoietic processes, migration, and effector function of precursor cells.
Collapse
|
39
|
Lambrecht BN, Persson EK, Hammad H. Myeloid Cells in Asthma. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0053-2016. [PMID: 28102118 PMCID: PMC11687443 DOI: 10.1128/microbiolspec.mchd-0053-2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways, and not surprisingly, many myeloid cells play a crucial role in pathogenesis. Antigen-presenting dendritic cells are the first to recognize the allergens, pollutants, and viruses that are implicated in asthma pathogenesis, and subsequently initiate the adaptive immune response by migrating to lymph nodes. Eosinophils are the hallmark of type 2 inflammation, releasing toxic compounds in the airways and contributing to airway remodeling. Mast cells and basophils control both the early- and late-phase allergic response and contribute to alterations in smooth muscle reactivity. Finally, relatively little is known about neutrophils and macrophages in this disease. Although many of these myeloid cells respond well to treatment with inhaled steroids, there is now an increasing armamentarium of targeted biologicals that can specifically eliminate only one myeloid cell population, like eosinophils. It is only with those new tools that we will be able to fully understand the role of myeloid cells in chronic asthma in humans.
Collapse
Affiliation(s)
- Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Emma K Persson
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9000 Gent, Belgium
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
40
|
Huang L, Appleton JA. Eosinophils in Helminth Infection: Defenders and Dupes. Trends Parasitol 2016; 32:798-807. [PMID: 27262918 PMCID: PMC5048491 DOI: 10.1016/j.pt.2016.05.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/29/2022]
Abstract
Eosinophilia is a central feature of the host response to helminth infection. Larval stages of parasitic worms are killed in vitro by eosinophils in the presence of specific antibodies or complement. These findings established host defense as the paradigm for eosinophil function. Recently, studies in eosinophil-ablated mouse strains have revealed an expanded repertoire of immunoregulatory functions for this cell. Other reports document crucial roles for eosinophils in tissue homeostasis and metabolism, processes that are central to the establishment and maintenance of parasitic worms in their hosts. In this review, we summarize current understanding of the significance of eosinophils at the host-parasite interface, highlighting their distinct functions during primary and secondary exposure.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Judith A Appleton
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
41
|
Li B, Zhang G, Li C, Li R, Lu J, He Z, Wang Q, Peng Z, Wang J, Dong Y, Zhang C, Tan JQ, Bahri N, Wang Y, Duan C. Lyn mediates FIP1L1-PDGFRA signal pathway facilitating IL-5RA intracellular signal through FIP1L1-PDGFRA/JAK2/Lyn/Akt network complex in CEL. Oncotarget 2016; 8:64984-64998. [PMID: 29029406 PMCID: PMC5630306 DOI: 10.18632/oncotarget.11401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
The Fip1-like1 (FIP1L1)–platelet-derived growth factor receptor alpha (PDGFRA) (F/P) oncogene can cause chronic eosinophilic leukemia (CEL), but requires IL-5 cytokine participation. In this study, we investigate the mechanism of F/P in collaboration with IL-5 in CEL. The results showed that Lyn, a key effector in the IL-5-motivated eosinophil production, is extensively activated in F/P-positive CEL cells. Lyn can associate and phosphorylate IL-5 receptor α (IL-5RA) in F/P-positive cells. Moreover, the activation of Lyn and IL-5R kinase were strengthened when the cells were stimulated by IL-5. Lyn inhibition in F/P-positive CEL cells attenuated cellular proliferation, induced apoptosis, and blocked cell migration and major basic protein (MBP) release. We identified the FIP1L1-PDGFRA/JAK2/Lyn/Akt complex in the F/P-expressing cells which can be disrupted by dual inhibition of JAK2 and Lyn, repressing cell proliferation in both EOL-1(F/P-positive human eosinophilic cell line) and imatinib-resistance (IR) cells. Altogether, our data demonstrate that Lyn is a vital downstream kinase activated by F/P converged with IL-5 signals in CEL cells. Lyn activate and expand IL-5RA intracellular signaling through FIP1L1-PDGFRA/JAK2/Lyn/Akt network complex, provoking eosinophils proliferation and exaggerated activation manifested as CEL.
Collapse
Affiliation(s)
- Bin Li
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha, People's Republic of China.,Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Guangsen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha, People's Republic of China
| | - Cui Li
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruijuan Li
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha, People's Republic of China
| | - Jingchen Lu
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhengxi He
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Quan Wang
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhenzi Peng
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jun Wang
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yeping Dong
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chunfang Zhang
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jie Qiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, People's Republic of China
| | - Nacef Bahri
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuexiang Wang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chaojun Duan
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
42
|
Percopo CM, Brenner TA, Ma M, Kraemer LS, Hakeem RMA, Lee JJ, Rosenberg HF. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol 2016; 101:321-328. [PMID: 27531929 DOI: 10.1189/jlb.3a0416-166r] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45+CD11c-SiglecF+Gr1hi). SiglecF+Gr1hi eosinophils, distinct from the canonical SiglecF+Gr1- eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX-/- and MBP-1-/-) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1+ neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF+Gr1hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G+ Although indistinguishable from the more-numerous SiglecF+Gr1- eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF+Gr1hi eosinophil population (at 3.9 and 4.8 pg/106 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/106 cells). Interestingly, bone marrow-derived (SiglecF+), cultured eosinophils include a more substantial Gr1+ subpopulation (∼50%); Gr1+ bmEos includes primarily a single Ly6C+ and a smaller, double-positive (Ly6C+Ly6G+) population. Taken together, our findings characterize a distinct SiglecF+Gr1hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF+Gr1hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments.
Collapse
Affiliation(s)
- Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Todd A Brenner
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle Ma
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura S Kraemer
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Reem M A Hakeem
- Molecular Signal Transduction Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; and
| | | | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
43
|
Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis. Immunity 2016; 44:795-806. [PMID: 27067058 PMCID: PMC4846977 DOI: 10.1016/j.immuni.2016.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Abstract
Eosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a "cytoprotectant" that promotes eosinophil survival and function by ensuring granule integrity. VIDEO ABSTRACT.
Collapse
|
44
|
Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. J Leukoc Biol 2016; 99:541-8. [PMID: 26884610 DOI: 10.1189/jlb.3ru0615-256r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Myeloperoxidase aids in clearance of microbes by generation of peroxidase-mediated oxidants that kill leukocyte-engulfed pathogens. In this review, we will examine 1) strategies for in vitro evaluation of myeloperoxidase function and its inhibition, 2) ways to monitor generation of certain oxidant species during inflammation, and 3) how these methods can be used to approximate the total polymorphonuclear neutrophil chemotaxis following insult. Several optical imaging probes are designed to target reactive oxygen and nitrogen species during polymorphonuclear neutrophil inflammatory burst following injury. Here, we review the following 1) the broad effect of myeloperoxidase on normal physiology, 2) the difference between myeloperoxidase and other peroxidases, 3) the current optical probes available for use as surrogates for direct measures of myeloperoxidase-derived oxidants, and 4) the range of preclinical options for imaging myeloperoxidase accumulation at sites of inflammation in mice. We also stress the advantages and drawbacks of each of these methods, the pharmacokinetic considerations that may limit probe use to strictly cell cultures for some reactive oxygen and nitrogen species, rather than in vivo utility as indicators of myeloperoxidase function. Taken together, our review should shed light on the fundamental rational behind these techniques for measuring myeloperoxidase activity and polymorphonuclear neutrophil response after injury toward developing safe myeloperoxidase inhibitors as potential therapy for chronic obstructive pulmonary disease and rheumatoid arthritis.
Collapse
Affiliation(s)
- Jiansheng Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Amber Milton
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Robert D Arnold
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Hui Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Forrest Smith
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jennifer R Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Peter Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
45
|
Bouffi C, Kartashov AV, Schollaert KL, Chen X, Bacon WC, Weirauch MT, Barski A, Fulkerson PC. Transcription Factor Repertoire of Homeostatic Eosinophilopoiesis. THE JOURNAL OF IMMUNOLOGY 2015; 195:2683-95. [PMID: 26268651 DOI: 10.4049/jimmunol.1500510] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
Abstract
The production of mature eosinophils (Eos) is a tightly orchestrated process with the aim to sustain normal Eos levels in tissues while also maintaining low numbers of these complex and sensitive cells in the blood. To identify regulators of homeostatic eosinophilopoiesis in mice, we took a global approach to identify genome-wide transcriptome and epigenome changes that occur during homeostasis at critical developmental stages, including Eos-lineage commitment and lineage maturation. Our analyses revealed a markedly greater number of transcriptome alterations associated with Eos maturation (1199 genes) than with Eos-lineage commitment (490 genes), highlighting the greater transcriptional investment necessary for differentiation. Eos-lineage-committed progenitors (EoPs) were noted to express high levels of granule proteins and contain granules with an ultrastructure distinct from that of mature resting Eos. Our analyses also delineated a 976-gene Eos-lineage transcriptome that included a repertoire of 56 transcription factors, many of which have never previously been associated with Eos. EoPs and Eos, but not granulocyte-monocyte progenitors or neutrophils, expressed Helios and Aiolos, members of the Ikaros family of transcription factors, which regulate gene expression via modulation of chromatin structure and DNA accessibility. Epigenetic studies revealed a distinct distribution of active chromatin marks between genes induced with lineage commitment and genes induced with cell maturation during Eos development. In addition, Aiolos and Helios binding sites were significantly enriched in genes expressed by EoPs and Eos with active chromatin, highlighting a potential novel role for Helios and Aiolos in regulating gene expression during Eos development.
Collapse
Affiliation(s)
- Carine Bouffi
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Andrey V Kartashov
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Kaila L Schollaert
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Xiaoting Chen
- School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH 45221
| | - W Clark Bacon
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Artem Barski
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229;
| |
Collapse
|
46
|
Abstract
Targeted deletion of the transcription factor XBP1 in hematopoietic stem cells selectively prevents eosinophil maturation in the bone marrow without affecting other immune lineages.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James S. Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
47
|
Bettigole SE, Lis R, Adoro S, Lee AH, Spencer LA, Weller PF, Glimcher LH. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat Immunol 2015; 16:829-37. [PMID: 26147683 PMCID: PMC4577297 DOI: 10.1038/ni.3225] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022]
Abstract
The transcription factor XBP1 has been linked to the development of highly secretory tissues such as plasma cells and Paneth cells, yet its function in granulocyte maturation has remained unknown. Here we discovered an unexpectedly selective and absolute requirement for XBP1 in eosinophil differentiation without an effect on the survival of basophils or neutrophils. Progenitors of myeloid cells and eosinophils selectively activated the endoribonuclease IRE1α and spliced Xbp1 mRNA without inducing parallel endoplasmic reticulum (ER) stress signaling pathways. Without XBP1, nascent eosinophils exhibited massive defects in the post-translational maturation of key granule proteins required for survival, and these unresolvable structural defects fed back to suppress critical aspects of the transcriptional developmental program. Hence, we present evidence that granulocyte subsets can be distinguished by their differential reliance on secretory-pathway homeostasis.
Collapse
Affiliation(s)
- Sarah E Bettigole
- 1] Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA. [3] Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Raphael Lis
- 1] Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York, USA. [2] Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Stanley Adoro
- 1] Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA. [2] Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Lisa A Spencer
- Department of Medicine, Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie H Glimcher
- 1] Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA. [2] Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
48
|
Jacobsen EA, Lee NA, Lee JJ. Re-defining the unique roles for eosinophils in allergic respiratory inflammation. Clin Exp Allergy 2015; 44:1119-36. [PMID: 24961290 DOI: 10.1111/cea.12358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of eosinophils in the progression and resolution of allergic respiratory inflammation is poorly defined despite the commonality of their presence and in some cases their use as a biomarker for disease severity and/or symptom control. However, this ambiguity belies the wealth of insights that have recently been gained through the use of eosinophil-deficient/attenuated strains of mice that have demonstrated novel immunoregulatory and remodelling/repair functions for these cells in the lung following allergen provocation. Specifically, studies of eosinophil-deficient mice suggest that eosinophils contribute to events occurring in the lungs following allergen provocation at several key moments: (i) the initiating phase of events leading to Th2-polarized pulmonary inflammation, (ii) the suppression Th1/Th17 pathways in lung-draining lymph nodes, (iii) the recruitment of effector Th2 T cells to the lung, and finally, (iv) mechanisms of inflammatory resolution that re-establish pulmonary homoeostasis. These suggested functions have recently been confirmed and expanded upon using allergen provocation of an inducible eosinophil-deficient strain of mice (iPHIL) that demonstrated an eosinophil-dependent mechanism(s) leading to Th2 dominated immune responses in the presence of eosinophils in contrast to neutrophilic as well as mixed Th1/Th17/Th2 variant phenotypes in the absence of eosinophils. These findings highlighted that eosinophils are not exclusively downstream mediators controlled by T cells, dendritic cells (DC) and/or innate lymphocytic cells (ILC2). Instead, eosinophils appear to be more aptly described as significant contributors in complex interrelated pathways that lead to pulmonary inflammation and subsequently promote resolution and the re-establishment of homoeostatic baseline. In this review, we summarize and put into the context the evolving hypotheses that are now expanding our understanding of the roles eosinophils likely have in the lung following allergen provocation.
Collapse
Affiliation(s)
- E A Jacobsen
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | |
Collapse
|
49
|
Xiong Y, Wang J, Yu H, Zhang X, Miao C. Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol Immunotoxicol 2015; 37:236-43. [PMID: 25753844 DOI: 10.3109/08923973.2015.1021356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Crocin, a diterpenoid glucoside, has multitudinous activities such as anti-inflammation, anti-allergy, anti-oxidation and relaxing smooth muscles. OBJECTIVE In this study, the potential of crocin as an anti-asthma agent was investigated in a murine model. MATERIALS AND METHODS BALB/c mice were sensitized and challenged by ovalbumin (OVA) to induce allergic airway inflammation, with crocin administered one hour before every OVA challenge. Airway hyper-reactivity was evaluated by lung function analysis systems. Leukocyte counts in bronchoalveolar lavage fluid (BALF) were measured by a hemocytometer and Diff-Quick-stained smears. Lung tissues were stained with hematoxylin-eosin, Congo red and methylene blue for histopathological inspection. Inflammatory mediators in serum, BALF and lung were measured by ELISA or RT-PCR. Effects of crocin on MAPK signaling pathways were investigated by western blot analysis. RESULTS Crocin significantly suppressed airway inflammation and hyper-reactivity, reduced levels of BALF interleukin (IL-4), IL-5, IL-13 and tryptase, lung eosinophil peroxidase and serum OVA-specific IgE, and inhibited the expression of lung eotaxin, p-ERK, p-JNK and p-p38 in the OVA-challenged mice. CONCLUSIONS These results demonstrated that the suppression of crocin on airway inflammation and hyper-reactivity in a murine model, thus crocin might have a great potential to be a candidate for the treatment of asthma.
Collapse
Affiliation(s)
- Youyi Xiong
- College of Food and Drug, Anhui Science and Technology University , Fengyang, Anhui , China and
| | | | | | | | | |
Collapse
|
50
|
Takeda K, Shiraishi Y, Ashino S, Han J, Jia Y, Wang M, Lee NA, Lee JJ, Gelfand EW. Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge. J Allergy Clin Immunol 2015; 135:451-60. [PMID: 25312762 PMCID: PMC4587899 DOI: 10.1016/j.jaci.2014.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophils accumulate at the site of allergic inflammation and are critical effector cells in allergic diseases. Recent studies have also suggested a role for eosinophils in the resolution of inflammation. OBJECTIVE To determine the role of eosinophils in the resolution phase of the response to repeated allergen challenge. METHODS Eosinophil-deficient (PHIL) and wild-type (WT) littermates were sensitized and challenged to ovalbumin (OVA) 7 or 11 times. Airway inflammation, airway hyperresponsiveness (AHR) to inhaled methacholine, bronchoalveolar lavage (BAL) cytokine levels, and lung histology were monitored. Intracellular cytokine levels in BAL leukocytes were analyzed by flow cytometry. Groups of OVA-sensitized PHIL mice received bone marrow from WT or IL-10(-/-) donors 30 days before the OVA challenge. RESULTS PHIL and WT mice developed similar levels of AHR and numbers of leukocytes and cytokine levels in BAL fluid after OVA sensitization and 7 airway challenges; no eosinophils were detected in the PHIL mice. Unlike WT mice, sensitized PHIL mice maintained AHR, lung inflammation, and increased levels of IL-4, IL-5, and IL-13 in BAL fluid after 11 challenges whereas IL-10 and TGF-β levels were decreased. Restoration of eosinophil numbers after injection of bone marrow from WT but not IL-10-deficient mice restored levels of IL-10 and TGF-β in BAL fluid as well as suppressed AHR and inflammation. Intracellular staining of BAL leukocytes revealed the capacity of eosinophils to produce IL-10. CONCLUSIONS After repeated allergen challenge, eosinophils appeared not essential for the development of AHR and lung inflammation but contributed to the resolution of AHR and inflammation by producing IL-10.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Yoshiki Shiraishi
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Shigeru Ashino
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Junyan Han
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Yi Jia
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Nancy A Lee
- Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - James J Lee
- Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|