1
|
Zhang H, Wang W, Zhou Q, Hou J, Ying W, Hui X, Sun J, Liu L, Liu L, Wang C, Zhang H, Sun B, Wang X. Characterization of the epidemiology, susceptibility genes and clinical features of viral infections among children with inborn immune errors: a retrospective study. Virol J 2025; 22:91. [PMID: 40176105 PMCID: PMC11963556 DOI: 10.1186/s12985-025-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Although viral infections are one of the common clinical manifestations in patients with inborn errors of immunity (IEIs), little is known about the epidemiology, susceptibility genes, and clinical status of viral infections in patients with IEIs. METHODS The demographic information, clinical diagnoses, and laboratory findings of 931 IEI patients who underwent viral testing from January 2016 to December 2022 were collected and analyzed. RESULTS In total, 47.15% (439/931) patients with IEI tested positive for at least one virus during hospitalization. There were a total of 640 viral infections during the study period, mainly from EBV 131 (20.47%), HRV 102(15.94%), CMV 100(15.63%), and RV 84(13.13%). CMV and RV infections were more common in the combined immunodeficiencies (IEI_I) group during the infant stage, whereas EBV infection was more common in the immune dysregulation (IEI_IV) group during the preschool stage. Mutations in SH2D1A (57.14%), PIK3CD (56.41%) and LRBA (50%) make individuals susceptible to EBV infection; mutations in WAS (30%) make individuals susceptible to CMV infection; and mutations in IL2RG (56.52%) and RAG1 (37.5%) make individuals susceptible to RV infection. Joinpoint analysis revealed trends in viral positivity in different years. CONCLUSION These data suggest that it is possible to target the prevention, treatment, and management of IEI patients who are infected with a virus by accounting for the age at infection, type of IEI, and mutant genes, but special attention needs to be paid to viral infections in IEI_I and IEI_IV patients during the infant stage.
Collapse
Affiliation(s)
- Haiqiao Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lipin Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chenhao Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hai Zhang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Xiaochuan Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
2
|
Petersen MI, Suarez Archilla G, Miretti MM, Trono KG, Carignano HA. Whole-transcriptome analysis of BLV-infected cows reveals downregulation of immune response genes in high proviral loads cows. Front Vet Sci 2025; 12:1550646. [PMID: 40241800 PMCID: PMC12001038 DOI: 10.3389/fvets.2025.1550646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that infects cattle, causing bovine enzootic leukosis, a chronic disease characterized by the proliferation of infected B cells. BLV proviral load (PVL) is a key determinant of disease progression and transmission risk. Cattle can exhibit distinct phenotypes of low PVL (LPVL) or high PVL (HPVL), which remain stable throughout their lifetime. Differential expression analysis revealed 1,908 differentially expressed genes (DEGs) between HPVL and LPVL animals, including 774 downregulated (DReg) and 1,134 upregulated (UReg) genes. Functional enrichment analysis revealed that DReg genes were associated primarily with immune response pathways. Conversely, the UReg genes were enriched in processes related to cell cycle regulation, mitotic division, and DNA biosynthesis. Protein-protein interaction analysis revealed six highly interconnected clusters. Interestingly, a cluster was enriched for sphingolipid metabolism, a process critical to enveloped virus infection and immune receptor signaling. These findings provide valuable insights into the molecular mechanisms of BLV infection, suggesting potential markers for disease monitoring and targets for therapeutic intervention.
Collapse
Affiliation(s)
- M. I. Petersen
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - G. Suarez Archilla
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela, Argentina
| | - M. M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, FCEQyN, Universidad Nacional de Misiones, Posadas, Argentina
| | - K. G. Trono
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - H. A. Carignano
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
3
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Traves R, Opadchy T, Slobedman B, Abendroth A. Varicella Zoster Virus Downregulates Expression of the Nonclassical Antigen Presentation Molecule CD1d. J Infect Dis 2024; 230:e416-e426. [PMID: 37972257 PMCID: PMC11326826 DOI: 10.1093/infdis/jiad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The nonclassical antigen presentation molecule CD1d presents lipid antigens to invariant natural killer T (iNKT) cells. Activation of these cells triggers a rapid cytokine response providing an interface between innate and adaptive immune responses. The importance of CD1d and iNKT cells in varicella zoster virus (VZV) infection has been emphasized by clinical reports of individuals with CD1d or iNKT cell deficiencies experiencing severe, disseminated varicella postvaccination. METHODS Three strains of VZV (VZV-S, rOka, and VZV rOka-66S) were used to infect Jurkat cells. Flow cytometry of VZV- and mock-infected cells assessed the modulatory impact of VZV on CD1d protein. Infected cell supernatant and transwell co-culture experiments explored the role of soluble factors in VZV-mediated immunomodulation. CD1d transcripts were assessed by reverse-transcription polymerase chain reaction. RESULTS Surface and intracellular flow cytometry demonstrated that CD1d was strikingly downregulated by VZV-S and rOka in both infected and VZV antigen-negative cells compared to mock. CD1d downregulation is cell-contact dependent and CD1d transcripts are targeted by VZV. Mechanistic investigations using rOka-66S (unable to express the viral kinase ORF66) implicate this protein in CD1d modulation in infected cells. CONCLUSIONS VZV implements multiple mechanisms targeting both CD1d transcript and protein. This provides evidence of VZV interaction with and manipulation of the CD1d-iNKT cell axis.
Collapse
Affiliation(s)
- Renee Traves
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Tara Opadchy
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Casco A, Johannsen E. EBV Reactivation from Latency Is a Degrading Experience for the Host. Viruses 2023; 15:726. [PMID: 36992435 PMCID: PMC10054251 DOI: 10.3390/v15030726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
During reactivation from latency, gammaherpesviruses radically restructure their host cell to produce virion particles. To achieve this and thwart cellular defenses, they induce rapid degradation of cytoplasmic mRNAs, suppressing host gene expression. In this article, we review mechanisms of shutoff by Epstein-Barr virus (EBV) and other gammaherpesviruses. In EBV, canonical host shutoff is accomplished through the action of the versatile BGLF5 nuclease expressed during lytic reactivation. We explore how BGLF5 induces mRNA degradation, the mechanisms by which specificity is achieved, and the consequences for host gene expression. We also consider non-canonical mechanisms of EBV-induced host shutoff. Finally, we summarize the limitations and barriers to accurate measurements of the EBV host shutoff phenomenon.
Collapse
Affiliation(s)
- Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
8
|
Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol 2023; 19:160-171. [PMID: 36759741 DOI: 10.1038/s41582-023-00775-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein-Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
McKeon MG, Gallant JN, Kim YJ, Das SR. It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14133120. [PMID: 35804891 PMCID: PMC9265087 DOI: 10.3390/cancers14133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Certain viruses, specifically, human papillomavirus (HPV) and Epstein–Barr virus (EBV), have been linked with the development of head and neck cancer. In this study, we review the mechanisms by which (these) viruses lead to cellular transformation and a chronic inflammatory state. Given that the head and neck host a rich microbiome (which itself is intrinsically linked to inflammation), we scrutinize the literature to highlight the interplay between viruses, cellular transformation, inflammation, and the local host microbiome in head and neck cancer. Abstract While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)—a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC—suggesting that additional cofactors or coinfections may be required. Epstein–Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions—leading to tumor growth.
Collapse
Affiliation(s)
- Mallory G. McKeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Young J. Kim
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Correspondence: ; Tel.: +1-(615)-322-0322; Fax: +1-(615)-343-6160
| |
Collapse
|
12
|
Münz C. Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules 2021; 12:biom12010038. [PMID: 35053187 PMCID: PMC8774114 DOI: 10.3390/biom12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Epstein Barr virus (EBV) is one of the prominent human tumor viruses, and it is efficiently immune-controlled in most virus carriers. Cytotoxic lymphocytes strongly expand during symptomatic primary EBV infection and in preclinical in vivo models of this tumor virus infection. In these models and patients with primary immunodeficiencies, antibody blockade or deficiencies in certain molecular pathways lead to EBV-associated pathologies. In addition to T, NK, and NKT cell development, as well as their cytotoxic machinery, a set of co-stimulatory and co-inhibitory molecules was found to be required for EBV-specific immune control. The role of CD27/CD70, 4-1BB, SLAMs, NKG2D, CD16A/CD2, CTLA-4, and PD-1 will be discussed in this review. Some of these have just been recently identified as crucial for EBV-specific immune control, and for others, their important functions during protection were characterized in in vivo models of EBV infection and its immune control. These insights into the phenotype of cytotoxic lymphocytes that mediate the near-perfect immune control of EBV-associated malignancies might also guide immunotherapies against other tumors in the future.
Collapse
Affiliation(s)
- Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Zhu T, Wang R, Miller H, Westerberg LS, Yang L, Guan F, Lee P, Gong Q, Chen Y, Liu C. The interaction between iNKT cells and B cells. J Leukoc Biol 2021; 111:711-723. [PMID: 34312907 DOI: 10.1002/jlb.6ru0221-095rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, GuiZhou Province, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Münz C. Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Front Microbiol 2021; 12:657387. [PMID: 34234755 PMCID: PMC8257079 DOI: 10.3389/fmicb.2021.657387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens of humans, persistently colonizing more than 95% of the adult human population. At the same time EBV encodes oncogenes that can readily transform human B cells in culture and threaten healthy virus carriers with lymphomagenesis. Cytotoxic lymphocytes have been identified in experimental models and by primary immunodeficiencies as the main protective immune compartments controlling EBV. EBV has reached a stalemate with these cytotoxic T and innate lymphocytes to ensure persistence in most infected humans. Recent evidence suggests that the non-coding RNAs of the virus contribute to viral immune escape to prevent immune eradication. This knowledge might be used in the future to attenuate EBV for vaccine development against this human tumor virus that was discovered more than 55 years ago.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Deng Y, Münz C. Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein-Barr Virus. Cancers (Basel) 2021; 13:2275. [PMID: 34068598 PMCID: PMC8126045 DOI: 10.3390/cancers13092275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is the prototypic human tumor virus whose continuous lifelong immune control is required to prevent lymphomagenesis in the more than 90% of the human adult population that are healthy carriers of the virus. Here, we review recent evidence that this immune control has not only to target latent oncogenes, but also lytic replication of EBV. Furthermore, genetic variations identify the molecular machinery of cytotoxic lymphocytes as essential for this immune control and recent studies in mice with reconstituted human immune system components (humanized mice) have begun to provide insights into the mechanistic role of these molecules during EBV infection. Finally, EBV often does not act in isolation to cause disease. Some of EBV infection-modulating co-infections, including human immunodeficiency virus (HIV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been modeled in humanized mice. These preclinical in vivo models for EBV infection, lymphomagenesis, and cell-mediated immune control do not only promise a better understanding of the biology of this human tumor virus, but also the possibility to explore vaccine candidates against it.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
16
|
Schuhmachers P, Münz C. Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Front Immunol 2021; 12:640918. [PMID: 33833760 PMCID: PMC8021763 DOI: 10.3389/fimmu.2021.640918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens in humans with more than 95% of the human adult population persistently infected. EBV infects only humans and threatens these with its potent growth transforming ability that readily allows for immortalization of human B cells in culture. Accordingly, it is also found in around 1-2% of human tumors, primarily lymphomas and epithelial cell carcinomas. Fortunately, however, our immune system has learned to control this most transforming human tumor virus in most EBV carriers, and it requires modification of EBV associated lymphomagenesis and its immune control by either co-infections, such as malaria, Kaposi sarcoma associated herpesvirus (KSHV) and human immunodeficiency virus (HIV), or genetic predispositions for EBV positive tumors to emerge. Some of these can be modelled in humanized mice that, therefore, provide a valuable platform to test curative immunotherapies and prophylactic vaccines against these EBV associated pathologies.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Leadbetter EA, Karlsson MCI. Invariant natural killer T cells balance B cell immunity. Immunol Rev 2021; 299:93-107. [PMID: 33438287 DOI: 10.1111/imr.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.
Collapse
Affiliation(s)
- Elizabeth A Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
19
|
Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 2020; 135:644-655. [PMID: 31942615 DOI: 10.1182/blood.2019000928] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/14/2019] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is an enigma; on one hand, it infects and persists in latent form in the vast majority of the global population, causing relatively benign disease in otherwise healthy individuals. On the other hand, EBV represents the first identified oncogenic virus, capable of causing ≥7 different types of malignancies, usually in immunocompromised individuals. Furthermore, some individuals with defined inborn errors of immunity exhibit extreme susceptibility to EBV-induced disease, developing severe and often fatal infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, and/or EBV+ B-cell lymphoma. Thus, host and pathogen have coevolved to enable viral persistence and survival with minimal collateral damage to the healthy host. However, acquired or genetic disruptions to host defense that tip the balance in favor of EBV can have catastrophic effects. The study of primary immunodeficiencies has provided opportunities to define nonredundant requirements for host defense against EBV infection. This has not only revealed mechanisms underlying EBV-induced disease in these primary immunodeficiencies but also identified molecules and pathways that could be targeted to enhance the efficacy of an EBV-specific vaccine or treat severe EBV infection and pathological consequences in immunodeficient hosts.
Collapse
|
20
|
Münz C. Probing Reconstituted Human Immune Systems in Mice With Oncogenic γ-Herpesvirus Infections. Front Immunol 2020; 11:581419. [PMID: 33013936 PMCID: PMC7509489 DOI: 10.3389/fimmu.2020.581419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Mice with reconstituted human immune systems can mount cell-mediated immune responses against the human tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV). Primarily cytotoxic lymphocytes protect the vast majority of persistently infected carriers of these tumor viruses from the respective malignancies for life. Thus, EBV and KSHV infection can teach us how this potent immune control is induced, what phenotype and functions characterize the protective lymphocyte compartments and if similar immune responses could be induced by vaccination. This review will summarize similarities and differences between EBV and KSHV associated pathologies and their immune control in patients and mice with reconstituted human immune systems. Furthermore, it will high-light which aspects of the near perfect immune control can be modeled in the latter preclinical animal models and discuss their relevance for cancer immunology in general.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, Zurich, Switzerland
| |
Collapse
|
21
|
Cytotoxicity in Epstein Barr virus specific immune control. Curr Opin Virol 2020; 46:1-8. [PMID: 32771660 DOI: 10.1016/j.coviro.2020.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Epstein Barr virus (EBV) is the most common human tumor virus, persistently infecting more than 95% of the human adult population and readily transforming human B cell in culture. Fortunately, only a small minority of EBV carriers develops virus associated malignancies. The majority controls persistent EBV infection with cytotoxic lymphocytes, mainly NK, γδ and CD8+ T cells and the characteristics of the required immune responses get more and more defined by primary immunodeficiencies that affect molecules of these cytotoxic lymphocytes and their investigation in mice with reconstituted human immune system components (humanized mice) that are susceptible to EBV infection and associated lymphomagenesis. The gained information should be able to guide us to develop immunotherapies against EBV and tumors in general.
Collapse
|
22
|
Bacteroides fragilis alleviates the symptoms of lupus nephritis via regulating CD1d and CD86 expressions in B cells. Eur J Pharmacol 2020; 884:173421. [PMID: 32721450 DOI: 10.1016/j.ejphar.2020.173421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidences indicated that the dysbiosis of microbiota was related to the onset of systemic lupus erythematosus (SLE). Bacteroides fragilis (B. fragilis) ATCC 25285, a human commensal, was discovered to improve inflammatory diseases. However, whether B. fragilis (ATCC 25285) has the beneficial effects on the treatment of lupus nephritis has still remained elusive. In the present study, oral treatment with B. fragilis (ATCC 25285) ameliorated the activity of MRL/lpr mice, including decreased levels of autoantibodies and symptoms of lupus nephritis. Furthermore, we demonstrated that treatment with B. fragilis (ATCC 25285) could promote CD1d expression in B cells by Est-1 pathway, while inhibit CD86 expression via SHP-2 signaling pathway to repair the immune response of B cells in MRL/lpr mice. In addition, our findings revealed a possible role of treatment with B. fragilis (ATCC 25285) in relieving intestinal inflammation in MRL/lpr mice. Meanwhile, it was uncovered that B. fragilis (ATCC 25285) restored the Th17/Treg balance in MRL/lpr mice that was consistent with the role of B. fragilis in other autoimmune diseases. Overall, the current study may highlight the potential application of B. fragilis (ATCC 25285) to treat manifestations of SLE in high-risk individuals.
Collapse
|
23
|
License to Kill: When iNKT Cells Are Granted the Use of Lethal Cytotoxicity. Int J Mol Sci 2020; 21:ijms21113909. [PMID: 32486268 PMCID: PMC7312231 DOI: 10.3390/ijms21113909] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a non-conventional, innate-like, T cell population that recognize lipid antigens presented by the cluster of differentiation (CD)1d molecule. Although iNKT cells are mostly known for mediating several immune responses due to their massive and diverse cytokine release, these cells also work as effectors in various contexts thanks to their cytotoxic potential. In this Review, we focused on iNKT cell cytotoxicity; we provide an overview of iNKT cell subsets, their activation cues, the mechanisms of iNKT cell cytotoxicity, the specific roles and outcomes of this activity in various contexts, and how iNKT killing functions are currently activated in cancer immunotherapies. Finally, we discuss the future perspectives for the better understanding and potential uses of iNKT cell killing functions in tumor immunosurveillance.
Collapse
|
24
|
Enhancing the antitumor functions of invariant natural killer T cells using a soluble CD1d-CD19 fusion protein. Blood Adv 2020; 3:813-824. [PMID: 30858151 DOI: 10.1182/bloodadvances.2018028886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells comprise a unique lineage of CD1d-restricted lipid-reactive T lymphocytes that potently kill tumor cells and exhibit robust immunostimulatory functions. Optimal tumor-directed iNKT cell responses often require expression of the antigen-presenting molecule CD1d on tumors; however, many tumor cells downregulate CD1d and thus evade iNKT cell recognition. We generated a soluble bispecific fusion protein designed to direct iNKT cells to the site of B-cell cancers in a tumor antigen-specific but CD1d-independent manner. This fusion protein is composed of a human CD1d molecule joined to a single chain antibody FV fragment specific for CD19, an antigen widely expressed on B-cell cancers. The CD1d-CD19 fusion protein binds specifically to CD19-expressing, but not CD19-negative cells. Once loaded with the iNKT cell lipid agonist α-galactosyl ceramide (αGC), the CD1d-CD19 fusion induces robust in vitro activation of and cytokine production by human iNKT cells. iNKT cells stimulated by the αGC-loaded CD1d-CD19 fusion also strongly transactivate T-, B-, and NK-cell responses and promote dendritic cell maturation. Importantly, the αGC-loaded fusion induces robust lysis of CD19+CD1d- Epstein-Barr virus immortalized human B-lymphoblastoid cell lines that are otherwise resistant to iNKT cell killing. Consistent with these findings; administration of the αGC-loaded fusion protein controlled the growth of CD19+CD1d- tumors in vivo, suggesting that it can "link" iNKT cells and CD19+CD1d- targets in a therapeutically beneficial manner. Taken together, these preclinical studies demonstrate that this B cell-directed fusion protein can be used to effectively induce iNKT cell antitumor responses in vitro and in vivo.
Collapse
|
25
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
26
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
27
|
Long HM, Meckiff BJ, Taylor GS. The T-cell Response to Epstein-Barr Virus-New Tricks From an Old Dog. Front Immunol 2019; 10:2193. [PMID: 31620125 PMCID: PMC6759930 DOI: 10.3389/fimmu.2019.02193] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infects most people and establishes life-long infection controlled by the host's immune system. The genetic stability of the virus, deep understanding of the viral antigens and immune epitopes recognized by the host's T-cell system and the fact that recent infection can be identified by the development of symptomatic infectious mononucleosis makes EBV a powerful system in which to study human immunology. The association between EBV and multiple cancers also means that the lessons learned have strong translational potential. Increasing evidence of a role for resident memory T-cells and non-conventional γδ T-cells in controlling EBV infection suggests new opportunities for research and means the virus will continue to provide exciting new insights into human biology and immunology into the future.
Collapse
Affiliation(s)
- Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Hoshino A, Takashima T, Yoshida K, Morimoto A, Kawahara Y, Yeh TW, Okano T, Yamashita M, Mitsuiki N, Imai K, Sakatani T, Nakazawa A, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Kojima S, Morio T, Kanegane H. Dysregulation of Epstein-Barr Virus Infection in Hypomorphic ZAP70 Mutation. J Infect Dis 2019; 218:825-834. [PMID: 29684201 DOI: 10.1093/infdis/jiy231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Background Some patients with genetic defects develop Epstein-Barr virus (EBV)-associated lymphoproliferative disorder (LPD)/lymphoma as the main feature. Hypomophic mutations can cause different clinical and laboratory manifestations from null mutations in the same genes. Methods We sought to describe the clinical and immunologic phenotype of a 21-month-old boy with EBV-associated LPD who was in good health until then. A genetic and immunologic analysis was performed. Results Whole-exome sequencing identified a novel compound heterozygous mutation of ZAP70 c.703-1G>A and c.1674G>A. A small amount of the normal transcript was observed. Unlike ZAP70 deficiency, which has been previously described as severe combined immunodeficiency with nonfunctional CD4+ T cells and absent CD8+ T cells, the patient had slightly low numbers of CD8+ T cells and a small amount of functional T cells. EBV-specific CD8+ T cells and invariant natural killer T (iNKT) cells were absent. The T-cell receptor repertoire, determined using next generation sequencing, was significantly restricted. Conclusions Our patient showed that a hypomorphic mutation of ZAP70 can lead to EBV-associated LPD and that EBV-specific CD8+ T cells and iNKT cells are critically involved in immune response against EBV infection.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.,Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Atsuko Nakazawa
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
29
|
Youssefian L, Vahidnezhad H, Yousefi M, Saeidian AH, Azizpour A, Touati A, Nikbakht N, Hesari KK, Adib-Sereshki MM, Zeinali S, Mansoori B, Jazayeri A, Karamzadeh R, Fortina P, Jouanguy E, Casanova JL, Uitto J. Inherited Interleukin 2-Inducible T-Cell (ITK) Kinase Deficiency in Siblings With Epidermodysplasia Verruciformis and Hodgkin Lymphoma. Clin Infect Dis 2019; 68:1938-1941. [PMID: 30778533 PMCID: PMC7317279 DOI: 10.1093/cid/ciy942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 02/04/2023] Open
Abstract
Biallelic mutations in the ITK gene cause a T-cell primary immunodeficiency with Epstein-Barr virus (EBV)-lymphoproliferative disorders. We describe a novel association of a homozygous ITK mutation with β-human papillomavirus (HPV)-positive epidermodysplasia verruciformis. Thus, loss of function in ITK can result in broad dysregulation of T-cell responses to oncogenic viruses, including β-HPV and EBV.
Collapse
Affiliation(s)
- Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Iran
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tehran University of Medical Sciences, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arghavan Azizpour
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Iran
| | - Andrew Touati
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kambiz Kamyab- Hesari
- Department of Pathology, Razi Hospital, Tehran University of Medical Sciences, Tehran
| | - Mohammad Mahdi Adib-Sereshki
- Gastrointestinal and Liver Diseases Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran
| | - Sirous Zeinali
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran
- Kawsar Human Genetics Research Center, Tehran
| | - Behzad Mansoori
- Immunology Research Center, Tehran
- Student Research Committee, Tabriz University of Medical Sciences, Iran
| | - Ali Jazayeri
- Department of Information Science, College of Computing and Informatics, Drexel University, Philadelphia, Pennsylvania
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Paolo Fortina
- Cancer Genomics and Bioinformatics, Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, France
- Imagine Institute, Paris Descartes University, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, France
- Imagine Institute, Paris Descartes University, France
- Howard Hughes Medical Institute, New York, New York
- Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
31
|
An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat Chem Biol 2019; 15:304-313. [PMID: 30692685 DOI: 10.1038/s41589-018-0222-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/06/2018] [Indexed: 12/24/2022]
Abstract
MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability, reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency, we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein, the most potent of the allosteric inhibitors rescued NF-κB and JNK signaling in patient lymphocytes. Following compound washout, MALT1 substrate cleavage was partly recovered. Thus, a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue, inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.
Collapse
|
32
|
Tatfi M, Hermine O, Suarez F. Epstein-Barr Virus (EBV)-Related Lymphoproliferative Disorders in Ataxia Telangiectasia: Does ATM Regulate EBV Life Cycle? Front Immunol 2019; 9:3060. [PMID: 30662441 PMCID: PMC6329310 DOI: 10.3389/fimmu.2018.03060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is an ubiquitous herpesvirus with a tropism for epithelial cells (where lytic replication occurs) and B-cells (where latency is maintained). EBV persists throughout life and chronic infection is asymptomatic in most individuals. However, immunocompromised patients may be unable to control EBV infection and are at increased risk of EBV-related malignancies, such as diffuse large B-cell lymphomas or Hodgkin's lymphomas. Ataxia telangiectasia (AT) is a primary immunodeficiency caused by mutations in the ATM gene and associated with an increased incidence of cancers, particularly EBV-associated lymphomas. However, the immune deficiency present in AT patients is often too modest to explain the increased incidence of EBV-related malignancies. The ATM defect in these patients could therefore impair the normal regulation of EBV latency in B-cells, thus promoting lymphomagenesis. This suggests that ATM plays a role in the normal regulation of EBV latency. ATM is a serine/threonine kinase involved in multiple cell functions such as DNA damage repair, cell cycle regulation, oxidative stress, and gene expression. ATM is implicated in the lytic cycle of EBV, where EBV uses the activation of DNA damage repair pathway to promote its own replication. ATM regulates the latent cycle of the EBV-related herpesvirus KSHV and MHV68. However, the contribution of ATM in the control of the latent cycle of EBV is not yet known. A better understanding of the regulation of EBV latency could be harnessed in the conception of novel therapeutic strategies in AT and more generally in all ATM deficient EBV-related malignancies.
Collapse
Affiliation(s)
| | | | - Felipe Suarez
- INSERM U1163/CNRS ERL8254 - Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, IMAGINE Institute, Paris, France
| |
Collapse
|
33
|
Latour S, Winter S. Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol 2018; 9:1103. [PMID: 29942301 PMCID: PMC6004768 DOI: 10.3389/fimmu.2018.01103] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Epstein–Barr Virus (EBV) is a gamma-herpes virus that infects 90% of humans without any symptoms in most cases, but has an oncogenic potential, especially in immunocompromised individuals. In the past 30 years, several primary immunodeficiencies (PIDs) associated with a high risk to develop EBV-associated lymphoproliferative disorders (LPDs), essentially consisting of virus-associated hemophagocytic syndrome, non-malignant and malignant B-cell LPDs including non-Hodgkin and Hodgkin’s types of B lymphomas have been characterized. Among them are SH2D1A (SAP), XIAP, ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. Penetrance of EBV infection ranges from 50 to 100% in those PIDs. Description of large cohorts and case reports has refined the specific phenotypes associated with these PIDs helping to the diagnosis. Specific pathways required for protective immunity to EBV have emerged from studies of these PIDs. SLAM-associated protein-dependent SLAM receptors and MAGT1-dependent NKG2D pathways are important for T and NK-cell cytotoxicity toward EBV-infected B-cells, while CD27–CD70 interactions are critical to drive the expansion of EBV-specific T-cells. CTPS1 and RASGRP1 deficiencies further strengthen that T-lymphocyte expansion is a key step in the immune response to EBV. These pathways appear to be also important for the anti-tumoral immune surveillance of abnormal B cells. Monogenic PIDs should be thus considered in case of any EBV-associated LPDs.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| |
Collapse
|
34
|
Ghosh S, Drexler I, Bhatia S, Adler H, Gennery AR, Borkhardt A. Interleukin-2-Inducible T-Cell Kinase Deficiency-New Patients, New Insight? Front Immunol 2018; 9:979. [PMID: 29867957 PMCID: PMC5951928 DOI: 10.3389/fimmu.2018.00979] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Patients with primary immunodeficiency can be prone to severe Epstein–Barr virus (EBV) associated immune dysregulation. Individuals with mutations in the interleukin-2-inducible T-cell kinase (ITK) gene experience Hodgkin and non-Hodgkin lymphoma, EBV lymphoproliferative disease, hemophagocytic lymphohistiocytosis, and dysgammaglobulinemia. In this review, we give an update on further reported patients. We believe that current clinical data advocate early definitive treatment by hematopoietic stem cell transplantation, as transplant outcome in primary immunodeficiency disorders in general has gradually improved in recent years. Furthermore, we summarize experimental data in the murine model to provide further insight of pathophysiology in ITK deficiency.
Collapse
Affiliation(s)
- Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Comprehensive Pneumology Center, Helmholtz Zentrum München—Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany,University Hospital Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Lung Research (DZL), Giessen, Germany
| | - Andrew R Gennery
- Paediatric Immunology and HSCT, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Çelik H, Sciandra M, Flashner B, Gelmez E, Kayraklıoğlu N, Allegakoen DV, Petro JR, Conn EJ, Hour S, Han J, Oktay L, Tiwari PB, Hayran M, Harris BT, Manara MC, Toretsky JA, Scotlandi K, Üren A. Clofarabine inhibits Ewing sarcoma growth through a novel molecular mechanism involving direct binding to CD99. Oncogene 2018; 37:2181-2196. [PMID: 29382926 PMCID: PMC9936921 DOI: 10.1038/s41388-017-0080-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/03/2017] [Accepted: 12/01/2017] [Indexed: 01/30/2023]
Abstract
Ewing sarcoma (ES) is an aggressive bone and soft tissue malignancy that predominantly affects children and adolescents. CD99 is a cell surface protein that is highly expressed on ES cells and is required to maintain their malignancy. We screened small molecule libraries for binding to extracellular domain of recombinant CD99 and subsequent inhibition of ES cell growth. We identified two structurally similar FDA-approved compounds, clofarabine and cladribine that selectively inhibited the growth of ES cells in a panel of 14 ES vs. 28 non-ES cell lines. Both drugs inhibited CD99 dimerization and its interaction with downstream signaling components. A membrane-impermeable analog of clofarabine showed similar cytotoxicity in culture, suggesting that it can function through inhibiting CD99 independent of DNA metabolism. Both drugs drastically inhibited anchorage-independent growth of ES cells, but clofarabine was more effective in inhibiting growth of three different ES xenografts. Our findings provide a novel molecular mechanism for clofarabine that involves direct binding to a cell surface receptor CD99 and inhibiting its biological activities.
Collapse
Affiliation(s)
- Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Marika Sciandra
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy,PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - Bess Flashner
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Elif Gelmez
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Neslihan Kayraklıoğlu
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - David V. Allegakoen
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Jeff R. Petro
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Erin J. Conn
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Sarah Hour
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Lalehan Oktay
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Purushottam B. Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Mutlu Hayran
- Department of Preventive Oncology, Cancer Institute, Hacettepe University, 06800 Ankara, Turkey
| | - Brent T. Harris
- Department of Pathology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy,PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - Jeffrey A. Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, D.C. 20007
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy. .,PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
36
|
Schönrich G, Raftery MJ. CD1-Restricted T Cells During Persistent Virus Infections: "Sympathy for the Devil". Front Immunol 2018; 9:545. [PMID: 29616036 PMCID: PMC5868415 DOI: 10.3389/fimmu.2018.00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Some of the clinically most important viruses persist in the human host after acute infection. In this situation, the host immune system and the viral pathogen attempt to establish an equilibrium. At best, overt disease is avoided. This attempt may fail, however, resulting in eventual loss of viral control or inadequate immune regulation. Consequently, direct virus-induced tissue damage or immunopathology may occur. The cluster of differentiation 1 (CD1) family of non-classical major histocompatibility complex class I molecules are known to present hydrophobic, primarily lipid antigens. There is ample evidence that both CD1-dependent and CD1-independent mechanisms activate CD1-restricted T cells during persistent virus infections. Sophisticated viral mechanisms subvert these immune responses and help the pathogens to avoid clearance from the host organism. CD1-restricted T cells are not only crucial for the antiviral host defense but may also contribute to tissue damage. This review highlights the two edged role of CD1-restricted T cells in persistent virus infections and summarizes the viral immune evasion mechanisms that target these fascinating immune cells.
Collapse
Affiliation(s)
- Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Oleinika K, Rosser EC, Matei DE, Nistala K, Bosma A, Drozdov I, Mauri C. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun 2018; 9:684. [PMID: 29449556 PMCID: PMC5814456 DOI: 10.1038/s41467-018-02911-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory B cells (Breg) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The function of CD1d in Breg biology and iNKT cell activity during inflammation remains unclear. Here we show, using chimeric mice, cell depletion and adoptive cell transfer, that CD1d-lipid presentation by Bregs induces iNKT cells to secrete interferon (IFN)-γ to contribute, partially, to the downregulation of T helper (Th)1 and Th17-adaptive immune responses and ameliorate experimental arthritis. Mice lacking CD1d-expressing B cells develop exacerbated disease compared to wild-type mice, and fail to respond to treatment with the prototypical iNKT cell agonist α-galactosylceramide. The absence of lipid presentation by B cells alters iNKT cell activation with disruption of metabolism regulation and cytokine responses. Thus, we identify a mechanism by which Bregs restrain excessive inflammation via lipid presentation.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes, Regulatory/immunology
- Cells, Cultured
- Galactosylceramides/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- K Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK, UK
| | - E C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - D E Matei
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - K Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - A Bosma
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | | | - C Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
38
|
Arjunaraja S, Angelus P, Su HC, Snow AL. Impaired Control of Epstein-Barr Virus Infection in B-Cell Expansion with NF-κB and T-Cell Anergy Disease. Front Immunol 2018; 9:198. [PMID: 29472930 PMCID: PMC5809398 DOI: 10.3389/fimmu.2018.00198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
B-cell expansion with NF-κB and T-cell anergy (BENTA) disease is a B-cell-specific lymphoproliferative disorder caused by germline gain-of-function mutations in CARD11. These mutations force the CARD11 scaffold into an open conformation capable of stimulating constitutive NF-κB activation in lymphocytes, without requiring antigen receptor engagement. Many BENTA patients also suffer from recurrent infections, with 7 out of 16 patients exhibiting chronic, low-grade Epstein–Barr virus (EBV) viremia. In this mini-review, we discuss EBV infection in the pathogenesis and clinical management of BENTA disease, and speculate on mechanisms that could explain inadequate control of viral infection in BENTA patients.
Collapse
Affiliation(s)
- Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Pamela Angelus
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD, United States
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
39
|
Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A, Picard C, Fischer A, Leverger G, Latour S. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med 2018; 10:188-199. [PMID: 29282224 PMCID: PMC5801500 DOI: 10.15252/emmm.201708292] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Inherited CTPS1, CD27, and CD70 deficiencies in humans have revealed key factors of T-lymphocyte expansion, a critical prerequisite for an efficient immunity to Epstein-Barr virus (EBV) infection. RASGRP1 is a T-lymphocyte-specific nucleotide exchange factor known to activate the pathway of MAP kinases (MAPK). A deleterious homozygous mutation in RASGRP1 leading to the loss RASGRP1 expression was identified in two siblings who both developed a persistent EBV infection leading to Hodgkin lymphoma. RASGRP1-deficient T cells exhibited defective MAPK activation and impaired proliferation that was restored by expression of wild-type RASGRP1. Similar defects were observed in T cells from healthy individuals when RASGRP1 was downregulated. RASGRP1-deficient T cells also exhibited decreased CD27-dependent proliferation toward CD70-expressing EBV-transformed B cells, a crucial pathway required for expansion of antigen-specific T cells during anti-EBV immunity. Furthermore, RASGRP1-deficient T cells failed to upregulate CTPS1, an important enzyme involved in DNA synthesis. These results show that RASGRP1 deficiency leads to susceptibility to EBV infection and demonstrate the key role of RASGRP1 at the crossroad of pathways required for the expansion of activated T lymphocytes.
Collapse
Affiliation(s)
- Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
| | - Sabah Boudjemaa
- Department of Pathology, Armand Trousseau Hospital, Paris, France
| | - Arnaud Petit
- Department of Hematology and Pediatric Oncology, Armand Trousseau Hospital, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
- Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Alain Fischer
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Collège de France, Paris, France
- Inserm UMR 1163, Paris, France
| | - Guy Leverger
- Department of Hematology and Pediatric Oncology, Armand Trousseau Hospital, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
40
|
Daskhan GC, Tran HTT, Meloncelli PJ, Lowary TL, West LJ, Cairo CW. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy. Bioconjug Chem 2018; 29:343-362. [PMID: 29237123 DOI: 10.1021/acs.bioconjchem.7b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Peter J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Lori J West
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Department of Pediatrics, Surgery, Medical Microbiology and Immunology, and Laboratory Medicine and Pathology, Alberta Transplant Institute, University of Alberta Edmonton, Alberta T6G 2E1, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
41
|
Lurain K, Yarchoan R, Uldrick TS. Treatment of Kaposi Sarcoma Herpesvirus-Associated Multicentric Castleman Disease. Hematol Oncol Clin North Am 2018; 32:75-88. [PMID: 29157621 DOI: 10.1016/j.hoc.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (MCD) is a rare, polyclonal lymphoproliferative disorder characterized by flares of inflammatory symptoms, edema, cytopenias, lymphadenopathy, and splenomegaly. Diagnosis requires a lymph node biopsy. Pathogenesis is related to dysregulated inflammatory cytokines, including human and viral interleukin-6. Rituximab alone or in combination with chemotherapy, such as liposomal doxorubicin, has led to an overall survival of over 90% at 5 years. Experimental approaches to treatment include virus activated cytotoxic therapy with high-dose zidovudine and valganciclovir and targeting human interleukin-6 activity. Despite successful treatment of KSHV-MCD, patients remain at high risk for developing non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892-1868, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892-1868, USA.
| |
Collapse
|
42
|
Münz C. Epstein-Barr Virus-Specific Immune Control by Innate Lymphocytes. Front Immunol 2017; 8:1658. [PMID: 29225606 PMCID: PMC5705607 DOI: 10.3389/fimmu.2017.01658] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023] Open
Abstract
Epstein–Barr virus (EBV) is a potent B cell transforming pathogen in humans. In most persistently EBV-infected individuals, potent cytotoxic lymphocyte responses prevent EBV-associated pathologies. In addition to comprehensive adaptive T cell responses, several innate lymphocyte populations seem to target different stages of EBV infection and are compromised in primary immunodeficiencies that render individuals susceptible to symptomatic EBV infection. In this mini-review, I will highlight the functions of natural killer, γδ T cells, and natural killer T cells during innate immune responses to EBV. These innate lymphocyte populations seem to restrict both lytic replication and transforming latent EBV antigen expression. The mechanisms underlying the recognition of these different EBV infection programs by the respective innate lymphocytes are just starting to become unraveled, but will provide immunotherapeutic strategies to target pathologies that are associated with the different EBV infection programs.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Stax AM, Tuengel J, Girardi E, Kitano N, Allan LL, Liu V, Zheng D, Panenka WJ, Guillaume J, Wong CH, van Calenbergh S, Zajonc DM, van den Elzen P. Autoreactivity to Sulfatide by Human Invariant NKT Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:97-106. [PMID: 28526683 DOI: 10.4049/jimmunol.1601976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like lymphocytes that recognize lipid Ags presented by CD1d. The prototypical Ag, α-galactosylceramide, strongly activates human and mouse iNKT cells, leading to the assumption that iNKT cell physiology in human and mouse is similar. In this article, we report the surprising finding that human, but not mouse, iNKT cells directly recognize myelin-derived sulfatide presented by CD1d. We propose that sulfatide is recognized only by human iNKT cells because of the unique positioning of the 3-O-sulfated β-galactose headgroup. Surface plasmon resonance shows that the affinity of human CD1d-sulfatide for the iNKT cell receptor is relatively low compared with CD1d-α-galactosylceramide (KD of 19-26 μM versus 1 μM). Apolipoprotein E isolated from human cerebrospinal fluid carries sulfatide that can be captured by APCs and presented by CD1d to iNKT cells. APCs from patients with metachromatic leukodystrophy, who accumulate sulfatides due to a deficiency in arylsulfatase-A, directly activate iNKT cells. Thus, we have identified sulfatide as a self-lipid recognized by human iNKT cells and propose that sulfatide recognition by innate T cells may be an important pathologic feature of neuroinflammatory disease and that sulfatide in APCs may contribute to the endogenous pathway of iNKT cell activation.
Collapse
Affiliation(s)
- Annelein M Stax
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jessica Tuengel
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Naoki Kitano
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Lenka L Allan
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Victor Liu
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Dongjun Zheng
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - William J Panenka
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; and
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Peter van den Elzen
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
44
|
Liu F, Ji J, Li X, Li X, Xu J, Yue H, Zhao S, Fan H, Hou Y. Decreased CD1d level is associated with CD86 over-expression in B cells from systemic lupus erythematosus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:328-337. [PMID: 28338767 DOI: 10.1093/abbs/gmx011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
The disorder of B cells is one of the hallmarks of systemic lupus erythematosus (SLE). The activation state indicated by CD86 of B cells from SLE is well known, while the defect of regulatory B cells mediated by CD1d is also responsible for the process of SLE. In the present study, we focused on the relationship between B cell activation mediated by CD86 and B cell regulatory function mediated by CD1d. Our results showed that the level of CD1d in B cells was decreased during the early stages of B6.MRLlpr SLE mice and imiquimod-treated (IMQ-treated) mice, while the level of CD86 was significantly increased at the late stage. Moreover, the expression of CD1d showed a significantly negative correlation with CD86 level in B cells from IMQ-treated mice (r = -05741; P = 0.0022), B6.MRLlpr mice (r = -0.7091; P = 0.0268), and SLE patients (r = -0.4125; P = 0.0404). The in vivo and in vitro experiments with splenocytes demonstrated that CD1d signaling pathway could inhibit toll-like receptor 7 (TLR7)-induced CD86 expression of B cells. Further studies showed that this relationship also affected antibody production. Thus, our results confirmed the association of CD1d and CD86 levels in B cells from SLE, and demonstrated the importance to preserve the immunoregulatory function of B cells mediated by CD1d in the progression of SLE.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jianjian Ji
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiujun Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Xiaojing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingjing Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huimin Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Medicine, Central Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hongye Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yayi Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| |
Collapse
|
45
|
Tangye SG, Palendira U, Edwards ESJ. Human immunity against EBV-lessons from the clinic. J Exp Med 2017; 214:269-283. [PMID: 28108590 PMCID: PMC5294862 DOI: 10.1084/jem.20161846] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
The mammalian immune system has evolved over many millennia to be best equipped to protect the host from pathogen infection. In many cases, host and pathogen have coevolved, each acquiring sophisticated ways of inducing or protecting from disease. Epstein-Barr virus (EBV) is a human herpes virus that infects >90% of individuals. Despite its ubiquity, infection by EBV is often subclinical; this invariably reflects the necessity of the virus to preserve its host, balanced with sophisticated host immune mechanisms that maintain viral latency. However, EBV infection can result in various, and often fatal, clinical sequelae, including fulminant infectious mononucleosis, hemophagocytic lymphohistiocytosis, lymphoproliferative disease, organomegaly, and/or malignancy. Such clinical outcomes are typically observed in immunosuppressed individuals, with the most extreme cases being Mendelian primary immunodeficiencies (PIDs). Although these conditions are rare, they have provided critical insight into the cellular, biochemical, and molecular requirements for robust and long-lasting immunity against EBV infection. Here, we review the virology of EBV, mechanisms underlying disease pathogenesis in PIDs, and developments in immune cell–mediated therapy to treat disorders associated with or induced by EBV infection.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia .,St. Vincent's Clinical School, University of New South Wales, Sydney 2052, NSW, Australia
| | | | - Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
46
|
iNKT and memory B-cell alterations in HHV-8 multicentric Castleman disease. Blood 2016; 129:855-865. [PMID: 28060720 DOI: 10.1182/blood-2016-06-719716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
Human herpesvirus 8 (HHV-8) is the causative agent of Kaposi sarcoma (KS) and multicentric Castleman disease (MCD), a life-threatening, virally induced B-cell lymphoproliferative disorder. HHV-8 is a B-lymphotropic γ-herpesvirus closely related to the Epstein-Barr virus (EBV). Invariant natural killer T (iNKT) cells are innate-like T cells that play a role in antiviral immunity, specifically in controlling viral replication in EBV-infected B cells. Decline of iNKT cells is associated with age or HIV infection, both situations associated with HHV-8-related diseases. We analyzed iNKT cells in both blood (n = 26) and spleen (n = 9) samples from 32 patients with HHV-8 MCD and compared them with patients with KS (n = 24) and healthy donors (n = 29). We determined that both circulating and splenic iNKT cell frequencies were markedly decreased in patients with HHV-8 MCD and were undetectable in 6 of them. Moreover, iNKT cells from patients with HHV-8 MCD displayed a proliferative defect after stimulation with α-galactosylceramide. These iNKT cell alterations were associated with an imbalance in B-cell subsets, including a significant decrease in memory B cells, particularly of marginal zone (MZ) B cells. Coculture experiments revealed that the decrease in iNKT cells contributed to the alterations in the B-cell subset distribution. These observations contribute to a better understanding of the complex interactions between HHV-8 and immune cells that cause HHV-8-related MCD.
Collapse
|
47
|
Jons D, Kneider M, Fogelstrand L, Jeppsson A, Jacobsson S, Andersen O. Early hematopoiesis in multiple sclerosis patients. J Neuroimmunol 2016; 299:158-163. [PMID: 27725115 DOI: 10.1016/j.jneuroim.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 02/01/2023]
Abstract
Contemporary evidence supports that MS immunopathology starts in the peripheral lymphatic system. However, the site and character of crucial initiating events are unknown. We examined subsets of the first stages of blood cells in the bone marrow of 9 MS patients and 11 neurologically healthy controls using FACS analysis. The proportion of natural killer T cells was lower (P=0.045) in the bone marrow of MS patients, but proportions of hematogenous stem cells, myeloblasts, and B cell precursor subsets in the bone marrow did not differ between MS patients and controls. In this pilot study with a limited number of samples we found no deviation of the early B cell lineage in bone marrow from MS patients.
Collapse
Affiliation(s)
- Daniel Jons
- Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Maria Kneider
- Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Stefan Jacobsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Sweden
| | - Oluf Andersen
- Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
48
|
Kamaladasa A, Wickramasinghe N, Adikari TN, Gomes L, Shyamali NLA, Salio M, Cerundolo V, Ogg GS, Malavige GN. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection. Clin Exp Immunol 2016; 185:228-38. [PMID: 26874822 PMCID: PMC4954999 DOI: 10.1111/cei.12778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/05/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers.
Collapse
Affiliation(s)
- A Kamaladasa
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - N Wickramasinghe
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - T N Adikari
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - L Gomes
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - N L A Shyamali
- Department of Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Sri Lanka
| | - M Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - V Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G S Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Dermatology, Churchill Hospital, Oxford, UK
| | - G Neelika Malavige
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Çağdaş D, Erman B, Hanoğlu D, Tavil B, Kuşkonmaz B, Aydın B, Akyüz C, Uçkan D, Sanal Ö, Tezcan I. Course of IL-2-inducible T-cell kinase deficiency in a family: lymphomatoid granulomatosis, lymphoma and allogeneic bone marrow transplantation in one sibling; and death in the other. Bone Marrow Transplant 2016; 52:126-129. [PMID: 27454071 DOI: 10.1038/bmt.2016.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D Çağdaş
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Immunology, Ankara, Turkey
| | - B Erman
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Immunology, Ankara, Turkey
| | - D Hanoğlu
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatrics, Ankara, Turkey
| | - B Tavil
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Hematology, Ankara, Turkey
| | - B Kuşkonmaz
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Hematology, Ankara, Turkey
| | - B Aydın
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Oncology, Ankara, Turkey
| | - C Akyüz
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Oncology, Ankara, Turkey
| | - D Uçkan
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Hematology, Ankara, Turkey
| | - Ö Sanal
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Immunology, Ankara, Turkey
| | - I Tezcan
- Hacettepe University İhsan Doğramacı Children's Hospital, Section of Pediatric Immunology, Ankara, Turkey
| |
Collapse
|
50
|
Elansary M, El Haddad HE, Eldin UAAS, Hamdy A, Sherif MM. Seroprevalence and real-time PCR study of Epstein—Barr virus and the value of screening in pretransplant patients. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2016. [DOI: 10.4103/1110-7782.182947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|