1
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Liu Q, Lin Z, Yue M, Wu J, Li L, Huang D, Fang Y, Zhang X, Hao T. Identification and validation of ferroptosis related markers in erythrocyte differentiation of umbilical cord blood-derived CD34 + cell by bioinformatic analysis. Front Genet 2024; 15:1365232. [PMID: 39139819 PMCID: PMC11319168 DOI: 10.3389/fgene.2024.1365232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Ferroptosis has been observed to play an important role during erythrocyte differentiation (ED). However, the biological gene markers and ferroptosis mechanisms in ED remain unknown. We downloaded the datasets of ED in human umbilical cord blood-derived CD34+ cells from the Gene Expression Omnibus database. Using median differentiation time, the sample was categorized into long and short groups. The differentially expressed ferroptosis-related genes (DE-FRGs) were screened using differential expression analysis. The enrichment analyses and a protein-protein interaction (PPI) network were conducted. To predict the ED stage, a logistic regression model was constructed using the least absolute shrinkage and selection operator (LASSO). Overall, 22 DE-FRGs were identified. Ferroptosis-related pathways were enriched using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Gene Set Enrichment Analysis and Gene Set Variation Analysis revealed the primary involvement of DE-FRGs in JAK-STAT, MAPK, PI3K-AKT-mTORC1, WNT, and NOTCH signaling pathways. Ten-hub DE-FRGs were obtained using PPI analysis. Furthermore, we constructed mRNA-microRNA (miRNA) and mRNA-transcription factor networks. Immune cell infiltration levels differed significantly during ED. LASSO regression analysis established a signature using six DE-FRGs (ATF3, CDH2, CHAC1, DDR2, DPP4, and GDF15) related to the ED stage. Bioinformatic analyses identified ferroptosis-associated genes during ED, which were further validated. Overall, we identified ferroptosis-related genes to predict their correlations in ED. Exploring the underlying mechanisms of ferroptosis may help us better understand pathophysiological changes in ED and provide new evidence for clinical transformation.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ze Lin
- Shantou University Medical College, Shantou, Guangdong, China
| | - Minghui Yue
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jianbo Wu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lei Li
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Daqi Huang
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yipeng Fang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tao Hao
- Department of Colorectal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
3
|
Shao S, Zhang N, Specht GP, You S, Song L, Fu Q, Huang D, You H, Shu J, Domissy A, Li S, Nguyen-Tran V, Joseph SB, Chatterjee AK, Chen JJ, Schultz PG, Bollong MJ. Pharmacological expansion of type 2 alveolar epithelial cells promotes regenerative lower airway repair. Proc Natl Acad Sci U S A 2024; 121:e2400077121. [PMID: 38598345 PMCID: PMC11032444 DOI: 10.1073/pnas.2400077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.
Collapse
Affiliation(s)
- Sida Shao
- Calibr, a Division of Scripps Research, La Jolla, CA92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Nan Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Gregory P. Specht
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Shaochen You
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Lirui Song
- Calibr, a Division of Scripps Research, La Jolla, CA92037
| | - Qiangwei Fu
- Calibr, a Division of Scripps Research, La Jolla, CA92037
| | - David Huang
- Calibr, a Division of Scripps Research, La Jolla, CA92037
| | - Hengyao You
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Alain Domissy
- DNA Array Core, The Scripps Research Institute, La Jolla, CA92037
| | - Shuangwei Li
- Calibr, a Division of Scripps Research, La Jolla, CA92037
| | | | - Sean B. Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA92037
| | | | | | - Peter G. Schultz
- Calibr, a Division of Scripps Research, La Jolla, CA92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
4
|
Ng II, Zhang J, Tian T, Peng Q, Huang Z, Xiao K, Yao X, Ng L, Zeng J, Tang H. Network-based screening identifies sitagliptin as an antitumor drug targeting dendritic cells. J Immunother Cancer 2024; 12:e008254. [PMID: 38458637 PMCID: PMC10921530 DOI: 10.1136/jitc-2023-008254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Dendritic cell (DC)-mediated antigen presentation is essential for the priming and activation of tumor-specific T cells. However, few drugs that specifically manipulate DC functions are available. The identification of drugs targeting DC holds great promise for cancer immunotherapy. METHODS We observed that type 1 conventional DCs (cDC1s) initiated a distinct transcriptional program during antigen presentation. We used a network-based approach to screen for cDC1-targeting therapeutics. The antitumor potency and underlying mechanisms of the candidate drug were investigated in vitro and in vivo. RESULTS Sitagliptin, an oral gliptin widely used for type 2 diabetes, was identified as a drug that targets DCs. In mouse models, sitagliptin inhibited tumor growth by enhancing cDC1-mediated antigen presentation, leading to better T-cell activation. Mechanistically, inhibition of dipeptidyl peptidase 4 (DPP4) by sitagliptin prevented the truncation and degradation of chemokines/cytokines that are important for DC activation. Sitagliptin enhanced cancer immunotherapy by facilitating the priming of antigen-specific T cells by DCs. In humans, the use of sitagliptin correlated with a lower risk of tumor recurrence in patients with colorectal cancer undergoing curative surgery. CONCLUSIONS Our findings indicate that sitagliptin-mediated DPP4 inhibition promotes antitumor immune response by augmenting cDC1 functions. These data suggest that sitagliptin can be repurposed as an antitumor drug targeting DC, which provides a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiaqi Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zheng Huang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiyue Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Li Y, Luo C, Jiang J, He S, Liu Y, Yan W, Xia Y, Cui Q, Huang Y, Lim JQ, Huang D, Hussein IN, Gao Y, Lin G, Ling Y, Ma D, Zhang Y, Chan JY, Wei P, Wang X, Cheng CL, Xiong J, Zhao W, Ong CK, Lim ST, Huang H, Peng R, Bei J. Single-Cell Analysis Reveals Malignant Cells Reshape the Cellular Landscape and Foster an Immunosuppressive Microenvironment of Extranodal NK/T-Cell Lymphoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303913. [PMID: 37949673 PMCID: PMC10754138 DOI: 10.1002/advs.202303913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive type of lymphoma associated with Epstein-Barr virus (EBV) and characterized by heterogeneous tumor behaviors. To better understand the origins of the heterogeneity, this study utilizes single-cell RNA sequencing (scRNA-seq) analysis to profile the tumor microenvironment (TME) of NKTCL at the single-cell level. Together with in vitro and in vivo models, the study identifies a subset of LMP1+ malignant NK cells contributing to the tumorigenesis and development of heterogeneous malignant cells in NKTCL. Furthermore, malignant NK cells interact with various immunocytes via chemokines and their receptors, secrete substantial DPP4 that impairs the chemotaxis of immunocytes and regulates their infiltration. They also exhibit an immunosuppressive effect on T cells, which is further boosted by LMP1. Moreover, high transcription of EBV-encoded genes and low infiltration of tumor-associated macrophages (TAMs) are favorable prognostic indicators for NKTCL in multiple patient cohorts. This study for the first time deciphers the heterogeneous composition of NKTCL TME at single-cell resolution, highlighting the crucial role of malignant NK cells with EBV-encoded LMP1 in reshaping the cellular landscape and fostering an immunosuppressive microenvironment. These findings provide insights into understanding the pathogenic mechanisms of NKTCL and developing novel therapeutic strategies against NKTCL.
Collapse
Affiliation(s)
- Yi‐Qi Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Chun‐Ling Luo
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jia‐Xin Jiang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shuai He
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yang Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wen‐Xin Yan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yi Xia
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qian Cui
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Ying Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jing Quan Lim
- Lymphoma Translational Research LaboratoryCellular and Molecular ResearchNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
- ONCO‐ACPDuke‐NUS Medical School8 College RoadSingapore169857Singapore
| | - Dachuan Huang
- Lymphoma Translational Research LaboratoryCellular and Molecular ResearchNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
- ONCO‐ACPDuke‐NUS Medical School8 College RoadSingapore169857Singapore
| | - Izzah Nabilah Hussein
- Lymphoma Translational Research LaboratoryCellular and Molecular ResearchNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
| | - Yan Gao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Wang Lin
- Microbiome Medicine CenterDivision of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yi‐Hong Ling
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dong Ma
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue‐Tong Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jason Yongsheng Chan
- Division of Medical OncologyNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
| | - Pan‐Pan Wei
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Xiao Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Chee Leong Cheng
- Department of PathologySingapore General Hospital20 College RoadAcademia169856Singapore
| | - Jie Xiong
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyNational Research Center for Translational MedicineShanghai Rui Jin HospitalShanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Wei‐Li Zhao
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyNational Research Center for Translational MedicineShanghai Rui Jin HospitalShanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Choon Kiat Ong
- Lymphoma Translational Research LaboratoryCellular and Molecular ResearchNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
- Cancer and Stem Cell BiologyDuke‐NUS Medical School8 College RoadSingapore169857Singapore
| | - Soon Thye Lim
- Director's OfficeNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
- Office of EducationDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Hui‐Qiang Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rou‐Jun Peng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jin‐Xin Bei
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Lymphoma Translational Research LaboratoryCellular and Molecular ResearchNational Cancer Centre Singapore30 Hospital BoulevardSingapore168583Singapore
| |
Collapse
|
6
|
Helm M, Schmidt M, Del Duca E, Liu Y, Mortensen LS, Loui J, Zheng Y, Binder H, Guttman-Yassky E, Cotsarelis G, Simon JC, Ferrer RA. Repurposing DPP4 Inhibition to Improve Hair Follicle Activation and Regeneration. J Invest Dermatol 2023; 143:2132-2144.e15. [PMID: 37236597 DOI: 10.1016/j.jid.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Skin injury and several diseases elicit fibrosis and induce hair follicle (HF) growth arrest and loss. The resulting alopecia and disfiguration represent a severe burden for patients, both physically and psychologically. Reduction of profibrotic factors such as dipeptidyl peptidase 4 (DPP4) might be a strategy to tackle this issue. We show DPP4 overrepresentation in settings with HF growth arrest (telogen), HF loss, and nonregenerative wound areas in mouse skin and human scalp. Topical DPP4 inhibition with Food and Drug Administration/European Medicines Agency-approved sitagliptin on preclinical models of murine HF activation/regeneration results in accelerated anagen progress, whereas treatment of wounds with sitagliptin results in reduced expression of fibrosis markers, increased induction of anagen around wounds, and HF regeneration in the wound center. These effects are associated with higher expression of Wnt target Lef1, known to be required for HF anagen/HF-activation and regeneration. Sitagliptin treatment decreases profibrotic signaling in the skin, induces a differentiation trajectory of HF cells, and activates Wnt targets related to HF activation/growth but not those supporting fibrosis. Taken together, our study shows a role for DPP4 in HF biology and shows how DPP4 inhibition, currently used as oral medication to treat diabetes, could be repurposed into a topical treatment agent to potentially reverse HF loss in alopecia and after injury.
Collapse
Affiliation(s)
- Maria Helm
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Lena Sünke Mortensen
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Juliane Loui
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Ying Zheng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - George Cotsarelis
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Rubén A Ferrer
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
Ohm B, Moneke I, Jungraithmayr W. Targeting cluster of differentiation 26 / dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. Br J Pharmacol 2023; 180:2846-2861. [PMID: 36196001 DOI: 10.1111/bph.15967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cluster of differentiation 26 (CD26)/dipeptidyl peptidase 4 (DPP4) is an exopeptidase that is expressed as a transmembrane protein in many organs but also present in a circulating soluble form. Beyond its enzymatic and costimulatory activity, CD26/DPP4 is involved in the pathogenesis of chronic fibrotic diseases across many organ types, such as liver cirrhosis, kidney fibrosis and lung fibrosis. Organ fibrosis is associated with a high morbidity and mortality, and there are no causative therapies that can effectively attenuate the progress of the disease. Growing evidence suggests that inhibiting CD26/DPP4 can modulate the profibrotic tissue microenvironment and thus reduce fibrotic changes within affected organs. This review summarizes the role of CD26/DPP4 in fibroproliferative disorders and highlights new opportunities for an antifibrotic treatment by CD26/DPP4 inhibition. As a major advantage, CD26/DPP4 inhibitors have been in safe and routine clinical use in type 2 diabetes for many years and thus qualify for repurposing to repurpose as a promising therapeutic against fibrosis. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Moneke
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Popławski P, Zarychta-Wiśniewska W, Burdzińska A, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Rybicka B, Białas A, Kossowska H, Iwanicka-Nowicka R, Koblowska M, Pączek L, Piekiełko-Witkowska A. Renal cancer secretome induces migration of mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:200. [PMID: 37563650 PMCID: PMC10413545 DOI: 10.1186/s13287-023-03430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Advanced renal cell carcinoma (RCC) is therapeutically challenging. RCC progression is facilitated by mesenchymal stem/stromal cells (MSCs) that exert remarkable tumor tropism. The specific mechanisms mediating MSCs' migration to RCC remain unknown. Here, we aimed to comprehensively analyze RCC secretome to identify MSCs attractants. METHODS Conditioned media (CM) were collected from five RCC-derived cell lines (Caki-1, 786-O, A498, KIJ265T and KIJ308T) and non-tumorous control cell line (RPTEC/TERT1) and analyzed using cytokine arrays targeting 274 cytokines in addition to global CM proteomics. MSCs were isolated from bone marrow of patients undergoing standard orthopedic surgeries. RCC CM and the selected recombinant cytokines were used to analyze their influence on MSCs migration and microarray-targeted gene expression. The expression of genes encoding cytokines was evaluated in 100 matched-paired control-RCC tumor samples. RESULTS When compared with normal cells, CM from advanced RCC cell lines (Caki-1 and KIJ265T) were the strongest stimulators of MSCs migration. Targeted analysis of 274 cytokines and global proteomics of RCC CM revealed decreased DPP4 and EGF, as well as increased AREG, FN1 and MMP1, with consistently altered gene expression in RCC cell lines and tumors. AREG and FN1 stimulated, while DPP4 attenuated MSCs migration. RCC CM induced MSCs' transcriptional reprogramming, stimulating the expression of CD44, PTX3 and RAB27B. RCC cells secreted hyaluronic acid (HA), a CD44 ligand mediating MSCs' homing to the kidney. AREG emerged as an upregulator of MSCs' transcription. CONCLUSIONS Advanced RCC cells secrete AREG, FN1 and HA to induce MSCs migration, while DPP4 loss prevents its inhibitory effect on MSCs homing. RCC secretome induces MSCs' transcriptional reprograming to facilitate their migration. The identified components of RCC secretome represent potential therapeutic targets.
Collapse
Affiliation(s)
- Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Anna Burdzińska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Alex Białas
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Helena Kossowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
9
|
Abstract
Metabolic syndrome (MS), a conglomeration of several conditions including obesity, type 2 diabetes mellitus (T2DM), insulin resistance, elevated blood pressure, and dyslipidemia is reaching epidemic proportions. Anemia is caused by iron deficiency or dysregulation of iron homeostasis, leading to tissue hypoxia. Coexistence of anemia and MS or its components has been reported in the literature. The term "rubrometabolic syndrome" acts as a unifying entity linking the importance of blood in health and anemia in MS; it justifies two principles - redness of blood and low-grade inflammation. Chronic low-grade inflammation in MS affects iron metabolism leading to anemia. Tissue hypoxia that results from the anemic condition seems to be a major causative factor for the exacerbation of several microvascular and macrovascular components of T2DM, which include diabetic neuropathy, nephropathy, retinopathy, and cardiovascular complications. In obesity, anemia leads to malabsorption of micronutrients and can complicate the management of the condition by bariatric surgery. Anemia interferes with the diagnosis and management of T2DM, obesity, dyslipidemia, or hypertension due to its effect on pathological tests as well as medications. Since anemia in MS is multifaceted, the management of anemia is challenging as overcorrection of anemia with erythropoietin-stimulating agents can cause detrimental effects. These limitations necessitate availability of an effective and safe therapy that can maintain and elevate the hemoglobin levels along with maintaining the physiological balance of other systems. This review discusses the physiological links between anemia and MS along with diagnosis and management strategies in patients with coexistence of anemia and MS.
Collapse
Affiliation(s)
| | - Ankia Coetzee
- Division of Endocrinology, Stellenbosch University & Tygerberg Hospital, Cape Town, South Africa
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal NHS Foundation Trust, Salford, UK
| | - Joel R Saldaña
- Resultados Medicos, Desarrollo e Investigación, SC, Boulevard Valle de San Javier, Pachuca Hidalgo, Mexico City, Mexico
| | - Gary Kilov
- University of Melbourne, Launceston, Australia
| |
Collapse
|
10
|
Xie L, Shao X, Yu Y, Gong W, Sun F, Wang M, Yang Y, Liu W, Huang X, Wu X, Wu H, Li Y, Zhang Z, Wen J, He M. Anemia is a risk factor for rapid eGFR decline in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1052227. [PMID: 36755908 PMCID: PMC9899800 DOI: 10.3389/fendo.2023.1052227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate the association between anemia and progression of diabetic kidney disease (DKD) in type 2 diabetes. METHODS This was a retrospective study. A total of 2570 in-patients with type 2 diabetes hospitalized in Jinan branch of Huashan hospital from January 2013 to October 2017 were included, among whom 526 patients were hospitalized ≥ 2 times with a median follow-up period of 2.75 years. Annual rate of eGFR decline was calculated in patients with multiple admissions. A rate of eGFR decline exceeding -5 ml/min per 1.73 m2 per year was defined as rapid eGFR decline. The prevalence of DKD and clinical characteristics were compared between anemia and non-anemia patients. Correlation analysis was conducted between anemia and clinical parameters. Comparison of clinical features were carried out between rapid eGFR decline and slow eGFR decline groups. The risk factors for rapid DKD progression were analyzed using logistic regression analysis. RESULTS The prevalence of anemia was 28.2% among the 2570 diabetic patients, while in patients with DKD, the incidence of anemia was 37.8%. Patients with anemia had greater prevalence of DKD, higher levels of urinary albumin-to-creatinine ratio (UACR), serum creatinine, BUN, urine α1-MG, urine β2-MG, urine NAG/Cr, hsCRP, Cystatin C, homocysteine and lower eGFR, as compared to the patients without anemia. Anemia was correlated with age, UACR, eGFR, urinary NAG/Cr, hsCRP and diabetic retinopathy (DR). Logistic regression analysis of 526 patients with type 2 diabetes during the follow-up period showed that anemia was an independent risk factor for rapid eGFR decline. CONCLUSION Anemia is associated with worse renal function and is an independent risk factor for rapid eGFR decline in type 2 diabetes.
Collapse
Affiliation(s)
- Lijie Xie
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoqing Shao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeping Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjuan Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinmei Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xia Wu
- Department of Endocrinology and Metabolism, Jingan Branch of Huashan Hospital, Shanghai, China
| | - Huihui Wu
- Department of Endocrinology and Metabolism, Jingan Branch of Huashan Hospital, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Jingan Branch of Huashan Hospital, Shanghai, China
- *Correspondence: Min He, ; Jie Wen,
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Min He, ; Jie Wen,
| |
Collapse
|
11
|
Hatzmann FM, Großmann S, Waldegger P, Wiegers GJ, Mandl M, Rauchenwald T, Pierer G, Zwerschke W. Dipeptidyl peptidase-4 cell surface expression marks an abundant adipose stem/progenitor cell population with high stemness in human white adipose tissue. Adipocyte 2022; 11:601-615. [PMID: 36168895 PMCID: PMC9542856 DOI: 10.1080/21623945.2022.2129060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The capacity of adipose stem/progenitor cells (ASCs) to undergo self-renewal and differentiation is crucial for adipose tissue homoeostasis, regeneration and expansion. However, the heterogeneous ASC populations of the adipose lineage constituting adipose tissue are not precisely known. In the present study, we demonstrate that cell surface expression of dipeptidyl peptidase-4 (DPP4)/cluster of differentiation 26 (CD26) subdivides the DLK1-/CD34+/CD45-/CD31- ASC pool of human white adipose tissues (WATs) into two large populations. Ex vivo, DPP4+ ASCs possess higher self-renewal and proliferation capacity and lesser adipocyte differentiation potential than DDP4- ASCs. The knock-down of DPP4 in ASC leads to significantly reduced proliferation and self-renewal capacity, while adipogenic differentiation is increased. Ectopic overexpression of DPP4 strongly inhibits adipogenesis. Moreover, in whole mount stainings of human subcutaneous (s)WAT, we detect DPP4 in CD34+ ASC located in the vascular stroma surrounding small blood vessels and in mature adipocytes. We conclude that DPP4 is a functional marker for an abundant ASC population in human WAT with high proliferation and self-renewal potential and low adipogenic differentiation capacity.
Collapse
Affiliation(s)
- Florian M Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria,Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sonja Großmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria,Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria,Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - G Jan Wiegers
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Markus Mandl
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria,Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Tina Rauchenwald
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria,Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria,CONTACT Werner Zwerschke Head of the Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck
| |
Collapse
|
12
|
Haase C, Gustafsson K, Mei S, Yeh SC, Richter D, Milosevic J, Turcotte R, Kharchenko PV, Sykes DB, Scadden DT, Lin CP. Image-seq: spatially resolved single-cell sequencing guided by in situ and in vivo imaging. Nat Methods 2022; 19:1622-1633. [PMID: 36424441 PMCID: PMC9718684 DOI: 10.1038/s41592-022-01673-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.
Collapse
Affiliation(s)
- Christa Haase
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shu-Chi Yeh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Dmitry Richter
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Raphaël Turcotte
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Altos Labs, San Diego, CA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
13
|
Dipeptidyl Peptidase-4 Inhibitor-Related Bullous Pemphigoid: Clinical, Laboratory, and Histological Features, and Possible Pathogenesis. Int J Mol Sci 2022; 23:ijms232214101. [PMID: 36430582 PMCID: PMC9692886 DOI: 10.3390/ijms232214101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Dipeptidyl peptidase-4 inhibitor (DPP4i) is a widely used antidiabetic agent. Emerging cases of DPP4i-associated bullous pemphigoid (DBP), whose pathogenesis remains unclear, have been reported. Thus, a retrospective study was conducted from January 2016 to June 2021 to determine the clinical, laboratory, and histopathological features of DBP and idiopathic bullous pemphigoid (IBP). We set up in vitro experiments using vildagliptin-treated HaCaT keratinocytes to validate what we found by analyzing published RNA sequencing data about the genes related to the dermal-epidermal junction. We also observed IL-6 expression by HaCaT cells treated with vildagliptin. We enrolled 20 patients with DBP and 40 patients with IBP. The total Bullous Pemphigoid Disease Area Index (BPDAI) score was similar in both groups. However, the BPDAI score of erosions and blisters in DBP was significantly higher than that in IBP (24.6 vs. 16.68, p = 0.0189), and the score for urticaria and erythema was lower in DBP (12 vs. 19.05, p = 0.0183). The pathological features showed that the mean infiltrating eosinophil number per high-power field was significantly lower in DBP than in IBP (16.7 vs. 27.08, p = 0.023). The expression of LAMA3, LAMB3, LAMC2, DST, and COL17A1 decreased significantly in vildagliptin-treated human keratinocytes. On the other hand, IL-6, the hallmark cytokine of bullous pemphigoid (BP) severity, was found to be upregulated in HaCaT cells by vildagliptin. These experimental findings imply less of a requirement for eosinophil infiltration to drive the inflammatory cascades in DBP blistering. Both immunologic and non-immunologic pathways could be employed for the development of DBP. Our findings may help explain the higher incidence of non-inflammatory BP that was observed in DBP.
Collapse
|
14
|
Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines 2022; 10:biomedicines10082026. [PMID: 36009573 PMCID: PMC9406088 DOI: 10.3390/biomedicines10082026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
DPP4/CD26 is a single-pass transmembrane protein with multiple functions on glycemic control, cell migration and proliferation, and the immune system, among others. It has recently acquired an especial relevance due to the possibility to act as a receptor or co-receptor for SARS-CoV-2, as it has been already demonstrated for other coronaviruses. In this review, we analyze the evidence for the role of DPP4 on COVID-19 risk and clinical outcome, and its contribution to COVID-19 physiopathology. Due to the pathogenetic links between COVID-19 and diabetes mellitus and the hyperinflammatory response, with the hallmark cytokine storm developed very often during the disease, we dive deep into the functions of DPP4 on carbohydrate metabolism and immune system regulation. We show that the broad spectrum of functions regulated by DPP4 is performed both as a protease enzyme, as well as an interacting partner of other molecules on the cell surface. In addition, we provide an update of the DPP4 inhibitors approved by the EMA and/or the FDA, together with the newfangled approval of generic drugs (in 2021 and 2022). This review will also cover the effects of DPP4 inhibitors (i.e., gliptins) on the progression of SARS-CoV-2 infection, showing the role of DPP4 in this disturbing disease.
Collapse
|
15
|
Boss AL, Damani T, Wickman TJ, Chamley LW, James JL, Brooks AES. Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells. eLife 2022; 11:76622. [PMID: 35920626 PMCID: PMC9371602 DOI: 10.7554/elife.76622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin + CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells. This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.
Collapse
Affiliation(s)
- Anna Leabourn Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tayla J Wickman
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Jo L James
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, Cheng P, Sokol J, Jensen A, Tso A, Shankar V, Wendel BS, Bakerman I, Liang G, Koyano T, Fong R, Nau A, Ahmad H, Gopakumar JK, Wirka R, Lee A, Boyd J, Joseph Woo Y, Quertermous T, Gulati G, Jaiswal S, Chien YH, Chan C, Davis MM, Nguyen PK. Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circ Res 2022; 130:1510-1530. [PMID: 35430876 PMCID: PMC9286288 DOI: 10.1161/circresaha.121.320090] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS In addition to macrophages, we found a high proportion of αβ T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αβ T cells (CD4<CD8), exhibiting clonal expansion of specific TCRs. Interestingly, we found that these plaque T cells had TCRs specific for influenza, coronavirus, and other viral epitopes, which share sequence homologies to proteins found on smooth muscle cells and endothelial cells, suggesting potential autoimmune-mediated T-cell activation in the absence of active infection. To better understand the potential function of these activated plaque T cells, we then interrogated their transcriptome at the single-cell level. Of the 3 T-cell phenotypic clusters with the highest expression of the activation marker HLA-DRA, 2 clusters expressed a proinflammatory and cytolytic signature characteristic of CD8 cells, while the other expressed AREG (amphiregulin), which promotes smooth muscle cell proliferation and fibrosis, and, thus, contributes to plaque progression. CONCLUSIONS Taken together, these findings demonstrate that plaque T cells are clonally expanded potentially by antigen engagement, are potentially reactive to self-epitopes, and may interact with smooth muscle cells and macrophages in the plaque microenvironment.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University
- Department of Medicine (Section of Genetic Medicine), University of Chicago
| | - Jessica D’Addabbo
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Xianxi Huang
- The First Affiliated Hospital of Shantou University Medical College
- Stanford Cardiovascular Institute, Stanford University
| | - Stefan Veizades
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Edinburgh Medical School, United Kingdom
| | - Koki Sasagawa
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | | | - Paul Cheng
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Jan Sokol
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Annie Jensen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Alexandria Tso
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Vishnu Shankar
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Ben Shogo Wendel
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Isaac Bakerman
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Grace Liang
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University
| | - Allison Nau
- Department of Microbiology and Immunology, Stanford University
| | - Herra Ahmad
- Department of Pathology, Stanford University
| | | | - Robert Wirka
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Andrew Lee
- Stanford Cardiovascular Institute, Stanford University
- Department of Pathology, Stanford University
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jack Boyd
- Department of Surgery, Stanford University
| | | | - Thomas Quertermous
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | | | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University
| | - Charles Chan
- Stanford Cardiovascular Institute, Stanford University
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University
- Edinburgh Medical School, United Kingdom
- Howard Hughes Medical Institute, Stanford University
| | - Patricia K. Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| |
Collapse
|
17
|
Huang J, Liu X, Wei Y, Li X, Gao S, Dong L, Rao X, Zhong J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front Immunol 2022; 13:830863. [PMID: 35309368 PMCID: PMC8931313 DOI: 10.3389/fimmu.2022.830863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an ubiquitously expressed protease presented as either a membrane-bound or soluble form. DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular processes by directly binding to a number of ligands, including adenosine deaminase, CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due to its implication in fibrotic response and immunoregulation, increasing studies are focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting protein, DPP4 possesses multiple functions in different types of cells, including both enzymatic and non-enzymatic functions. However, most of the review articles on the role of DPP4 in autoimmune disease were focused on the association between DPP4 enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive summary of DPP4's immunoregulatory actions including both enzymatic dependent and independent functions is needed. In this article, we will review the recent advances of DPP4 in immune regulation and autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Jie Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoquan Rao
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Brailovski E, Li Q, Liu N, Leber B, Khalaf D, Sabloff M, Christou G, Yee K, Chodirker L, Parmentier A, Siddiqui M, Mamedov A, Zhang L, Liu Y, Earle CC, Cheung MC, Mittmann N, Buckstein RJ, Mozessohn L. The impact of oral hypoglycemics and statins on outcomes in myelodysplastic syndromes. Ann Hematol 2022; 101:1023-1030. [PMID: 35190844 DOI: 10.1007/s00277-022-04802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Observational studies suggest an anti-neoplastic effect associated with statins, metformin, and dipeptidyl peptidase-4 inhibitors (DPP4i), while sulfonylureas may have a neutral or detrimental effect. We linked the Ontario subset of a prospective Canadian myelodysplastic syndromes (MDS) registry with provincial administrative databases. We assessed the impact of statin/oral hypoglycemic medication exposure on overall survival (OS) using Cox regression analysis, controlling for comorbidities and sociodemographic factors. Five hundred thirty-three patients aged ≥ 66 years were included: 49.3% used statins, 18.9% used metformin, 9.0% used sulfonylureas, and 6.4% used DPP4i. Three hundred ninety-five patients were lower-risk based on the International Prognostic Scoring System. On univariate analysis, we identified a marginal improvement in OS in the lower-risk group using DPP4i (HR 0.98, 95% CI 0.95-1.00, P = 0.05), while there was no impact on mortality for higher-risk DPP4i users (HR 1.03, CI 0.99-1.07, P = 0.21). There was no mortality difference for statins (HR 1.00, CI 1.00-1.01, P = 0.93), metformin (HR 1.00, CI 0.99-1.01, P = 0.81), or sulfonylureas (HR 1.00, CI 0.99-1.02, P = 0.43) in the entire cohort, as well as when stratified into lower/higher-risk groups. On multivariable analysis in the lower-risk group, there was no association between DPP4i and OS (HR 0.98, CI 0.95-1.00, P = 0.06). Prospective studies with larger cohorts of patients and longer follow-up are required to further study the impact of DPP4i in MDS.
Collapse
Affiliation(s)
- Eugene Brailovski
- Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada.
| | - Qing Li
- ICES (Formerly Known As the Institute for Clinical Evaluative Sciences), Toronto, ON, Canada
| | - Ning Liu
- ICES (Formerly Known As the Institute for Clinical Evaluative Sciences), Toronto, ON, Canada
| | - Brian Leber
- Division of Hematology, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Dina Khalaf
- Division of Hematology, Juravinski Cancer Center, Hamilton, ON, Canada
| | | | - Grace Christou
- Division of Hematology, Ottawa Hospital, Ottawa, ON, Canada
| | - Karen Yee
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Lisa Chodirker
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada
| | - Anne Parmentier
- Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada
| | - Mohammed Siddiqui
- Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada
| | - Alexandre Mamedov
- Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada
| | - Liying Zhang
- Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada
| | - Ying Liu
- ICES (Formerly Known As the Institute for Clinical Evaluative Sciences), Toronto, ON, Canada
| | - Craig C Earle
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada.,ICES (Formerly Known As the Institute for Clinical Evaluative Sciences), Toronto, ON, Canada
| | - Matthew C Cheung
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada.,ICES (Formerly Known As the Institute for Clinical Evaluative Sciences), Toronto, ON, Canada
| | - Nicole Mittmann
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology and Institute for Health, Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Rena J Buckstein
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada
| | - Lee Mozessohn
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Hematology/Medical Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, T2M4N 3M5, Canada.,ICES (Formerly Known As the Institute for Clinical Evaluative Sciences), Toronto, ON, Canada
| |
Collapse
|
19
|
Ropa J, Cooper S, Broxmeyer HE. Leukemia Inhibitory Factor Promotes Survival of Hematopoietic Progenitors Ex Vivo and Is Post-Translationally Regulated by DPP4. Stem Cells 2022; 40:346-357. [PMID: 35293568 PMCID: PMC9199847 DOI: 10.1093/stmcls/sxac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 01/30/2023]
Abstract
Hematopoietic cells are regulated in part by extracellular cues from cytokines. Leukemia inhibitory factor (LIF) promotes survival, self-renewal, and pluripotency of mouse embryonic stem cells (mESC). While genetic deletion of LIF affects hematopoietic progenitor cells (HPCs), the direct effect of LIF protein exposure on HPC survival is not known. Furthermore, post-translational modifications (PTM) of LIF and their effects on its function have not been evaluated. We demonstrate that treatment with recombinant LIF preserves mouse and human HPC numbers in stressed conditions when growth factor addition is delayed ex vivo. We show that Lif is upregulated in response to irradiation-induced stress. We reveal novel PTM of LIF where it is cleaved twice by dipeptidyl peptidase 4 (DPP4) protease so that it loses its 4 N-terminal amino acids. This truncation of LIF down-modulates LIF's ability to preserve functional HPC numbers ex vivo following delayed growth factor addition. DPP4-truncated LIF blocks the ability of full-length LIF to preserve functional HPC numbers. This LIF role and its novel regulation by DPP4 have important implications for normal and stress hematopoiesis, as well as for other cellular contexts in which LIF and DPP4 are implicated.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: James Ropa, PhD, Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN 46202, USA. Tel: 317-274-7553;
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X, Tian L, Yu X. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne) 2022; 13:856954. [PMID: 35586625 PMCID: PMC9109619 DOI: 10.3389/fendo.2022.856954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various physiological and pathological processes ranging from glucose homeostasis, immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4 inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive attraction in many studies, indicating that DPP4 inhibitors may regulate bone homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines, bone cells, bone immune cells, and cytokines in skeleton system. This literature review shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be improved by decreasing DPP4 activities. The substantial evidence collected and analyzed in this review supports this implication.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Bing Fu
- Department of Medical Imaging, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Haibo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Hongyi Cao
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Xiang Chen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu,
| |
Collapse
|
21
|
Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential Effect of DPP-4 Inhibitors Towards Hepatic Diseases and Associated Glucose Intolerance. Diabetes Metab Syndr Obes 2022; 15:1845-1864. [PMID: 35733643 PMCID: PMC9208633 DOI: 10.2147/dmso.s369712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dipeptidyl-peptidase-4 (DPP-4) is an enzyme having various properties and physiological roles in lipid accumulation, resistance to anticancer agents, and immune stimulation. DPP-4 includes membrane-bound peptidases and is a kind of enzyme that cleaves alanine or proline-containing peptides such as incretins, chemokines, and appetite-suppressing hormones (neuropeptide) at their N-terminal dipeptides. DPP-4 plays a role in the final breakdown of peptides produced by other endo and exo-peptidases from nutritious proteins and their absorption in these tissues. DPP-4 enzyme activity has different modes of action on glucose metabolism, hunger regulation, gastrointestinal motility, immune system function, inflammation, and pain regulation. According to the literature survey, as DPP-4 levels increase in individuals with liver conditions, up-regulation of hepatic DPP-4 expression is likely to be the cause of glucose intolerance or insulin resistance. This review majorly focuses on the cleavage of alanine or proline-containing peptides such as incretins by the DPP-4 and its resulting conditions like glucose intolerance and cause of DPP-4 level elevation due to some liver conditions. Thus, we have discussed the various effects of DPP-4 on the liver diseases like hepatitis C, non-alcoholic fatty liver, hepatic regeneration and stem cell, hepatocellular carcinoma, and the impact of elevated DPP-4 levels in association with liver diseases as a cause of glucose intolerance and their treatment drug of choices. In addition, the effect of DPP-4 inhibitors on obesity and their negative aspects are also discussed in brief.
Collapse
Affiliation(s)
- Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Anjali Sharma
- Freelancer, Pharmacovigilance Expert, Uttar Pradesh, India
| | - Vaishnavi Chhabra
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Uttar Pradesh, 206130, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
- Correspondence: Abdulsalam Alhalmi, Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen, Email
| |
Collapse
|
22
|
Fitzgerald AA, Wang S, Agarwal V, Marcisak EF, Zuo A, Jablonski SA, Loth M, Fertig EJ, MacDougall J, Zhukovsky E, Trivedi S, Bhatia D, O'Neill V, Weiner LM. DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma. J Immunother Cancer 2021; 9:jitc-2021-002837. [PMID: 34737215 PMCID: PMC8578994 DOI: 10.1136/jitc-2021-002837] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer death in the USA by 2030. Immune checkpoint inhibitors fail to control most PDAC tumors because of PDAC’s extensive immunosuppressive microenvironment and poor immune infiltration, a phenotype also seen in other non-inflamed (ie, ‘cold’) tumors. Identifying novel ways to enhance immunotherapy efficacy in PDAC is critical. Dipeptidyl peptidase (DPP) inhibition can enhance immunotherapy efficacy in other cancer types; however, the impact of DPP inhibition on PDAC tumors remains unexplored. Methods We examined the effects of an oral small molecule DPP inhibitor (BXCL701) on PDAC tumor growth using mT3-2D and Pan02 subcutaneous syngeneic murine models in C57BL/6 mice. We explored the effects of DPP inhibition on the tumor immune landscape using RNAseq, immunohistochemistry, cytokine evaluation and flow cytometry. We then tested if BXCL701 enhanced anti-programmed cell death protein 1 (anti-PD1) efficacy and performed immune cell depletion and rechallenged studies to explore the relevance of cytotoxic immune cells to combination treatment efficacy. Results In both murine models of PDAC, DPP inhibition enhanced NK and T cell immune infiltration and reduced tumor growth. DPP inhibition also enhanced the efficacy of anti-PD1. The efficacy of dual anti-PD1 and BXCL701 therapy was dependent on both CD8+ T cells and NK cells. Mice treated with this combination therapy developed antitumor immune memory that cleared some tumors after re-exposure. Lastly, we used The Cancer Genome Atlas (TCGA) to demonstrate that increased NK cell content, but not T cell content, in human PDAC tumors is correlated with longer overall survival. We propose that broad DPP inhibition enhances antitumor immune response via two mechanisms: (1) DPP4 inhibition increases tumor content of CXCL9/10, which recruits CXCR3+ NK and T cells, and (2) DPP8/9 inhibition activates the inflammasome, resulting in proinflammatory cytokine release and Th1 response, further enhancing the CXCL9/10-CXCR3 axis. Conclusions These findings show that DPP inhibition with BXCL701 represents a pharmacologic strategy to increase the tumor microenvironment immune cell content to improve anti-PD1 efficacy in PDAC, suggesting BXCL701 can enhance immunotherapy efficacy in ‘cold’ tumor types. These findings also highlight the potential importance of NK cells along with T cells in regulating PDAC tumor growth.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Shangzi Wang
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Veena Agarwal
- Immune-oncology, BioXcel Therapeutics Inc, New Haven, Connecticut, USA
| | - Emily F Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Annie Zuo
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Sandra A Jablonski
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Melanie Loth
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | | | | | | | - Dimple Bhatia
- BioXcel Therapeutics Inc, New Haven, Connecticut, USA
| | - Vince O'Neill
- BioXcel Therapeutics Inc, New Haven, Connecticut, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
24
|
Kaneko S, Onda Y, Sakamoto S, Okada M, Anzai N. Dipeptidyl-peptidase 4 inhibitor increased and maintained platelet count in a patient with primary myelofibrosis. EJHAEM 2021; 2:551-554. [PMID: 35844718 PMCID: PMC9176032 DOI: 10.1002/jha2.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Shizuka Kaneko
- Department of Diabetes/Endocrinology/MetabolismTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Yoshiyuki Onda
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Soichiro Sakamoto
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Mutsumi Okada
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| | - Naoyuki Anzai
- Department of Hematology and OncologyTakatsuki Red Cross HospitalTakatsukiOsakaJapan
| |
Collapse
|
25
|
Namburi S, Broxmeyer HE, Hong CS, Whiteside TL, Boyiadzis M. DPP4 + exosomes in AML patients' plasma suppress proliferation of hematopoietic progenitor cells. Leukemia 2021; 35:1925-1932. [PMID: 33139859 PMCID: PMC10165724 DOI: 10.1038/s41375-020-01047-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
Mechanisms by which acute myeloid leukemia (AML) interferes with normal hematopoiesis are under intense investigation. Emerging evidence suggests that exosomes produced by leukemia blasts suppress hematopoiesis. Exosomes isolated from AML patients' plasma at diagnosis significantly and dose-dependently suppressed colony formation of normal hematopoietic progenitor cells (HPC). Levels of HPC suppression mediated by exosomes of AML patients who achieved complete remission (CR) were significantly decreased compared to those observed at AML diagnosis. Exosomes from plasma of patients who had achieved CR but with incomplete cell count recovery (CRi) after chemotherapy suppressed in vitro colony formation as effectively as did exosomes obtained at AML diagnosis. Dipeptidylpeptidase4 (DPP4/CD26), a serine protease that cleaves select penultimate amino acids of various proteins, has been previously implicated in the regulation of hematopoiesis. DPP4 was carried by exosomes from AML plasma or leukemia cell lines. Leukemia exosomes which suppressed HSC colony formation had markedly higher DPP4 functional activity than that detected in the exosomes of normal donors. Pharmacological inhibition of DPP4 activity in AML exosomes reversed the effects of exosome-mediated myelosuppression. Reversing the negative effects of exosomes on AML hematopoiesis, and thus improving cell count recovery, might emerge as a new therapeutic approach to AML.
Collapse
Affiliation(s)
- Swathi Namburi
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hal E Broxmeyer
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang-Sook Hong
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Michael Boyiadzis
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Kohlmann J, Ferrer RA, Markovic A, Illes M, Kunz M. [Alopecia areata universalis under treatment with sitagliptin : Possible immunological effect of dipeptidyl peptidase-4 inhibitors?]. Hautarzt 2021; 72:607-609. [PMID: 33205256 PMCID: PMC8238714 DOI: 10.1007/s00105-020-04727-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ein 64-jähriger Patient entwickelte 1 Monat nach Therapieeinleitung mit Sitagliptin, einem Dipeptidylpeptidase-4(DPP‑4)-Inhibitor, und Metformin eine Alopecia universalis. Die Therapie des Diabetes wurde auf das Sitagliptin eines anderen Herstellers und Dapagliflozin umgestellt. Auf unser Anraten wurde Sitagliptin abgesetzt und eine Monotherapie mit Dapagliflozin fortgeführt. Nach 6 Wochen war eine erneute Therapie mit Sitagliptin bei unzureichend eingestelltem Diabetes notwendig. Die Alopezie persistierte. Aufgrund des immunologischen Interaktionspotenzials vermuten wir eine Assoziation zwischen DPP-4-Inhibition und der Alopezie. Der kurze therapiefreie Zeitraum scheint zu gering, um ein erneutes Haarwachstum zu beobachten. DPP‑4 kann sowohl eine Inhibition als auch Aktivierung des Immunsystems bewirken.
Collapse
Affiliation(s)
- Johannes Kohlmann
- Klinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Philipp-Rosenthal-Str. 23, 04103, Leipzig, Deutschland.
| | - Rubén A Ferrer
- Klinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Philipp-Rosenthal-Str. 23, 04103, Leipzig, Deutschland
| | - Aleksander Markovic
- Klinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Philipp-Rosenthal-Str. 23, 04103, Leipzig, Deutschland
| | - Monica Illes
- Klinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Philipp-Rosenthal-Str. 23, 04103, Leipzig, Deutschland
| | - Manfred Kunz
- Klinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Philipp-Rosenthal-Str. 23, 04103, Leipzig, Deutschland
| |
Collapse
|
27
|
Chen CC, Chen RF, Wang YC, Li YT, Chuang JH, Kuo YR. Combination of a CD26 Inhibitor, G-CSF, and Short-term Immunosuppressants Modulates Allotransplant Survival and Immunoregulation in a Rodent Hindlimb Allotransplant Model. Transplantation 2021; 105:1250-1260. [PMID: 33093401 DOI: 10.1097/tp.0000000000003504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent studies have demonstrated that inhibition of CD26 potentiates stromal cell-derived factor-1α (SDF-1α), promotes tissue regeneration, and suppresses the rejection of organ transplants. This study investigated whether the combination of a CD26 inhibitor (CD26i) with granulocyte colony-stimulating factor (G-CSF) and short-term immunosuppressants modulates vascularized composite tissue allotransplant survival in a rodent orthotopic hindlimb allotransplant model. METHODS The hindlimb allotransplantation from Brown-Norway to Lewis rats was divided into 4 groups. Group 1 (controls) did not receive any treatment. Group 2 was treated with short-term antilymphocyte serum (ALS) and cyclosporine-A (CsA). Group 3 was administrated CD26i and G-CSF. Group 4 received a combination of CD26i/G-CSF/ALS/CsA. Each subgroup comprised 10 rats. Peripheral blood and sampling of transplanted tissues were collected for immunological and histological analysis. RESULTS The results revealed that allotransplant survival was found to be significantly prolonged in group 4 with CD26i/G-CSF/ALS/CsA treatment compared with those in the other groups. The interleukin-10 and transforming growth factor-βl levels, the percentage of CD4+/CD25+/FoxP3+ T cells, as well as the levels of SDF-1α expressions were significantly increased in group 4 compared with those in the other groups. Group 4 revealed a statistical increase in the percentage of donor cells (RT1n) expression in the recipient peripheral blood, and the mixed lymphocyte reaction showed hyporesponsiveness of the T cells to donor alloantigens. CONCLUSION The combination of CD26i/G-CSF and short-term immunosuppressants prolongs allotransplant survival by inducing immunoregulatory effects and enhancing the percentage of SDF-1α expression. This immunomodulatory approach has great potential as a strategy to increase vascularized composite allotransplantation survival.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chi Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Ting Li
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
28
|
Kim HR, Tagirasa R, Yoo E. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site. J Med Chem 2021; 64:5291-5322. [PMID: 33904753 DOI: 10.1021/acs.jmedchem.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs. Here, we provide an overview of technologies useful for the study of proteases with the focus on recent advances in chemoproteomic methods and screening platforms. By highlighting covalent inhibitors that have been designed to target immunomodulatory proteases, we identify opportunities for the development of small molecule immunomodulators.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
29
|
Hasegawa T, Zhao J, Bieber B, Zee J, Pisoni RL, Robinson BM, Hanafusa N, Nangaku M. Association between Dipeptidyl Peptidase-4 Inhibitor Prescription and Erythropoiesis-Stimulating Agent Hyporesponsiveness in Hemodialysis Patients with Diabetes Mellitus. Kidney Blood Press Res 2021; 46:352-361. [PMID: 33887741 DOI: 10.1159/000515704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Dipeptidyl peptidase-4 (DPP-4) has been hypothesized to improve responsiveness to erythropoiesis-stimulating agent (ESA). We aimed to describe the trend in DPP-4 inhibitor prescription patterns and assess the association between DPP-4 inhibitor prescription and ESA hyporesponsiveness (eHypo) in Japanese hemodialysis (HD) patients with diabetes mellitus (DM). METHODS We analyzed data from the Japan Dialysis Outcomes and Practice Patterns Study phase 4-6 (2009-2017) on patients with DM who underwent HD thrice per week for at least 4 months. The primary exposure of interest was having a DPP-4 inhibitor prescription. The primary analysis outcomes were a binary indicator of eHypo (mean hemoglobin <10 and mean ESA dose >6,000 units/week over 4 months) and the natural log-transformed ESA resistance index (ERI). We used conditional logistic regression to compare within-patient changes in eHypo before and after initial DPP-4 inhibitor prescription. We used linear generalized estimating equation models to compare continuous ERI outcomes while accounting for within-patient repeated measurements with an exchangeable correlation structure. RESULTS There was a monotonic increase in DPP-4 inhibitor prescription according to study year up to 20% in 2017. Moreover, 12.8% of patients with a DPP-4 inhibitor prescription were ESA hyporesponsive before the initial DPP-4 inhibitor prescription. After DPP-4 inhibitor prescription, the odds of eHypo and mean log-ERI remained unchanged in the whole cohort of our study. The interaction analysis of DPP-4 inhibitor and sideropenia showed that DPP-4 inhibitors attenuated eHypo in the patients without iron deficiency. CONCLUSION Our findings indicate a recent increase in DPP-4 inhibitor prescription among Japanese HD patients with DM. DPP-4 inhibitors could improve ERI in patients undergoing HD without iron deficiency.
Collapse
Affiliation(s)
- Takeshi Hasegawa
- Showa University Research Administration Center (SURAC), Showa University, Tokyo, Japan.,Division of Nephrology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan.,Department of Hygiene, Public Health, and Preventive Medicine, Graduate School of Medicine, Showa University, Tokyo, Japan.,Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical University, Fukushima, Japan.,Anemia Working Group of the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS), Osaka, Japan
| | - Junhui Zhao
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Brian Bieber
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Jarcy Zee
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Ronald L Pisoni
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Bruce M Robinson
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Norio Hanafusa
- Department of Blood Purification, Tokyo Women's Medical University, Tokyo, Japan.,Anemia Working Group of the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS), Osaka, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Anemia Working Group of the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS), Osaka, Japan
| |
Collapse
|
30
|
Yoon H, Sung JH, Song MJ. Effects of the Antidiabetic Drugs Evogliptin and Sitagliptin on the Immune Function of CD26/DPP4 in Th1 Cells. Biomol Ther (Seoul) 2021; 29:154-165. [PMID: 33148870 PMCID: PMC7921863 DOI: 10.4062/biomolther.2020.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
This study aimed to investigate whether the antidiabetic drugs dipeptidyl peptidase 4 (DPP4) inhibitors such as evogliptin and sitagliptin affect the membrane DPP4 (mDPP4) enzymatic activity and immune function of T helper1 (Th1) cells in terms of cytokine expression and cell profiles. The mDPP4 enzymatic activity, cytokine expression, and cell profiles, including cell counts, cell viability, DNA synthesis, and apoptosis, were measured in pokeweed mitogen (PWM)-activated CD4+CD26+ H9 Th1 cells with or without the DPP4 inhibitors, evogliptin and sitagliptin. PWM treatment alone strongly stimulated the expression of mDPP4 and cytokines such as interleukin (IL)-2, IL-10, tumor necrosis factor-alpha, interferon-gamma, IL-13, and granulocyte-macrophage colony stimulating factor in the CD4+CD26+ H9 Th1 cells. Evogliptin or sitagliptin treatment potently inhibited mDPP4 activity in a dose-dependent manner but did not affect either the cytokine profile or cell viability in PWM-activated CD4+CD26+ H9 Th1 cells. These results suggest that, following immune stimulation, Th1 cell signaling pathways for cytokine expression function normally after treatment with evogliptin or sitagliptin, which efficiently inhibit mDPP4 enzymatic activity in Th1 cells.
Collapse
Affiliation(s)
- Hyunyee Yoon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.,Protein Immunology Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Kore
| | - Ji Hyun Sung
- Flow Cytometry Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
31
|
Wilson AL, Moffitt LR, Wilson KL, Bilandzic M, Wright MD, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. DPP4 Inhibitor Sitagliptin Enhances Lymphocyte Recruitment and Prolongs Survival in a Syngeneic Ovarian Cancer Mouse Model. Cancers (Basel) 2021; 13:487. [PMID: 33513866 PMCID: PMC7865851 DOI: 10.3390/cancers13030487] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunity plays a key role in epithelial ovarian cancer (EOC) progression with a well-documented correlation between patient survival and high intratumoral CD8+ to T regulatory cell (Treg) ratios. We previously identified dysregulated DPP4 activity in EOCs as a potentially immune-disruptive influence contributing to a reduction in CXCR3-mediated T-cell infiltration in solid tumours. We therefore hypothesized that inhibition of DPP4 activity by sitagliptin, an FDA-approved inhibitor, would improve T-cell infiltration and function in a syngeneic ID8 mouse model of EOC. Daily oral sitagliptin at 50 mg/kg was provided to mice with established primary EOCs. Sitagliptin treatment decreased metastatic tumour burden and significantly increased overall survival and was associated with significant changes to the immune landscape. Sitagliptin increased overall CXCR3-mediated CD8+ T-cell trafficking to the tumour and enhanced the activation and proliferation of CD8+ T-cells in tumour tissue and the peritoneal cavity. Substantial reductions in suppressive cytokines, including CCL2, CCL17, CCL22 and IL-10, were also noted and were associated with reduced CD4+ CD25+ Foxp3+ Treg recruitment in the tumour. Combination therapy with paclitaxel, however, typical of standard-of-care for patients in palliative care, abolished CXCR3-specific T-cell recruitment stimulated by sitagliptin. Our data suggest that sitagliptin may be suitable as an adjunct therapy for patients between chemotherapy cycles as a novel approach to enhance immunity, optimise T-cell-mediated function and improve overall survival.
Collapse
Affiliation(s)
- Amy L. Wilson
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
- Department of Immunology and Pathology, Monash University, Clayton 3800, Australia;
| | - Laura R. Moffitt
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| | - Kirsty L. Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Maree Bilandzic
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| | - Mark D. Wright
- Department of Immunology and Pathology, Monash University, Clayton 3800, Australia;
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia;
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Andrew N. Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| |
Collapse
|
32
|
Brunetti VC, Reynier P, Azoulay L, Yu OHY, Ernst P, Platt RW, Filion KB. SGLT-2 inhibitors and the risk of hospitalization for community-acquired pneumonia: A population-based cohort study. Pharmacoepidemiol Drug Saf 2021; 30:740-748. [PMID: 33428309 DOI: 10.1002/pds.5192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) have been associated with an increased risk of genitourinary tract infections. Through similar biological mechanisms, they may also increase the risk of community-acquired pneumonia. Our objective was to compare the rate of hospitalization for community-acquired pneumonia (HCAP) with SGLT-2i compared to dipeptidyl peptidase-4 inhibitors (DPP-4i) among patients with type 2 diabetes. METHODS We used the United Kingdom's Clinical Practice Research Datalink Gold, linked to hospitalization data, to construct a cohort of patients with type 2 diabetes. Using a time-dependent Cox proportional hazards model, we estimated the adjusted hazard ratio (HR) for HCAP with current use of SGLT-2i versus DPP-4i. RESULTS Among 29 896 patients, 705 HCAPs occurred over a mean follow-up of 1.7 years (SD: 1.2). Incidence rates for SGLT-2i and DPP-4i users were 6.2 (95% confidence interval [CI]: 3.7, 10.2) and 17.8 (95% CI: 15.3, 20.7) per 1000 person-years, respectively. Current use of SGLT-2i was associated with a decreased risk of HCAP compared to current use of DPP-4i (adjusted HR: 0.48, 95% CI: 0.28, 0.82). However, a comparison of SGLT-2i versus glucagon-like peptide-1 receptor agonists (GLP-1 RA) found no difference in risk of HCAP (adjusted HR: 0.94, 95% CI: 0.44, 1.89). CONCLUSIONS SGLT-2i are associated with a decreased rate of HCAP compared to DPP-4i, but not when compared to GLP-1 RA, among patients with type 2 diabetes.
Collapse
Affiliation(s)
- Vanessa C Brunetti
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada.,Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Pauline Reynier
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Laurent Azoulay
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada.,Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Oriana Hoi Yun Yu
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada.,Division of Endocrinology and Metabolism, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Pierre Ernst
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Robert W Platt
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada.,Department of Pediatrics, McGill University, Montréal, Québec, Canada
| | - Kristian B Filion
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, Québec, Canada.,Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
33
|
Ropa J, Broxmeyer HE. An expanded role for dipeptidyl peptidase 4 in cell regulation. Curr Opin Hematol 2021; 27:215-224. [PMID: 32487805 DOI: 10.1097/moh.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Dipeptidyl peptidase 4 (DPP4) is a serine protease with diverse regulatory functions in healthy and diseased cells. Much remains unknown about the mechanisms and targets of DPP4. Here we discuss new studies exploring DPP4-mediated cellular regulation, provide an updated list of potential targets of DPP4, and discuss clinical implications of each. RECENT FINDINGS Recent studies have sought enhanced efficacy of targeting DPP4's role in regulating hematopoietic stem and progenitor cells for improved clinical application. Further studies have identified DPP4 functions in different cellular compartments and have proposed ways to target this protein in malignancy. These findings, together with an expanded list of putative extracellular, cell surface, and intracellular DPP4 targets, provide insight into new DPP4-mediated cell regulation. SUMMARY DPP4 posttranslationally modifies proteins and peptides with essential roles in hematopoietic cell regulation, stem cell transplantation, and malignancy. Targets include secreted signaling factors and may include membrane proteins and transcription factors critical for different hematopoietic functions. Knowing these targets and functions can provide insight into new regulatory roles for DPP4 that may be targeted to enhance transplantation, treat disease, and better understand different regulatory pathways of hematopoiesis.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
34
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
35
|
Assi E, D'Addio F, Mandò C, Maestroni A, Loretelli C, Ben Nasr M, Usuelli V, Abdelsalam A, Seelam AJ, Pastore I, Magagnotti C, Abdi R, El Essawy B, Folli F, Corradi D, Zuccotti G, Cetin I, Fiorina P. Placental proteome abnormalities in women with gestational diabetes and large-for-gestational-age newborns. BMJ Open Diabetes Res Care 2020; 8:8/2/e001586. [PMID: 33188009 PMCID: PMC7668299 DOI: 10.1136/bmjdrc-2020-001586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is the most frequent metabolic complication during pregnancy and is associated with development of short-term and long-term complications for newborns, with large-for-gestational-age (LGA) being particularly common. Interestingly, the mechanism behind altered fetal growth in GDM is only partially understood. RESEARCH DESIGN AND METHODS A proteomic approach was used to analyze placental samples obtained from healthy pregnant women (n=5), patients with GDM (n=12) and with GDM and LGA (n=5). Effects of altered proteins on fetal development were tested in vitro in human embryonic stem cells (hESCs). RESULTS Here, we demonstrate that the placental proteome is altered in pregnant women affected by GDM with LGA, with at least 37 proteins differentially expressed to a higher degree (p<0.05) as compared with those with GDM but without LGA. Among these proteins, 10 are involved in regulating tissue differentiation and/or fetal growth and development, with bone marrow proteoglycan (PRG2) and dipeptidyl peptidase-4 (DPP-4) being highly expressed. Both PRG2 and DPP-4 altered the transcriptome profile of stem cells differentiation markers when tested in vitro in hESCs, suggesting a potential role in the onset of fetal abnormalities. CONCLUSIONS Our findings suggest that placental dysfunction may be directly responsible for abnormal fetal growth/development during GDM. Once established on a larger population, inhibitors of the pathways involving those altered factors may be tested in conditions such as GDM and LGA, in which therapeutic approaches are still lacking.
Collapse
Affiliation(s)
- Emma Assi
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Francesca D'Addio
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Chiara Mandò
- "G. Pardi" Laboratory of Maternal-Fetal Translational Research, Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, Milano, Lombardia, Italy
| | - Anna Maestroni
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Cristian Loretelli
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Moufida Ben Nasr
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- Nephrology Division, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vera Usuelli
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- Nephrology Division, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ahmed Abdelsalam
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Andy Joe Seelam
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
| | - Ida Pastore
- Department of Endocrinology, ASST Fatebenefratelli-Sacco, Milano, Lombardia, Italy
| | - Cinzia Magagnotti
- ProMiFa, Protein Microsequencing Facility, Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham & Women's, Harvard University, Boston, Massachusetts, USA
| | - Basset El Essawy
- Transplantation Research Center, Renal Division, Brigham & Women's, Harvard University, Boston, Massachusetts, USA
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Franco Folli
- Endocrinologia e Metabolismo, Dipartimento di Scienze della Salute, Universita di Milano, Milano, Italy
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Emilia-Romagna, Italy
| | - Gianvincenzo Zuccotti
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- Department of Pediatrics, Ospedale dei Bambini V Buzzi, Milano, Lombardia, Italy
| | - Irene Cetin
- "G. Pardi" Laboratory of Maternal-Fetal Translational Research, Department of Biomedical and Clinical Sciences "L. Sacco", Università di Milano, Milano, Lombardia, Italy
| | - Paolo Fiorina
- International Center for T1D Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università di Milano, Milano, Italy
- Nephrology Division, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Endocrinology, ASST Fatebenefratelli-Sacco, Milano, Lombardia, Italy
| |
Collapse
|
36
|
Levy E, Delvin E, Marcil V, Spahis S. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)? Am J Physiol Endocrinol Metab 2020; 319:E689-E708. [PMID: 32755302 PMCID: PMC7518070 DOI: 10.1152/ajpendo.00298.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
Much more serious than the previous severe acute respiratory syndrome (SARS) coronavirus (CoV) outbreaks, the novel SARS-CoV-2 infection has spread speedily, affecting 213 countries and causing ∼17,300,000 cases and ∼672,000 (∼+1,500/day) deaths globally (as of July 31, 2020). The potentially fatal coronavirus disease (COVID-19), caused by air droplets and airborne as the main transmission modes, clearly induces a spectrum of respiratory clinical manifestations, but it also affects the immune, gastrointestinal, hematological, nervous, and renal systems. The dramatic scale of disorders and complications arises from the inadequacy of current treatments and absence of a vaccine and specific anti-COVID-19 drugs to suppress viral replication, inflammation, and additional pathogenic conditions. This highlights the importance of understanding the SARS-CoV-2 mechanisms of actions and the urgent need of prospecting for new or alternative treatment options. The main objective of the present review is to discuss the challenging issue relative to the clinical utility of plants-derived polyphenols in fighting viral infections. Not only is the strong capacity of polyphenols highlighted in magnifying health benefits, but the underlying mechanisms are also stressed. Finally, emphasis is placed on the potential ability of polyphenols to combat SARS-CoV-2 infection via the regulation of its molecular targets of human cellular binding and replication, as well as through the resulting host inflammation, oxidative stress, and signaling pathways.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
37
|
Progress towards improving homing and engraftment of hematopoietic stem cells for clinical transplantation. Curr Opin Hematol 2020; 26:266-272. [PMID: 31045644 DOI: 10.1097/moh.0000000000000510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic cell transplantation (HCT) is a life-saving treatment for a variety of hematological and nonhematological disorders. Successful clinical outcomes after transplantation rely on adequate hematopoietic stem cell (HSC) numbers, and the homing and subsequent short-term and long-term engraftment of these cells in the bone marrow. Enhancing the homing capability of HSCs has the potential for high impact on improving HCT and patient survival. RECENT FINDINGS There are a number of ways to enhance HSC engraftment. Neutralizing negative epigenetic regulation by histone deacetylase 5 (HDAC5) increases surface CXCR4 expression and promotes human HSC homing and engraftment in immune-deficient NSG (NOD.Cg-Prkdc IL2rgt/Sz) mice. Short-term treatment of cells with glucocorticoids, pharmacological stabilization of hypoxia-inducible factor (HIF)-1α, increasing membrane lipid raft aggregation, and inhibition of dipeptidyl peptidase 4 (DPP4) facilitates HSC homing and engraftment. Added to these procedures, modulating the mitochondria permeability transition pore (MPTP) to mitigate ambient air-induced extra physiological oxygen stress/shock (EPHOSS) by hypoxic harvest and processing, or using cyclosporine A during air collection increases functional HSC numbers and improves HSC engraftment. SUMMARY A better understanding of the regulation of human HSC homing mediated by various signaling pathways will facilitate development of more efficient means to enhance HCT efficacy.
Collapse
|
38
|
Hotta Y, Takahashi S, Tokoro M, Naiki-Ito A, Maeda K, Kawata R, Kataoka T, Ohta Y, Hamakawa T, Takahashi S, Yasui T, Kimura K. Anagliptin, a dipeptidyl peptidase-4 inhibitor, improved bladder function and hemodynamics in rats with bilateral internal iliac artery ligation. Neurourol Urodyn 2020; 39:1922-1929. [PMID: 32725853 DOI: 10.1002/nau.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023]
Abstract
AIMS To investigate the effect of anagliptin (Ana), a dipeptidyl peptidase-4 (DPP-4) inhibitor, on acute ischemia-induced bladder dysfunction in rats. METHODS Eight-week-old female Wistar-ST rats were randomly assigned into four groups: (a) sham; (b) ligation (Lig); (c) Lig + Ana; and (d) Lig + Liraglutide (a glucagon-like peptide-1 [GLP-1] receptor agonist; Lira). Rats in the Lig, Lig + Ana, and Lig + Lira groups underwent ligature of the bilateral internal iliac arteries. Ana was orally administered mixed with the CE-2 diet. Lira was subcutaneously administered once a day. Blood glucose levels, plasma dipeptidyl peptidase 4 (DPP-4) activity, GLP-1 levels, and bladder function were measured in all groups. Bladder blood flow was measured in the sham, Lig, and Lig + Ana groups, 4 weeks postsurgery. RESULTS No differences in blood glucose levels among the groups were observed. DPP-4 activity decreased in the Lig + Ana group (P < .01). GLP-1 levels in the Lig + Ana and Lig + Lira groups were higher than those in the sham and Lig groups (P < .01). Intercontraction intervals (ICIs) were longer in the Lig and Lig + Lira groups than in the sham group (P < .05), but similar to those observed in the Lig + Ana and sham groups. The Lig group exhibited reduced bladder blood flow relative to the sham group (P < .01); however, this measure improved in the Lig + Ana group (P < .01). CONCLUSIONS Ana administration improved ICIs and bladder blood flow after acute bladder ischemia through a GLP-1 receptor-independent signaling pathway, without altering the blood glucose levels. Therefore, Ana dosing might be useful to prevent ischemia-induced bladder dysfunctions.
Collapse
Affiliation(s)
- Yuji Hotta
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Sena Takahashi
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Misato Tokoro
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kotomi Maeda
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Ryoya Kawata
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuya Ohta
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Hamakawa
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan.,Department of Clinical Pharmaceutics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
39
|
Sitagliptin Mitigates Total Body Irradiation-Induced Hematopoietic Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8308616. [PMID: 32774687 PMCID: PMC7397422 DOI: 10.1155/2020/8308616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 01/21/2023]
Abstract
Sitagliptin, an inhibitor of the dipeptidyl peptidase IV (DPP4), has been implicated in the regulation of type 2 diabetes. However, the role and mechanism of sitagliptin administration in total body irradiation (TBI)- induced hematopoietic cells injury are unclear. In this study, we demonstrated that sitagliptin had therapeutic effects on hematopoietic damage, which protected mice from 7.5 Gy TBI-induced death, increased the numbers and colony formation ability of hematopoietic cells. These therapeutic effects might be attributed to the inhibition of NOX4-mediated oxidative stress in hematopoietic cells, and the alleviation of inflammation was also helpful. Therefore, sitagliptin has potential as an effective radiotherapeutic agent for ameliorating TBI-induced hematopoietic injury.
Collapse
|
40
|
Bouhanick B, Cracowski JL, Faillie JL. Diabetes and COVID-19. Therapie 2020; 75:327-333. [PMID: 32425249 PMCID: PMC7227488 DOI: 10.1016/j.therap.2020.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Abstract
According to previous reports, diabetes seems to be a risk factor which worsens the serious clinical events caused by COVID-19. But is diabetes per se a risk factor that increases the probability of getting the virus? This paper will discuss this point. There are not many research data on antidiabetic drugs in this context. The potential influence of glucose-lowering agents on the severity of COVID-19 has not been described yet. Dipeptidylpeptidase-4 (DPP-4) is a cell surface protein ubiquitously expressed in many tissues and it is also a soluble molecule found in serum/plasma fluids. DPP-4 is involved in infection of cells by some viruses. This paper reviews data about the use of DPP-4 inhibitors and others diabetes drugs on COVID-19 patients. As such, no available evidence has yet suggested that glucose-lowering drugs - including those targeting DPP4-related pathways - produce any significant harm or benefit in the context of human infections. However, insulin must remain the first-choice agent in the management of critically ill-hospitalized patients, while it is recommended to suspend other agents in unstable patients. This paper provides related French and international recommendations for people with diabetes who got infected by COVID-19 and upholds that infections may alter glucose control and may require additional vigilance.
Collapse
Affiliation(s)
- Béatrice Bouhanick
- Service d'hypertension artérielle et thérapeutique PCVM, UMR 1027, université de Toulouse 3, CHU de Rangueil, 31059 Toulouse, France.
| | - Jean-Luc Cracowski
- INSERM, HP2, centre régional de pharmacovigilance et centre d'investigation clinique de Grenoble, université de Grenoble-Alpes, 38000 Grenoble, France
| | - Jean-Luc Faillie
- Département de pharmacologie médicale et toxicologie, centre régional de pharmacovigilance Occitanie-Est, université de Montpellier, CHU de Montpellier, 34295 Montpellier, France
| |
Collapse
|
41
|
Nelson MH, Knochelmann HM, Bailey SR, Huff LW, Bowers JS, Majchrzak-Kuligowska K, Wyatt MM, Rubinstein MP, Mehrotra S, Nishimura MI, Armeson KE, Giresi PG, Zilliox MJ, Broxmeyer HE, Paulos CM. Identification of human CD4 + T cell populations with distinct antitumor activity. SCIENCE ADVANCES 2020; 6:eaba7443. [PMID: 32937437 PMCID: PMC7458458 DOI: 10.1126/sciadv.aba7443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/18/2020] [Indexed: 05/26/2023]
Abstract
How naturally arising human CD4+ T helper subsets affect cancer immunotherapy is unclear. We reported that human CD4+CD26high T cells elicit potent immunity against solid tumors. As CD26high T cells are often categorized as TH17 cells for their IL-17 production and high CD26 expression, we posited these populations would have similar molecular properties. Here, we reveal that CD26high T cells are epigenetically and transcriptionally distinct from TH17 cells. Of clinical importance, CD26high and TH17 cells engineered with a chimeric antigen receptor (CAR) regressed large human tumors to a greater extent than enriched TH1 or TH2 cells. Only human CD26high T cells mediated curative responses, even when redirected with a suboptimal CAR and without aid by CD8+ CAR T cells. CD26high T cells cosecreted effector cytokines, produced cytotoxic molecules, and persisted long term. Collectively, our work underscores the promise of CD4+ T cell populations to improve durability of solid tumor therapies.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Stefanie R Bailey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Logan W Huff
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Jacob S Bowers
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Kinga Majchrzak-Kuligowska
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Shikhar Mehrotra
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Michael I Nishimura
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kent E Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Michael J Zilliox
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, SC, USA
| |
Collapse
|
42
|
Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther 2020; 209:107503. [PMID: 32061923 PMCID: PMC7102585 DOI: 10.1016/j.pharmthera.2020.107503] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4is) are oral anti-diabetic drugs (OADs) for the treatment of type 2 diabetes mellitus (T2DM) through inhibiting the degradation of incretin peptides. Numerous investigations have been focused on the effects of DPP4is on glucose homeostasis. However, there are limited evidences demonstrating their Potential modulatory functions in the immune system. DPP4, originally known as the lymphocyte cell surface protein CD26, is widely expressed in many types of immune cells including CD4(+) and CD8(+) T cells, B cells, NK cells, dendritic cells, and macrophages; and regulate the functions of these cells. In addition, DPP4 is capable of modulating plenty of cytokines, chemokines and peptide hormones. Accordingly, DPP4/CD26 is speculated to be involved in various immune/inflammatory diseases and DPP4is may become a new drug class applied in these diseases. This review focuses on the regulatory effects of DPP4is on immune functions and their possible underlying mechanisms. Further clinical studies will be necessitated to fully evaluate the administration of DPP4is in diabetic patients with or without immune diseases.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - QinQin Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Ruping Pan
- Department of Nuclear Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji hospital, Tongji medical college, Huazhong University of Science & Technology, Wuhan 430030, PR China.
| |
Collapse
|
43
|
Tse LV, Meganck RM, Graham RL, Baric RS. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Front Microbiol 2020; 11:658. [PMID: 32390971 PMCID: PMC7193113 DOI: 10.3389/fmicb.2020.00658] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging coronaviruses (CoV) are constant global public health threats to society. Multiple ongoing clinical trials for vaccines and antivirals against CoVs showcase the availability of medical interventions to both prevent and treat the future emergence of highly pathogenic CoVs in human. However, given the diverse nature of CoVs and our close interactions with wild, domestic and companion animals, the next epidemic zoonotic CoV could resist the existing vaccines and antivirals developed, which are primarily focused on Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS CoV). In late 2019, the novel CoV (SARS-CoV-2) emerged in Wuhan, China, causing global public health concern. In this review, we will summarize the key advancements of current vaccines and antivirals against SARS-CoV and MERS-CoV as well as discuss the challenge and opportunity in the current SARS-CoV-2 crisis. At the end, we advocate the development of a "plug-and-play" platform technologies that could allow quick manufacturing and administration of broad-spectrum countermeasures in an outbreak setting. We will discuss the potential of AAV-based gene therapy technology for in vivo therapeutic antibody delivery to combat SARS-CoV-2 outbreak and the future emergence of severe CoVs.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rita M. Meganck
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
44
|
Bouhanick B, Cracowski JL, Faillie JL. [Diabetes and COVID-19]. Therapie 2020:S0040-5957(20)30068-8. [PMID: 33965234 PMCID: PMC7194540 DOI: 10.1016/j.therap.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to previous reports, diabetes seems to be associated with serious clinical events due to COVID-19. But is diabetes per se a risk factor of being infected by the virus? We discuss these points. Data about the antidiabetic drugs are scarce. Dipeptidylpeptidase-4 (DPP-4) is found as both a cell surface protein ubiquitously expressed in many tissues and as a soluble molecule found in serum/plasma, fluids. DPP-4 is involved in infection of cells by some viruses. We relate data about the use of DPP-4 inhibitors in diabetic patients. We conclude relating French and international recommendations in people with diabetes.
Collapse
Affiliation(s)
- Béatrice Bouhanick
- Pôle cardiovasculaire et métabolique, service d'HTA et de thérapeutique, CHU Rangueil, TSA 50032, 1, avenue J.- Poulhes, 31059 Toulouse cedex 9, France; UMR 1027, université Toulouse III, 31000 Toulouse, France.
| | - Jean-Luc Cracowski
- Centre régional de pharmacovigilance de Grenoble, université Grenoble Alpes, CHU Grenoble, 38000 Grenoble, France.
| | - Jean-Luc Faillie
- Département de pharmacologie médicale et toxicologie, Centre régional de pharmacovigilance Occitanie-Est, CHU Montpellier, 371, avenue du Doyen Gaston Giraud, 34295 Montpellier, France.
| |
Collapse
|
45
|
Gallino L, Hauk V, Fernández L, Soczewski E, Gori S, Grasso E, Calo G, Saraco N, Berensztein E, Waschek JA, Pérez Leirós C, Ramhorst R. VIP Promotes Recruitment of Tregs to the Uterine-Placental Interface During the Peri-Implantation Period to Sustain a Tolerogenic Microenvironment. Front Immunol 2020; 10:2907. [PMID: 31969877 PMCID: PMC6960177 DOI: 10.3389/fimmu.2019.02907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
Uterine receptivity and embryo implantation are two main processes that need a finely regulated balance between pro-inflammatory and tolerogenic mediators to allow a successful pregnancy. The neuroimmune peptide vasoactive intestinal peptide (VIP) is a key regulator, and it is involved in the induction of regulatory T cells (Tregs), which are crucial in both processes. Here, we analyzed the ability of endogenous and exogenous VIP to sustain a tolerogenic microenvironment during the peri-implantation period, particularly focusing on Treg recruitment. Wild-type (WT) and VIP-deficient mice [heterozygous (HT, +/-), knockout (KO, -/-)], and FOXP3-knock-in-GFP mice either pregnant or in estrus were used. During the day of estrus, we found significant histological differences between the uterus of WT mice vs. VIP-deficient mice, with the latter exhibiting undetectable levels of FOXP3 expression, decreased expression of interleukin (IL)-10, and vascular endothelial growth factor (VEGF)c, and increased gene expression of the Th17 proinflammatory transcription factor RORγt. To study the implantation window, we mated WT and VIP (+/-) females with WT males and observed altered FOXP3, VEGFc, IL-10, and transforming growth factor (TGF)β gene expression at the implantation sites at day 5.5 (d5.5), demonstrating a more inflammatory environment in VIP (+/-) vs. VIP (+/+) females. A similar molecular profile was observed at implantation sites of WT × WT mice treated with VIP antagonist at d3.5. We then examined the ability GFP-sorted CD4+ cells from FOXP3-GFP females to migrate toward conditioned media (CM) obtained from d5.5 implantation sites cultured in the absence/presence of VIP or VIP antagonist. VIP treatment increased CD4+FOXP3+ and decreased CD4+ total cell migration towards implantation sites, and VIP antagonist prevented these effects. Finally, we performed adoptive cell transfer of Tregs (sorted from FOXP3-GFP females) in VIP-deficient-mice, and we observed that FOXP3-GFP cells were mainly recruited into the uterus/implantation sites compared to all other tested tissues. In addition, after Treg transfer, we found an increase in IL-10 expression and VEGFc in HT females and allowed embryo implantation in KO females. In conclusion, VIP contributes to a local tolerogenic response necessary for successful pregnancy, preventing the development of a hostile uterine microenvironment for implantation by the selective recruitment of Tregs during the peri-implantation period.
Collapse
Affiliation(s)
- Lucila Gallino
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanesa Hauk
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Fernández
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elizabeth Soczewski
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Soledad Gori
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban Grasso
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermina Calo
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Saraco
- Servicio de Endocrinología, Hospital Pediátrico Dr. Juan P. Garrahan, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esperanza Berensztein
- Servicio de Endocrinología, Hospital Pediátrico Dr. Juan P. Garrahan, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Claudia Pérez Leirós
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- CONICET, Laboratorio de Inmunofarmacología, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Huang X, Guo B, Capitano M, Broxmeyer HE. Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation. F1000Res 2019; 8. [PMID: 31723413 PMCID: PMC6823900 DOI: 10.12688/f1000research.20002.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Cord blood (CB) has been used as a viable source of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in over 35,000 clinical hematopoietic cell transplantation (HCT) efforts to treat the same variety of malignant and non-malignant disorders treated by bone marrow (BM) and mobilized peripheral blood (mPB) using HLA-matched or partially HLA-disparate related or unrelated donor cells for adult and children recipients. This review documents the beginning of this clinical effort that started in the 1980’s, the pros and cons of CB HCT compared to BM and mPB HCT, and recent experimental and clinical efforts to enhance the efficacy of CB HCT. These efforts include means for increasing HSC numbers in single CB collections, expanding functional HSCs
ex vivo, and improving CB HSC homing and engraftment, all with the goal of clinical translation. Concluding remarks highlight the need for phase I/II clinical trials to test the experimental procedures that are described, either alone or in combination.
Collapse
Affiliation(s)
- Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bin Guo
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maegan Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202-5181, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202-5181, USA
| |
Collapse
|
47
|
Sun HR, Wang S, Yan SC, Zhang Y, Nelson PJ, Jia HL, Qin LX, Dong QZ. Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment. Front Oncol 2019; 9:1104. [PMID: 31709180 PMCID: PMC6821685 DOI: 10.3389/fonc.2019.01104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been demonstrated in a variety of tumors and are thought to act as a clonogenic core for the genesis of new tumor growth. This small subpopulation of cancer cells has been proposed to help drive tumorigenesis, metastasis, recurrence and conventional therapy resistance. CSCs show self-renewal and flexible clonogenic properties and help define specific tumor microenvironments (TME). The interaction between CSCs and TME is thought to function as a dynamic support system that fosters the generation and maintenance of CSCs. Investigation of the interaction between CSCs and the TME is shedding light on the biologic mechanisms underlying the process of tumor malignancy, metastasis, and therapy resistance. We summarize recent advances in CSC biology and their environment, and discuss the challenges and future strategies for targeting this biology as a new therapeutic approach.
Collapse
Affiliation(s)
- Hao-Ran Sun
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Can Yan
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter J. Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Hu-Liang Jia
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Quickly attainable and highly engrafting hematopoietic stem cells. BLOOD SCIENCE 2019; 1:113-115. [PMID: 35402793 PMCID: PMC8975002 DOI: 10.1097/bs9.0000000000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022] Open
|
49
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
50
|
Capitano ML, Mor-Vaknin N, Saha AK, Cooper S, Legendre M, Guo H, Contreras-Galindo R, Kappes F, Sartor MA, Lee CT, Huang X, Markovitz DM, Broxmeyer HE. Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling. J Clin Invest 2019; 129:2555-2570. [PMID: 31107242 PMCID: PMC6546479 DOI: 10.1172/jci127460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
The nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability.
Collapse
Affiliation(s)
- Maegan L. Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Anjan K. Saha
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rafael Contreras-Galindo
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher T. Lee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, Michigan, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|