1
|
Ahmadi Ghezeldasht S, Bidkhori HR, Miri R, Baghban A, Mosavat A, Rezaee SA. Momordica charantia phytoconstituents can inhibit human T-lymphotropic virus type-1 (HTLV-1) infectivity in vitro and in vivo. J Neurovirol 2025; 31:24-34. [PMID: 37531001 DOI: 10.1007/s13365-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
There is an urgent need to find an effective therapy for life-threatening HTLV-1-associated diseases. Bitter melon (Momordica charantia) is considered a traditional herb with antiviral and anticancer properties and was tested in this study on HTLV-1 infectivity. GC-MS analyzed the alcoholic extract. In vitro assay was carried out using transfection of HUVEC cells by HTLV-1-MT2 cell line. The cells were exposed to alcoholic and aqueous extracts at 5,10, and 20 µg/mL concentrations. In vivo, mice were divided into four groups. Three groups were treated with HTLV-1-MT-2 cells as test groups and positive control, and PBS as the negative control group in the presence and absence of M. charantia extracts. Peripheral blood mononuclear cells (PBMCs), mesenteric lymph nodes (MLNs), and splenocytes were collected for HTLV-1-proviral load (PVL) assessment, TaqMan-qPCR. The GC-MS analysis revealed 36 components in M. charantia. The studies showed significant reductions in HTLV-1-PVL in the presence of extract in the HUVEC-treated groups (P = 0.001). Furthermore, the inhibitory effects of extracts on HTLV-1 infected mice showed significant differences in HTLV-1-PVL among M. charantia treated groups with untreated (P = 0.001). The T-cells in MLNs were significantly more susceptible to HTLV-1 than others (P = 0.001). There were significant differences among HTLV-1-infected cells in MLNs and splenocytes (P = 0.001 and 0.046, respectively). Also, aqueous and alcoholic extract-treated groups significantly affected HTLV-1-infected PBMCs (P = 0.002 and 0.009, respectively). M. charantia may have effective antiviral properties. The substantial compound of M. charantia could have inhibitory effects on the proliferation and transmission of HTLV-1 oncovirus.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
| | - Arezoo Baghban
- Department of Chemistry, Faculty of Science, Azad University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, 9177948564, Mashhad, Iran.
| |
Collapse
|
2
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Nagata K, Tezuka K, Kuramitsu M, Fuchi N, Hasegawa Y, Hamaguchi I, Miura K. Establishment of a novel human T-cell leukemia virus type 1 infection model using cell-free virus. J Virol 2024; 98:e0186223. [PMID: 38294250 PMCID: PMC10878273 DOI: 10.1128/jvi.01862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.
Collapse
Affiliation(s)
- Koh Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
5
|
Fukuhara T, Ueda Y, Lee SI, Odaka T, Nakajima S, Fujisawa JI, Okuma K, Naganuma M, Okazaki K, Kondo N, Kamioka Y, Matsumoto M, Kinashi T. Thymocyte Development of Humanized Mice Is Promoted by Interactions with Human-Derived Antigen Presenting Cells upon Immunization. Int J Mol Sci 2023; 24:11705. [PMID: 37511462 PMCID: PMC10380196 DOI: 10.3390/ijms241411705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Immune responses in humanized mice are generally inefficient without co-transplantation of human thymus or HLA transgenes. Previously, we generated humanized mice via the intra-bone marrow injection of CD133+ cord blood cells into irradiated adult immunodeficient mice (IBMI-huNSG mice), which could mount functional immune responses against HTLV-1, although the underlying mechanisms were still unknown. Here, we investigated thymocyte development in IBMI-huNSG mice, focusing on the roles of human and mouse MHC restriction. IBMI-huNSG mice had normal developmental profiles but aberrant thymic structures. Surprisingly, the thymic medulla-like regions expanded after immunization due to enhanced thymocyte expansion in association with the increase in HLA-DR+ cells, including CD205+ dendritic cells (DCs). The organ culture of thymus from immunized IBMI-huNSG mice with a neutralizing antibody to HLA-DR showed the HLA-DR-dependent expansion of CD4 single positive thymocytes. Mature peripheral T-cells exhibited alloreactive proliferation when co-cultured with human peripheral blood mononuclear cells. Live imaging of the thymus from immunized IBMI-huNSG mice revealed dynamic adhesive contacts of human-derived thymocytes and DCs accompanied by Rap1 activation. These findings demonstrate that an increase in HLA-DR+ cells by immunization promotes HLA-restricted thymocyte expansion in humanized mice, offering a unique opportunity to generate humanized mice with ease.
Collapse
Affiliation(s)
- Takataro Fukuhara
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Sung-Il Lee
- Department of Model Animal, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Tokifumi Odaka
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Shinsuke Nakajima
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazuichi Okazaki
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Yuji Kamioka
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Kuramoto 770-8503, Tokushima, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
6
|
Langlois M, Bounou S, Tremblay MJ, Barbeau B. Infection of the Ex Vivo Tonsil Model by HTLV-1 Envelope-Pseudotyped Viruses. Pathogens 2023; 12:pathogens12020182. [PMID: 36839454 PMCID: PMC9958901 DOI: 10.3390/pathogens12020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causal agent of adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis. Its tropism is known to be broad in cultured cell lines, while in vivo data support a more selective transmission toward CD4+ T cells and the limited targeting of other hematopoietic cell types. An essential condition for HTLV-1 infection is cell-to-cell contact, to which both virological synapse and viral biofilm have been suggested to strongly contribute. As cell lines and animal models each present their own limitations in studying HTLV-1 replication, we have explored the use of an ex vivo model based on the secondary lymphoid tonsillar tissue. HIV-1 luciferase-expressing pseudotyped viruses bearing the HTLV-1 envelope protein at their surface were first shown to recapitulate the wide spectrum of infectivity of HTLV-1 toward various cell lines. Tonsil fragments were next exposed to pseudotyped viruses and shown to be reproducibly infected. Infection by HTLV-1 Env-pseudotyped viruses was blocked by different anti-gp46 antibodies, unlike infection by HIV-1 virions. The dose-dependent infection revealed a gradual increase in luciferase activity, which was again sensitive to anti-gp46 antibodies. Overall, these results suggest that the ex vivo tonsil model represents a reliable alternative for studying HTLV-1 replication and potentially viral latency, as well as early clonal formation.
Collapse
Affiliation(s)
- Mélanie Langlois
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Salim Bounou
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Euromed Research Center, Faculty of Pharmacy, Université EUROMED de Fès, Fez 30000, Morocco
| | - Michel J. Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Benoit Barbeau
- Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Montréal, QC H2X 1E3, Canada
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 4576)
| |
Collapse
|
7
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Regulation of HTLV-1 Transformation. Biosci Rep 2022; 42:230803. [PMID: 35169839 PMCID: PMC8919135 DOI: 10.1042/bsr20211921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the only identified oncogenic human retrovirus. HTLV-1 infects approximately 5–10 million people worldwide and is the infectious cause of adult T-cell leukemia/lymphoma (ATL) and several chronic inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), dermatitis, and uveitis. Unlike other oncogenic retroviruses, HTLV-1 does not capture a cellular proto-oncogene or induce proviral insertional mutagenesis. HTLV-1 is a trans-activating retrovirus and encodes accessory proteins that induce cellular transformation over an extended period of time, upwards of several years to decades. Inarguably the most important viral accessory protein involved in transformation is Tax. Tax is a multifunctional protein that regulates several different pathways and cellular processes. This single viral protein is able to modulate viral gene expression, activate NF-κB signaling pathways, deregulate the cell cycle, disrupt apoptosis, and induce genomic instability. The summation of these processes results in cellular transformation and virus-mediated oncogenesis. Interestingly, HTLV-1 also encodes a protein called Hbz from the antisense strand of the proviral genome that counters many Tax functions in the infected cell, such as Tax-mediated viral transcription and NF-κB activation. However, Hbz also promotes cellular proliferation, inhibits apoptosis, and disrupts genomic integrity. In addition to viral proteins, there are other cellular factors such as MEF-2, superoxide-generating NAPDH oxidase 5-α (Nox5α), and PDLIM2 which have been shown to be critical for HTLV-1-mediated T-cell transformation. This review will highlight the important viral and cellular factors involved in HTLV-1 transformation and the available in vitro and in vivo tools used to study this complex process.
Collapse
|
9
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
10
|
Springer LE, Patton JB, Zhan T, Rabson AB, Lin HC, Manser T, Lok JB, Hess JA, Abraham D. Strongyloides stercoralis and HTLV-1 coinfection in CD34+ cord blood stem cell humanized mice: Alteration of cytokine responses and enhancement of larval growth. PLoS Negl Trop Dis 2021; 15:e0009559. [PMID: 34314415 PMCID: PMC8315519 DOI: 10.1371/journal.pntd.0009559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Viral and parasitic coinfections are known to lead to both enhanced disease progression and altered disease states. HTLV-1 and Strongyloides stercoralis are co-endemic throughout much of their worldwide ranges resulting in a significant incidence of coinfection. Independently, HTLV-1 induces a Th1 response and S. stercoralis infection induces a Th2 response. However, coinfection with the two pathogens has been associated with the development of S. stercoralis hyperinfection and an alteration of the Th1/Th2 balance. In this study, a model of HTLV-1 and S. stercoralis coinfection in CD34+ umbilical cord blood hematopoietic stem cell engrafted humanized mice was established. An increased level of mortality was observed in the HTLV-1 and coinfected animals when compared to the S. stercoralis infected group. The mortality was not correlated with proviral loads or total viral RNA. Analysis of cytokine profiles showed a distinct shift towards Th1 responses in HTLV-1 infected animals, a shift towards Th2 cytokines in S. stercoralis infected animals and elevated TNF-α responses in coinfected animals. HTLV-1 infected and coinfection groups showed a significant, yet non-clonal expansion of the CD4+CD25+ T-cell population. Numbers of worms in the coinfection group did not differ from those of the S. stercoralis infected group and no autoinfective larvae were found. However, infective larvae recovered from the coinfection group showed an enhancement in growth, as was seen in mice with S. stercoralis hyperinfection caused by treatment with steroids. Humanized mice coinfected with S. stercoralis and HTLV-1 demonstrate features associated with human infection with these pathogens and provide a unique opportunity to study the interaction between these two infections in vivo in the context of human immune cells.
Collapse
Affiliation(s)
- Lauren E Springer
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - John B Patton
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Arnold B Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Tim Manser
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James B Lok
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica A Hess
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David Abraham
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
12
|
Dash PK, Gorantla S, Poluektova L, Hasan M, Waight E, Zhang C, Markovic M, Edagwa B, Machhi J, Olson KE, Wang X, Mosley RL, Kevadiya B, Gendelman HE. Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology 2021; 18:13. [PMID: 34090462 PMCID: PMC8179712 DOI: 10.1186/s12977-021-00557-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.
Collapse
Affiliation(s)
- Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chen Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavesh Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
13
|
Cheng X, Joseph A, Castro V, Chen-Liaw A, Skidmore Z, Ueno T, Fujisawa JI, Rauch DA, Challen GA, Martinez MP, Green P, Griffith M, Payton JE, Edwards JR, Ratner L. Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF. PLoS Pathog 2021; 17:e1009577. [PMID: 34019588 PMCID: PMC8174705 DOI: 10.1371/journal.ppat.1009577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/03/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes an aggressive T-cell malignancy and a variety of inflammatory conditions. The integrated provirus includes a single binding site for the epigenomic insulator, CCCTC-binding protein (CTCF), but its function remains unclear. In the current study, a mutant virus was examined that eliminates the CTCF-binding site. The mutation did not disrupt the kinetics and levels of virus gene expression, or establishment of or reactivation from latency. However, the mutation disrupted the epigenetic barrier function, resulting in enhanced DNA CpG methylation downstream of the CTCF binding site on both strands of the integrated provirus and H3K4Me3, H3K36Me3, and H3K27Me3 chromatin modifications both up- and downstream of the site. A majority of clonal cell lines infected with wild type HTLV-1 exhibited increased plus strand gene expression with CTCF knockdown, while expression in mutant HTLV-1 clonal lines was unaffected. These findings indicate that CTCF binding regulates HTLV-1 gene expression, DNA and histone methylation in an integration site dependent fashion. Human T-cell leukemia virus type 1 (HTLV-1) is a cause of leukemia and lymphoma as well as several inflammatory medical disorders. The virus integrates in the host cell DNA, and it has a single binding site for a protein designated CTCF. This protein is important in the regulation of many DNA viruses, as well as many properties of normal and malignant cells. In order to define the role of CTCF binding to HTLV, we analyzed a mutant virus lacking the binding site. We found that this mutation variably affected gene expression, DNA and histone modification, suggesting a key role in regulation of virus replication in infected cells.
Collapse
Affiliation(s)
- Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Victor Castro
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Alice Chen-Liaw
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Zachary Skidmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Grant A. Challen
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael P. Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - John R. Edwards
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Phamacogenomics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Henry RK, Bagg A, Wu C, Eagle RC, Milman T. Orbital and Ocular Adnexal Manifestations of Adult T-Cell Leukemia/Lymphoma: a Case Report and Systematic Review. Ophthalmic Plast Reconstr Surg 2021; 37:201-211. [PMID: 32427727 DOI: 10.1097/iop.0000000000001695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To describe a patient with orbital adult T-cell leukemia/lymphoma (ATLL) and to review the literature on presentation, diagnostics, management, and clinical course of this rare disease. METHODS A systematic literature review. PubMed/MEDLINE and Google Scholar databases were searched for all well-documented cases of orbital/ocular adnexal ATLL. RESULTS Sixteen patients were included in the final analysis. The median age at diagnosis was 47 years (range, 20-85), 9/16 patients (56%) were male, and patients were of Japanese (10/16, 63%), Caribbean (5/16, 31%), or African (1/16, 6%) origin. Proptosis (6/15, 40%) and visual loss (5/15, 33%) were the most common presenting signs. Involvement of adjacent structures was documented in 8 of 16 (50%) patients. All patients had evidence of systemic ATLL, which was identified concurrently with orbital/ocular adnexal disease in 9 of 15 (60%) patients. Management included multi-agent chemotherapy with steroids (9/13, 69%), antivirals (2/13, 15%), biologic agents (4/13, 31%), and umbilical cord blood transplantation (1/13, 8%). Most patients (8/12, 67%) experienced at least partial remission with disease relapse occurring in 6 of 8 patients (75%). The median survival time was 28 months (95% CI, 5.5-50.5 months). CONCLUSIONS Adult T-cell leukemia/lymphoma should be considered in the differential diagnosis of orbital and ocular adnexal space-occupying lesions, particularly in male patients from endemic regions. Orbital disease is frequently locally aggressive and presents concurrently with systemic ATLL, highlighting the importance of comprehensive multimodal work-up and multidisciplinary management. Emerging targeted therapies and hematopoietic stem cell transplant may prolong survival.
Collapse
Affiliation(s)
- Roger K Henry
- Pathology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Connie Wu
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph C Eagle
- Pathology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tatyana Milman
- Pathology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Pathology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
16
|
Tezuka K, Fuchi N, Okuma K, Tsukiyama T, Miura S, Hasegawa Y, Nagata A, Komatsu N, Hasegawa H, Sasaki D, Sasaki E, Mizukami T, Kuramitsu M, Matsuoka S, Yanagihara K, Miura K, Hamaguchi I. HTLV-1 targets human placental trophoblasts in seropositive pregnant women. J Clin Invest 2021; 130:6171-6186. [PMID: 33074247 DOI: 10.1172/jci135525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%-3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1-expressing cells were present in nearly all subjects with HTLV-1-positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1-positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1-infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.
Collapse
Affiliation(s)
- Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Tsukiyama
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoko Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ai Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nahoko Komatsu
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sahoko Matsuoka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was discovered in 1980 as the first, and to date, the only retrovirus that causes human cancer. While HTLV-1 infection is generally asymptomatic, 3-5% of infected individuals develop a T cell neoplasm known as adult T cell leukemia/lymphoma (ATL) decades after infection. Since its discovery, HTLV-1 has served as a model for understanding retroviral oncogenesis, transcriptional regulation, cellular signal transduction, and cell-associated viral infection and spread. Much of the initial research was focused on the viral trans-activator/oncoprotein, Tax. Over the past decade, the study of HTLV-1 has entered the genomic era. With the development of new systems for studying HTLV-1 infection and pathogenesis, the completion of the whole genome, exome and transcriptome sequencing analyses of ATL, and the discovery of HBZ as another HTLV-1 oncogene, many established concepts about how HTLV-1 infects, persists and causes disease have undergone substantial revision. This chapter seeks to integrate our current understanding of the mechanisms of action of Tax and HBZ with the comprehensive genomic information of ATL to provide an overview of how HTLV-1 infects, replicates and causes leukemia.
Collapse
|
18
|
Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020; 10:580371. [PMID: 33425776 PMCID: PMC7785941 DOI: 10.3389/fcimb.2020.580371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Human T-cell Leukemia Virus Type 1 and Strongyloides stercoralis: Partners in Pathogenesis. Pathogens 2020; 9:pathogens9110904. [PMID: 33137906 PMCID: PMC7692131 DOI: 10.3390/pathogens9110904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Infection with human T-cell leukemia/lymphoma virus type 1 (HTLV-1) has been associated with various clinical syndromes including co-infection with Strongyloides stercoralis, which is an intestinal parasitic nematode and the leading cause of strongyloidiasis in humans. Interestingly, HTLV-1 endemic areas coincide with regions citing high prevalence of S. stercoralis infection, making these communities optimal for elucidating the pathogenesis of co-infection and its clinical significance. HTLV-1 co-infection with S. stercoralis has been observed for decades in a number of published patient cases and case series; however, the implications of this co-infection remain elusive. Thus far, data suggest that S. stercoralis increases proviral load in patients co-infected with HTLV-1 compared to HTLV-1 infection alone. Furthermore, co-infection with HTLV-1 has been associated with shifting the immune response from Th2 to Th1, affecting the ability of the immune system to address the helminth infection. Thus, despite this well-known association, further research is required to fully elucidate the impact of each pathogen on disease manifestations in co-infected patients. This review provides an analytical view of studies that have evaluated the variation within HTLV-1 patients in susceptibility to S. stercoralis infection, as well as the effects of strongyloidiasis on HTLV-1 pathogenesis. Further, it provides a compilation of available clinical reports on the epidemiology and pathology of HTLV-1 with parasitic co-infection as well as data from mechanistic studies suggesting possible immunopathogenic mechanisms. Furthermore, specific areas of potential future research have been highlighted to facilitate advancing understanding of the complex interactions between these two pathogens.
Collapse
|
20
|
Martínez-Pérez PA, Hyndman TH, Fleming PA. Haematology and blood chemistry in free-ranging quokkas (Setonix brachyurus): Reference intervals and assessing the effects of site, sampling time, and infectious agents. PLoS One 2020; 15:e0239060. [PMID: 32941511 PMCID: PMC7498088 DOI: 10.1371/journal.pone.0239060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022] Open
Abstract
Quokkas (Setonix brachyurus) are small macropodid marsupials from Western Australia, which are identified as of conservation concern. Studies on their blood analytes exist but involve small sample sizes and are associated with very little information concerning the health of the animals. Blood was collected from free-ranging quokkas from Rottnest Island (n = 113) and mainland (n = 37) Western Australia, between September 2010 and December 2011, to establish haematology and blood chemistry reference intervals. Differences in haematology and blood chemistry between sites (Rottnest Island v mainland) were significant for haematology (HMT, p = 0.003), blood chemistry (BLC, p = 0.001) and peripheral blood cell morphology (PBCM, p = 0.001). Except for alkaline phosphatase, all blood chemistry analytes were higher in mainland animals. There were also differences with time of year in HMT (p = 0.001), BLC (p = 0.001) and PBCM (p = 0.001) for Rottnest Island quokkas. A small sample of captive animals (n = 8) were opportunistically sampled for plasma concentrations of vitamin E and were found to be deficient compared with wild-caught animals. Fifty-eight of the 150 quokkas were also tested for the presence of Salmonella, microfilariae, Macropodid herpesvirus-6, Theileria spp., Babesia spp., trypanosomes, Cryptococcus spp. and other saprophytic fungi. All eight infectious agents were detected in this study. Infectious agents were detected in 24 of these 58 quokkas (41%), with more than one infectious agent detected for all 24 individuals. Salmonella were detected concurrently with microfilariae in 8 of these 24 quokkas, and this mixed infection was associated with lower values across all haematological analytes, with Salmonella having the greater involvement in the decreased haematological values (p < 0.05). There was no evidence for an effect of sex on HMT, BLC and PBCM. Our data provide important haematological and blood chemistry reference intervals for free-ranging quokkas. We applied novel methods of analyses to HMT and BLC that can be used more broadly, aiding identification of potential disease in wildlife.
Collapse
Affiliation(s)
| | - Timothy H. Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| | - Patricia A. Fleming
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
21
|
The Nature of the HTLV-1 Provirus in Naturally Infected Individuals Analyzed by the Viral DNA-Capture-Seq Approach. Cell Rep 2020; 29:724-735.e4. [PMID: 31618639 DOI: 10.1016/j.celrep.2019.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
The retrovirus human T-cell leukemia virus type 1 (HTLV-1) integrates into the host DNA, achieves persistent infection, and induces human diseases. Here, we demonstrate that viral DNA-capture sequencing (DNA-capture-seq) is useful to characterize HTLV-1 proviruses in naturally virus-infected individuals, providing comprehensive information about the proviral structure and the viral integration site. We analyzed peripheral blood from 98 naturally HTLV-1-infected individuals and found that defective proviruses were present not only in patients with leukemia, but also in those with other clinical entities. We further demonstrated that clones with defective-type proviruses exhibited a higher degree of clonal abundance than those with full-length proviruses. The frequency of defective-type proviruses in HTLV-1-infected humanized mice was lower than that in infected individuals, indicating that defective proviruses were rare at the initial phase of infection but preferentially selected during persistent infection. These results demonstrate the robustness of viral DNA-capture-seq for HTLV-1 infection and suggest potential applications for other virus-associated cancers in humans.
Collapse
|
22
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
23
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
24
|
An Animal Model That Mimics Human Herpesvirus 6B Pathogenesis. J Virol 2020; 94:JVI.01851-19. [PMID: 31852793 DOI: 10.1128/jvi.01851-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B), a T-lymphotropic virus, infects almost exclusively humans. An animal model of HHV-6B has not been available. Here, we report the first animal model to mimic HHV-6B pathogenesis; the model is based on humanized mice in which human immune cells were engrafted and maintained. For HHV-6B replication, adequate human T-cell activation (which becomes susceptible to HHV-6B) is necessary in this murine model. Here, we found that an additional transfer of human mononuclear cells to humanized mice resulted in an explosive proliferation of human activated T cells, which could be representative of graft-versus-host disease (GVHD) because the primary transfer of human cells was not sufficient to increase the number and ratio of human T cells. Mice infected with HHV-6B became weak and/or died approximately 7 to 14 days later. Quantitative PCR analysis revealed that the spleen and lungs were the major sites of HHV-6B replication in this model, and this was corroborated by the detection of viral proteins in these organs. Histological analysis also revealed the presence of megakaryocytes, indicating HHV-6B infection. Multiplex analysis of cytokines/chemokines in sera from the infected mice showed secretions of human cytokines/chemokines as reported for both in vitro infection and clinical samples, indicating that the secreted cytokines could affect pathogenesis. This is the first animal model showing HHV-6B pathogenesis, and it will be useful for elucidating the pathogenicity of HHV-6B, which is related to GVHD and idiopathic pneumonia syndrome.IMPORTANCE Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that establishes lifelong latent infection only in humans, and the infection can reactivate, with severe complications that cause major problems. A small-animal model of HHV-6B infection has thus been desired for research regarding the pathogenicity of HHV-6B and the development of antiviral agents. We generated humanized mice by transplantation with human hematopoietic stem cells, and here, we modified the model by providing an additional transfer of human mononuclear cells, providing the proper conditions for efficient HHV-6B infection. This is the first humanized mouse model to mimic HHV-6B pathogenesis, and it has great potential for research into the in vivo pathogenesis of HHV-6B.
Collapse
|
25
|
Maurer B, Nivarthi H, Wingelhofer B, Pham HTT, Schlederer M, Suske T, Grausenburger R, Schiefer AI, Prchal-Murphy M, Chen D, Winkler S, Merkel O, Kornauth C, Hofbauer M, Hochgatterer B, Hoermann G, Hoelbl-Kovacic A, Prochazkova J, Lobello C, Cumaraswamy AA, Latzka J, Kitzwögerer M, Chott A, Janikova A, Pospíšilova Š, Loizou JI, Kubicek S, Valent P, Kolbe T, Grebien F, Kenner L, Gunning PT, Kralovics R, Herling M, Müller M, Rülicke T, Sexl V, Moriggl R. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica 2020; 105:435-447. [PMID: 31123029 PMCID: PMC7012494 DOI: 10.3324/haematol.2019.216986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Recurrent gain-of-function mutations in the transcription factors STAT5A and much more in STAT5B were found in hematopoietic malignancies with the highest proportion in mature T- and natural killer-cell neoplasms (peripheral T-cell lymphoma, PTCL). No targeted therapy exists for these heterogeneous and often aggressive diseases. Given the shortage of models for PTCL, we mimicked graded STAT5A or STAT5B activity by expressing hyperactive Stat5a or STAT5B variants at low or high levels in the hematopoietic system of transgenic mice. Only mice with high activity levels developed a lethal disease resembling human PTCL. Neoplasia displayed massive expansion of CD8+ T cells and destructive organ infiltration. T cells were cytokine-hypersensitive with activated memory CD8+ T-lymphocyte characteristics. Histopathology and mRNA expression profiles revealed close correlation with distinct subtypes of PTCL. Pronounced STAT5 expression and activity in samples from patients with different subsets underline the relevance of JAK/STAT as a therapeutic target. JAK inhibitors or a selective STAT5 SH2 domain inhibitor induced cell death and ruxolitinib blocked T-cell neoplasia in vivo. We conclude that enhanced STAT5A or STAT5B action both drive PTCL development, defining both STAT5 molecules as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Maurer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Harini Nivarthi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Chen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanne Winkler
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Olaf Merkel
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cosimo Lobello
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Johanna Latzka
- Karl Landsteiner Institute of Dermatological Research, St. Poelten, Austria and Department of Dermatology and Venereology, Karl Landsteiner University for Health Sciences, St. Poelten, Austria
| | - Melitta Kitzwögerer
- Department of Clinical Pathology, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Andreas Chott
- Institute of Pathology and Microbiology, Wilheminenspital, Vienna, Austria
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Šárka Pospíšilova
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria.,IFA-Tulln, University of Natural Resources and Applied Life Sciences, Tulln, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Patrick T Gunning
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria .,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Ratner L. Biomarkers and Preclinical Models for Adult T-Cell Leukemia-Lymphoma Treatment. Front Microbiol 2019; 10:2109. [PMID: 31620102 PMCID: PMC6759749 DOI: 10.3389/fmicb.2019.02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative malignancy with a very poor prognosis. Despite several recent advances, new therapeutic approaches are critical, and this will require successful preclinical studies, including studies in ATL cell culture systems, and mouse models. Identification of accurate, reproducible biomarkers will be a crucial component of preclinical and clinical studies. This review summarizes the current state-of-the-art in each of these fields, and provides recommendations for future approaches. This problem is an important unmet need in HTLV research.
Collapse
Affiliation(s)
- Lee Ratner
- Division of Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
27
|
Xiang J, Rauch DA, Huey DD, Panfil AR, Cheng X, Esser AK, Su X, Harding JC, Xu Y, Fox GC, Fontana F, Kobayashi T, Su J, Sundaramoorthi H, Wong WH, Jia Y, Rosol TJ, Veis DJ, Green PL, Niewiesk S, Ratner L, Weilbaecher KN. HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia. JCI Insight 2019; 4:128713. [PMID: 31578308 DOI: 10.1172/jci.insight.128713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1-infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos-dependent manner. Treatment of HTLV-1-infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.
Collapse
Affiliation(s)
- Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Rauch
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Devra D Huey
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Xiaogang Cheng
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Esser
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinming Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John C Harding
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yalin Xu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gregory C Fox
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Takayuki Kobayashi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junyi Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hemalatha Sundaramoorthi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wing Hing Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yizhen Jia
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas J Rosol
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Deborah J Veis
- Department of Medicine, Division of Bone and Mineral Diseases, St. Louis, Missouri, USA
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lee Ratner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Pinto DO, DeMarino C, Pleet ML, Cowen M, Branscome H, Al Sharif S, Jones J, Dutartre H, Lepene B, Liotta LA, Mahieux R, Kashanchi F. HTLV-1 Extracellular Vesicles Promote Cell-to-Cell Contact. Front Microbiol 2019; 10:2147. [PMID: 31620104 PMCID: PMC6759572 DOI: 10.3389/fmicb.2019.02147] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1) is a neglected and incurable retrovirus estimated to infect 5 to 10 million worldwide. Specific indigenous Australian populations report infection rates of more than 40%, suggesting a potential evolution of the virus with global implications. HTLV-1 causes adult T-cell leukemia/lymphoma (ATLL), and a neurological disease named HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Even though HTLV-1 transmission primarily occurs from cell-to-cell, there is still a gap of knowledge regarding the mechanisms of viral spread and disease progression. We have recently shown that Extracellular Vesicles (EVs) ubiquitously produced by cells may be used by HTLV-1 to transport viral proteins and RNA, and elicit adverse effects on recipient uninfected cells. The viral proteins Tax and HBZ are involved in disease progression and impairment of autophagy in infected cells. Here, we show that activation of HTLV-1 via ionizing radiation (IR) causes a significant increase of intracellular Tax, but not EV-associated Tax. Also, lower density EVs from HTLV-1-infected cells, separated by an Iodixanol density gradient, are positive for gp61+++/Tax+++/HBZ+ proteins (HTLV-1 EVs). We found that HTLV-1 EVs are not infectious when tested in multiple cell lines. However, these EVs promote cell-to-cell contact of uninfected cells, a phenotype which was enhanced with IR, potentially promoting viral spread. We treated humanized NOG mice with HTLV-1 EVs prior to infection and observed an increase in viral RNA synthesis in mice compared to control (EVs from uninfected cells). Proviral DNA levels were also quantified in blood, lung, spleen, liver, and brain post-treatment with HTLV-1 EVs, and we observed a consistent increase in viral DNA levels across all tissues, especially the brain. Finally, we show direct implications of EVs in viral spread and disease progression and suggest a two-step model of infection including the release of EVs from donor cells and recruitment of recipient cells as well as an increase in recipient cell-to-cell contact promoting viral spread.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Helene Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | | | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
29
|
Essential Role of Human T Cell Leukemia Virus Type 1 orf-I in Lethal Proliferation of CD4 + Cells in Humanized Mice. J Virol 2019; 93:JVI.00565-19. [PMID: 31315992 DOI: 10.1128/jvi.00565-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 orf-I encodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, the in vivo requirements for orf-I expression vary in different animal models. In macaques, the ablation of orf-I expression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO In rabbits, HTLV-1p12KO is infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO We found that NOD/SCID/γC -/- c-kit+ mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+ CD25+ T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cells in vivo HTLV-1p12KO infection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of the orf-I initiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+ CD25+ T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCE Humanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+ T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+ T cell proliferation.
Collapse
|
30
|
Yao J, Tanaka M, Takenouchi N, Ren Y, Lee SI, Fujisawa JI. Induction of APOBEC3B cytidine deaminase in HTLV-1-infected humanized mice. Exp Ther Med 2019; 17:3701-3708. [PMID: 30988755 DOI: 10.3892/etm.2019.7375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL). Following viral infection with HTLV-1, certain infected cells exhibit clonal proliferation. Additional genetic and epigenetic changes in these clonally proliferating cells provide them with the selective advantage of growth, which eventually results in ATL. The precise mechanism, however, has yet to be completely elucidated. It has previously been established that APOBEC3 enzymes are potent host-antiviral restriction factors. Conversely, previous studies have reported that the A3B level is increased in tumor virus infections, such as those caused by HBV and HPV, suggesting that A3B exerts a function as a mutagen. Therefore, the present study analyzed the expression of APOBEC3 family members in various HTLV-1 infection states. No significant differences were observed in the expression between healthy donors and patients with HTLV-1-associated myelopathy. Although no significant changes in the expressions of A3C, A3D, A3F and A3G between uninfected and HTLV-1-infected mice were observed, an increased A3B expression was observed in a short-term humanized mouse model following HTLV-1 infection. In a long-term humanized mouse model following HTLV-1 infection, the gene expression array data exhibited an apparent increase in A3B and CADM1, which are indicators of ATL. Collectively, the results of the present study suggest that A3B is likely involved in the development of ATL in HTLV-1-infected humanized mice.
Collapse
Affiliation(s)
- Jinchun Yao
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.,Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yihua Ren
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Sung-Il Lee
- Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
31
|
Vicario M, Mattiolo A, Montini B, Piano MA, Cavallari I, Amadori A, Chieco-Bianchi L, Calabrò ML. A Preclinical Model for the ATLL Lymphoma Subtype With Insights Into the Role of Microenvironment in HTLV-1-Mediated Lymphomagenesis. Front Microbiol 2018; 9:1215. [PMID: 29951044 PMCID: PMC6008390 DOI: 10.3389/fmicb.2018.01215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Adult T cell Leukemia/Lymphoma (ATLL) is a mature T cell malignancy associated with Human T cell Leukemia Virus type 1 (HTLV-1) infection. Among its four main clinical subtypes, the prognosis of acute and lymphoma variants remains poor. The long latency (3–6 decades) and low incidence (3–5%) of ATLL imply the involvement of viral and host factors in full-blown malignancy. Despite multiple preclinical and clinical studies, the contribution of the stromal microenvironment in ATLL development is not yet completely unraveled. The aims of this study were to investigate the role of the host microenvironment, and specifically fibroblasts, in ATLL pathogenesis and to propose a murine model for the lymphoma subtype. Here we present evidence that the oncogenic capacity of HTLV-1-immortalized C91/PL cells is enhanced when they are xenotransplanted together with human foreskin fibroblasts (HFF) in immunocompromised BALB/c Rag2-/-γc-/- mice. Moreover, cell lines derived from a developed lymphoma and their subsequent in vivo passages acquired the stable property to induce aggressive T cell lymphomas. In particular, one of these cell lines, C91/III cells, consistently induced aggressive lymphomas also in NOD/SCID/IL2Rγc KO (NSG) mice. To dissect the mechanisms linked to this enhanced tumorigenic ability, we quantified 45 soluble factors released by these cell lines and found that 21 of them, mainly pro-inflammatory cytokines and chemokines, were significantly increased in C91/III cells compared to the parental C91/PL cells. Moreover, many of the increased factors were also released by human fibroblasts and belonged to the known secretory pattern of ATLL cells. C91/PL cells co-cultured with HFF showed features reminiscent of those observed in C91/III cells, including a similar secretory pattern and a more aggressive behavior in vivo. On the whole, our data provide evidence that fibroblasts, one of the major stromal components, might enhance tumorigenesis of HTLV-1-infected and immortalized T cells, thus throwing light on the role of microenvironment contribution in ATLL pathogenesis. We also propose that the lymphoma induced in NSG mice by injection with C91/III cells represents a new murine preclinical ATLL model that could be adopted to test novel therapeutic interventions for the aggressive lymphoma subtype.
Collapse
Affiliation(s)
- Mattia Vicario
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Luigi Chieco-Bianchi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| |
Collapse
|
32
|
Moodad S, Akkouche A, Hleihel R, Darwiche N, El-Sabban M, Bazarbachi A, El Hajj H. Mouse Models That Enhanced Our Understanding of Adult T Cell Leukemia. Front Microbiol 2018; 9:558. [PMID: 29643841 PMCID: PMC5882783 DOI: 10.3389/fmicb.2018.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adult T cell Leukemia (ATL) is an aggressive lymphoproliferative malignancy secondary to infection by the human T-cell leukemia virus type I (HTLV-I) and is associated with a dismal prognosis. ATL leukemogenesis remains enigmatic. In the era of precision medicine in oncology, mouse models offer one of the most efficient in vivo tools for the understanding of the disease biology and developing novel targeted therapies. This review provides an up-to-date and comprehensive account of mouse models developed in the context of ATL and HTLV-I infection. Murine ATL models include transgenic animals for the viral proteins Tax and HBZ, knock-outs for key cellular regulators, xenografts and humanized immune-deficient mice. The first two groups provide a key understanding of the role of viral and host genes in the development of ATL, as well as their relationship with the immunopathogenic processes. The third group represents a valuable platform to test new targeted therapies against ATL.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
33
|
Pérès E, Blin J, Ricci EP, Artesi M, Hahaut V, Van den Broeke A, Corbin A, Gazzolo L, Ratner L, Jalinot P, Duc Dodon M. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice. PLoS Pathog 2018; 14:e1006933. [PMID: 29566098 PMCID: PMC5882172 DOI: 10.1371/journal.ppat.1006933] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/03/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. The viral Tax oncoprotein is a critical contributor to the development of adult T-cell leukemia/lymphoma, an aggressive malignant proliferation of T lymphocytes. Tax contains a PDZ domain-binding motif (PBM) that favors the interaction with several cellular PDZ proteins. Here, we compare the in vivo involvement of the Tax PBM in humanized mice infected with either a full-length provirus or a Tax PBM-deleted provirus. We observe that the establishment of the sustained lymphoproliferation in the peripheral blood of infected mice is dependent on the Tax PBM. Furthermore, binding of the Tax PBM to the PDZ Scribble protein correlated with perturbations of cytoskeletal organization and cell polarity. In addition, genome-wide transcriptomic analyses strongly suggest that the association of Tax PBM with cellular PDZ proteins results in the expression of several genes involved in proliferation, apoptosis and cytoskeletal organization. Collectively, these results indicate that the Tax PBM is an auxiliary motif that contributes to the growth of HTLV-1 infected T-cells. As a consequence, targeting the PBM/PDZ nodes using small peptides may have the potential to antagonize the Tax-induced lymphoproliferation, offering a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Juliana Blin
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Emiliano P. Ricci
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Antoine Corbin
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Pierre Jalinot
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
- * E-mail:
| |
Collapse
|
34
|
Skelton JK, Ortega-Prieto AM, Dorner M. A Hitchhiker's guide to humanized mice: new pathways to studying viral infections. Immunology 2018; 154:50-61. [PMID: 29446074 PMCID: PMC5904706 DOI: 10.1111/imm.12906] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Humanized mice are increasingly appreciated as an incredibly powerful platform for infectious disease research. The often very narrow species tropism of many viral infections, coupled with the sometimes misleading results from preclinical studies in animal models further emphasize the need for more predictive model systems based on human cells rather than surrogates. Humanized mice represent such a model and have been greatly enhanced with regards to their immune system reconstitution as well as immune functionality in the past years, resulting in their recommendation as a preclinical model by the US Food and Drug Administration. This review aims to give a detailed summary of the generation of human peripheral blood lymphocyte-, CD34+ haematopoietic stem cell- and bone marrow/liver/thymus-reconstituted mice and available improved models (e.g. myeloid- or T-cell-only mice, MISTRG, NSG-SGM3). Additionally, we summarize human-tropic viral infections, for which humanized mice offer a novel approach for the study of disease pathogenesis as well as future perspectives for their use in biomedical, drug and vaccine research.
Collapse
Affiliation(s)
- Jessica Katy Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | | | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
35
|
Yong KSM, Her Z, Chen Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz) 2018; 66:245-266. [PMID: 29411049 PMCID: PMC6061174 DOI: 10.1007/s00005-018-0506-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
With an increasing human population, medical research is pushed to progress into an era of precision therapy. Humanized mice are at the very heart of this new forefront where it is acutely required to decipher human-specific disease pathogenesis and test an array of novel therapeutics. In this review, “humanized” mice are defined as immunodeficient mouse engrafted with functional human biological systems. Over the past decade, researchers have been conscientiously making improvements on the development of humanized mice as a model to closely recapitulate disease pathogenesis and drug mechanisms in humans. Currently, literature is rife with descriptions of novel and innovative humanized mouse models that hold a significant promise to become a panacea for drug innovations to treat and control conditions such as infectious disease and cancer. This review will focus on the background of humanized mice, diseases, and human-specific therapeutics tested on this platform as well as solutions to improve humanized mice for future clinical use.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
36
|
Control of Human T-Cell Leukemia Virus Type 1 (HTLV-1) Infection by Eliminating Envelope Protein-Positive Cells with Recombinant Vesicular Stomatitis Viruses Encoding HTLV-1 Primary Receptor. J Virol 2018; 92:JVI.01885-17. [PMID: 29212930 PMCID: PMC5790936 DOI: 10.1128/jvi.01885-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection causes adult T-cell leukemia (ATL), which is frequently resistant to currently available therapies and has a very poor prognosis. To prevent the development of ATL among carriers, it is important to control HTLV-1-infected cells in infected individuals. Therefore, the establishment of novel therapies with drugs specifically targeting infected cells is urgently required. This study aimed to develop a potential therapy by generating recombinant vesicular stomatitis viruses (rVSVs) that lack an envelope glycoprotein G and instead encode an HTLV-1 receptor with human glucose transporter 1 (GLUT1), neuropilin 1 (NRP1), or heparan sulfate proteoglycans (HSPGs), including syndecan 1 (SDC1), designated VSVΔG-GL, VSVΔG-NP, or VSVΔG-SD, respectively. In an attempt to enhance the infectivity of rVSV against HTLV-1-infected cells, we also constructed rVSVs with a combination of two or three receptor genes, designated VSVΔG-GLN and VSVΔG-GLNS, respectively. The present study demonstrates VSVΔG-GL, VSVΔG-NP, VSVΔG-GLN, and VSVΔG-GLNS have tropism for HTLV-1 envelope (Env)-expressing cells. Notably, the inoculation of VSVΔG-GL or VSVΔG-NP significantly eliminated HTLV-1-infected cells under the culture conditions. Furthermore, in an HTLV-1-infected humanized mouse model, VSVΔG-NP was capable of efficiently preventing HTLV-1-induced leukocytosis in the periphery and eliminating HTLV-1-infected Env-expressing cells in the lymphoid tissues. In summary, an rVSV engineered to express HTLV-1 primary receptor, especially human NRP1, may represent a drug candidate that has potential for the development of unique virotherapy against HTLV-1 de novo infection. IMPORTANCE Although several anti-ATL therapies are currently available, ATL is still frequently resistant to therapeutic approaches, and its prognosis remains poor. Control of HTLV-1 de novo infection or expansion of HTLV-1-infected cells in the carrier holds considerable promise for the prevention of ATL development. In this study, we developed rVSVs that specifically target and kill HTLV-1 Env-expressing cells (not ATL cells, which generally do not express Env in vivo) through replacement of the G gene with HTLV-1 receptor gene(s) in the VSV genome. Notably, an rVSV engineered to express human NRP1 controlled the number of HTLV-1-infected Env-expressing cells in vitro and in vivo, suggesting the present approach may be a promising candidate for novel anti-HTLV-1 virotherapy in HTLV-1 carriers, including as a prophylactic treatment against the development of ATL.
Collapse
|
37
|
Fujiwara S. Humanized mice: A brief overview on their diverse applications in biomedical research. J Cell Physiol 2017; 233:2889-2901. [PMID: 28543438 DOI: 10.1002/jcp.26022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Model animals naturally differ from humans in various respects and results from the former are not directly translatable to the latter. One approach to address this issue is humanized mice that are defined as mice engrafted with functional human cells or tissues. In humanized mice, we can investigate the development and function of human cells or tissues (including their products encoded by human genes) in the in vivo context of a small animal. As such, humanized mouse models have played important roles that cannot be substituted by other animal models in various areas of biomedical research. Although there are obvious limitations in humanized mice and we may need some caution in interpreting the results obtained from them, it is reasonably expected that they will be utilized in increasingly diverse areas of biomedical research, as the technology for preparing humanized mice are rapidly improved. In this review, I will describe the methodology for generating humanized mice and overview their recent applications in various disciplines including immunology, infectious diseases, drug metabolism, and neuroscience.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
38
|
Abstract
Infection with human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in a minority of infected individuals after long periods of viral persistence. The various stages of HTLV-I infection and leukemia development are studied by using several different animal models: (1) the rabbit (and mouse) model of persistent HTLV-I infection, (2) transgenic mice to model tumorigenesis by HTLV-I specific protein expression, (3) ATL cell transfers into immune-deficient mice, and (4) infection of humanized mice with HTLV-I. After infection, virus replicates without clinical disease in rabbits and to a lesser extent in mice. Transgenic expression of both the transactivator protein (Tax) and the HTLV-I bZIP factor (HBZ) protein have provided insight into factors important in leukemia/lymphoma development. To investigate factors relating to tumor spread and tissue invasion, a number of immune-deficient mice based on the severe combined immunodeficiency (SCID) or non-obese diabetic/SCID background have been used. Inoculation of adult T cell leukemia cell (lines) leads to lymphoma with osteolytic bone lesions and to a lesser degree to leukemia development. These mice have been used extensively for the testing of anticancer drugs and virotherapy. A recent development is the use of so-called humanized mice, which, upon transfer of CD34(+)human umbilical cord stem cells, generate human lymphocytes. Infection with HTLV-I leads to leukemia/lymphoma development, thus providing an opportunity to investigate disease development with the aid of molecularly cloned viruses. However, further improvements of this mouse model, particularly in respect to the development of adaptive immune responses, are necessary.
Collapse
Affiliation(s)
- Stefan Niewiesk
- Stefan Niewiesk, DVM, PhD, is a professor in the Department of Veterinary Biosciences in the College of Veterinary Medicine at the Ohio State University in Columbus, Ohio
| |
Collapse
|
39
|
Vahedi F, Giles EC, Ashkar AA. The Application of Humanized Mouse Models for the Study of Human Exclusive Viruses. Methods Mol Biol 2017; 1656:1-56. [PMID: 28808960 DOI: 10.1007/978-1-4939-7237-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The symbiosis between humans and viruses has allowed human tropic pathogens to evolve intricate means of modulating the human immune response to ensure its survival among the human population. In doing so, these viruses have developed profound mechanisms that mesh closely with our human biology. The establishment of this intimate relationship has created a species-specific barrier to infection, restricting the virus-associated pathologies to humans. This specificity diminishes the utility of traditional animal models. Humanized mice offer a model unique to all other means of study, providing an in vivo platform for the careful examination of human tropic viruses and their interaction with human cells and tissues. These types of animal models have provided a reliable medium for the study of human-virus interactions, a relationship that could otherwise not be investigated without questionable relevance to humans.
Collapse
Affiliation(s)
- Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Elizabeth C Giles
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
- MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON, Canada, L8N 3Z5.
| |
Collapse
|
40
|
Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD. Humanized Mouse Models of Clinical Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:187-215. [PMID: 27959627 DOI: 10.1146/annurev-pathol-052016-100332] [Citation(s) in RCA: 399] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunodeficient mice engrafted with functional human cells and tissues, that is, humanized mice, have become increasingly important as small, preclinical animal models for the study of human diseases. Since the description of immunodeficient mice bearing mutations in the IL2 receptor common gamma chain (IL2rgnull) in the early 2000s, investigators have been able to engraft murine recipients with human hematopoietic stem cells that develop into functional human immune systems. These mice can also be engrafted with human tissues such as islets, liver, skin, and most solid and hematologic cancers. Humanized mice are permitting significant progress in studies of human infectious disease, cancer, regenerative medicine, graft-versus-host disease, allergies, and immunity. Ultimately, use of humanized mice may lead to the implementation of truly personalized medicine in the clinic. This review discusses recent progress in the development and use of humanized mice and highlights their utility for the study of human diseases.
Collapse
Affiliation(s)
- Nicole C Walsh
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sonal Jangalwe
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Ken-Edwin Aryee
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
41
|
Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res 2016; 76:6153-6158. [PMID: 27587540 DOI: 10.1158/0008-5472.can-16-1260] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in the context of a human immune system and resultant tumor microenvironment, and recent studies have highlighted the increased similarities in attendant tumor structure, metastasis, and signaling to those features in cancer patients. This setting also facilitates the examination of investigational cancer therapies, including new immunotherapies. This review discusses recent advancements in the generation and application of HM models, their promise in cancer research, and their potential in generating clinically relevant treatments. This review also focuses on current efforts to improve HM models by engineering mouse strains expressing human cytokines or HLA proteins and implanting human bone, liver, and thymus tissue to facilitate immune cell maturation and trafficking. Finally, we discuss how these improvements may help direct future HM model cancer studies. Cancer Res; 76(21); 6153-8. ©2016 AACR.
Collapse
Affiliation(s)
- J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory Bird
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yosef Refaeli
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado. .,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
42
|
Ernst W. Humanized mice in infectious diseases. Comp Immunol Microbiol Infect Dis 2016; 49:29-38. [PMID: 27865261 DOI: 10.1016/j.cimid.2016.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023]
Abstract
The pathogenesis of infectious agents with human tropism can only be properly studied in an in vivo model featuring human cells or tissue. Humanized mice represent a small animal model featuring human cells or tissue that can be infected by human-specific viruses, bacteria, and parasites and also providing a functional human immune system. This makes the analysis of a human immune response to infection possible and allows for preclinical testing of new vaccines and therapeutic agents. Results of various studies using humanized mice to investigate pathogens with human tropism are presented in this review. In addition, the limitations of humanized mice and methods to improve this valuable animal model are discussed.
Collapse
Affiliation(s)
- W Ernst
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Bavaria, Germany.
| |
Collapse
|
43
|
Kasugai Y, Yoshida N, Ohshima K, Matsuo K, Seto M, Tsuzuki S. New mouse model of acute adult T-cell leukemia generated by transplantation of AKT, BCLxL, and HBZ-transduced T cells. Cancer Sci 2016; 107:1072-8. [PMID: 27223899 PMCID: PMC4982588 DOI: 10.1111/cas.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/24/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL) develops in human T‐cell leukemia virus type 1 (HTLV‐1) carriers. Although the HTLV‐1‐encoded HBZ gene is critically involved, HBZ alone is insufficient and additional, cooperative “hits” are required for the development of ATL. Candidate cooperative hits are being defined, but methods to rapidly explore their roles in ATL development in collaboration with HBZ are lacking. Here, we present a new mouse model of acute type ATL that can be generated rapidly by transplanting in vitro‐induced T cells that have been retrovirally transduced with HBZ and two cooperative genes, BCLxL and AKT, into mice. Co‐transduction of HBZ and BCLxL/AKT allowed these T cells to grow in vitro in the absence of cytokines (Flt3‐ligand and interleukin‐7), which did not occur with any two‐gene combination. Although transplanted T cells were a mixture of cells transduced with different combinations of the genes, tumors that developed in mice were composed of HBZ/BCLxL/AKT triply transduced T cells, showing the synergistic effect of the three genes. The genetic/epigenetic landscape of ATL has only recently been elucidated, and the roles of additional “hits” in ATL pathogenesis remain to be explored. Our model provides a versatile tool to examine the roles of these hits, in collaboration with HBZ, in the development of acute ATL.
Collapse
Affiliation(s)
- Yumiko Kasugai
- Division of Molecular Medicine, Aichi Cancer Center, Research Institute, Nagoya, Japan
| | - Noriaki Yoshida
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center, Research Institute, Nagoya, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center, Research Institute, Nagoya, Japan
| |
Collapse
|
44
|
Pérès E, Bagdassarian E, This S, Villaudy J, Rigal D, Gazzolo L, Duc Dodon M. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis. Viruses 2015; 7:6371-86. [PMID: 26690200 PMCID: PMC4690867 DOI: 10.3390/v7122944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1), is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.
Collapse
Affiliation(s)
- Eléonore Pérès
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| | - Eugénie Bagdassarian
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
- Master BioSciences, Département de Biologie, ENS Lyon, 69366 Lyon Cedex 7, France.
| | - Sébastien This
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
- Master BioSciences, Département de Biologie, ENS Lyon, 69366 Lyon Cedex 7, France.
| | - Julien Villaudy
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, The Netherlands.
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, The Netherlands.
| | | | - Louis Gazzolo
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| | - Madeleine Duc Dodon
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| |
Collapse
|
45
|
Bangham CRM, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 2015; 14:93-100. [PMID: 26414684 PMCID: PMC4772697 DOI: 10.1016/j.coviro.2015.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
A typical person infected with the retrovirus human T-lymphotropic virus type 1 (HTLV-1) carries tens of thousands of clones of HTLV-1-infected T lymphocytes, each clone distinguished by a unique integration site of the provirus in the host genome. However, only 5% of infected people develop the malignant disease adult T cell leukaemia/lymphoma, usually more than 50 years after becoming infected. We review the host and viral factors that cause this aggressive disease.
Collapse
Affiliation(s)
- Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK.
| | - Lee Ratner
- Medical Oncology Section, Hematology-Oncology Faculty, Washington University School of Medicine, St Louis, WA, USA
| |
Collapse
|
46
|
Abstract
During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.
Collapse
|
47
|
T memory stem cells are the hierarchical apex of adult T-cell leukemia. Blood 2015; 125:3527-35. [PMID: 25847015 DOI: 10.1182/blood-2014-10-607465] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/16/2015] [Indexed: 01/14/2023] Open
Abstract
Adult T-cell leukemia (ATL) is a peripheral CD4(+) T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). Despite several investigations using human specimens and mice models, the exact origin of ATL cells remains unclear. Here we provide a new insight into the hierarchical architecture of ATL cells. HTLV-1-infected cells and dominant ATL clones are successfully traced back to CD45RA(+) T memory stem (TSCM) cells, which were recently identified as a unique population with stemlike properties, despite the fact that the majority of ATL cells are CD45RA(-)CD45RO(+) conventional memory T cells. TSCM cells from ATL patients are capable of both sustaining themselves in less proliferative mode and differentiating into other memory T-cell populations in the rapidly propagating phase. In a xenograft model, a low number of TSCM cells efficiently repopulate identical ATL clones and replenish downstream CD45RO(+) memory T cells, whereas other populations have no such capacities. Taken together, these findings demonstrate the phenotypic and functional heterogeneity and the hierarchy of ATL cells. TSCM cells are identified as the hierarchical apex capable of reconstituting identical ATL clones. Thus, this is the first report to demonstrate the association of a T-cell malignancy with TSCM cells.
Collapse
|
48
|
Abstract
Many of the viral pathogens that cause infectious diseases in humans have a highly restricted species tropism, making the study of their pathogenesis and the development of clinical therapies difficult. The improvement of humanized mouse models over the past 30 years has greatly facilitated researchers' abilities to study host responses to viral infections in a cost effective and ethical manner. From HIV to hepatotropic viruses to Middle East Respiratory Syndrome coronavirus, humanized mice have led to the identification of factors crucial to the viral life cycle, served as an outlet for testing candidate therapies, and improved our abilities to analyze human immune responses to infection. In tackling both new and old viruses as they emerge, humanized mice will continue to be an indispensable tool.
Collapse
Affiliation(s)
- Jenna M Gaska
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544-1014, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544-1014, USA.
| |
Collapse
|
49
|
Abstract
The human T cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that infects 10-20 million persons around the world. Initially associated with the hematological malignancy adult T cell leukemia/lymphoma (ATLL), HTLV-1 is also the cause of a chronic progressive myelopathy named "HTLV-1-associated myelopathy/tropical spastic paraparesis" (HAM/TSP). HAM/TSP arises as the tip of the iceberg of an assortment of neurological syndromes triggered by the virus such as inflammatory myopathies, polyneuropathies, amyotrophic lateral sclerosis (ALS)-like syndromes, dysautonomia, and cognitive impairment. HAM/TSP typifies a chronic progressive spastic paraparesis with neurogenic bladder and minimal sensory signs. The neuropathology of HAM/TSP is concentrated in the thoracic spinal cord and is typically biphasic. Initially, there is a perivascular lymphocytic cuffing and mild parenchymal mononuclear infiltrates. Subsequently, this is replaced by gliosis and scarring. The neuropathogenesis of HTLV-1 is still partially understood. At present, the therapy of HAM/TSP remains basically symptomatic.
Collapse
Affiliation(s)
- Abelardo Q-C Araujo
- The Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (FIOCRUZ), Brazilian Ministry of Health, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-360, Brazil,
| |
Collapse
|
50
|
Ohnuma K, Hatano R, Aune TM, Otsuka H, Iwata S, Dang NH, Yamada T, Morimoto C. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3697-712. [PMID: 25786689 DOI: 10.4049/jimmunol.1402785] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Obliterative bronchiolitis is a potentially life-threatening noninfectious pulmonary complication after allogeneic hematopoietic stem cell transplantation and the only pathognomonic manifestation of pulmonary chronic graft-versus-host disease (cGVHD). In the current study, we identified a novel effect of IL-26 on transplant-related obliterative bronchiolitis. Sublethally irradiated NOD/Shi-scidIL2rγ(null) mice transplanted with human umbilical cord blood (HuCB mice) gradually developed clinical signs of graft-versus-host disease (GVHD) such as loss of weight, ruffled fur, and alopecia. Histologically, lung of HuCB mice exhibited obliterative bronchiolitis with increased collagen deposition and predominant infiltration with human IL-26(+)CD26(+)CD4 T cells. Concomitantly, skin manifested fat loss and sclerosis of the reticular dermis in the presence of apoptosis of the basilar keratinocytes, whereas the liver exhibited portal fibrosis and cholestasis. Moreover, although IL-26 is absent from rodents, we showed that IL-26 increased collagen synthesis in fibroblasts and promoted lung fibrosis in a murine GVHD model using IL-26 transgenic mice. In vitro analysis demonstrated a significant increase in IL-26 production by HuCB CD4 T cells following CD26 costimulation, whereas Ig Fc domain fused with the N-terminal of caveolin-1 (Cav-Ig), the ligand for CD26, effectively inhibited production of IL-26. Administration of Cav-Ig before or after onset of GVHD impeded the development of clinical and histologic features of GVHD without interrupting engraftment of donor-derived human cells, with preservation of the graft-versus-leukemia effect. These results therefore provide proof of principle that cGVHD of the lungs is caused in part by IL-26(+)CD26(+)CD4 T cells, and that treatment with Cav-Ig could be beneficial for cGVHD prevention and therapy.
Collapse
Affiliation(s)
- Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Satoshi Iwata
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Nam H Dang
- Division of Hematology and Oncology, University of Florida, Gainesville, FL 32610; and
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| |
Collapse
|