1
|
Xu B, Ye X, Sun K, Chen L, Wen Z, Lan Q, Chen J, Chen M, Shen M, Wang S, Xu Y, Zhang X, Zhao J, Wang J, Chen S. IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411914. [PMID: 39853919 PMCID: PMC11967848 DOI: 10.1002/advs.202411914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis. Through interaction with certain endosome membrane proteins, IRAP can not only promote granule release, but also facilitate lysosomal degradation of theoretically discarded ribosomes in an mTORC1- and S-acylation-dependent manner in activated platelets. Plentiful amino acids obtained from IRAP-mediated ribophagy are recruited to aerobic glycolysis and then promote energy metabolism reprogramming, thereby producing abundant energy for platelet life extension and prolonged activation. Consequently, targeted blocking IRAP can dramatically alleviate platelet hyperactivation and septic thrombosis.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Kangfu Sun
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Liang Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Qigang Lan
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xi Zhang
- Medical Center of HematologyXinqiao HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jinghong Zhao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| |
Collapse
|
2
|
Ming Y, Zhou Q, Xin G, Wei Z, Ji C, Yu K, Li S, Zhang B, Zhang J, Li Y, He H, Huang W. Famciclovir Ameliorates Platelet Activation and Thrombosis by AhR-Regulated Autophagy. Cardiovasc Toxicol 2025; 25:486-497. [PMID: 39928275 DOI: 10.1007/s12012-025-09971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Cardiovascular diseases (CVDs) and their severe complications have posed immense challenges to global healthcare systems. A significant obstacle in this field lies in the development of innovative targets, mechanisms, and drugs to mitigate the side effects associated with current antiplatelet therapies. Through screening relevant CVD targets in the Gene Card database, we found that AhR appears to be linked to CVDs. Computer-aided drug screening and molecular docking techniques identified famciclovir as a potential AhR inhibitor. Further experiments demonstrated that famciclovir suppresses AhR expression and platelet activation in thrombin-stimulated platelets, significantly reducing mitochondrial damage and oxidative stress. Notably, oral administration of famciclovir significantly inhibits thrombin-induced platelet aggregation without affecting coagulation factors or thrombolysis systems. Moreover, famciclovir mitigates FeCl3-induced carotid arterial thrombosis and cerebral thrombosis induced by middle cerebral artery occlusion. Our study suggests that inhibiting AhR expression with famciclovir effectively reduces platelet activation and thrombosis, offering promise as a potential therapeutic strategy for improving CVDs.
Collapse
Affiliation(s)
- Yue Ming
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Qilong Zhou
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Guang Xin
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Zeliang Wei
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Chengjie Ji
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu, Sichuan, China
| | - Kui Yu
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Shiyi Li
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Boli Zhang
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Youping Li
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Hongchen He
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China
| | - Wen Huang
- Department of Rehabilitation Medicine Center, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Golubnitschaja O, Sargheini N, Bastert J. Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. EPMA J 2025; 16:1-15. [PMID: 39991093 PMCID: PMC11842662 DOI: 10.1007/s13167-025-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Association of both intrinsic and extrinsic risk factors leading to accelerated skin ageing is reflected in excessive ROS production and ir/reversible mitochondrial injury and burnout, as abundantly demonstrated by accumulating research data. Due to the critical role of mitochondrial stress in the pathophysiology of skin ageing and disorders, maintained (primary care) and restored (secondary care) mitochondrial health, rejuvenation and homoeostasis are considered the most effective holistic approach to advance dermatological treatments based on systemic health-supportive and stimulating measures. Per evidence, an effective skin anti-ageing protection, wound healing and scarring quality - all strongly depend on the sustainable mitochondrial functionality and well-balanced homoeostasis. The latter can be objectively measured and, if necessary, restored in a systemic manner by pre- and rehabilitation algorithms tailored to individualised patient profiles. The entire spectrum of corresponding innovations in the area includes natural and systemic skin rejuvenation, aesthetic and reconstructive medicine, sustainable skin protection and targeted treatments of skin disorders. Contextually, mitochondria-centric dermatology is instrumental for advanced 3PM-guided approach which makes a good use of predictive multi-level diagnostics and targeted protection of skin against both - the health-to-disease transition and progression of relevant disorders. Cost-effective targeted protection and new treatment avenues focused on sustainable mitochondrial health and physiologic homoeostasis are proposed in the article including in-depth analysis of patient cases and exemplified 3PM-guided care with detailed mechanisms and corresponding expert recommendations presented.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Janine Bastert
- Private Dermatological Clinic, Kirchheimer Str. 71, 70619 Stuttgart, Germany
| |
Collapse
|
4
|
Tang KT, Chen YH, Wang JH, Hsieh TY, Chao YH, Chen DY, Chen HH, Lin CC. Autophagic Flux Might Be Blocked in Patients With Primary Antiphospholipid Antibody Syndrome. Int J Rheum Dis 2025; 28:e70063. [PMID: 40103288 DOI: 10.1111/1756-185x.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 03/20/2025]
Affiliation(s)
- Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Jou-Hsuan Wang
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Tsu-Yi Hsieh
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of General Medicine, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Program in Translational Medicine and Rong Hsing Research Center for Translational Medi-Cine, National Chung Hsing University, Taichung, Taiwan
- Big Data Center, National Chung Hsing University, Taichung, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Chi-Chen Lin
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Bandyopadhyay P, Katakia YT, Mukherjee S, Majumder S, Chowdhury S, Chowdhury R. Inhibition of autophagy in platelets as a therapeutic strategy preventing hypoxia induced thrombosis. Sci Rep 2025; 15:6855. [PMID: 40011551 DOI: 10.1038/s41598-025-91181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Hypoxia triggers activation of platelets, leading to thrombosis. If not addressed clinically, it can cause severe complications and fatal consequences. The current treatment regime for thrombosis is often palliative and include long-term administration of anticoagulants, causing over-bleeding risk and other secondary effects as well. This demands a molecular understanding of the process and exploration of an alternative therapeutic avenue. Interestingly, recent studies demonstrate that platelets exhibit functional autophagy. This cellular homeostatic process though well-studied in non-platelet cells, is under-explored in platelets. Herein, we report autophagy activation under physiologically relevant hypoxic condition (10% O2; associated with high altitude) in ex-vivo platelets and in vivo as well. We show that autophagy inhibition using chloroquine (CQ), a repurposed FDA-approved drug, can significantly reduce platelet activation, both in ex-vivo and in-vivo settings. Further, surgical ligation of inferior vena cava (IVC) was performed to induce thrombus formation. Interestingly, CQ pre-treated rats showed reduced clotting ability in surgical animals as well. Importantly, thrombosis inhibitory dose of CQ was considerably lower than the currently used drug-acetazolamide; CQ was also found to be non-toxic to the tissues. Hence, we propose that repurposing of CQ can attenuate hypoxia-induced thrombosis through inhibition of autophagy and can be explored as an effective therapeutic alternative.
Collapse
Affiliation(s)
- Propanna Bandyopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS Pilani), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS Pilani), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS Pilani), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS Pilani), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS Pilani), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS Pilani), Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
6
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
7
|
Noro F, Pepe G, Pizzati L, Di Pardo A, Donati MB, de Gaetano G, Iacoviello L, Maglione V, Cerletti C. Brain-derived gangliosides prime human platelet aggregation and induce platelet-leukocyte aggregate formation. J Thromb Haemost 2024; 22:3221-3234. [PMID: 39122190 DOI: 10.1016/j.jtha.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Platelet activation and interaction with leukocytes are crucial in inflammation. Gangliosides, sialic acid-containing glycosphingolipids, have been linked to different inflammatory conditions related to cardio- and neurodegenerative disorders. The role of gangliosides in platelet and leukocyte function, although reported, still needs further investigation. OBJECTIVES We aimed to study the role of gangliosides in platelet activation and platelet-leukocyte interaction in vitro. METHODS Platelet activation was studied through aggregometry in platelet-rich plasma from apparently healthy human volunteers. Signaling protein phosphorylation was analyzed by immunoblotting. Platelet P-selectin expression and platelet-leukocyte aggregate formation were measured by flow cytometry. RESULTS The gangliosides monosialoganglioside GM1, disialoganglioside GD1a, and trisialoganglioside GT1b did not induce by themselves any platelet aggregation. Conversely, when preincubated with platelets, they potentiate platelet aggregation induced by submaximal adenosine diphosphate and collagen concentrations and increased P-selectin expression. Incubation of platelets with free sialic acid and the soluble part of monosialoganglioside GM1 induced a similar potentiating effect on platelet aggregation but not on platelet P-selectin expression. Consistently, analyzing the signaling protein phosphorylation, only the entire gangliosides activated extracellular stimuli-responsive kinase 1/2 suggesting that a complete ganglioside is crucial for its action on platelets. Both the priming effect on platelet aggregation and ERK1/2 activation were prevented by aspirin. Moreover, incubation of citrated whole blood with gangliosides induced platelet-leukocyte aggregate formation accompanied by increased expression of granulocyte and monocyte CD11b compared with untreated blood, suggesting a primary leukocyte activation. CONCLUSION Gangliosides may act in vitro both on platelet and leukocyte activation and on their interaction. The observed effects might contribute to inflammatory processes in clinical conditions.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Giuseppe Pepe
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Ludovica Pizzati
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Alba Di Pardo
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy; Libera Università Mediterranea (LUM) "Degennaro", Casamassima, Bari, Italy.
| | - Vittorio Maglione
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
8
|
Lu M, Gong X, Zhang YM, Guo YW, Zhu Y, Zeng XB, Gao JH, Liu LM, Shu D, Ma R, Liang HF, Zhang RY, Xu Y, Zhang BX, Lu YJ, Ming ZY. Platelets promote primary hepatocellular carcinoma metastasis through TGF-β1-mediated cancer cell autophagy. Cancer Lett 2024; 600:217161. [PMID: 39117067 DOI: 10.1016/j.canlet.2024.217161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Previous research has revealed that platelets promote tumor metastasis by binding to circulating tumor cells (CTCs). However, the role of platelets in epithelial-mesenchymal transition (EMT) of cancer cells at the primary tumor site, the crucial initial step of tumor metastasis, remains to be elucidated. Here, we found that platelet releasate enhanced EMT and motility of hepatocellular carcinoma (HCC) cells via AMPK/mTOR-induced autophagy. RNA-seq indicated that platelet releasate altered TGF-β signaling pathway of cancer cells. Inhibiting TGFBR or deleting platelet TGF-β1 suppressed AMPK/mTOR pathway activation and autophagy induced by platelet releasate. Compared with Pf4cre-; Tgfb1fl/fl mice, HCC orthotopic models established on Pf4cre+; Tgfb1fl/fl mice showed reduced TGF-β1 in primary tumors, which corresponded with decreased cancer cell EMT, autophagy, migration ability and tumor metastasis. Inhibition of autophagy via Atg5 knockdown in cancer cells negated EMT and metastasis induced by platelet-released TGF-β1. Clinically, higher platelet count correlated with increased TGF-β1, LC3 and N-cad expression in primary tumors of HCC patients, suggesting a link between platelets and HCC progression. Our study indicates that platelets promote cancer cell EMT in the primary tumor and HCC metastasis through TGF-β1-induced HCC cell autophagy via the AMPK/mTOR pathway. These findings offer novel insights into the role of platelets in HCC metastasis and the potential therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Xue Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Yu-Min Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Ya-Wei Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Ying Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Jia-Hui Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Lu-Man Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Department of Pharmacy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru-Yi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Yun Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Jie Lu
- Center for Biomarkers and Therapeutics, Bart's Cancer Institute, Queen Mary University London, London, EC1M 6BQ, UK
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Wu Q, Yu S, Zang S, Peng K, Wang Z. Autophagy-enabled protein degradation: Key to platelet activation and ANGII production in patients with type 2 diabetes mellitus. Heliyon 2024; 10:e36131. [PMID: 39253219 PMCID: PMC11382079 DOI: 10.1016/j.heliyon.2024.e36131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) presents a thrombotic environment, contributing to diabetic macroangiopathy and microangiopathy. In this study, the regulation of microthrombosis in T2DM was assessed. Methods Platelets from T2DM patients and healthy controls were analyzed using 4D label-free proteomics and bioinformatics. The role of autophagy in T2DM platelet activation and conversion of platelet-derived angiotensinogen (AGT) was investigated. Results The results showed that complement and coagulation cascades, platelet activation, metabolic pathways, endocytosis, autophagy, and other protein digestion-related pathways were enriched. The levels of the key protein AGT were increased in T2DM platelets. Chloroquine (CQ) inhibited ADP- or arachidonic acid (AA)-stimulated platelet aggregation and granule release in a dose-dependent manner, while the effects were less pronounced or even reversed for the proteasome inhibitor PYR-41 and the endocytosis inhibitor Pitstop 2. This indicated the dependence of platelet activation and the accompanying protein digestion on the autophagy-lysosome pathway. Mitophagy occurred in fresh T2DM platelets and ADP- or storage-stimulated platelets; mitophagy was inhibited by CQ. However, the mitophagy inhibitor Mdivi-1 failed to show effects similar to those of CQ. AGT, which could be transformed into ANGII in vitro by ADP-stimulated platelets, was upregulated in T2DM platelets and in MEG-01 cell-derived platelets cultured in a high-glucose medium. Finally, microthrombosis was alleviated as indicated by a reduction in the levels of red blood cells in the liver, spleen, heart, and kidney tissues of db/db mice treated with CQ or valsartan. Conclusion In platelets, macroautophagy promotes protein digestion, subsequently facilitating platelet activation, ANGII-mediated vasoconstriction, and microthrombosis. Our results suggested that lysosome is a promising therapeutic target for antithrombotic treatment in T2DM.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Clinical Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Department of Clinical Laboratory Medicine, Sijing Hospital of the Songjiang District of Shanghai, Shanghai, 201601, China
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Siwen Yu
- Department of Clinical Laboratory Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Kangkang Peng
- Department of Clinical Laboratory Medicine, Sijing Hospital of the Songjiang District of Shanghai, Shanghai, 201601, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
10
|
Yang HX, Li YJ, He YL, Jin KK, Lyu LN, Ding HG. Hydrogen Sulfide Promotes Platelet Autophagy via PDGFR-α/PI3K/Akt Signaling in Cirrhotic Thrombocytopenia. J Clin Transl Hepatol 2024; 12:625-633. [PMID: 38993511 PMCID: PMC11233979 DOI: 10.14218/jcth.2024.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND AND AIMS The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. METHODS Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. RESULTS Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. CONCLUSIONS Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hua-Xiang Yang
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang-Jie Li
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang-Lan He
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ke-Ke Jin
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ling-Na Lyu
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hui-Guo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zhong Y, Cui S, Yang Y, Cai JJ. Controlled Noise: Evidence of epigenetic regulation of Single-Cell expression variability. Bioinformatics 2024; 40:btae457. [PMID: 39018178 PMCID: PMC11283284 DOI: 10.1093/bioinformatics/btae457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
MOTIVATION Understanding single-cell expression variability (scEV) or gene expression noise among cells of the same type and state is crucial for delineating population-level cellular function. While epigenetic mechanisms are widely implicated in gene expression regulation, a definitive link between chromatin accessibility and scEV remains elusive. Recent advances in single-cell techniques enable the study of single-cell multiomics data that include the simultaneous measurement of scATAC-seq and scRNA-seq within individual cells, presenting an unprecedented opportunity to address this gap. RESULTS This paper introduces an innovative testing pipeline to investigate the association between chromatin accessibility and scEV. With single-cell multiomics data of scATAC-seq and scRNA-seq, the pipeline hinges on comparing the prediction performance of scATAC-seq data on gene expression levels between highly variable genes (HVGs) and non-highly variable genes (non-HVGs). Applying this pipeline to paired scATAC-seq and scRNA-seq data from human hematopoietic stem and progenitor cells, we observed a significantly superior prediction performance of scATAC-seq data for HVGs compared to non-HVGs. Notably, there was substantial overlap between well-predicted genes and HVGs. The gene pathways enriched from well-predicted genes are highly pertinent to cell type-specific functions. Our findings support the notion that scEV largely stems from cell-to-cell variability in chromatin accessibility, providing compelling evidence for the epigenetic regulation of scEV and offering promising avenues for investigating gene regulation mechanisms at the single-cell level. AVAILABILITY The source code and data used in this paper can be found at https://github.com/SiweiCui/EpigeneticControlOfSingle-CellExpressionVariability. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yan Zhong
- School of Statistics, KLATASDS-MOE, East China Normal University, Shanghai, 200062, China
| | - Siwei Cui
- School of Statistics, KLATASDS-MOE, East China Normal University, Shanghai, 200062, China
| | - Yongjian Yang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - James J Cai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, United States
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
12
|
Liu J, Gao J, Lu P, Wang Y, Xing S, Yan Y, Han R, Hao P, Li X. Mesenchymal Stem Cell-Derived Exosomes as Drug Carriers for Delivering miRNA-29b to Ameliorate Inflammation in Corneal Injury Via Activating Autophagy. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38856990 PMCID: PMC11166224 DOI: 10.1167/iovs.65.6.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Corneal injury (CI) resulting in corneal opacity remains a clinical challenge. Exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs) have been proven effective in repairing various tissue injuries and are also considered excellent drug carriers due to their biological properties. Recently, microRNA-29b (miR-29b) was found to play an important role in the autophagy regulation which correlates with cell inflammation and fibrosis. However, the effects of miR-29b and autophagy on CI remain unclear. To find better treatments for CI, we used Exos to carry miR-29b and investigated its effects in the treatment of CI. Methods BMSCs were transfected with miR-29b-3p agomir/antagomir and negative controls (NCs) to obtain Exos-29b-ago, Exos-29b-anta, and Exos-NC. C57BL/6J mice that underwent CI surgeries were treated with Exos-29b-ago, Exos-29b-anta, Exos-NC, or PBS. The autophagy, inflammation, and fibrosis of the cornea were estimated by slit-lamp, hematoxylin and eosin (H&E) staining, immunofluorescence, RT‒qPCR, and Western blot. The effects of miR-29b-3p on autophagy and inflammation in immortalized human corneal epithelial cells (iHCECs) were also investigated. Results Compared to PBS, Exos-29b-ago, Exos-29b-anta, and Exos-NC all could ameliorate corneal inflammation and fibrosis. However, Exos-29b-ago, which accumulated a large amount of miR-29b-3p, exerted excellent potency via autophagy activation by inhibiting the PI3K/AKT/mTOR pathway and further inhibited corneal inflammation via the mTOR/NF-κB/IL-1β pathway. After Exos-29b-ago treatment, the expressions of collagen type III, α-smooth muscle actin, fibronectin, and vimentin were significantly decreased than in other groups. In addition, overexpression of miR-29b-3p prevented iHCECs from autophagy impairment and inflammatory injury. Conclusions Exos from BMSCs carrying miR-29b-3p can significantly improve the therapeutic effect on CI via activating autophagy and further inhibiting corneal inflammation and fibrosis.
Collapse
Affiliation(s)
- Jinghua Liu
- School of Medicine, Nankai University, Tianjin, China; Nankai University Affiliated Eye Hospital, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Juan Gao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Ping Lu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Yuchuan Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Shulei Xing
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yarong Yan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ruifang Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Peng Hao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Xuan Li
- School of Medicine, Nankai University, Tianjin, China; Nankai University Affiliated Eye Hospital, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Ma L, Sun W, Li J, Wang H, Ding Z, He Q, Kang Y, Dong S, Chu Y. Regulation of platelet activation and thrombus formation in acute non-ST segment elevation myocardial infarction: Role of Beclin1. Clin Transl Sci 2024; 17:e13823. [PMID: 38771157 PMCID: PMC11107531 DOI: 10.1111/cts.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
This study aims to investigate the mechanism of platelet activation-induced thrombosis in patients with acute non-ST segment elevation myocardial infarction (NSTEMI) by detecting the expression of autophagy-associated proteins in platelets of patients with NSTEMI. A prospective study was conducted on 121 patients with NSTEMI who underwent emergency coronary angiography and optical coherence tomography. The participants were divided into two groups: the ST segment un-offset group (n = 64) and the ST segment depression group (n = 57). We selected a control group of 60 patients without AMI during the same period. The levels of autophagy-associated proteins and the expression of autophagy-associated proteins in platelets were measured using immunofluorescence staining and Western blot. In NSTEMI, the prevalence of red thrombus was higher in the ST segment un-offset myocardial infarction (STUMI) group, whereas white thrombus was more common in the ST segment depression myocardial infarction (STDMI) group. Furthermore, the platelet aggregation rate was significantly higher in the white thrombus group compared with the red thrombus group. Compared with the control group, the autophagy-related protein expression decreased, and the expression of αIIbβ3 increased in NSTEMI. The overexpression of Beclin1 could activate platelet autophagy and inhibit the expression of αIIbβ3. The results suggested that the increase in platelet aggregation rate in patients with NSTEMI may be potentially related to the change in autophagy. And the overexpression of Beclin1 could reduce the platelet aggregation rate by activating platelet autophagy. Our findings demonstrated that Beclin1 could be a potential therapeutic target for inhibiting platelet aggregation in NSTEMI.
Collapse
Affiliation(s)
- Lingkun Ma
- Department of CardiologyZhengzhou University People's HospitalZhengzhouChina
| | - Wenjing Sun
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Jingchao Li
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Hailan Wang
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Zihan Ding
- Department of CardiologyZhengzhou University People's HospitalZhengzhouChina
| | - Qing He
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Yue Kang
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Shujuan Dong
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| | - Yingjie Chu
- Department of CardiologyHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
14
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
15
|
De Paoli SH, Patel M, Elhelu OK, Tarandovskiy ID, Tegegn TZ, Simak J. Structural analysis of platelet fragments and extracellular vesicles produced by apheresis platelets during storage. Blood Adv 2024; 8:207-218. [PMID: 37967384 PMCID: PMC10787271 DOI: 10.1182/bloodadvances.2023011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Platelets (PLTs) for transfusion can be stored for up to 7 days at room temperature (RT). The quality of apheresis PLTs decreases over storage time, which affects PLT hemostatic functions. Here, we characterized the membranous particles produced by PLT storage lesion (PSLPs), including degranulated PLTs, PLT ghosts, membrane fragments, and extracellular membrane vesicles (PEVs). The PSLPs generated in apheresis platelet units were analyzed on days 1, 3, 5, and 7 of RT storage. A differential centrifugation and a sucrose density gradient were used to separate PSLP populations. PSLPs were characterized using scanning and transmission electron microscopy (EM), flow cytometry (FC), and nanoparticle tracking analysis (NTA). PSLPs have different morphologies and a broad size distribution; FC and NTA showed that the concentration of small and large PSLPs increases with storage time. The density gradient separated 3 PSLP populations: (1) degranulated PLTs, PLT ghosts, and large PLT fragments; (2) PEVs originated from PLT activation and organelles released by necrotic PLTs; and (3) PEV ghosts. Most PSLPs expressed phosphatidyl serine and induced thrombin generation in the plasma. PSLPs contained extracellular mitochondria and some had the autophagosome marker LC3. PSLPs encompass degranulated PLTs, PLT ghosts, large PLT fragments, large and dense PEVs, and low-density PEV ghosts. The activation-related PSLPs are released, particularly during early stage of storage (days 1-3), and the release of apoptosis- and necrosis-related PSLPs prevails after that. No elevation of LC3- and TOM20-positive PSLPs indicates that the increase of extracellular mitochondria during later-stage storage is not associated with PLT mitophagy.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Mehulkumar Patel
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD
| | - Oumsalama K Elhelu
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Ivan D Tarandovskiy
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Hemostasis Branch, Office of Therapeutic Products, Center of Biologics Evaluations and Research, US Food and Drug Administration, Silver Spring, MD
| | - Tseday Z Tegegn
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Jan Simak
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
16
|
Li Y, Song Z, Sun X, Tang J, Zhou X. Changes in inflammatory responses and autophagy during apheresis platelet preservation and their correlation with platelet transfusion refractoriness in patients with acute lymphoblastic leukemia. BIOMOLECULES & BIOMEDICINE 2023; 23:956-967. [PMID: 37401750 PMCID: PMC10655888 DOI: 10.17305/bb.2023.9216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a common hematopoietic malignancy, and platelet transfusion plays a crucial role in its treatment. This study aimed to investigate the changes in inflammatory response and autophagy during the preservation of apheresis platelets (AP) and their correlation with platelet transfusion refractoriness (PTR) in ALL. ALL patients were included, and APs were categorized based on the preservation period (day 0, day 1, days 2-3, and days 4-5). The activation factors procaspase-activating compound 1 (PAC-1) and P-selectin (CD62P), AP aggregation function, inflammation levels (interleukin 1 beta [IL-1β], interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α] and NOD-like receptor thermal protein domain associated protein 3 [NLRP3]), and autophagy-related genes (p62) during AP preservation were assessed. Following co-culturing APs with peripheral blood mononuclear cells (PBMCs), specific activation markers were studied to observe APs influence on immune cells activation. The effectiveness of platelet transfusion was assessed, and risk factors for PTR were analyzed. As the storage duration of AP increased, the activation factors, coagulation factor activity, inflammation levels, and the activation of immune cells in AP increased, while fibrinogen levels and AP aggregation function decreased. The expression levels of autophagy-related genes (the autophagy marker light chain 3B gene [LC3B] and Beclin 1 gene) decreased with prolongation preservation. The effective rate of AP transfusion in ALL patients was 68.21%. AP preservation time, IL-6, p62, and Beclin 1 were identified as independent risk factors affecting PTR in ALL patients. In conclusion, during AP preservation, inflammation, autophagy, and activation of immune cells were observed to increase. AP preservation time, IL-6, p62, and Beclin 1 were independent risk factors for PTR.
Collapse
Affiliation(s)
- Ying Li
- Blood Transfusion Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqun Song
- Blood Transfusion Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohong Sun
- Blood Transfusion Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juanjuan Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyu Zhou
- Blood Transfusion Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhao J, Liang Q, Fu C, Cong D, Wang L, Xu X. Autophagy in sepsis-induced acute lung injury: Friend or foe? Cell Signal 2023; 111:110867. [PMID: 37633477 DOI: 10.1016/j.cellsig.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening syndrome with high mortality and morbidity, resulting in a heavy burden on family and society. As a key factor that maintains cellular homeostasis, autophagy is regarded as a self-digesting process by which damaged organelles and useless proteins are recycled for cell metabolism, and it thus plays a crucial role during physiological and pathological processes. Recent studies have indicated that autophagy is involved in the pathophysiological process of sepsis-induced ALI, including cell apoptosis, inflammation, and mitochondrial dysfunction, which indicates that regulating autophagy may be beneficial for this disease. However, the role of autophagy in the etiology and treatment of sepsis-induced ALI is not well characterized. This review summarizes the autophagy-related signaling pathways in sepsis-induced ALI, as well as focuses on the dual role of autophagy and its regulation by non-coding RNAs during disease progression, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Jiayao Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chenfei Fu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Didi Cong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Long Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoxin Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
18
|
Schwertz H, Middleton EA. Autophagy and its consequences for platelet biology. Thromb Res 2023; 231:170-181. [PMID: 36058760 PMCID: PMC10286736 DOI: 10.1016/j.thromres.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT 59718, USA.
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Pulmonary Medicine and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Yu L, Yu S, He Y, Deng G, Li Q. High Autophagy Patterns in Swelling Platelets During Apheresis Platelet Storage. Indian J Hematol Blood Transfus 2023; 39:670-678. [PMID: 37790743 PMCID: PMC10542436 DOI: 10.1007/s12288-023-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
Platelets undergo remarkable morphological changes during storage. Platelets change into different sizes and densities and differ in their biochemistry and functions. However, the correlation between structural heterogeneity and platelet autophagy is largely unknown. The aim of this study was to investigate the autophagy process in vitro, such as routine storage of platelets, and explore the role of reactive oxygen species (ROS) involved in the regulation of platelet autophagy. The ROS and autophagy levels of platelet concentrates from apheresis platelets were evaluated through flow cytometry. The expression levels of autophagy-associated proteins (LC3I, LC3II, Beclin1, Parkin, and PINK1) were measured via Western blot. All biomarkers were dynamically monitored for seven days. Moreover, the morphological characteristics of platelet morphology during storage were analyzed through transmission electron microscopy (TEM). Flow cytometry showed that the levels of total cell ROS and mitochondria ROS increased in the stored platelets. Together with the increase in mitochondrial ROS, the autophagy signal LC3 in the platelets was strongly amplified. The number of swollen platelets (large platelets) considerably increased, and that of autophagy signal LC3 was remarkably higher than that of the normal platelets. Western blot revealed that the expression levels of Beclin1 and LC3 II/LC3 I ratio were enhanced, whereas those of Parkin and PINK1 almost did not change during the seven days of storage. The existence of autophagosomes or autophagolysosomes in the platelets at the middle stage of platelet storage was observed via TEM. Our data demonstrated that the subpopulation of large (swollen) platelets exhibited different autophagy patterns. Furthermore, increased platelet autophagy was associated with mitochondrial ROS. These preliminary results suggest that swelling platelets have a higher autophagy pattern than normal platelets during storage.
Collapse
Affiliation(s)
- Lu Yu
- The Ningbo Central Blood Station, Ningbo, China
| | - Shifang Yu
- The Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, China
| | - Qiang Li
- The Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
de Sousa DMB, Poupardin R, Villeda SA, Schroer AB, Fröhlich T, Frey V, Staffen W, Mrowetz H, Altendorfer B, Unger MS, Iglseder B, Paulweber B, Trinka E, Cadamuro J, Drerup M, Schallmoser K, Aigner L, Kniewallner KM. The platelet transcriptome and proteome in Alzheimer's disease and aging: an exploratory cross-sectional study. Front Mol Biosci 2023; 10:1196083. [PMID: 37457829 PMCID: PMC10348715 DOI: 10.3389/fmolb.2023.1196083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Alzheimer's disease (AD) and aging are associated with platelet hyperactivity. However, the mechanisms underlying abnormal platelet function in AD and aging are yet poorly understood. Methods: To explore the molecular profile of AD and aged platelets, we investigated platelet activation (i.e., CD62P expression), proteome and transcriptome in AD patients, non-demented elderly, and young individuals as controls. Results: AD, aged and young individuals showed similar levels of platelet activation based on CD62P expression. However, AD and aged individuals had a proteomic signature suggestive of increased platelet activation compared with young controls. Transcriptomic profiling suggested the dysregulation of proteolytic machinery involved in regulating platelet function, particularly the ubiquitin-proteasome system in AD and autophagy in aging. The functional implication of these transcriptomic alterations remains unclear and requires further investigation. Discussion: Our data strengthen the evidence of enhanced platelet activation in aging and provide a first glimpse of the platelet transcriptomic changes occurring in AD.
Collapse
Affiliation(s)
- Diana M. Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Adam B. Schroer
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Frey
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Staffen
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Michael S. Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Iglseder
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, St. Johanns University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, University Hospital SALK, Salzburg, Austria
| | - Martin Drerup
- Department of Urology, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kathrin M. Kniewallner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
21
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
22
|
Fu L, MacKeigan DT, Gong Q, Che D, Xu Y, Pi L, Sun C, Yu H, Chen K, Zhou H, Jiang Z, Wang Z, Zhang L, Cerenzia EG, Ni H, Gu X. Thymic stromal lymphopoietin induces platelet mitophagy and promotes thrombosis in Kawasaki disease. Br J Haematol 2023; 200:776-791. [PMID: 36341698 DOI: 10.1111/bjh.18531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting infants and children. Activated platelets predispose patients to coronary artery structural lesions that may lead to thrombotic cardiovascular events. To discover potential proteins underlying platelet activation in KD, we conducted a protein chip assay of 34 cytokines and discovered thymic stromal lymphopoietin (TSLP) was aberrantly expressed, which remained elevated after intravenous immunoglobulin G (IVIG) treatment and during convalescence in KD patients in comparison to healthy controls. Enzyme-linked immunosorbent assay (ELISA) corroborated the upregulation of TSLP in KD patients, which was exacerbated in convalescent patients complicated with thrombosis. TSLP receptors on platelets were also significantly upregulated in KD patients complicated with thrombosis. Platelet activation, apoptosis, and mitochondrial autophagy (mitophagy) were increased in convalescence KD patients complicated with thrombosis. In vitro, TSLP induced platelet activation and platelet mitophagy in healthy blood donors, as observed in KD patients. TSLP, similar to mitophagy agonist carbonyl cyanide 3-chlorophenyl hydrazone (CCCP), promoted thrombosis, which was attenuated by the mitophagy inhibitor Mdivi-1. Co-immunoprecipitation in TSLP-treated platelets revealed TSLP receptor (TSLPR) bound to mitophagy regulators, Parkin and Voltage Dependent Anion Channel Protein 1 (VDAC1).Thus, our results demonstrated that TSLP induced platelet mitophagy via a novel TSLPR/Parkin/VDAC1 pathway that promoted thrombosis in KD. These results suggest TSLP as a novel therapeutic target against KD-associated thrombosis.
Collapse
Affiliation(s)
- Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daniel Thomas MacKeigan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaonan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhouping Wang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Eric G Cerenzia
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Puricelli C, Boggio E, Gigliotti CL, Stoppa I, Sutti S, Giordano M, Dianzani U, Rolla R. Platelets, Protean Cells with All-Around Functions and Multifaceted Pharmacological Applications. Int J Mol Sci 2023; 24:4565. [PMID: 36901997 PMCID: PMC10002540 DOI: 10.3390/ijms24054565] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Platelets, traditionally known for their roles in hemostasis and coagulation, are the most prevalent blood component after erythrocytes (150,000-400,000 platelets/μL in healthy humans). However, only 10,000 platelets/μL are needed for vessel wall repair and wound healing. Increased knowledge of the platelet's role in hemostasis has led to many advances in understanding that they are crucial mediators in many other physiological processes, such as innate and adaptive immunity. Due to their multiple functions, platelet dysfunction is involved not only in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism, but also in several other disorders, such as tumors, autoimmune diseases, and neurodegenerative diseases. On the other hand, thanks to their multiple functions, nowadays platelets are therapeutic targets in different pathologies, in addition to atherothrombotic diseases; they can be used as an innovative drug delivery system, and their derivatives, such as platelet lysates and platelet extracellular vesicles (pEVs), can be useful in regenerative medicine and many other fields. The protean role of platelets, from the name of Proteus, a Greek mythological divinity who could take on different shapes or aspects, is precisely the focus of this review.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| |
Collapse
|
24
|
Huang YF, Su SC, Chuang HY, Chen HH, Twu YC. Histone deacetylation-regulated cell surface Siglec-7 expression promoted megakaryocytic maturation and enhanced platelet-like particle release. J Thromb Haemost 2023; 21:329-343. [PMID: 36700509 DOI: 10.1016/j.jtha.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Functioning as important hematologic cells for hemostasis, wound healing and immune defense platelets are produced before being released into the blood by cytoplasmic fragmentation at the end of the megakaryocyte (MK) differentiation, during which the involvement of both apoptosis and autophagy has been reported. Inhibitory sialic acid-binding immunoglobulin-like lectin-7 gene (Siglec-7) can be expressed on platelets and induce apoptosis on activation for uncharacterized function. OBJECTIVE We aimed to investigate the regulatory mechanism for Siglec-7 activation along MK differentiation and its physiologic role during the MK maturation and platelet formation. METHODS By using 2 well-established MK differentiation models (HEL and K562) and human primary CD34+ cell, we examined the upregulations of transcript and protein levels of Siglec-7 during MK differentiation, and the effect of Siglec-7 surface presence on MK differentiation and platelet-like particles (PLPs) release. RESULTS We show that both transcripts and surface Siglec-7 were elevated during MK differentiation, and the histone deacetylase 1 (HDAC1) acted as a negative regulator for Siglec-7 activation. By increasing Siglec-7 surface expression, we found that increased presence of Siglec-7 not only enhanced MK maturation but also the release of PLPs by activating caspase 3-dependent signaling, as evidenced in the observation of more CD41, polyploidy, and platelet factor 4 transcript formations. CONCLUSION In this study, we demonstrated that Siglec-7 activation was subjected to epigenetic regulation, and the resulting induced expression of surface Siglec-7 played an important regulatory role in promoting MK differentiation, maturation, and PLP formation.
Collapse
Affiliation(s)
- Yun-Fei Huang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Han Chen
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
25
|
Abstract
In addition to the key role in hemostasis and thrombosis, platelets have also been wildly acknowledged as immune regulatory cells and involving in the pathogenesis of inflammation-related diseases. Since purine receptor P2Y12 plays a crucial role in platelet activation, P2Y12 antagonists such as clopidogrel, prasugrel, and ticagrelor have been widely used in cardiovascular diseases worldwide in recent decades due to their potent antiplatelet and antithrombotic effects. Meanwhile, the role of P2Y12 in inflammatory diseases has also been extensively studied. Relatively, there are few studies on the regulation of P2Y12. This review first summarizes the various roles of P2Y12 in the process of platelet activation, as well as downstream effects and signaling pathways; then introduces the effects of P2Y12 in inflammatory diseases such as sepsis, atherosclerosis, cancer, autoimmune diseases, and asthma; and finally reviews the current researches on P2Y12 regulation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China
| | | | - Xia Cao
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
26
|
Tellería F, Mansilla S, Méndez D, Sepúlveda M, Araya-Maturana R, Castro L, Trostchansky A, Fuentes E. The Use of Triphenyl Phosphonium Cation Enhances the Mitochondrial Antiplatelet Effect of the Compound Magnolol. Pharmaceuticals (Basel) 2023; 16:210. [PMID: 37259359 PMCID: PMC9958981 DOI: 10.3390/ph16020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 08/31/2023] Open
Abstract
Although platelets are anucleated cells, they have fully functional mitochondria, and currently, it is known that several processes that occur in the platelet require the action of mitochondria. There are plenty of mitochondrial-targeted compounds described in the literature related to cancer, however, only a small number of studies have approached their interaction with platelet mitochondria and/or their effects on platelet activity. Recent studies have shown that magnolia extract and mitochondria-targeted magnolol can inhibit mitochondrial respiration and cell proliferation in melanoma and oral cancer cells, respectively, and they can also induce ROS and mitophagy. In this study, the effect of triphenylphosphonium cation, linked by alkyl chains of different lengths, to the organic compound magnolol on human-washed platelets was evaluated. We demonstrated that the addition of triphenylphosphonium by a four-carbon linker to magnolol (MGN4) considerably enhanced the Magnolol antiplatelet effect by a 3-fold decrease in the IC50. Additionally, platelets exposed to MGN4 5 µM showed several differences from the control including increased basal respiration, collagen-induced respiration, ATP-independent respiration, and reduced ATP-dependent respiration and non-mitochondrial respiration.
Collapse
Affiliation(s)
- Francisca Tellería
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego Méndez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Magdalena Sepúlveda
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Fuentes
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
27
|
Autophagy Is Required to Sustain Increased Intestinal Cell Proliferation during Phenotypic Plasticity Changes in Honey Bee ( Apis mellifera). Int J Mol Sci 2023; 24:ijms24031926. [PMID: 36768248 PMCID: PMC9916008 DOI: 10.3390/ijms24031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Tissue phenotypic plasticity facilitates rapid adaptation of organisms to biotic and/or abiotic pressure. The reproductive capacity of honey bee workers (Apis mellifera) is plastic and responsive to pheromones produced by broods and the queen. Egg laying workers (ELWs), which could reactivate their ovaries and lay haploid eggs upon queen lost, have been commonly discussed from many aspects. However, it remains unclear whether midgut homeostasis in ELWs is affected during plastic changes. Here, we found that the expression of nutrition- and autophagy-related genes was up-regulated in the midguts of ELWs, compared with that in nurse workers (NWs) by RNA-sequencing. Furthermore, the area and number of autophagosomes were increased, along with significantly increased cell death in the midguts of ELWs. Moreover, cell cycle progression in the midguts of ELWs was increased compared with that in NWs. Consistent with the up-regulation of nutrition-related genes, the body and midgut sizes, and the number of intestinal proliferation cells of larvae reared with royal jelly (RJ) obviously increased more than those reared without RJ in vitro. Finally, cell proliferation was dramatically suppressed in the midguts of ELWs when autophagy was inhibited. Altogether, our data suggested that autophagy was induced and required to sustain cell proliferation in ELWs' midguts, thereby revealing the critical role of autophagy played in the intestines during phenotypic plasticity changes.
Collapse
|
28
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
29
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
30
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
31
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
32
|
Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, Hwa J. Unfolded Protein Response Differentially Modulates the Platelet Phenotype. Circ Res 2022; 131:290-307. [PMID: 35862006 PMCID: PMC9357223 DOI: 10.1161/circresaha.121.320530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCβ3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCβ3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kanchi Patell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| |
Collapse
|
33
|
Platelet activation and partial desensitization are associated with viral xenophagy in patients with severe COVID-19. Blood Adv 2022; 6:3884-3898. [PMID: 35789374 PMCID: PMC9068266 DOI: 10.1182/bloodadvances.2022007143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
During severe COVID-19, platelets get activated and become partly desensitized through mechanisms involving glycoprotein shedding. Platelets from patients with severe COVID-19 internalize SARS-CoV-2 and develop viral xenophagy.
Mild thrombocytopenia, changes in platelet gene expression, enhanced platelet functionality, and presence of platelet-rich thrombi in the lung have been associated with thromboinflammatory complications of patients with COVID-19. However, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gets internalized by platelets and directly alters their behavior and function in infected patients remains elusive. Here, we investigated platelet parameters and the presence of viral material in platelets from a prospective cohort of 29 patients with severe COVID-19 admitted to an intensive care unit. A combination of specific assays, tandem mass spectrometry, and flow cytometry indicated high levels of protein and lipid platelet activation markers in the plasma from patients with severe COVID-19 associated with an increase of proinflammatory cytokines and leukocyte-platelets interactions. Platelets were partly desensitized, as shown by a significant reduction of αIIbβ3 activation and granule secretion in response to stimulation and a decrease of surface GPVI, whereas plasma from patients with severe COVID-19 potentiated washed healthy platelet aggregation response. Transmission electron microscopy indicated the presence of SARS-CoV-2 particles in a significant fraction of platelets as confirmed by immunogold labeling and immunofluorescence imaging of Spike and nucleocapsid proteins. Compared with platelets from healthy donors or patients with bacterial sepsis, platelets from patients with severe COVID-19 exhibited enlarged intracellular vesicles and autophagolysosomes. They had large LC3-positive structures and increased levels of LC3II with a co-localization of LC3 and Spike, suggesting that platelets can digest SARS-CoV-2 material by xenophagy in critically ill patients. Altogether, these data show that during severe COVID-19, platelets get activated, become partly desensitized, and develop a selective autophagy response.
Collapse
|
34
|
Schwertz H, Rowley JW, Portier I, Middleton EA, Tolley ND, Campbell RA, Eustes AS, Chen K, Rondina MT. Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy 2022; 18:1534-1550. [PMID: 34689707 PMCID: PMC9298447 DOI: 10.1080/15548627.2021.1990669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Platelets mediate central aspects of host responses during sepsis, an acute profoundly systemic inflammatory response due to infection. Macroautophagy/autophagy, which mediates critical aspects of cellular responses during inflammatory conditions, is known to be a functional cellular process in anucleate platelets, and is essential for normal platelet functions. Nevertheless, how sepsis may alter autophagy in platelets has never been established. Using platelets isolated from septic patients and matched healthy controls, we show that during clinical sepsis, the number of autophagosomes is increased in platelets, most likely due to an accumulation of autophagosomes, some containing mitochondria and indicative of mitophagy. Therefore, autophagy induction or early-stage autophagosome formation (as compared to decreased later-stage autophagosome maturation or autophagosome-late endosome/lysosome fusion) is normal or increased. This was consistent with decreased fusion of autophagosomes with lysosomes in platelets. EPG5 (ectopic P-granules autophagy protein 5 homolog), a protein essential for normal autophagy, expression did increase, while protein-protein interactions between EPG5 and MAP1LC3/LC3 (which orchestrate the fusion of autophagosomes and lysosomes) were significantly reduced in platelets during sepsis. Furthermore, data from a megakaryocyte model demonstrate the importance of TLR4 (toll like receptor 4), LPS-dependent signaling for regulating this mechanism. Similar phenotypes were also observed in platelets isolated from a patient with Vici syndrome: an inherited condition caused by a naturally occurring, loss-of-function mutation in EPG5. Together, we provide evidence that autophagic functions are aberrant in platelets during sepsis, due in part to reduced EPG5-LC3 interactions, regulated by TLR4 engagement, and the resultant accumulation of autophagosomes.Abbreviations: ACTB: beta actin; CLP: cecal ligation and puncture; Co-IP: co-immunoprecipitation; DAP: death associated protein; DMSO: dimethyl sulfoxide; EPG5: ectopic P-granules autophagy protein 5 homolog; ECL: enhanced chemiluminescence; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; ICU: intensive care unit; LPS: lipopolysaccharide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MKs: megakaryocytes; PFA: paraformaldehyde; PBS: phosphate-buffered saline; PLA: proximity ligation assay; pRT-PCR: quantitative real-time polymerase chain reaction; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TLR4: toll like receptor 4; TEM: transmission electron microscopy; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Work Wellness Clinic, University of Utah, Salt Lake City, UT, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT, USA
- Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT, USA
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Irina Portier
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alicia S. Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Iowa in Iowa City, IA, USA
| | - Karin Chen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Hospital, Seattle, WA, USA
| | - Matthew T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, Salt Lake City, UT84112, USA
| |
Collapse
|
35
|
Li Y, Feng G. TLR4 inhibitor alleviates sepsis-induced organ failure by inhibiting platelet mtROS production, autophagy, and GPIIb/IIIa expression. J Bioenerg Biomembr 2022; 54:155-162. [PMID: 35676565 DOI: 10.1007/s10863-022-09940-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Thrombocytopenia and impaired platelet function are associated with sepsis-induced organ failure. Numerous studies have shown that mitochondrial ROS (mtROS) and autophagy are related to organ injury in sepsis. However, the relationships between platelet mtROS, autophagy and sepsis organ failure remain unclear. Herein, we explored whether toll like receptor 4 (TLR4) inhibitor alleviates sepsis organ failure by inhibiting platelet mtROS production, autophagy, and GPIIb/IIIa expression.Mice were administrated with LPS, LPS + TAK242 or vehicle. The lungs and kidneys were harvested and analyzed using hematoxylin and eosin staining assay. Platelet rich plasma (PRP) was isolated from blood and platelets aggregation and TLR4 expression were analyzed using flow cytometer and western blot. PRP from healthy volunteers was treated with saline, LPS, or LPS + TAK242, and then mitoSOX and calcium were detected using flow cytometer, and NOX2 and LC3B were tested using western blot.Results showed that TAK242 effectively alleviated LPS-induced acute kidney and lung injury in mice, and decreased CD41 expression more significantly than CD62P. In vitro, by inhibiting TLR4, TAK242 suppressed Ca2+, mitoSOX fluorescence, NOX2 expression and LC3BII/LC3BI ratio in LPS treated platelets.TLR4 inhibitor TAK242 may effectively alleviate mouse lung and kidney injury by inhibition of mouse platelet GPIIb/IIIa, and reduce LPS-induced mtROS generation related to Ca2+ influx, thus reducing platelet activation.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, the Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, Hunan, People's Republic of China
| | - Guo Feng
- Department of Nutrition, the Third Xiangya Hospital, No. 138 Tongzipo Road, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants (Basel) 2022; 11:995. [PMID: 35624860 PMCID: PMC9137594 DOI: 10.3390/antiox11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species are critical mediators of normal vascular physiology and have been shown to gradually increase in the vasculature with age. There is a growing appreciation for the complexity of oxidant and antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a causal association between oxidative stress and age-related vascular disease. Herein, we review the current understanding of mechanistic links between oxidative stress and thrombotic vascular disease and the changes that occur with aging. While several vascular cells are key contributors, we focus on oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to develop more targeted therapeutic strategies for the prevention and management of age-associated vascular disease.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
37
|
Autophagy Ameliorates Reactive Oxygen Species-Induced Platelet Storage Lesions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1898844. [PMID: 36046681 PMCID: PMC9423982 DOI: 10.1155/2022/1898844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/19/2022] [Indexed: 01/18/2023]
Abstract
Platelet transfusion is a life-saving therapy to prevent bleeding; however, the availability of platelets for transfusion is limited by the markedly short shelf life owing to the development of platelet storage lesions (PSLs). The mechanism of PSLs remains obscure. Dissection of the intracellular biological changes in stored platelets may help to reduce PSLs and improve platelet transfusion efficiency. In the present study, we explore the changes of stored platelets at room temperature under constant agitation. We found that platelets during storage showed an increased reactive oxygen species (ROS) generation accompanied with receptor shedding, apoptosis, and diminished platelet aggregation. ROS scavenger reduced platelet shedding but also impaired platelet aggregation. Autophagy is a conserved catabolic process that sequesters protein aggregates and damaged organelles into lysosomes for degradation and platelets’ own intact autophagic system. We revealed that there exist a stable autophagic flux in platelets at the early stage of storage, and the autophagic flux in platelets perished after long-term storage. Treatment stored platelets with rapamycin, which stimulates autophagy in eukaryotic cells, markedly ameliorated PSLs, and improved platelet aggregation in response to extracellular stimuli.
Collapse
|
38
|
Diab D, Pinon A, Ouk C, Hage-Sleiman R, Diab-Assaf M, Liagre B, Leger DY. Involvement of autophagy in diosgenin‑induced megakaryocyte differentiation in human erythroleukemia cells. Mol Med Rep 2021; 24:746. [PMID: 34458927 PMCID: PMC8436216 DOI: 10.3892/mmr.2021.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/06/2022] Open
Abstract
Natural agents have been used to restart the process of differentiation that is inhibited during leukemic transformation of hematopoietic stem or progenitor cells. Autophagy is a housekeeping pathway that maintains cell homeostasis against stress by recycling macromolecules and organelles and plays an important role in cell differentiation. In the present study, an experimental model was established to investigate the involvement of autophagy in the megakaryocyte differentiation of human erythroleukemia (HEL) cells induced by diosgenin [also known as (25R)‑Spirosten‑5‑en‑3b‑ol]. It was demonstrated that Atg7 expression was upregulated from day 1 of diosgenin‑induced differentiation and was accompanied by a significant elevation in the conversion of light chain 3 A/B (LC3‑A/B)‑I to LC3‑A/B‑II. Autophagy was modulated before or after the induction of megakaryocyte differentiation using 3‑methyladenine (3‑MA, autophagy inhibitor) and metformin (Met, autophagy initiation activator). 3‑MA induced a significant accumulation of the LC3 A/B‑II form at day 8 of differentiation. It was revealed that 3‑MA had a significant repressive effect on the nuclear (polyploidization) and membrane glycoprotein V [(GpV) expression] maturation. On the other hand, autophagy activation increased GpV genomic expression, but did not change the nuclear maturation profile after HEL cells treatment with Met. It was concluded that autophagy inhibition had a more prominent effect on the diosgenin‑differentiated cells than autophagy activation.
Collapse
Affiliation(s)
- Dima Diab
- PEIRENE Laboratory EA 7500, Faculty of Pharmacy, University of Limoges, 87025 Limoges, France
| | - Aline Pinon
- PEIRENE Laboratory EA 7500, Faculty of Pharmacy, University of Limoges, 87025 Limoges, France
| | - Catherine Ouk
- BISCEm Flow Cytometry/Microscopy Unit, University of Limoges, 87025 Limoges, France
| | - Rouba Hage-Sleiman
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath El Jebbeh, Beyrouth 21219, Lebanon
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath El Jebbeh, Beyrouth 21219, Lebanon
| | - Bertrand Liagre
- PEIRENE Laboratory EA 7500, Faculty of Pharmacy, University of Limoges, 87025 Limoges, France
| | - David Yannick Leger
- PEIRENE Laboratory EA 7500, Faculty of Pharmacy, University of Limoges, 87025 Limoges, France
| |
Collapse
|
39
|
Sun RJ, Yin DM, Yuan D, Liu SY, Zhu JJ, Shan NN. Quantitative LC-MS/MS uncovers the regulatory role of autophagy in immune thrombocytopenia. Cancer Cell Int 2021; 21:548. [PMID: 34663331 PMCID: PMC8524881 DOI: 10.1186/s12935-021-02249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease whose pathogenesis is associated with bone marrow megakaryocyte maturation disorder and destruction of the haematopoietic stem cell microenvironment. METHODS In this study, we report the qualitative and quantitative profiles of the ITP proteome. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to elucidate the protein profiles of clinical bone marrow mononuclear cell (BMMC) samples from ITP patients and healthy donors (controls). Gene Ontology (GO) and Kyoto Encyclopaedia Genes and Genome (KEGG) pathway analyses were performed to annotate the differentially expressed proteins. A protein-protein interaction (PPI) network was constructed with the BLAST online database. Target proteins associated with autophagy were quantitatively identified by parallel reaction monitoring (PRM) analysis. RESULTS Our approaches showed that the differentially expressed autophagy-related proteins, namely, HSPA8, PARK7, YWHAH, ITGB3 and CSF1R, were changed the most. The protein expression of CSF1R in ITP patients was higher than that in controls, while other autophagy-related proteins were expressed at lower levels in ITP patients than in controls. CONCLUSION Bioinformatics analysis indicated that disruption of the autophagy pathway is a potential pathological mechanism of ITP. These results can provide a new direction for exploring the molecular mechanism of ITP.
Collapse
Affiliation(s)
- Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dong-Mei Yin
- Department of Blood Transfusion, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Shu-Yan Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jing-Jing Zhu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
40
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
41
|
Usnic Acid and Usnea barbata (L.) F.H. Wigg. Dry Extracts Promote Apoptosis and DNA Damage in Human Blood Cells through Enhancing ROS Levels. Antioxidants (Basel) 2021; 10:antiox10081171. [PMID: 34439420 PMCID: PMC8388874 DOI: 10.3390/antiox10081171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs.
Collapse
|
42
|
Curcumin at Low Doses Potentiates and at High Doses Inhibits ABT-737-Induced Platelet Apoptosis. Int J Mol Sci 2021; 22:ijms22105405. [PMID: 34065600 PMCID: PMC8161296 DOI: 10.3390/ijms22105405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/01/2022] Open
Abstract
Curcumin is a natural bioactive component derived from the turmeric plant Curcuma longa, which exhibits a range of beneficial activities on human cells. Previously, an inhibitory effect of curcumin on platelets was demonstrated. However, it is unknown whether this inhibitory effect is due to platelet apoptosis or procoagulant platelet formation. In this study, curcumin did not activate caspase 3-dependent apoptosis of human platelets, but rather induced the formation of procoagulant platelets. Interestingly, curcumin at low concentration (5 µM) potentiated, and at high concentration (50 µM) inhibited ABT-737-induced platelet apoptosis, which was accompanied by inhibition of ABT-737-mediated thrombin generation. Platelet viability was not affected by curcumin at low concentration and was reduced by 17% at high concentration. Furthermore, curcumin-induced autophagy in human platelets via increased translocation of LC3I to LC3II, which was associated with activation of adenosine monophosphate (AMP) kinase and inhibition of protein kinase B activity. Because curcumin inhibits P-glycoprotein (P-gp) in cancer cells and contributes to overcoming multidrug resistance, we showed that curcumin similarly inhibited platelet P-gp activity. Our results revealed that the platelet inhibitory effect of curcumin is mediated by complex processes, including procoagulant platelet formation. Thus, curcumin may protect against or enhance caspase-dependent apoptosis in platelets under certain conditions.
Collapse
|
43
|
Chung J, Jeong D, Kim GH, Go S, Song J, Moon E, Huh YH, Kim D. Super-resolution imaging of platelet-activation process and its quantitative analysis. Sci Rep 2021; 11:10511. [PMID: 34006947 PMCID: PMC8131365 DOI: 10.1038/s41598-021-89799-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS). Among the centralized organelles, we provided evidence that granules are fused with the OCS to release their cargo through enlarged OCS. These findings highlight the concerted ultrastructural reorganization and relative arrangements of various organelles upon activation and call for a reassessment of previously unresolved complex and multi-factorial activation processes.
Collapse
Affiliation(s)
- Jinkyoung Chung
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dokyung Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Geun-Ho Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seokran Go
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eunyoung Moon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
44
|
Fetz AE, Wallace SE, Bowlin GL. Electrospun Polydioxanone Loaded With Chloroquine Modulates Template-Induced NET Release and Inflammatory Responses From Human Neutrophils. Front Bioeng Biotechnol 2021; 9:652055. [PMID: 33987174 PMCID: PMC8111017 DOI: 10.3389/fbioe.2021.652055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The implantation of a biomaterial quickly initiates a tissue repair program initially characterized by a neutrophil influx. During the acute inflammatory response, neutrophils release neutrophil extracellular traps (NETs) and secrete soluble signals to modulate the tissue environment. In this work, we evaluated chloroquine diphosphate, an antimalarial with immunomodulatory and antithrombotic effects, as an electrospun biomaterial additive to regulate neutrophil-mediated inflammation. Electrospinning of polydioxanone was optimized for rapid chloroquine elution within 1 h, and acute neutrophil-biomaterial interactions were evaluated in vitro with fresh human peripheral blood neutrophils at 3 and 6 h before quantifying the release of NETs and secretion of inflammatory and regenerative factors. Our results indicate that chloroquine suppresses NET release in a biomaterial surface area–dependent manner at the early time point, whereas it modulates signal secretion at both early and late time points. More specifically, chloroquine elution down-regulates interleukin 8 (IL-8) and matrix metalloproteinase nine secretion while up-regulating hepatocyte growth factor, vascular endothelial growth factor A, and IL-22 secretion, suggesting a potential shift toward a resolving neutrophil phenotype. Our novel repurposing of chloroquine as a biomaterial additive may therefore have synergistic, immunomodulatory effects that are advantageous for biomaterial-guided in situ tissue regeneration applications.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Shannon E Wallace
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| |
Collapse
|
45
|
Carnevale R, Nocella C, Schiavon S, Cammisotto V, Cotugno M, Forte M, Valenti V, Marchitti S, Vecchio D, Biondi Zoccai G, Rubattu S, Martinelli O, Pignatelli P, Violi F, Volpe M, Versaci F, Frati L, Frati G, Sciarretta S. Beneficial effects of a combination of natural product activators of autophagy on endothelial cells and platelets. Br J Pharmacol 2021; 178:2146-2159. [PMID: 33512008 DOI: 10.1111/bph.15399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Roberto Carnevale
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Mediterranea Cardiocentro‐Napoli Naples Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anestesiological and Cardiovascular Sciences Sapienza University of Rome Rome Italy
| | - Sonia Schiavon
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini Sapienza University of Rome Rome Italy
| | - Maria Cotugno
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Maurizio Forte
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | | | - Simona Marchitti
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Daniele Vecchio
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Mediterranea Cardiocentro‐Napoli Naples Italy
| | - Speranza Rubattu
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
- Clinical and Molecular Medicine, School of Medicine and Psychology Sapienza University of Rome Rome Italy
| | - Ombretta Martinelli
- Unit of Vascular Surgery, Department “Paride Stefanini” Sapienza University of Rome Rome Italy
| | - Pasquale Pignatelli
- Mediterranea Cardiocentro‐Napoli Naples Italy
- Department of Clinical Internal, Anestesiological and Cardiovascular Sciences Sapienza University of Rome Rome Italy
| | - Francesco Violi
- Mediterranea Cardiocentro‐Napoli Naples Italy
- Department of Clinical Internal, Anestesiological and Cardiovascular Sciences Sapienza University of Rome Rome Italy
| | - Massimo Volpe
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
- Clinical and Molecular Medicine, School of Medicine and Psychology Sapienza University of Rome Rome Italy
| | | | - Luigi Frati
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Giacomo Frati
- Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina Italy
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
| | - Sebastiano Sciarretta
- Department of Angio‐Cardio‐Neurology IRCCS Neuromed, Località Camerelle Pozzilli Italy
- Istituto Pasteur Italia‐Fondazione Cenci Bolognetti and Department of Medical‐Surgical Sciences and Biotechnologies Sapienza University of Rome Latina, 04100 Italy
| |
Collapse
|
46
|
Lee TY, Lu WJ, Changou CA, Hsiung YC, Trang NTT, Lee CY, Chang TH, Jayakumar T, Hsieh CY, Yang CH, Chang CC, Chen RJ, Sheu JR, Lin KH. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism. Autophagy 2021; 17:4141-4158. [PMID: 33749503 DOI: 10.1080/15548627.2021.1904495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin reversed SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, suggesting that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.Abbreviations: 3-MA: 3-methyladenine; A.C.D.: citric acid/sod. citrate/glucose; ADP: adenosine diphosphate; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy-related; B4GALT/LacCS: beta-1,4-galactosyltransferase; Baf-A1: bafilomycin A1; BECN1: beclin 1; BHT: butylate hydrooxytoluene; BSA: bovine serum albumin; DAG: diacylglycerol; ECL: enhanced chemiluminescence; EDTA: ethylenediamine tetraacetic acid; ELISA: enzyme-linked immunosorbent assay; GALC/GCDase: galactosylceramidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/GluSDase: glucosylceramidase beta; GPI: glycosylphosphatidylinositol; H2O2: hydrogen peroxide; HMDB: human metabolome database; HRP: horseradish peroxidase; IF: immunofluorescence; IgG: immunoglobulin G; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAMP1: lysosomal associated membrane protein 1; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPV: mean platelet volume; MTOR: mechanistic target of rapamycin kinase; ox-LDL: oxidized low-density lipoprotein; pAb: polyclonal antibody; PC: phosphatidylcholine; PCR: polymerase chain reaction; PI3K: phosphoinositide 3-kinase; PLS-DA: partial least-squares discriminant analysis; PRP: platelet-rich plasma; Q-TOF: quadrupole-time of flight; RBC: red blood cell; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; SDS: sodium dodecyl sulfate; S.E.M.: standard error of the mean; SEM: scanning electron microscopy; SGMS: sphingomyelin synthase; SM: sphingomyelin; SMPD/SMase: sphingomyelin phosphodiesterase; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; UGT8/CGT: UDP glycosyltransferase 8; UGCG/GCS: UDP-glucose ceramide glucosyltransferase; ULK1: unc-51 like autophagy activating kinase 1; UPLC: ultra-performance liquid chromatography; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; WBC: white blood cell; WT: wild type.
Collapse
Affiliation(s)
- Tzu-Yin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Jung Lu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun A Changou
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | | | - Nguyen T T Trang
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Lee
- Research Information Session, Office of Information Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Thanasekaran Jayakumar
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Chien Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
47
|
Impact of platelet-rich plasma versus selenium in ameliorating induced toxicity in rat testis: histological, immunohistochemical, and molecular study. Cell Tissue Res 2021; 385:223-238. [PMID: 33791879 DOI: 10.1007/s00441-021-03439-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted on forty adult rats divided into four groups: Group I (control) that is divided into subgroups A, B, and C and Group II (methotrexate (MTX)-treated); the rats were injected intraperitoneally with MTX at a dose of 1 mg/kg/week, for 8 weeks. Group III (MTX-Se co-treated) was injected with MTX like Group II plus an oral administration of selenium at a dose of 10 μg/kg b.w/day, for 8 weeks. Group IV (MTX-PRP co-treated), rats were injected intraperitoneally with MTX like Group II plus platelet-rich plasma (PRP) injection under the scrotum, three times with 2-week intervals (volume-0.1 ml per injection) and euthanized after 8 weeks. Histological, immunohistochemical, and genetic expression using qPCR and western blotting technique were conducted. There was improvement in histological structure of testes in most specimens of Group IV. The latter group revealed a significant decrease in Bax and an increase in Bcl-2. The regeneration of testicular tissue was more observed in Group IV as measured by an increase in mean number of PCNA. Moreover, Group IV revealed an increased genetic level of FSCN3, GCNF, UBQLN3, and DAZL. Both MTX-Se and MTX-PRP have an anti-inflammatory effect as measured by a reduction in NF-κb. The anti-oxidative effect of selenium and PRP was noticed by a decrease in the level of the iNos and an increase in eNos protein and the autophagy marker LC3. PRP has ameliorative effects on induced rat testicular toxicity as evaluated by morphological changes and confirmed by immunohistochemical reactions, genetic expression, and western blotting analyses including oxidative and anti- oxidative markers.
Collapse
|
48
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2021; 40:222411. [PMID: 32186721 PMCID: PMC7109002 DOI: 10.1042/bsr20193006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Autophagic dysfunction and abnormal oxidative stress are associated with cataract. The purpose of the present study was to investigate the changes of cellular autophagy and oxidative stress and their association in lens epithelial cells (LECs) upon exposure to high glucose. Methods: Autophagy and oxidative stress-related changes were detected in streptozotocin-induced Type 1 diabetic mice and normal mouse LECs incubated in high glucose conditions. Rapamycin at a concentration of 100 nm/l or 50 μM chloroquine was combined for analysis of the relationship between autophagy and oxidative stress. The morphology of LECs during autophagy was observed by transmission electron microscopy. The expressions of autophagy markers (LC3B and p62) were identified, as well as the key factors of oxidative stress (SOD2 and CAT) and mitochondrial reactive oxygen species (ROS) generation. Results: Transmission electron microscopy indicated an altered autophagy activity in diabetic mouse lens tissues with larger autophagosomes and multiple mitochondria. Regarding the expressions, LC3B was elevated, p62 was decreased first and then increased, and SOD2 and CAT were increased before a decrease during 4 months of follow-up in diabetic mice and 72 h of culture under high glucose for mouse LECs. Furthermore, rapamycin promoted the expressions of autophagy markers but alleviated those of oxidative stress markers, whereas chloroquine antagonized autophagy but enhanced oxidative stress by elevating ROS generation in LECs exposed to high glucose. Conclusions: The changes in autophagy and oxidative stress were fluctuating in the mouse LECs under constant high glucose conditions. Autophagy might attenuate high glucose-induced oxidative injury to LECs.
Collapse
|
50
|
Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, Kwan JM, Krause DS, Lee AI, Halene S, Martin KA, Chun HJ, Hwa J. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 2021; 18:194-209. [PMID: 33214651 PMCID: PMC7675396 DOI: 10.1038/s41569-020-00469-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The core pathology of coronavirus disease 2019 (COVID-19) is infection of airway cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in excessive inflammation and respiratory disease, with cytokine storm and acute respiratory distress syndrome implicated in the most severe cases. Thrombotic complications are a major cause of morbidity and mortality in patients with COVID-19. Patients with pre-existing cardiovascular disease and/or traditional cardiovascular risk factors, including obesity, diabetes mellitus, hypertension and advanced age, are at the highest risk of death from COVID-19. In this Review, we summarize new lines of evidence that point to both platelet and endothelial dysfunction as essential components of COVID-19 pathology and describe the mechanisms that might account for the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19. We highlight the distinct contributions of coagulopathy, thrombocytopathy and endotheliopathy to the pathogenesis of COVID-19 and discuss potential therapeutic strategies in the management of patients with COVD-19. Harnessing the expertise of the biomedical and clinical communities is imperative to expand the available therapeutics beyond anticoagulants and to target both thrombocytopathy and endotheliopathy. Only with such collaborative efforts can we better prepare for further waves and for future coronavirus-related pandemics.
Collapse
Affiliation(s)
- Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seung Hee Lee
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju, Chungbuk, Korea
| | - Jonathan M Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jennifer M Kwan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|