1
|
Feng Q, Jiang L, Zhang S, He C, Mei L, Liu Y. A novel frameshift mutation in the DIAPH1 gene causes a Chinese family autosomal dominant nonsyndromic hearing loss: Mutation in DIAPH1 causes hearing loss. Gene 2025; 936:149088. [PMID: 39542281 DOI: 10.1016/j.gene.2024.149088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study reports a novel heterozygous, likely truncating mutation in the diaphanous homolog 1 (DIAPH1) gene associated with non-syndromic hearing loss. METHODS Family members underwent audiological and imaging assessments, whole-exome sequencing (WES), and Sanger sequencing. RESULTS Sensorineural hearing loss was observed in all five individuals, with severity ranging from mild to severe. None of the affected patients reported vestibular complaints, and routine blood tests showed normal platelet counts. Whole-exome sequencing (WES) revealed a novel frameshift variation, c.3555delA (p.Gln1185Hisfs*3), in exon 26 of the DIAPH1 gene. This variation co-segregated with the hearing-impaired phenotype in the family. The data collected support the classification of c.3555delA as a genetic etiology of hereditary hearing loss according to the American College of Medical Genetics and Genomics guidelines. CONCLUSION We identified a novel pathogenic mutation in the DIAPH1 gene, thereby expanding the mutation spectrum associated with hearing loss.
Collapse
Affiliation(s)
- Qi Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan 410008, China
| | - Lu Jiang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan 410008, China
| | - Shuai Zhang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan 410008, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan 410008, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan 410008, China.
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan 410008, China.
| |
Collapse
|
2
|
He S, Zhou Z, Cheng MY, Hao X, Chiang T, Wang Y, Zhang J, Wang X, Ye X, Wang R, Steinberg GK, Zhao Y. Advances in moyamoya disease: pathogenesis, diagnosis, and therapeutic interventions. MedComm (Beijing) 2025; 6:e70054. [PMID: 39822761 PMCID: PMC11733107 DOI: 10.1002/mco2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Moyamoya disease (MMD) is a type of cerebrovascular disease characterized by occlusion of the distal end of the internal carotid artery and the formation of collateral blood vessels. Over the past 20 years, the landscape of research on MMD has significantly transformed. In this review, we provide insights into the pathogenesis, diagnosis, and therapeutic interventions in MMD. The development of high-throughput sequencing technology has expanded our understanding of genetic susceptibility, identifying MMD-related genes beyond RNF213, such as ACTA2, DIAPH1, HLA, and others. The genetic susceptibility of MMD to its pathological mechanism was summarized and discussed. Based on the second-hit theory, the influences of inflammation, immunity, and environmental factors on MMD were also appropriately summarized. Despite these advancements, revascularization surgery remains the primary treatment for MMD largely because of the lack of effective in vivo and in vitro models. In this study, 16 imaging diagnostic methods for MMD were summarized. Regarding therapeutic intervention, the influences of drugs, endovascular procedures, and revascularization surgeries on patients with MMD were discussed. Future research on the central MMD vascular abnormalities and peripheral circulating factors will provide a more comprehensive understanding of the pathogenic mechanisms of MMD.
Collapse
Affiliation(s)
- Shihao He
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Zhenyu Zhou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Michelle Y. Cheng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaokuan Hao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Terrance Chiang
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yanru Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junze Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Xilong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xun Ye
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Gary K. Steinberg
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yuanli Zhao
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
3
|
Kurasawa S, Ganaha A, Ayabe S, Yoshiki A, Kawama F, Kitayama S, Tabuchi K, Yamashita K, Ueyama T. Hearing loss occurs prior to thrombocytopenia in both mice and humans with DFNA1. FASEB J 2025; 39:e70309. [PMID: 39831886 DOI: 10.1096/fj.202402118r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1)KIΔv3/KIΔv3, in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.R1213X) was knocked into the ATG site of Dia1. Additionally, the exon 7 of Dia1 was deleted using genome editing to knock out (KO) Dia1-v3, a specific variant of Dia1. AcGFP-DIA1(p.R1213X) expression and endogenous DIA1 KO were confirmed in cochleae and platelets. Hearing function in DIA1KIΔv3/KIΔv3, but not DIA1KIΔv3/+ mice, evaluated by auditory brainstem response, was significantly worse at low frequencies compared to wild-type (WT) mice starting at 3 months of age (3M), with progressive deterioration. Using confocal microscopy and scanning electron microscopy, various stereociliary deformities were identified in the cochleae of DIA1KIΔv3/KIΔv3 mice. Platelet counts in DIA1KIΔv3/KIΔv3, but not DIA1KIΔv3/+ mice, were significantly lower than those in WT mice at 12M, but not at 6M. Furthermore, in a cohort of eight patients with DFNA1 harboring the p.R1213X mutation, HL preceded thrombocytopenia in three individuals. Thus, in both mice and humans, though HL and thrombocytopenia are progressive, HL manifests earlier than thrombocytopenia. Unlike myosin heavy chain 9 (MYH9)-related diseases, thrombocytopenia cannot be a predictive marker for HL in DFNA1. Nevertheless, monitoring platelet counts could provide insights into the progression of the hearing impairments in patients with DFNA1.
Collapse
Affiliation(s)
- Shunkou Kurasawa
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | - Akira Ganaha
- Department of Otolaryngology-Head and Neck Surgery, International University of Health and Welfare Narita Hospital, Narita, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Fumiya Kawama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Shota Kitayama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Keiji Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba, Japan
| | | | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
4
|
Vayne C, Roux M, Gruel Y, Poggi M, Pouplard C, Peiretti F, Trégouët DA, Nurden P, Alessi MC. A gain of function variant in RGS18 candidate for a familial mild bleeding syndrome. J Thromb Haemost 2025; 23:314-320. [PMID: 39454878 DOI: 10.1016/j.jtha.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Inherited platelet diseases are bleeding disorders characterized by either defects in platelet count or platelet function, the latter being less common and very heterogeneous. Numerous gene variants associated with abnormal receptors, granules, and signaling pathways have been reported. Despite significant advancements in our understanding, many patients still lack a precise diagnosis. OBJECTIVES To identify the genetic basis of a novel mild bleeding syndrome in a family exhibiting a selective defect of platelet aggregation. METHODS Our study included 6 family members across 3 generations who displayed reduced platelet aggregation in response to adenosine diphosphate, protease-activated receptor 1-activating peptide, arachidonic acid, and epinephrine but not collagen. Platelet morphology, granule content, and expression of major surface glycoproteins were all found to be normal. Whole exome sequencing was performed for affected and nonaffected family members. RESULTS We identified RGS18, which encodes the regulator of G protein signaling (RGS) 18, as a candidate gene for the platelet function defect observed in this family. The RGS18 protein serves as a crucial negative regulator of G protein-coupled receptor signaling and coordinates the signaling pathways of natural platelet inhibitors. The heterozygous RGS18 c.643C>T, p.Arg215∗ variant was found to cosegregate among all 6 affected subjects. CONCLUSION Truncation at Arg215 removes the S216 and S218 phosphorylation sites, which are crucial regulatory domains for RGS18 activation. The impaired platelet function is thought to arise from excessive platelet downregulation due to constitutive activation of RGS18, resulting from a loss of association of the truncated form with the 14-3-3 protein.
Collapse
Affiliation(s)
- Caroline Vayne
- Department of Haemostasis, Regional University Hospital Centre Tours, Tours, France; National Institute of Health and Medical Research UMR: Mixed Research Unit U1327 ISCHEMIA, Membrane Signalling and Inflammation in Reperfusion Injuries, Faculty of Medicine, Université de Tours, Tours, France
| | - Maguelonne Roux
- National Institute of Health and Medical Research, Mixed Research Unit-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Faculty of Health, Pitié Salpêtrière, Sorbonne University, Paris, France; Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, National Centre for Scientific Research UMR2000, Paris, France
| | - Yves Gruel
- National Institute of Health and Medical Research UMR: Mixed Research Unit U1327 ISCHEMIA, Membrane Signalling and Inflammation in Reperfusion Injuries, Faculty of Medicine, Université de Tours, Tours, France
| | - Marjorie Poggi
- National Institute of Health and Medical Research, National Research Institute for Agriculture, Food and Environment, Research Center for Cardiovascular and Nutrition, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Claire Pouplard
- Department of Haemostasis, Regional University Hospital Centre Tours, Tours, France; National Institute of Health and Medical Research UMR: Mixed Research Unit U1327 ISCHEMIA, Membrane Signalling and Inflammation in Reperfusion Injuries, Faculty of Medicine, Université de Tours, Tours, France
| | - Franck Peiretti
- National Institute of Health and Medical Research, National Research Institute for Agriculture, Food and Environment, Research Center for Cardiovascular and Nutrition, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - David-Alexandre Trégouët
- National Institute of Health and Medical Research, Mixed Research Unit-S1166, Research Unit on Cardiovascular and Metabolic Diseases, Faculty of Health, Pitié Salpêtrière, Sorbonne University, Paris, France; National Institute of Health and Medical Research Mixed Research Unit 1219, Bordeaux Population Health, Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Service de Cardiologie, Pessac, France.
| | - Marie-Christine Alessi
- National Institute of Health and Medical Research, National Research Institute for Agriculture, Food and Environment, Research Center for Cardiovascular and Nutrition, Faculty of Medicine, Aix Marseille University, Marseille, France; Reference Center on Constitutional Platelet Disorders, Biogenopole, University Hospital Center Timone, Public Assistance - Hospitals of Marseille, Marseille, France.
| |
Collapse
|
5
|
Popova L, Carabetta VJ. The Use of Next-Generation Sequencing in Personalized Medicine. Methods Mol Biol 2025; 2866:287-315. [PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
6
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Tang Y, Wang H, Zhang Z, Yao Y, Han Y, Wu D. DIAPH1 mutations predict a favorable outcome for de novo MDS. Cancer Lett 2024; 598:217125. [PMID: 39084456 DOI: 10.1016/j.canlet.2024.217125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
DIAPH1, a member of the formins family and a Rho effector, was found to be involved in thrombocytopoiesis, and the process of MDS in mice with unknown pathogenesis. In this study, we reported a preliminary study about the heterogeneity in the clinical features and outcomes of DIAPH1 mutations in MDS. DIAPH1 frameshift mutations were identified in 20 out of 88 MDS patients, including 11 frameshift mutations locating at 140892588-141000567 (5q31.3), which causes structure changes at FH1 domain. DIAPH1 mutated cases were correlated with lower megakaryocyte dysplasia in lower-risk patients (IPSS-M score <0) at first diagnosis, and higher megakaryocyte counts pre-transplant. The megakaryopoiesis-related genes: GP1BA and SETBP1 mutation were positively and negatively associated with DIAPH1 mutation, respectively. DIAPH1 mutated cases showed superior overall survival of all patients and low-risk cohorts. In conclusion, we found DIAPH1 frameshift mutations are implicated in megakaryopoiesis of MDS and correlated with superior prognosis.
Collapse
Affiliation(s)
- Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifang Yao
- Suzhou Hongci Hematology Hospital, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Azizoglu ZB, Babayeva R, Haskologlu ZS, Acar MB, Ayaz-Guner S, Okus FZ, Alsavaf MB, Can S, Basaran KE, Canatan MF, Ozcan A, Erkmen H, Leblebici CB, Yilmaz E, Karakukcu M, Kose M, Canoz O, Özen A, Karakoc-Aydiner E, Ceylaner S, Gümüş G, Per H, Gumus H, Canatan H, Ozcan S, Dogu F, Ikinciogullari A, Unal E, Baris S, Eken A. DIAPH1-Deficiency is Associated with Major T, NK and ILC Defects in Humans. J Clin Immunol 2024; 44:175. [PMID: 39120629 PMCID: PMC11315734 DOI: 10.1007/s10875-024-01777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Loss of function mutations in Diaphanous related formin 1 (DIAPH1) are associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS) and are recently linked to combined immunodeficiency. However, the extent of defects in T and innate lymphoid cells (ILCs) remain unexplored. Herein, we characterized the primary T, natural killer (NK) and helper ILCs of six patients carrying two novel loss of function mutation in DIAPH1 and Jurkat cells after DIAPH1 knockdown. Mutations were identified by whole exome sequencing. T-cell immunophenotyping, proliferation, migration, cytokine signaling, survival, and NK cell cytotoxicity were studied via flow cytometry-based assays, confocal microscopy, and real-time qPCR. CD4+ T cell proteome was analyzed by mass spectrometry. p.R351* and p.R322*variants led to a significant reduction in the DIAPH1 mRNA and protein levels. DIAPH1-deficient T cells showed proliferation, activation, as well as TCR-mediated signaling defects. DIAPH1-deficient PBMCs also displayed impaired transwell migration, defective STAT5 phosphorylation in response to IL-2, IL-7 and IL-15. In vitro generation/expansion of Treg cells from naïve T cells was significantly reduced. shRNA-mediated silencing of DIAPH1 in Jurkat cells reduced DIAPH1 protein level and inhibited T cell proliferation and IL-2/STAT5 axis. Additionally, NK cells from patients had diminished cytotoxic activity, function and IL-2/STAT5 axis. Lastly, DIAPH1-deficient patients' peripheral blood contained dramatically reduced numbers of all helper ILC subsets. DIAPH1 deficiency results in major functional defects in T, NK cells and helper ILCs underlining the critical role of formin DIAPH1 in the biology of those cell subsets.
Collapse
Affiliation(s)
- Zehra Busra Azizoglu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Royala Babayeva
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | | | - Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Fatma Zehra Okus
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | | | - Salim Can
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Kemal Erdem Basaran
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | | - Alper Ozcan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Hasret Erkmen
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Can Berk Leblebici
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ebru Yilmaz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Mehmet Kose
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Ozlem Canoz
- Department of Pathology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Ahmet Özen
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Elif Karakoc-Aydiner
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Serdar Ceylaner
- Intergen, Genetic, Rare and Undiagnosed Diseases, Diagnosis and Research Center, Ankara, Türkiye
| | - Gülsüm Gümüş
- Division of Pediatric Radiology, Department of Radiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Hakan Gumus
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Servet Ozcan
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, 38039, Türkiye
| | - Figen Dogu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aydan Ikinciogullari
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
- School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Türkiye.
- Medical Point Hospital, Pediatric Hematology Oncology and BMT Unit, Gaziantep, Türkiye.
| | - Safa Baris
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye.
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye.
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye.
| |
Collapse
|
9
|
Bhattad S, Ramakrishna SH, Kumar R, Choi JM, Markle JG. Immune dysregulation due to bi-allelic mutation of the actin remodeling protein DIAPH1. Front Immunol 2024; 15:1406781. [PMID: 39076976 PMCID: PMC11284534 DOI: 10.3389/fimmu.2024.1406781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Children with severe inflammatory diseases are challenging to diagnose and treat, and the etiology of disease often remains unexplained. Here we present DIAPH1 deficiency as an unexpected genetic finding in a child with fatal inflammatory bowel disease who also displayed complex neurological and developmental phenotypes. Bi-allelic mutations of DIAPH1 were first described in patients with a severe neurological phenotype including microcephaly, intellectual disability, seizures, and blindness. Recent findings have expanded the clinical phenotype of DIAPH1 deficiency to include severe susceptibility to infections, placing this monogenic disease amongst the etiologies of inborn errors of immunity. Immune phenotypes in DIAPH1 deficiency are largely driven aberrant lymphocyte activation, particularly the failure to form an effective immune synapse in T cells. We present the case of a child with a novel homozygous deletion in DIAPH1, leading to a premature truncation in the Lasso domain of the protein. Unlike other cases of DIAPH1 deficiency, this patient did not have seizures or lung infections. Her major immune-related clinical symptoms were inflammation and enteropathy, diarrhea and failure to thrive. This patient did not show T or B cell lymphopenia but did have dramatically reduced naïve CD4+ and CD8+ T cells, expanded CD4-CD8- T cells, and elevated IgE. Similar to other cases of DIAPH1 deficiency, this patient had non-hematological phenotypes including microcephaly, developmental delay, and impaired vision. This patient's symptSoms of immune dysregulation were not successfully controlled and were ultimately fatal. This case expands the clinical spectrum of DIAPH1 deficiency and reveals that autoimmune or inflammatory enteropathy may be the most prominent immunological manifestation of disease.
Collapse
Affiliation(s)
- Sagar Bhattad
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Aster CMI Hospital, Bengaluru, India
| | | | - Ratan Kumar
- Department of Pediatrics, Tata Main Hospital, Jamshedpur, India
| | - Joseph M. Choi
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Janet G. Markle
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
| |
Collapse
|
10
|
Alasmari BG, Alpakra M, Hassanien SS, Elmugadam AA, Elzubair L, Suliman EA, Alghubishi SA. A Novel Variant in the DIAPH1 Gene Causing Macrothrombocytopenia and Non-syndromic Hearing Loss in a Pediatric Saudi Girl. Cureus 2024; 16:e61044. [PMID: 38915998 PMCID: PMC11195521 DOI: 10.7759/cureus.61044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/26/2024] Open
Abstract
Macrothrompocytopenia (MTP) is a rare group of hereditary disorders that lead to impaired hemostasis. Macrothrompocytopenia mostly results from genetic mutations in genes implicated in megakaryocyte differentiation and function. Diaphanous-related formin 1 (DIAPH1) is a protein-coding gene. Dominant gain-of-function DIAPH1 variants cause macrothrombocytopenia and sensorineural deafness (autosomal dominant non-syndromic hearing loss 1 (DFNA1)), while homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). This rare genetic disease is characterized by progressive and severe hearing loss with onset in the first decade of life, is associated with mild thrombocytopenia, and has no significant bleeding tendency. This case report presents the clinical findings of a 14-year-old Saudi pediatric girl. We investigated the potential association of DIAPH1 as a novel candidate gene linked to dominant MTP and autosomal dominant non-syndromic hearing loss (ADNSHL), which was evaluated through audiometry. Notably, a novel variant, c.3633_3636del, was identified in the DIAPH1 gene. To date, only a small number of mutations in this gene have been reported as the cause of MTP and ADNSHL.
Collapse
Affiliation(s)
- Badriah G Alasmari
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Mohammed Alpakra
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Sara S Hassanien
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushait, SAU
| | - Abdelhakam A Elmugadam
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Lina Elzubair
- Hematopathology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Enaam A Suliman
- Hematopathology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | | |
Collapse
|
11
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
12
|
Theophall GG, Ramirez LMS, Premo A, Reverdatto S, Manigrasso MB, Yepuri G, Burz DS, Ramasamy R, Schmidt AM, Shekhtman A. Disruption of the productive encounter complex results in dysregulation of DIAPH1 activity. J Biol Chem 2023; 299:105342. [PMID: 37832872 PMCID: PMC10656230 DOI: 10.1016/j.jbc.2023.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.
Collapse
Affiliation(s)
- Gregory G Theophall
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Lisa M S Ramirez
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Michaele B Manigrasso
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - David S Burz
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Ravichandran Ramasamy
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA.
| |
Collapse
|
13
|
He S, Hao X, Liu Z, Wang Y, Zhang J, Wang X, Di F, Wang R, Zhao Y. Association between DIAPH1 variant and posterior circulation involvement with Moyamoya disease. Sci Rep 2023; 13:10732. [PMID: 37400591 DOI: 10.1038/s41598-023-37665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic and progressive cerebrovascular stenosis or occlusive disease that occurs near Willis blood vessels. The aim of this study was to investigate the mutation of DIAPH1 in Asian population, and to compare the angiographic features of MMD patients with and without the mutation of the DIAPH1 gene. Blood samples of 50 patients with MMD were collected, and DIAPH1 gene mutation was detected. The angiographic involvement of the posterior cerebral artery was compared between the mutant group and the non-mutant group. The independent risk factors of posterior cerebral artery involvement were determined by multivariate logistic regression analysis. DIAPH1 gene mutation was detected in 9 (18%) of 50 patients, including 7 synonymous mutations and 2 missense mutations. However, the incidence of posterior cerebral artery involvement in mutation positive group was very higher than that in mutation negative group (77.8% versus 12%; p = 0.001). There is an association between DIAPH1 mutation and PCA involvement (odds ratio 29.483, 95% confidence interval 3.920-221.736; p = 0.001). DIAPH1 gene mutation is not a major genetic risk gene for Asian patients with moyamoya disease but may play an important role in the involvement of posterior cerebral artery.
Collapse
Affiliation(s)
- Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive (R281), Stanford, CA, 94305-5327, USA
| | - Xiaokuan Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziqi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xilong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Fei Di
- Department of Neurosurgery, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Gan NS, Oziębło D, Skarżyński H, Ołdak M. Monogenic Causes of Low-Frequency Non-Syndromic Hearing Loss. Audiol Neurootol 2023; 28:327-337. [PMID: 37121227 DOI: 10.1159/000529464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Low-frequency non-syndromic hearing loss (LFNSHL) is a rare form of hearing loss (HL). It is defined as HL at low frequencies (≤2,000 Hz) resulting in a characteristic ascending audiogram. LFNSHL is usually diagnosed postlingually and is progressive, leading to HL affecting other frequencies as well. Sometimes it occurs with tinnitus. Around half of the diagnosed prelingual HL cases have a genetic cause and it is usually inherited in an autosomal recessive mode. Postlingual HL caused by genetic changes generally has an autosomal dominant pattern of inheritance and its incidence remains unknown. SUMMARY To date, only a handful of genes have been found as causing LFNSHL: well-established WFS1 and, reported in some cases, DIAPH1, MYO7A, TNC, and CCDC50 (respectively, responsible for DFNA6/14/38, DFNA1, DFNA11, DFNA56, and DFNA44). In this review, we set out audiological phenotypes, causative genetic changes, and molecular mechanisms leading to the development of LFNSHL. KEY MESSAGES LFNSHL is most commonly caused by pathogenic variants in the WFS1 gene, but it is also important to consider changes in other HL genes, which may result in similar audiological phenotype.
Collapse
Affiliation(s)
- Nina Sara Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| |
Collapse
|
15
|
Bitarafan F, Razmara E, Jafarinia E, Almadani N, Garshasbi M. A biallelic variant in POLR2C is associated with congenital hearing loss and male infertility: Case report. Eur J Clin Invest 2023; 53:e13946. [PMID: 36576366 DOI: 10.1111/eci.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND DNA-directed RNA polymerase II subunit 3 (RPB3) is the third largest subunit of RNA polymerase II and is encoded by the POLR2C (OMIM:180663). A large Iranian family with congenital hearing loss and infertility is described here with genetic and clinical characterizations of five male patients. METHODS After doing clinical examinations, the proband was subjected to karyotyping and GJB2/6 sequencing to rule out the most evident chromosomal and gene abnormalities for male infertility and hearing loss, respectively. A custom-designed next-generation sequencing panel was also used to detect mutations in deafness-related genes. Finally, to reveal the underlying molecular cause(s) justifying hearing loss and male infertility, five male patients and 2 healthy male controls within the family were subjected to paired-end whole-exome sequencing (WES). Linkage analysis was also performed based on the data. RESULTS All male patients showed prelingual sensorineural hearing loss and also decreased sperm motility. Linkage analysis determined 16q21 as the most susceptible locus in which a missense variant in exon 7 of POLR2C-NM_032940.3:c.545T>C;p.(Val182Ala)-was identified as a 'likely pathogenic' variant co-segregated with phenotypes. CONCLUSIONS Using segregation and in silico analyses, for the first time, we suggested that the NM_032940.3:c.545T>C; p.(Val182Ala) in POLR2C is associated with hearing loss and male infertility.
Collapse
Affiliation(s)
- Fatemeh Bitarafan
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.,Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Teheran, Iran
| |
Collapse
|
16
|
Mohseni M, Mohammadi Y, Zare Ashrafi F, Ghodratpour F, Jalalvand K, Arzhangi S, Babanejad M, Azizi MH, Kahrizi K, Najmabadi H. An Extended Iranian Family with Autosomal Dominant Non-syndromic Hearing Loss Associated with A Nonsense Mutation in the DIAPH1 Gene. ARCHIVES OF IRANIAN MEDICINE 2023; 26:176-180. [PMID: 37543941 PMCID: PMC10685723 DOI: 10.34172/aim.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/19/2023] [Indexed: 08/08/2023]
Abstract
Genetic analysis of non-syndromic hearing loss (NSHL) has been challenged due to marked clinical and genetic heterogeneity. Today, advanced next-generation sequencing (NGS) technologies, such as exome sequencing (ES), have drastically increased the efficacy of gene identification in heterogeneous Mendelian disorders. Here, we present the utility of ES and re-evaluate the phenotypic data for identifying candidate causal variants for previously unexplained progressive moderate to severe NSHL in an extended Iranian family. Using this method, we identified a known heterozygous nonsense variant in exon 26 of the DIAPH1 gene (MIM: 602121), which led to "Deafness, autosomal dominant 1, with or without thrombocytopenia; DFNA1" (MIM: 124900) in this large family in the absence of GJB2 disease-causing variants and also OtoSCOPE-negative results. To the best of our knowledge, this nonsense variant (NM_001079812.3):c.3610C>T (p.Arg1204Ter) is the first report of the DIAPH1 gene variant for autosomal dominant non-syndromic hearing loss (ADNSHL) in Iran.
Collapse
Affiliation(s)
- Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Yusuf Mohammadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Hossein Azizi
- Associate Professor of Otolaryngology, Academy of Medical Sciences of IR Iran, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
17
|
Chiereghin C, Robusto M, Lewis MA, Caetano S, Massa V, Castorina P, Ambrosetti U, Steel KP, Duga S, Asselta R, Soldà G. In-depth genetic and molecular characterization of diaphanous related formin 2 (DIAPH2) and its role in the inner ear. PLoS One 2023; 18:e0273586. [PMID: 36689403 PMCID: PMC9870134 DOI: 10.1371/journal.pone.0273586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness.
Collapse
Affiliation(s)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS -The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Susana Caetano
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Milano, Italy
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Stefano Duga
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| |
Collapse
|
18
|
Deletion of the Notch ligand Jagged1 during cochlear maturation leads to inner hair cell defects and hearing loss. Cell Death Dis 2022; 13:971. [PMID: 36400760 PMCID: PMC9674855 DOI: 10.1038/s41419-022-05380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
The mammalian cochlea is an exceptionally well-organized epithelium composed of hair cells, supporting cells, and innervating neurons. Loss or defects in any of these cell types, particularly the specialized sensory hair cells, leads to deafness. The Notch pathway is known to play a critical role in the decision to become either a hair cell or a supporting cell during embryogenesis; however, little is known about how Notch functions later during cochlear maturation. Uniquely amongst Notch ligands, Jagged1 (JAG1) is localized to supporting cells during cell fate acquisition and continues to be expressed into adulthood. Here, we demonstrate that JAG1 in maturing cochlear supporting cells is essential for normal cochlear function. Specifically, we show that deletion of JAG1 during cochlear maturation disrupts the inner hair cell pathway and leads to a type of deafness clinically similar to auditory neuropathy. Common pathologies associated with disruptions in inner hair cell function, including loss of hair cells, synapses, or auditory neurons, were not observed in JAG1 mutant cochleae. Instead, RNA-seq analysis of JAG1-deficient cochleae identified dysregulation of the Rho GTPase pathway, known to be involved in stereocilia development and maintenance. Interestingly, the overexpression of one of the altered genes, Diaph3, is responsible for autosomal dominant auditory neuropathy-1 (AUNA1) in humans and mice, and is associated with defects in the inner hair cell stereocilia. Strikingly, ultrastructural analyses of JAG1-deleted cochleae revealed stereocilia defects in inner hair cells, including fused and elongated bundles, that were similar to those stereocilia defects reported in AUNA1 mice. Taken together, these data indicate a novel role for Notch signaling in normal hearing development through maintaining stereocilia integrity of the inner hair cells during cochlear maturation.
Collapse
|
19
|
Homozygous Autosomal Recessive DIAPH1 Mutation Associated with Central Nervous System Involvement and Aspergillosis: A Rare Case. Case Rep Genet 2022; 2022:4142214. [PMID: 36212620 PMCID: PMC9537009 DOI: 10.1155/2022/4142214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The DIAPH1 gene fulfills critical immune and neurodevelopmental roles. It encodes the mammalian Diaphanous-related formin (mDia1) protein, which acts downstream of Rho GTPases to promote F-actin polymerization and stabilize microtubules. During mitosis, this protein is expressed in human neuronal precursor cells and considerably affects spindle formation and cell division. In humans, dominant gain-of-function DIAPH1 variants cause sensorineural deafness and macrothrombocytopenia (DFNA1), while homozygous DIAPH1 loss leads to seizures, cortical blindness, and microcephaly syndrome (SCBMS). To date, only 16 patients with SCBMS have been reported, none of whom were from Iran. Furthermore, aspergillosis is yet to be reported in patients with homozygous DIAPH1 loss, and the link between SCBMS and immunodeficiency remains elusive. In this study, we shed further light on this matter by reporting the clinical, genetic, and phenotypic characteristics of an Iranian boy with a long history of recurrent infections, diagnosed with SCBMS and immunodeficiency (NM_005219.5 c.3145C > T; p.R1049X variant) following aspergillosis and SARS-CoV-2 coinfection.
Collapse
|
20
|
Alexander GM, Heiman-Patterson TD, Bearoff F, Sher RB, Hennessy L, Terek S, Caccavo N, Cox GA, Philip VM, Blankenhorn EA. Identification of quantitative trait loci for survival in the mutant dynactin p150Glued mouse model of motor neuron disease. PLoS One 2022; 17:e0274615. [PMID: 36107978 PMCID: PMC9477371 DOI: 10.1371/journal.pone.0274615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disorder. Although most cases of ALS are sporadic, 5-10% of cases are familial, with mutations associated with over 40 genes. There is variation of ALS symptoms within families carrying the same mutation; the disease may develop in one sibling and not in another despite the presence of the mutation in both. Although the cause of this phenotypic variation is unknown, it is likely related to genetic modifiers of disease expression. The identification of ALS causing genes has led to the development of transgenic mouse models of motor neuron disease. Similar to families with familial ALS, there are background-dependent differences in disease phenotype in transgenic mouse models of ALS suggesting that, as in human ALS, differences in phenotype may be ascribed to genetic modifiers. These genetic modifiers may not cause ALS rather their expression either exacerbates or ameliorates the effect of the mutant ALS causing genes. We have reported that in both the G93A-hSOD1 and G59S-hDCTN1 mouse models, SJL mice demonstrated a more severe phenotype than C57BL6 mice. From reciprocal intercrosses between G93A-hSOD1 transgenic mice on SJL and C57BL6 strains, we identified a major quantitative trait locus (QTL) on mouse chromosome 17 that results in a significant shift in lifespan. In this study we generated reciprocal intercrosses between transgenic G59S-hDCTN1 mice on SJL and C57BL6 strains and identified survival QTLs on mouse chromosomes 17 and 18. The chromosome 17 survival QTL on G93A-hSOD1 and G59S-hDCTN1 mice partly overlap, suggesting that the genetic modifiers located in this region may be shared by these two ALS models despite the fact that motor neuron degeneration is caused by mutations in different proteins. The overlapping region contains eighty-seven genes with non-synonymous variations predicted to be deleterious and/or damaging. Two genes in this segment, NOTCH3 and Safb/SAFB1, have been associated with motor neuron disease. The identification of genetic modifiers of motor neuron disease, especially those modifiers that are shared by SOD1 and dynactin-1 transgenic mice, may result in the identification of novel targets for therapies that can alter the course of this devastating illness.
Collapse
Affiliation(s)
| | - Terry D. Heiman-Patterson
- Department of Neurology, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania, United States of America
| | - Frank Bearoff
- Department of Microbiology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Roger B. Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Laura Hennessy
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Shannon Terek
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Nicole Caccavo
- Department of Neurology, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gregory A. Cox
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Elizabeth A. Blankenhorn
- Department of Microbiology Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Warren JT, Di Paola J. Genetics of inherited thrombocytopenias. Blood 2022; 139:3264-3277. [PMID: 35167650 PMCID: PMC9164741 DOI: 10.1182/blood.2020009300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 01/19/2023] Open
Abstract
The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jorge Di Paola
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
22
|
Tilburg J, Becker IC, Italiano JE. Don't you forget about me(gakaryocytes). Blood 2022; 139:3245-3254. [PMID: 34582554 PMCID: PMC9164737 DOI: 10.1182/blood.2020009302] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor β1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.
Collapse
Affiliation(s)
- Julia Tilburg
- Vascular Biology Program, Boston Children's Hospital, Boston, MA
| | | | | |
Collapse
|
23
|
Chiereghin C, Robusto M, Massa V, Castorina P, Ambrosetti U, Asselta R, Soldà G. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells 2022; 11:cells11111726. [PMID: 35681420 PMCID: PMC9179844 DOI: 10.3390/cells11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Di Rudinì 8, 20146 Milan, Italy;
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Via F. Sforza 35, 20122 Milan, Italy;
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
- Correspondence:
| |
Collapse
|
24
|
Bennett C, Lawrence M, Guerrero JA, Stritt S, Waller AK, Yan Y, Mifsud RW, Ballester-Beltran J, Baig A, Mueller A, Mayer L, Warland J, Penkett CJ, Akbari P, Moreau T, Evans AL, Mookerjee S, Hoffman GJ, Saeb-Parsy K, Adams DJ, Couzens AL, Bender M, Erber WN, Nieswandt B, Read RJ, Ghevaert C. CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia. Blood 2022; 139:2227-2239. [PMID: 35051265 PMCID: PMC7614665 DOI: 10.1182/blood.2021013113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25% to 48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly because of increased microtubule glutamylation via the interaction of CRLF3 with key members of the Hippo pathway. Using a mouse model of JAK2 V617F essential thrombocythemia, we show that a lack of CRLF3 leads to long-term lineage-specific normalization of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythemia.
Collapse
Affiliation(s)
- Cavan Bennett
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Moyra Lawrence
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jose A. Guerrero
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Simon Stritt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Amie K. Waller
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Yahui Yan
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Richard W. Mifsud
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Jose Ballester-Beltran
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Ayesha Baig
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Annett Mueller
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Louisa Mayer
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - James Warland
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher J. Penkett
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Parsa Akbari
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge CB1 8RN, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Thomas Moreau
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amanda L. Evans
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Souradip Mookerjee
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Gary J. Hoffman
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, 6099, Australia
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1HH, UK
| | - Amber L. Couzens
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Wendy N. Erber
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, 6099, Australia
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Randy J. Read
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
25
|
Oziębło D, Lee SY, Leja ML, Sarosiak A, Bałdyga N, Skarżyński H, Kim Y, Han JH, Yoo HS, Park MH, Choi BY, Ołdak M. Update on CD164 and LMX1A genes to strengthen their causative role in autosomal dominant hearing loss. Hum Genet 2022; 141:445-453. [PMID: 35254497 DOI: 10.1007/s00439-022-02443-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Novel hearing loss (HL) genes are constantly being discovered, and evidence from independent studies is essential to strengthen their position as causes of hereditary HL. To address this issue, we searched our genetic data of families with autosomal dominant HL (ADHL) who had been tested with high-throughput DNA sequencing methods. For CD164, only one pathogenic variant in one family has so far been reported. For LMX1A, just two previous studies have revealed its involvement in ADHL. In this study we found two families with the same pathogenic variant in CD164 and one family with a novel variant in LMX1A (c.686C>A; p.(Ala229Asp)) that impairs its transcriptional activity. Our data show recurrence of the same CD164 variant in two HL families of different geographic origin, which strongly suggests it is a mutational hotspot. We also provide further evidence for haploinsufficiency as the pathogenic mechanism underlying LMX1A-related ADHL.
Collapse
Affiliation(s)
- Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Marcin Ludwik Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sarosiak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Hyo Soon Yoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Min Hyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland.
| |
Collapse
|
26
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
27
|
Li X, Liao M, Shao J, Li W, Shi L, Wang D, Ni J, Shen Q, Yang F, Peng G, Zhou L, Zhang Y, Sun Z, Zheng H, Long M. Plasma Diaphanous Related Formin 1 Levels Are Associated with Altered Glucose Metabolism and Insulin Resistance in Patients with Polycystic Ovary Syndrome: A Case Control Study. Mediators Inflamm 2022; 2022:9620423. [PMID: 35185386 PMCID: PMC8856793 DOI: 10.1155/2022/9620423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diaphanous related formin 1 (DIAPH1) is a novel component of advanced glycation end product (AGE) signal transduction that was recently found to participate in diabetes-related disorders, obesity, and androgen hormones. We investigated whether plasma DIAPH1 levels were a potential prognostic predictor for polycystic ovary syndrome (PCOS). METHODS The levels of circulating plasma DIAPH1 and indicators of glucose, insulin, lipid metabolism, liver enzymes, kidney function, sex hormones, and inflammation were measured in 75 patients with PCOS and 77 healthy participants. All of the participants were divided into normal-weight (NW) and overweight/obese (OW) subgroups. Statistical analyses were performed with R studio. RESULTS PCOS patients manifested hyperandrogenism, increased luteinizing hormone/follicle-stimulating hormone (LH/FSH), and accumulated body fat and insulin resistance. Plasma DIAPH1 levels were significantly decreased in women with PCOS compared to control participants, and DIAPH1 levels were distinctly reduced in OW PCOS compared to OW control subjects (P < 0.001). DIAPH1 levels correlated with fasting blood glucose (FBG), total cholesterol (TC), the homeostasis model assessment of β-cell function (HOMA-β), and LH/FSH in all participants (FBG: r = 0.351, P < 0.0001; TC: r = 0.178, P = 0.029; HOMA-β: r = -0.211, P = 0.009; LH/FSH: r = -0.172, P = 0.040). Multivariate logistic regression analysis revealed that plasma DIAPH1 levels were an independent risk factor for PCOS. A model containing DIAPH1, BMI, FBG, and testosterone was constructed to predict the risk of PCOS, with a sensitivity of 92.0% and a specificity of 80.9%. A nomogram was constructed to facilitate clinical diagnosis. CONCLUSIONS These findings suggest the association of plasma DIAPH1 with glucose metabolism, insulin resistance, and sex hormones and support DIAPH1 as a potential predictive factor for PCOS.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Weixin Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liu Shi
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dong Wang
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Ni
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiuyue Shen
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guiliang Peng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuling Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
Kimmerlin Q, Strassel C, Eckly A, Lanza F. The tubulin code in platelet biogenesis. Semin Cell Dev Biol 2022; 137:63-73. [PMID: 35148939 DOI: 10.1016/j.semcdb.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably β1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.
Collapse
Affiliation(s)
- Quentin Kimmerlin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| |
Collapse
|
29
|
Kim BJ, Miyoshi T, Chaudhry T, Friedman TB, Choi BY, Ueyama T. Late‐onset hearing loss case associated with a heterozygous truncating variant of
DIAPH1. Clin Genet 2022; 101:466-471. [PMID: 35060117 PMCID: PMC8981108 DOI: 10.1111/cge.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Diaphanous-related formin 1 (DIAPH1) is a formin homology F-actin elongating protein encoded by DIAPH1. Homozygous recessive variants resulting in the loss of DIAPH1 function cause seizures, cortical blindness, and microcephaly syndrome (SCBMS), but hearing loss has not been reported. In contrast, dominant variants of human DIAPH1 are associated with DFNA1 non-syndromic sensorineural hearing loss. The deafness phenotype is due partly to abnormal F-actin elongation activity caused by disruption of the DIAPH1 autoinhibitory mechanism. We report an elderly female heterozygous for the c.3145C>T: p.R1049X variant who showed late-onset sensorineural hearing loss in her fifth decade. p.R1049X lacks F-actin elongation activity because this variant truncates one-third of the FH2 domain, which is vital for DIAPH1 dimerization and processive F-actin elongation activity. Concordantly, no increase of F-actin or processive F-actin elongation activity was observed after overexpression of p.R1049X DIAPH1 in HeLa cells or by single-molecule microscopy using Xenopus XTC cells. However, overexpression of the p.R1049X variant impairs formation of cell-cell junctions and mitosis. We speculate that late-onset hearing loss is a long-term consequence of heterozygosity for the recessive p.R1049X variant, a phenotype that may have been overlooked among carriers of other recessive alleles of DIAPH1.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otolaryngology–Head and Neck Surgery Chungnam National University College of Medicine, Chungnam National University Sejong Hospital Sejong Republic of Korea
| | - Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda MD USA
- Department of Otolaryngology ‐ Head and Neck Surgery Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda MD USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda MD USA
| | - Byung Yoon Choi
- Department of Otorhinolaryngology Seoul National University Bundang Hospital Seongnam Republic of Korea
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University Kobe Japan
| |
Collapse
|
30
|
Liang F, Fu X, Ding S, Li L. Use of a Network-Based Method to Identify Latent Genes Associated with Hearing Loss in Children. Front Cell Dev Biol 2021; 9:783500. [PMID: 34912812 PMCID: PMC8667072 DOI: 10.3389/fcell.2021.783500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Hearing loss is a total or partial inability to hear. Approximately 5% of people worldwide experience this condition. Hearing capacity is closely related to language, social, and basic emotional development; hearing loss is particularly serious in children. The pathogenesis of childhood hearing loss remains poorly understood. Here, we sought to identify new genes potentially associated with two types of hearing loss in children: congenital deafness and otitis media. We used a network-based method incorporating a random walk with restart algorithm, as well as a protein-protein interaction framework, to identify genes potentially associated with either pathogenesis. A following screening procedure was performed and 18 and 87 genes were identified, which potentially involved in the development of congenital deafness or otitis media, respectively. These findings provide novel biomarkers for clinical screening of childhood deafness; they contribute to a genetic understanding of the pathogenetic mechanisms involved.
Collapse
Affiliation(s)
- Feng Liang
- Anaesthesia Department, China-Japan Union Hospital, JiLin University, Changchun, China
| | - Xin Fu
- Anaesthesia Department, China-Japan Union Hospital, JiLin University, Changchun, China
| | - ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Li
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Essential role of zyxin in platelet biogenesis and glycoprotein Ib-IX surface expression. Cell Death Dis 2021; 12:955. [PMID: 34657146 PMCID: PMC8520529 DOI: 10.1038/s41419-021-04246-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Platelets are generated from the cytoplasm of megakaryocytes (MKs) via actin cytoskeleton reorganization. Zyxin is a focal adhesion protein and wildly expressed in eukaryotes to regulate actin remodeling. Zyxin is upregulated during megakaryocytic differentiation; however, the role of zyxin in thrombopoiesis is unknown. Here we show that zyxin ablation results in profound macrothrombocytopenia. Platelet lifespan and thrombopoietin level were comparable between wild-type and zyxin-deficient mice, but MK maturation, demarcation membrane system formation, and proplatelet generation were obviously impaired in the absence of zyxin. Differential proteomic analysis of proteins associated with macrothrombocytopenia revealed that glycoprotein (GP) Ib-IX was significantly reduced in zyxin-deficient platelets. Moreover, GPIb-IX surface level was decreased in zyxin-deficient MKs. Knockdown of zyxin in a human megakaryocytic cell line resulted in GPIbα degradation by lysosomes leading to the reduction of GPIb-IX surface level. We further found that zyxin was colocalized with vasodilator-stimulated phosphoprotein (VASP), and loss of zyxin caused diffuse distribution of VASP and actin cytoskeleton disorganization in both platelets and MKs. Reconstitution of zyxin with VASP binding site in zyxin-deficient hematopoietic progenitor cell-derived MKs restored GPIb-IX surface expression and proplatelet generation. Taken together, our findings identify zyxin as a regulator of platelet biogenesis and GPIb-IX surface expression through VASP-mediated cytoskeleton reorganization, suggesting possible pathogenesis of macrothrombocytopenia.
Collapse
|
32
|
Collins J, Astle WJ, Megy K, Mumford AD, Vuckovic D. Advances in understanding the pathogenesis of hereditary macrothrombocytopenia. Br J Haematol 2021; 195:25-45. [PMID: 33783834 DOI: 10.1111/bjh.17409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Low platelet count, or thrombocytopenia, is a common haematological abnormality, with a wide differential diagnosis, which may represent a clinically significant underlying pathology. Macrothrombocytopenia, the presence of large platelets in combination with thrombocytopenia, can be acquired or hereditary and indicative of a complex disorder. In this review, we discuss the interpretation of platelet count and volume measured by automated haematology analysers and highlight some important technical considerations relevant to the analysis of blood samples with macrothrombocytopenia. We review how large cohorts, such as the UK Biobank and INTERVAL studies, have enabled an accurate description of the distribution and co-variation of platelet parameters in adult populations. We discuss how genome-wide association studies have identified hundreds of genetic associations with platelet count and mean platelet volume, which in aggregate can explain large fractions of phenotypic variance, consistent with a complex genetic architecture and polygenic inheritance. Finally, we describe the large genetic diagnostic and discovery programmes, which, simultaneously to genome-wide association studies, have expanded the repertoire of genes and variants associated with extreme platelet phenotypes. These have advanced our understanding of the pathogenesis of hereditary macrothrombocytopenia and support a future clinical diagnostic strategy that utilises genotype alongside clinical and laboratory phenotype data.
Collapse
Affiliation(s)
- Janine Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Barts Health NHS Trust, London, UK
| | - William J Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Dragana Vuckovic
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Imperial College London, London, UK
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
34
|
Macrothrombocytopenia of Takenouchi-Kosaki syndrome is ameliorated by CDC42 specific- and lipidation inhibitors in MEG-01 cells. Sci Rep 2021; 11:17990. [PMID: 34504210 PMCID: PMC8429552 DOI: 10.1038/s41598-021-97478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Macrothrombocytopenia is a common pathology of missense mutations in genes regulating actin dynamics. Takenouchi-Kosaki syndrome (TKS) harboring the c.191A > G, Tyr64Cys (Y64C) variant in Cdc42 exhibits a variety of clinical manifestations, including immunological and hematological anomalies. In the present study, we investigated the functional abnormalities of the Y64C mutant in HEK293 cells and elucidated the mechanism of macrothrombocytopenia, one of the symptoms of TKS patients, by monitoring the production of platelet-like particles (PLP) using MEG-01 cells. We found that the Y64C mutant was concentrated at the membrane compartment due to impaired binding to Rho-GDI and more active than the wild-type. The Y64C mutant also had lower association with its effectors Pak1/2 and N-WASP. Y64C mutant-expressing MEG-01 cells demonstrated short cytoplasmic protrusions with aberrant F-actin and microtubules, and reduced PLP production. This suggested that the Y64C mutant facilitates its activity and membrane localization, resulting in impaired F-actin dynamics for proplatelet extension, which is necessary for platelet production. Furthermore, such dysfunction was ameliorated by either suppression of Cdc42 activity or prenylation using chemical inhibitors. Our study may lead to pharmacological treatments for TKS patients.
Collapse
|
35
|
Tsai FD, Battinelli EM. Inherited Platelet Disorders. Hematol Oncol Clin North Am 2021; 35:1069-1084. [PMID: 34391603 DOI: 10.1016/j.hoc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding disorders due to platelet dysfunction are a common hematologic complication affecting patients, and typically present with mucocutaneous bleeding or hemorrhage. An inherited platelet disorder should be suspected in individuals with a suggestive family history and no identified secondary causes of bleeding. Genetic defects have been described at all levels of platelet activation, including receptor binding, signaling, granule release, cytoskeletal remodeling, and platelet hematopoiesis. Management of these disorders is typically supportive, with an emphasis on awareness, patient education, and anticipatory guidance to prevent future episodes of bleeding.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Zaninetti C, Wolff M, Greinacher A. Diagnosing Inherited Platelet Disorders: Modalities and Consequences. Hamostaseologie 2021; 41:475-488. [PMID: 34391210 DOI: 10.1055/a-1515-0813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Inherited platelet disorders (IPDs) are a group of rare conditions featured by reduced circulating platelets and/or impaired platelet function causing variable bleeding tendency. Additional hematological or non hematological features, which can be congenital or acquired, distinctively mark the clinical picture of a subgroup of patients. Recognizing an IPD is challenging, and diagnostic delay or mistakes are frequent. Despite the increasing availability of next-generation sequencing, a careful phenotyping of suspected patients-concerning the general clinical features, platelet morphology, and function-is still demanded. The cornerstones of IPD diagnosis are clinical evaluation, laboratory characterization, and genetic testing. Achieving a diagnosis of IPD is desirable for several reasons, including the possibility of tailored therapeutic strategies and individual follow-up programs. However, detailed investigations can also open complex scenarios raising ethical issues in case of IPDs predisposing to hematological malignancies. This review offers an overview of IPD diagnostic workup, from the interview with the proband to the molecular confirmation of the suspected disorder. The main implications of an IPD diagnosis are also discussed.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Martina Wolff
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Scheller I, Beck S, Göb V, Gross C, Neagoe RAI, Aurbach K, Bender M, Stegner D, Nagy Z, Nieswandt B. Thymosin β4 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets. Haematologica 2021; 107:2846-2858. [PMID: 34348450 PMCID: PMC9713564 DOI: 10.3324/haematol.2021.278537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin β4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.
Collapse
Affiliation(s)
- Inga Scheller
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,*IS and SB contributed equally as co-first authors
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,*IS and SB contributed equally as co-first authors
| | - Vanessa Göb
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Carina Gross
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Raluca A. I. Neagoe
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Katja Aurbach
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,B. Nieswandt
| |
Collapse
|
38
|
Kundishora AJ, Peters ST, Pinard A, Duran D, Panchagnula S, Barak T, Miyagishima DF, Dong W, Smith H, Ocken J, Dunbar A, Nelson-Williams C, Haider S, Walker RL, Li B, Zhao H, Thumkeo D, Marlier A, Duy PQ, Diab NS, Reeves BC, Robert SM, Sujijantarat N, Stratman AN, Chen YH, Zhao S, Roszko I, Lu Q, Zhang B, Mane S, Castaldi C, López-Giráldez F, Knight JR, Bamshad MJ, Nickerson DA, Geschwind DH, Chen SSL, Storm PB, Diluna ML, Matouk CC, Orbach DB, Alper SL, Smith ER, Lifton RP, Gunel M, Milewicz DM, Jin SC, Kahle KT. DIAPH1 Variants in Non-East Asian Patients With Sporadic Moyamoya Disease. JAMA Neurol 2021; 78:993-1003. [PMID: 34125151 PMCID: PMC8204259 DOI: 10.1001/jamaneurol.2021.1681] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Importance Moyamoya disease (MMD), a progressive vasculopathy leading to narrowing and ultimate occlusion of the intracranial internal carotid arteries, is a cause of childhood stroke. The cause of MMD is poorly understood, but genetic factors play a role. Several familial forms of MMD have been identified, but the cause of most cases remains elusive, especially among non-East Asian individuals. Objective To assess whether ultrarare de novo and rare, damaging transmitted variants with large effect sizes are associated with MMD risk. Design, Setting, and Participants A genetic association study was conducted using whole-exome sequencing case-parent MMD trios in a small discovery cohort collected over 3.5 years (2016-2019); data were analyzed in 2020. Medical records from US hospitals spanning a range of 1 month to 1.5 years were reviewed for phenotyping. Exomes from a larger validation cohort were analyzed to identify additional rare, large-effect variants in the top candidate gene. Participants included patients with MMD and, when available, their parents. All participants who met criteria and were presented with the option to join the study agreed to do so; none were excluded. Twenty-four probands (22 trios and 2 singletons) composed the discovery cohort, and 84 probands (29 trios and 55 singletons) composed the validation cohort. Main Outcomes and Measures Gene variants were identified and filtered using stringent criteria. Enrichment and case-control tests assessed gene-level variant burden. In silico modeling estimated the probability of variant association with protein structure. Integrative genomics assessed expression patterns of MMD risk genes derived from single-cell RNA sequencing data of human and mouse brain tissue. Results Of the 24 patients in the discovery cohort, 14 (58.3%) were men and 18 (75.0%) were of European ancestry. Three of 24 discovery cohort probands contained 2 do novo (1-tailed Poisson P = 1.1 × 10-6) and 1 rare, transmitted damaging variant (12.5% of cases) in DIAPH1 (mammalian diaphanous-1), a key regulator of actin remodeling in vascular cells and platelets. Four additional ultrarare damaging heterozygous DIAPH1 variants (3 unphased) were identified in 3 other patients in an 84-proband validation cohort (73.8% female, 77.4% European). All 6 patients were non-East Asian. Compound heterozygous variants were identified in ena/vasodilator-stimulated phosphoproteinlike protein EVL, a mammalian diaphanous-1 interactor that regulates actin polymerization. DIAPH1 and EVL mutant probands had severe, bilateral MMD associated with transfusion-dependent thrombocytopenia. DIAPH1 and other MMD risk genes are enriched in mural cells of midgestational human brain. The DIAPH1 coexpression network converges in vascular cell actin cytoskeleton regulatory pathways. Conclusions and Relevance These findings provide the largest collection to date of non-East Asian individuals with sporadic MMD harboring pathogenic variants in the same gene. The results suggest that DIAPH1 is a novel MMD risk gene and impaired vascular cell actin remodeling in MMD pathogenesis, with diagnostic and therapeutic ramifications.
Collapse
Affiliation(s)
- Adam J. Kundishora
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | - Samuel T. Peters
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson
| | - Amélie Pinard
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | - Daniel Duran
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson
| | | | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| | - Danielle F. Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Hannah Smith
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | - Jack Ocken
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | - Ashley Dunbar
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | | | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Rebecca L. Walker
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Phan Q. Duy
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | - Nicholas S. Diab
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Benjamin C. Reeves
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | | | | | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Hsien Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Isabelle Roszko
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Shrikant Mane
- Yale Center for Genome Analysis, West Haven, Connecticut
| | | | | | | | | | | | - Daniel H. Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Shih-Shan Lang Chen
- Division of Neurosurgery, Children's Hospital of Philadelphia, Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Phillip B. Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Michael L. Diluna
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Charles C. Matouk
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Darren B. Orbach
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Edward R. Smith
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
39
|
Lakha R, Montero AM, Jabeen T, Costeas CC, Ma J, Vizcarra CL. Variable Autoinhibition among Deafness-Associated Variants of Diaphanous 1 (DIAPH1). Biochemistry 2021; 60:2320-2329. [PMID: 34279089 DOI: 10.1021/acs.biochem.1c00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the earliest mapped human deafness genes, DIAPH1, encodes the formin DIAPH1. To date, at least three distinct mutations in the C-terminal domains and two additional mutations in the N-terminal region are associated with autosomal dominant hearing loss. The underlying molecular mechanisms are not known, and the role of formins in the inner ear is not well understood. In this study, we use biochemical assays to test the hypotheses that autoinhibition and/or actin assembly activities are disrupted by DFNA1 mutations. Our results indicate that C-terminal mutant forms of DIAPH1 are functional in vitro and promote actin filament assembly. Similarly, N-terminal mutants are well-folded and have quaternary structures and thermal stabilities similar to those of the wild-type (WT) protein. The strength of the autoinhibitory interactions varies widely among mutants, with the ttaa, A265S, and I530S mutations having an affinity similar to that of WT and the 1213x and Δag mutations completely abolishing autoinhibition. These data indicate that, in some cases, hearing loss may be linked to weakened inhibition of actin assembly.
Collapse
Affiliation(s)
- Rabina Lakha
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Angela M Montero
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Tayyaba Jabeen
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Christina C Costeas
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Jia Ma
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christina L Vizcarra
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
40
|
Rabbolini D, Liang HPH, Morel-Kopp MC, Connor D, Whittaker S, Dunkley S, Donikian D, Kondo M, Chen W, Stevenson WS, Campbell H, Joseph J, Ward C, Brighton T, Chen VM. Building platelet phenotypes: diaphanous-related formin 1 (DIAPH1)-related disorder. Platelets 2021; 33:432-442. [PMID: 34223798 DOI: 10.1080/09537104.2021.1937593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Variants of the Diaphanous-Related Formin 1 (DIAPH-1) gene have recently been reported causing inherited macrothrombocytopenia. The essential/"diagnostic" characteristics associated with the disorder are emerging; however, robust and complete criteria are not established. Here, we report the first cases of DIAPH1-related disorder in Australia caused by the autosomal dominant gain-of-function DIAPH1 R1213X variant formed by truncation of the protein within the diaphanous auto-regulatory domain (DAD) with loss of regulatory motifs responsible for autoinhibitory interactions within the DIAPH1 protein. We affirm phenotypic changes induced by the DIAPH1 R1213X variant to include macrothrombocytopenia, early-onset progressive sensorineural hearing loss, and mild asymptomatic neutropenia. High-resolution microscopy confirms perturbations of cytoskeletal dynamics caused by the DIAPH1 variant and we extend the repertoire of changes generated by this variant to include alteration of procoagulant platelet formation and possible dental anomalies.
Collapse
Affiliation(s)
- David Rabbolini
- Department of Haematology, Lismore Base Hospital, Lismore, NSW, Australia.,Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Hai Po Helena Liang
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia
| | - Marie-Christine Morel-Kopp
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - David Connor
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Shane Whittaker
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia
| | - Scott Dunkley
- Department of Haematology, The Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dea Donikian
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Mayuko Kondo
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Walter Chen
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - William S Stevenson
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Heather Campbell
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia
| | - Joanne Joseph
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.,Department of Haematology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Christopher Ward
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Timothy Brighton
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Vivien M Chen
- Platelets, Thrombosis and Cancer Research Laboratory, ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| |
Collapse
|
41
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
42
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
43
|
Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1. Blood Adv 2021; 4:2124-2134. [PMID: 32407474 DOI: 10.1182/bloodadvances.2019001303] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.
Collapse
|
44
|
Heib T, Hermanns HM, Manukjan G, Englert M, Kusch C, Becker IC, Gerber A, Wackerbarth LM, Burkard P, Dandekar T, Balkenhol J, Jahn D, Beck S, Meub M, Dütting S, Stigloher C, Sauer M, Cherpokova D, Schulze H, Brakebusch C, Nieswandt B, Nagy Z, Pleines I. RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes. Cell Rep 2021; 35:109102. [PMID: 33979620 DOI: 10.1016/j.celrep.2021.109102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/20/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and β1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.
Collapse
Affiliation(s)
- Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Heike M Hermanns
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Isabelle Carlotta Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Lou Martha Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johannes Balkenhol
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Jahn
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Deya Cherpokova
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
45
|
Deficiency of ARHGAP21 alters megakaryocytic cell lineage responses and enhances platelet hemostatic function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119012. [PMID: 33727037 DOI: 10.1016/j.bbamcr.2021.119012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
|
46
|
Kaustio M, Nayebzadeh N, Hinttala R, Tapiainen T, Åström P, Mamia K, Pernaa N, Lehtonen J, Glumoff V, Rahikkala E, Honkila M, Olsén P, Hassinen A, Polso M, Al Sukaiti N, Al Shekaili J, Al Kindi M, Al Hashmi N, Almusa H, Bulanova D, Haapaniemi E, Chen P, Suo-Palosaari M, Vieira P, Tuominen H, Kokkonen H, Al Macki N, Al Habsi H, Löppönen T, Rantala H, Pietiäinen V, Zhang SY, Renko M, Hautala T, Al Farsi T, Uusimaa J, Saarela J. Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. J Allergy Clin Immunol 2021; 148:599-611. [PMID: 33662367 DOI: 10.1016/j.jaci.2020.12.656] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Naemeh Nayebzadeh
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Reetta Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Terhi Tapiainen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Katariina Mamia
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Nora Pernaa
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Johanna Lehtonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Folkhälsan Research Center, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Minna Honkila
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Päivi Olsén
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Minttu Polso
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Jalila Al Shekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nadia Al Hashmi
- Department of Clinical and Biochemical Genetics, The Royal Hospital, Muscat, Oman
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Daria Bulanova
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Haapaniemi
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hospital, Oslo, Norway; Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pu Chen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Suo-Palosaari
- Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Päivi Vieira
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Hannu Tuominen
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Hannaleena Kokkonen
- Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Northern Finland Laboratory Centre, Oulu University Hospital, Oulu, Finland
| | - Nabil Al Macki
- Department of Pediatric Neurology, The Royal Hospital, Muscat, Oman
| | - Huda Al Habsi
- Department of General Pediatrics, The Royal Hospital, Muscat, Oman
| | - Tuija Löppönen
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Paris Descartes University, Imagine Institute, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| | - Marjo Renko
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Hautala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
47
|
Volz J, Kusch C, Beck S, Popp M, Vögtle T, Meub M, Scheller I, Heil HS, Preu J, Schuhmann MK, Hemmen K, Premsler T, Sickmann A, Heinze KG, Stegner D, Stoll G, Braun A, Sauer M, Nieswandt B. BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. J Clin Invest 2021; 130:6064-6079. [PMID: 32750041 DOI: 10.1172/jci136457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx in platelets. The Ca2+ sensor stromal interaction molecule 1 (STIM1) triggers SOCE by forming punctate structures with the Ca2+ channel Orai1 and the inositol trisphosphate receptor (IP3R), thereby linking the endo-/sarcoplasmic reticulum to the plasma membrane. Here, we identified the BAR domain superfamily member bridging integrator 2 (BIN2) as an interaction partner of STIM1 and IP3R in platelets. Deletion of platelet BIN2 (Bin2fl/fl,Pf4-Cre mice) resulted in reduced Ca2+ store release and Ca2+ influx in response to all tested platelet agonists. These defects were a consequence of impaired IP3R function in combination with defective STIM1-mediated SOC channel activation, while Ca2+ store content and agonist-induced IP3 production were unaltered. This severely defective Ca2+ signaling translated into impaired thrombus formation under flow and a protection of Bin2fl/fl,Pf4-Cre mice in models of arterial thrombosis and stroke. Our results establish BIN2 as a central regulator of platelet activation in thrombosis and thrombo-inflammatory disease settings.
Collapse
Affiliation(s)
- Julia Volz
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Popp
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Inga Scheller
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Hannah S Heil
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Julia Preu
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - Katherina Hemmen
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Thomas Premsler
- Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany.,Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Attila Braun
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany.,Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Vainchenker W, Arkoun B, Basso-Valentina F, Lordier L, Debili N, Raslova H. Role of Rho-GTPases in megakaryopoiesis. Small GTPases 2021; 12:399-415. [PMID: 33570449 PMCID: PMC8583283 DOI: 10.1080/21541248.2021.1885134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes (MKs) are the bone marrow (BM) cells that generate blood platelets by a process that requires: i) polyploidization responsible for the increased MK size and ii) cytoplasmic organization leading to extension of long pseudopods, called proplatelets, through the endothelial barrier to allow platelet release into blood. Low level of localized RHOA activation prevents actomyosin accumulation at the cleavage furrow and participates in MK polyploidization. In the platelet production, RHOA and CDC42 play opposite, but complementary roles. RHOA inhibits both proplatelet formation and MK exit from BM, whereas CDC42 drives the development of the demarcation membranes and MK migration in BM. Moreover, the RhoA or Cdc42 MK specific knock-out in mice and the genetic alterations in their down-stream effectors in human induce a thrombocytopenia demonstrating their key roles in platelet production. A better knowledge of Rho-GTPase signalling is thus necessary to develop therapies for diseases associated with platelet production defects. Abbreviations: AKT: Protein Kinase BARHGEF2: Rho/Rac Guanine Nucleotide Exchange Factor 2ARP2/3: Actin related protein 2/3BM: Bone marrowCDC42: Cell division control protein 42 homologCFU-MK: Colony-forming-unit megakaryocyteCIP4: Cdc42-interacting protein 4mDIA: DiaphanousDIAPH1; Protein diaphanous homolog 1ECT2: Epithelial Cell Transforming Sequence 2FLNA: Filamin AGAP: GTPase-activating proteins or GTPase-accelerating proteinsGDI: GDP Dissociation InhibitorGEF: Guanine nucleotide exchange factorHDAC: Histone deacetylaseLIMK: LIM KinaseMAL: Megakaryoblastic leukaemiaMARCKS: Myristoylated alanine-rich C-kinase substrateMKL: Megakaryoblastic leukaemiaMLC: Myosin light chainMRTF: Myocardin Related Transcription FactorOTT: One-Twenty Two ProteinPACSIN2: Protein Kinase C And Casein Kinase Substrate In Neurons 2PAK: P21-Activated KinasePDK: Pyruvate Dehydrogenase kinasePI3K: Phosphoinositide 3-kinasePKC: Protein kinase CPTPRJ: Protein tyrosine phosphatase receptor type JRAC: Ras-related C3 botulinum toxin substrate 1RBM15: RNA Binding Motif Protein 15RHO: Ras homologousROCK: Rho-associated protein kinaseSCAR: Suppressor of cAMP receptorSRF: Serum response factorSRC: SarcTAZ: Transcriptional coactivator with PDZ motifTUBB1: Tubulin β1VEGF: Vascular endothelial growth factorWAS: Wiskott Aldrich syndromeWASP: Wiskott Aldrich syndrome proteinWAVE: WASP-family verprolin-homologous proteinWIP: WASP-interacting proteinYAP: Yes-associated protein
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,GrEX, Sorbonne Paris Cité, Paris, France
| | - Brahim Arkoun
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,GrEX, Sorbonne Paris Cité, Paris, France
| | - Francesca Basso-Valentina
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France.,Université Sorbonne Paris Cité/Université Paris Dideront, Paris, France
| | - Larissa Lordier
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| | - Najet Debili
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| | - Hana Raslova
- INSERM, UMR 1287, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.,Université Paris Saclay, UMR 1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, UMR 1287, Gustave Roussy, Villejuif, France
| |
Collapse
|
49
|
Learning the Ropes of Platelet Count Regulation: Inherited Thrombocytopenias. J Clin Med 2021; 10:jcm10030533. [PMID: 33540538 PMCID: PMC7867147 DOI: 10.3390/jcm10030533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Inherited thrombocytopenias (IT) are a group of hereditary disorders characterized by a reduced platelet count sometimes associated with abnormal platelet function, which can lead to bleeding but also to syndromic manifestations and predispositions to other disorders. Currently at least 41 disorders caused by mutations in 42 different genes have been described. The pathogenic mechanisms of many forms of IT have been identified as well as the gene variants implicated in megakaryocyte maturation or platelet formation and clearance, while for several of them the pathogenic mechanism is still unknown. A range of therapeutic approaches are now available to improve survival and quality of life of patients with IT; it is thus important to recognize an IT and establish a precise diagnosis. ITs may be difficult to diagnose and an initial accurate clinical evaluation is mandatory. A combination of clinical and traditional laboratory approaches together with advanced sequencing techniques provide the highest rate of diagnostic success. Despite advancement in the diagnosis of IT, around 50% of patients still do not receive a diagnosis, therefore further research in the field of ITs is warranted to further improve patient care.
Collapse
|
50
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|