1
|
Penã Avila J, Simmons J, Figueiredo MC, Turner M, Cordeiro-Santos M, Rolla VC, Kristki AL, Gangula R, Nochowicz C, Ram R, Bailin S, Mallal S, Gaudieri S, Alves E, Barreto-Duarte BB, Queiroz ATL, Nakaya HI, Andrade BB, Sterling TR, Kalams SA. Single-cell immune profiling at time of M. tuberculosis exposure reveals antigen-reactive programs that predict progression to active disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.29.25326433. [PMID: 40343021 PMCID: PMC12060959 DOI: 10.1101/2025.04.29.25326433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Early delineation of host immune responses at the moment of Mycobacterium tuberculosis (Mtb) exposure and infection is critical to identify individuals at risk of progressing to active tuberculosis (TB). We performed single-cell transcriptional profiling of over 500,000 peripheral blood mononuclear cells from 57 HIV-negative close contacts of TB cases in Brazil, including 25 individuals who developed active disease within two years (progressors) and 32 matched controls who remained disease-free (non-progressors). Cells were stimulated separately with the MTB300 peptide pool or irradiated Mtb (gRV), enabling resolution of antigen-reactive states across adaptive (CD4⁺ T-cells expressing abundant cytokines including IFNG, TNF, and IL17F) and trained-innate lineages, such as NK cells (producing GM-CSF, IFNG, CCL3, CCL4) and monocytes (GM-CSF, IL12B, IL36G). Progressors exhibited early hyper-metabolic CD4⁺ T-cell programs and proliferative NK cell signatures, whereas non-progressors preferentially upregulated complement activation and CCL3/4-driven chemokine signaling in monocytes. Notably, among progressors, gene expression profiles within antigen-reactive CD4⁺ T-cells and monocytes predicted the timing of progression to active TB. Together, these findings reveal high frequencies and functional diversity of antigen-reactive cells in Mtb-exposed individuals and nominate tractable immune correlates for the rational design of next-generation TB vaccines.
Collapse
|
2
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Jacques C, Marchand F, Chatelais M, Brulefert A, Floris I. Understanding the Mode of Action of Several Active Ingredients from the Micro-Immunotherapy Medicine 2LZONA ®. J Inflamm Res 2025; 18:4267-4290. [PMID: 40134411 PMCID: PMC11934876 DOI: 10.2147/jir.s498930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction Varicella-zoster virus (VZV) affects over 90% of the global population. The initial encounter with VZV, often in the early years of childhood, results in varicella. From latency, VZV can reactivate in later stages of life, leading to the development of herpes zoster. Considering the importance of host immune responses in preventing reactivation and clinical manifestations associated with VZV infection, a therapy that sustains the immune system could be of great interest. Objective The present work aimed to set the basis of the possible mode of action of 2LZONA®, a micro-immunotherapy medicine composed of five different capsules. Thus, the effects of several active substances employed in this medicine were assessed in human primary immune-related cells. Results and Discussion Our results showed that DNA (8 CH) and RNA (8 CH), two active substances used in 2LZONA, displayed phagocytosis-enhancing capabilities in granulocytes and contained sub-micron particles that could explain, at least partially, the observed effect. These two active substances tested singularly and together with other actives of 2LZONA's capsules, modulated the proliferation of immature, transitory, and mature subsets of natural killer (NK) cells in an IL-15-like pattern, suggesting an enhancement of their activation levels. Moreover, the tested items of 2LZONA increased the secretion of IL-2, IL-6, IL-13, and TNF-α in human peripheral blood mononuclear cells (PBMCs). Furthermore, the proliferation of PBMCs-derived NK cells, intermediate monocytes, and neutrophils was slightly increased by this treatment. In CD3 and CD3/CD28 pre-primed conditions, actives present in one capsule of 2LZONA enhanced the secretion of IL-6 and TNF-α. Finally, one capsule of 2LZONA reduced the expression of human leukocyte antigen (HLA) in IFN-inflamed endothelial cells. Overall, these data provide, for the first time, preliminary experimental evidence of the mechanisms of action of some of the active ingredients employed in 2LZONA capsules.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’life France, Moncoutant-Sur-Sevre, 79320, France
| | | | | | | | - Ilaria Floris
- Preclinical Research Department, Labo’life France, Moncoutant-Sur-Sevre, 79320, France
| |
Collapse
|
4
|
Li Y, Guan X, Lan T, Zhang ZR, Zhang Y, Jiang S, Li M, Shi FD, Jin WN. The miR-451a facilitates natural killer cell-associated immune deficiency after ischemic stroke. J Cereb Blood Flow Metab 2025:271678X251321641. [PMID: 39985210 PMCID: PMC11846095 DOI: 10.1177/0271678x251321641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Ischemic stroke is a devastating neurological disease. Brain ischemia impairs systemic immune responses and heightens susceptibility to infections, though the underlying mechanisms remain incompletely understood. Natural killer (NK) cells exhibited decreased frequency and compromised function after acute stage of stroke, resulting in NK cell-associated immune deficiency and increased risk of infection. MicroRNAs (miRNAs) are post-transcriptional molecular modulators. Our previous study revealed a significant upregulation of miR-451a in circulating NK cells from patients with ischemic stroke, but its effects and precise mechanism on immune defense remain elusive. In this study, we observed a substantial elevation of miR-451a level in brain and splenic NK cells in murine model of ischemic stroke miR-451a mimics suppressed NK cell activation and cytotoxicity within the ischemic brain and periphery, including a downregulation of activation marker CD69, and reduced production of effector molecules IFN-γ and perforin. Conversely, miR-451a inhibitor preserved NK cell activation and cytotoxicity, rescuing local inflammation, and reducing bacterial burden in the lung. Pharmacological inhibition of Akt-mTOR pathway with AZD8055 effectively blocked the impacts of miR-451a on NK cell functions. Collectively, these findings suggest miR-451a negatively regulates NK cell cytotoxicity in both the brain and periphery, which could be re-addressed by modulating the Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiuchen Guan
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Tian Lan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuo-ran Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Minshu Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wang L, Wang Y, He X, Mo Z, Zhao M, Liang X, Hu K, Wang K, Yue Y, Mo G, Zhou Y, Hong R, Zhou L, Feng Y, Chen N, Shen L, Song X, Zeng W, Jia X, Shao Y, Zhang P, Xu M, Wang D, Hu Y, Yang L, Huang H. CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells. Cell Rep Med 2025; 6:101889. [PMID: 39793572 PMCID: PMC11866492 DOI: 10.1016/j.xcrm.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/15/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025]
Abstract
Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF). Multi-gene-edited 70CAR-iNK cells exhibit robust cytotoxicity against a wide range of tumors. In vivo xenograft models further demonstrate their potency in effectively targeting lymphoma and renal cancers. Furthermore, we find that recipient alloreactive T cells express high levels of CD70 and can be eliminated by 70CAR-iNK cells, leading to improved survival and persistence of iNK cells. With the capability of tumor targeting and the potential to eliminate alloreactive T cells, 70CAR-iNK cells are potent candidates for next-generation universal immune cell therapy.
Collapse
Affiliation(s)
- Linqin Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | | | - Zhuomao Mo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Mengyu Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xinghua Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Kejia Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Kexin Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yanan Yue
- Qihan Biotech Inc., Hangzhou 311200, China
| | - Guolong Mo
- Qihan Biotech Inc., Hangzhou 311200, China
| | | | - Ruimin Hong
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Linghui Zhou
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Youqin Feng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Nian Chen
- Qihan Biotech Inc., Hangzhou 311200, China
| | | | | | | | | | | | - Peng Zhang
- Qihan Biotech Inc., Hangzhou 311200, China
| | - Mengqi Xu
- Qihan Biotech Inc., Hangzhou 311200, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - Luhan Yang
- Qihan Biotech Inc., Hangzhou 311200, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| |
Collapse
|
6
|
Yu X, Pei W, Li B, Sun S, Li W, Wu Q. Immunosenescence, Physical Exercise, and their Implications in Tumor Immunity and Immunotherapy. Int J Biol Sci 2025; 21:910-939. [PMID: 39897036 PMCID: PMC11781184 DOI: 10.7150/ijbs.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Aging is associated with a decline in immune function, termed immunosenescence, which compromises host defences and increases susceptibility to infections and cancer. Physical exercise is widely recognized for its myriad health benefits, including the potential to modulate the immune system. This review explores the bidirectional relationship between immunosenescence and physical exercise, focusing on their interplay in shaping antitumor immunity. We summarize the impact of aging on innate and adaptive immune cells, highlighting alterations that contribute to immunosenescence and cancer development. We further delineate the effects of exercise on immune cell function, demonstrating its potential to mitigate immunosenescence and enhance antitumor responses. We also discuss the implications of immunosenescence for the efficacy of immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapy, and explore the potential benefits of combining exercise with these interventions. Collectively, this review underscores the importance of understanding the complex relationship between immunosenescence, physical exercise, and antitumor immunity, paving the way for the development of innovative strategies to improve cancer outcomes in the aging population.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wei Pei
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Oncology, Shanghai GoBroad Cancer Hospital, Shanghai, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| |
Collapse
|
7
|
Madbouly NA, Kamal SM, El-Amir AM. Chronic artificial light exposure in daytime and reversed light: Dark cycle inhibit anti-apoptotic cytokines and defect Bcl-2 in peripheral lymphoid tissues during acute systemic inflammatory response to lipopolysaccharide. Int Immunopharmacol 2025; 145:113768. [PMID: 39672023 DOI: 10.1016/j.intimp.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/15/2024]
Abstract
AIMS The disturbed light: dark (LD) cycle has been associated with critical complications, including obesity, diabetes and cancer. In the present study, we investigated the chronic effects of artificial light at daytime (AL) and light at night (RAL) after intraperitoneal (i.p.) injection of saline and 0.5 mg/kg lipopolysaccharide (LPS) in male Wistar rats. METHODS Liver and kidney parameters, fasting blood glucose (FBG), melatonin level, immunohistochemical examinations of B-cell lymphoma-2 (Bcl-2) in spleen and mesenteric lymph and serum antiapoptotic cytokines [interleukin (IL-) 2, 7 and 1]. KEY FINDINGS After 16 weeks of a daily disturbed LD cycle, RAL increased body weight, upgraded FBG and altered liver and kidney functions with surprisingly increased daytime plasma melatonin. AL + LPS and RAL + LPS rats suffered significantly higher oxidative-nitrosative stress compared to NL + LPS. Oxidative-nitrosative stress was associated with multi-organ inflammation in hepatic, renal, pancreatic, splenic and mesenteric lymph node tissues due to LPS-induced endotoxemia. Anti-apoptotic Bcl-2 activity in peripheral lymphoid organs (spleen and mesenteric lymph node) was lowered due to AL and RAL regimens. At the same pattern, lowering of antiapoptotic serum levels of IL-2, IL-7 and IL-15 indicate alteration of cell cycle and the shifted ability of cells to undergo apoptosis due to abnormal light pollution. SIGNIFICANCE Here, the increased lymphocyte apoptosis in lymphoid tissues due to disturbed LD cycle defects the host defense, dysregulates the inflammatory immune response and dysregulates the immune tolerance during acute systemic inflammation due to LPS.
Collapse
|
8
|
Dodhiawala PB, Cichocki F. Striking a balance: the Goldilocks effect of CD8α expression on NK cells. J Clin Invest 2024; 134:e182905. [PMID: 39087476 PMCID: PMC11290960 DOI: 10.1172/jci182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
NK cells are cytotoxic innate immune cells involved in antitumor immunity, and they provide a treatment option for patients with acute myeloid leukemia (AML). In this issue of the JCI, Cubitt et al. investigated the role of CD8α, a coreceptor present on approximately 40% of human NK cells. IL-15 stimulation of CD8α- NK cells induced CD8α expression via the RUNX3 transcription factor, driving formation of a unique induced CD8α (iCD8α+) population. iCD8α+ NK cells displayed higher proliferation, metabolic activity, and antitumor cytotoxic function compared with preexisting CD8α+ and CD8α- subsets. Therefore, CD8α expression can be used to define a potential dynamic spectrum of NK cell expansion and function. Because these cells exhibit enhanced tumor control, they may be used to improve in NK cell therapies for patients with AML.
Collapse
MESH Headings
- Humans
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/genetics
- Core Binding Factor Alpha 3 Subunit/genetics
- Core Binding Factor Alpha 3 Subunit/metabolism
- Core Binding Factor Alpha 3 Subunit/immunology
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Interleukin-15/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
Collapse
|
9
|
Kusch N, Storm J, Macioszek A, Kisselmann E, Knabbe C, Kaltschmidt B, Kaltschmidt C. A Critical Role of Culture Medium Selection in Maximizing the Purity and Expansion of Natural Killer Cells. Cells 2024; 13:1148. [PMID: 38994999 PMCID: PMC11240826 DOI: 10.3390/cells13131148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Natural killer (NK) cells hold promise in cancer treatment due to their ability to spontaneously lyse cancer cells. For clinical use, high quantities of pure, functional NK cells are necessary. Combining adherence-based isolation with specialized media showed the unreliability of the isolation method, but demonstrated the superiority of the NK MACS® medium, particularly in suboptimal conditions. Neither human pooled serum, fetal calf serum (FCS), human platelet lysate, nor chemically defined serum replacement could substitute human AB serum. Interleukin (IL-)2, IL-15, IL-21, and combined CD2/NKp46 stimulation were assessed. IL-21 and CD2/NKp46 stimulation increased cytotoxicity, but reduced NK cell proliferation. IL-15 stimulation alone achieved the highest proliferation, but the more affordable IL-2 performed similarly. The RosetteSep™ human NK cell enrichment kit was effective for isolation, but the presence of peripheral blood mononuclear cells (PBMCs) in the culture enhanced NK cell proliferation, despite similar expression levels of CD16, NKp46, NKG2D, and ICAM-1. In line with this, purified NK cells cultured in NK MACS® medium with human AB serum and IL-2 demonstrated high cytotoxicity against primary glioblastoma stem cells.
Collapse
Affiliation(s)
- Neele Kusch
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
| | - Jonathan Storm
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
| | - Antonia Macioszek
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
| | - Ella Kisselmann
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
- Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.M.); (E.K.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33617 Bielefeld, Germany;
| |
Collapse
|
10
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
Cubitt CC, Wong P, Dorando HK, Foltz JA, Tran J, Marsala L, Marin ND, Foster M, Schappe T, Fatima H, Becker-Hapak M, Zhou AY, Hwang K, Jacobs MT, Russler-Germain DA, Mace EM, Berrien-Elliott MM, Payton JE, Fehniger TA. Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation. J Clin Invest 2024; 134:e173602. [PMID: 38805302 PMCID: PMC11291271 DOI: 10.1172/jci173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Collapse
Affiliation(s)
| | - Pamela Wong
- Division of Oncology, Siteman Cancer Center, and
| | - Hannah K. Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Mark Foster
- Division of Oncology, Siteman Cancer Center, and
| | | | - Hijab Fatima
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | - Emily M. Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
12
|
Saeed MA, Peng B, Kim K, Rawat K, Kuehm LM, Siegel ZR, Borkowski A, Habib N, Van Tine B, Sheikh N, Tuyen V, Thorek DLJ, Fehniger TA, Pachynski RK. High-Dimensional Analyses Reveal IL15 Enhances Activation of Sipuleucel-T Lymphocyte Subsets and Reverses Immunoresistance. Cancer Immunol Res 2024; 12:559-574. [PMID: 38407894 DOI: 10.1158/2326-6066.cir-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.
Collapse
Affiliation(s)
- Muhammad A Saeed
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Bo Peng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kevin Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kavita Rawat
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lindsey M Kuehm
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Zoe R Siegel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ariel Borkowski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nabih Habib
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Brian Van Tine
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | | | - Vu Tuyen
- Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Daniel L J Thorek
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
13
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Neo SY, Oliveira MMS, Tong L, Chen Y, Chen Z, Cismas S, Burduli N, Malmerfelt A, Teo JKH, Lam KP, Alici E, Girnita L, Wagner AK, Westerberg LS, Lundqvist A. Natural killer cells drive 4-1BBL positive uveal melanoma towards EMT and metastatic disease. J Exp Clin Cancer Res 2024; 43:13. [PMID: 38191418 PMCID: PMC10775428 DOI: 10.1186/s13046-023-02917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Inflammation in the eye is often associated with aggravated ocular diseases such as uveal melanoma (UM). Poor prognosis of UM is generally associated with high potential of metastatic liver dissemination. A strong driver of metastatic dissemination is the activation of the epithelial-mesenchymal transition (EMT) regulating transcription factor ZEB1, and high expression of ZEB1 is associated with aggressiveness of UM. While ZEB1 expression can be also associated with immune tolerance, the underlying drivers of ZEB1 activation remain unclear. METHODS Transcriptomic, in vitro, ex vivo, and in vivo analyses were used to investigate the impact on clinical prognosis of immune infiltration in the ocular tumor microenvironment. A metastatic liver dissemination model of was developed to address the role of natural killer (NK) cells in driving the migration of UM. RESULTS In a pan-cancer TCGA analysis, natural killer (NK) cells were associated with worse overall survival in uveal melanoma and more abundant in high-risk monosomy 3 tumors. Furthermore, uveal melanoma expressed high levels of the tumor necrosis factor superfamily member 4-1BB ligand, particularly in tumors with monosomy 3 and BAP1 mutations. Tumors expressing 4-1BB ligand induced CD73 expression on NK cells accompanied with the ability to promote tumor dissemination. Through ligation of 4-1BB, NK cells induced the expression of the ZEB1 transcription factor, leading to the formation of liver metastasis of uveal melanoma. CONCLUSIONS Taken together, the present study demonstrates a role of NK cells in the aggravation of uveal melanoma towards metastatic disease.
Collapse
Affiliation(s)
- Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, USA
| | - Ziqing Chen
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Sonia Cismas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nutsa Burduli
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Malmerfelt
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Joey Kay Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Guo Y, Yan S, Zhang W. Translatomics to explore dynamic differences in immunocytes in the tumor microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102037. [PMID: 37808922 PMCID: PMC10551571 DOI: 10.1016/j.omtn.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.
Collapse
Affiliation(s)
- Yilin Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiqi Yan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Wu WC, Shiu C, Tong TK, Leung SO, Hui CW. Suppression of NK Cell Activation by JAK3 Inhibition: Implication in the Treatment of Autoimmune Diseases. J Immunol Res 2023; 2023:8924603. [PMID: 38106519 PMCID: PMC10723930 DOI: 10.1155/2023/8924603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.
Collapse
Affiliation(s)
- Wai Chung Wu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Carol Shiu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Tak Keung Tong
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Shui On Leung
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Chin Wai Hui
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
17
|
Ko E, Yoon T, Lee Y, Kim J, Park YB. ADSC secretome constrains NK cell activity by attenuating IL-2-mediated JAK-STAT and AKT signaling pathway via upregulation of CIS and DUSP4. Stem Cell Res Ther 2023; 14:329. [PMID: 37964351 PMCID: PMC10648656 DOI: 10.1186/s13287-023-03516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have immunomodulatory properties and therapeutic effects on autoimmune diseases through their secreted factors, referred to as the secretome. However, the specific key factors of the MSC secretome and their mechanisms of action in immune cells have not been fully determined. Most in vitro experiments are being performed using immune cells, but experiments using natural killer (NK) cells have been neglected, and a few studies using NK cells have shown discrepancies in results. NK cells are crucial elements of the immune system, and adjustment of their activity is essential for controlling various pathological conditions. The aim of this study was to elucidate the role of the adipose tissue-derived stem cell (ADSC) secretome on NK cell activity. METHODS To obtain the ADSC secretome, we cultured ADSCs in medium and concentrated the culture medium using tangential flow filtration (TFF) capsules. We assessed NK cell viability and proliferation using CCK-8 and CFSE assays, respectively. We analyzed the effects of the ADSC secretome on NK cell activity and pathway-related proteins using a combination of flow cytometry, ELISA, cytotoxicity assay, CD107a assay, western blotting, and quantitative real-time PCR. To identify the composition of the ADSC secretome, we performed LC-MS/MS profiling and bioinformatics analysis. To elucidate the molecular mechanisms involved, we used mRNA sequencing to profile the transcriptional expression of human blood NK cells. RESULTS The ADSC secretome was found to restrict IL-2-mediated effector function of NK cells while maintaining proliferative potency. This effect was achieved through the upregulation of the inhibitory receptor CD96, as well as downregulation of activating receptors and IL-2 receptor subunits IL-2Rα and IL-2Rγ. These changes were associated with attenuated JAK-STAT and AKT pathways in NK cells, which were achieved through the upregulation of cytokine-inducible SH2-containing protein (CIS, encoded by Cish) and dual specificity protein phosphatase 4 (DUSP4). Furthermore, proteomic analysis revealed twelve novel candidates associated with the immunomodulatory effects of MSCs. CONCLUSIONS Our findings reveal a detailed cellular outcome and regulatory mechanism of NK cell activity by the ADSC secretome and suggest a therapeutic tool for treating NK-mediated inflammatory and autoimmune diseases using the MSC secretome.
Collapse
Affiliation(s)
- Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoojin Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jongsun Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Ciulean IS, Fischer J, Quaiser A, Bach C, Abken H, Tretbar US, Fricke S, Koehl U, Schmiedel D, Grunwald T. CD44v6 specific CAR-NK cells for targeted immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2023; 14:1290488. [PMID: 38022580 PMCID: PMC10667728 DOI: 10.3389/fimmu.2023.1290488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major challenge for current therapies. CAR-T cells have shown promising results in blood cancers, however, their effectiveness against solid tumors remains a hurdle. Recently, CD44v6-directed CAR-T cells demonstrated efficacy in controlling tumor growth in multiple myeloma and solid tumors such as HNSCC, lung and ovarian adenocarcinomas. Apart from CAR-T cells, CAR-NK cells offer a safe and allogenic alternative to autologous CAR-T cell therapy. In this paper, we investigated the capacity of CAR-NK cells redirected against CD44v6 to execute cytotoxicity against HNSCC. Anti-CD44v6 CAR-NK cells were generated from healthy donor peripheral blood-derived NK cells using gamma retroviral vectors (gRVs). The NK cell transduction was optimized by exploring virus envelope proteins derived from the baboon endogenous virus envelope (BaEV), feline leukemia virus (FeLV, termed RD114-TR) and gibbon ape leukemia virus (GaLV), respectively. BaEV pseudotyped gRVs induced the highest transduction rate compared to RD114-TR and GaLV envelopes as measured by EGFP and surface CAR expression of transduced NK cells. CAR-NK cells showed a two- to threefold increase in killing efficacy against various HNSCC cell lines compared to unmodified, cytokine-expanded primary NK cells. Anti-CD44v6 CAR-NK cells were effective in eliminating tumor cell lines with high and low CD44v6 expression levels. Overall, the improved cytotoxicity of CAR-NK cells holds promise for a therapeutic option for the treatment of HNSCC. However, further preclinical trials are necessary to test in vivo efficacy and safety, as well to optimize the treatment regimen of anti-CD44v6 CAR-NK cells against solid tumors.
Collapse
Affiliation(s)
- Ioana Sonya Ciulean
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Joe Fischer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andrea Quaiser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Christoph Bach
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Regensburg, Germany
| | - Uta Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
19
|
Mohammadian Gol T, Kim M, Sinn R, Ureña-Bailén G, Stegmeyer S, Gratz PG, Zahedipour F, Roig-Merino A, Antony JS, Mezger M. CRISPR-Cas9-Based Gene Knockout of Immune Checkpoints in Expanded NK Cells. Int J Mol Sci 2023; 24:16065. [PMID: 38003255 PMCID: PMC10671270 DOI: 10.3390/ijms242216065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Natural killer (NK) cell immunotherapy has emerged as a novel treatment modality for various cancer types, including leukemia. The modulation of inhibitory signaling pathways in T cells and NK cells has been the subject of extensive investigation in both preclinical and clinical settings in recent years. Nonetheless, further research is imperative to optimize antileukemic activities, especially regarding NK-cell-based immunotherapies. The central scientific question of this study pertains to the potential for boosting cytotoxicity in expanded and activated NK cells through the inhibition of inhibitory receptors. To address this question, we employed the CRISPR-Cas9 system to target three distinct inhibitory signaling pathways in NK cells. Specifically, we examined the roles of A2AR within the metabolic purinergic signaling pathway, CBLB as an intracellular regulator in NK cells, and the surface receptors NKG2A and CD96 in enhancing the antileukemic efficacy of NK cells. Following the successful expansion of NK cells, they were transfected with Cas9+sgRNA RNP to knockout A2AR, CBLB, NKG2A, and CD96. The analysis of indel frequencies for all four targets revealed good knockout efficiencies in expanded NK cells, resulting in diminished protein expression as confirmed by flow cytometry and Western blot analysis. Our in vitro killing assays demonstrated that NKG2A and CBLB knockout led to only a marginal improvement in the cytotoxicity of NK cells against AML and B-ALL cells. Furthermore, the antileukemic activity of CD96 knockout NK cells did not yield significant enhancements, and the blockade of A2AR did not result in significant improvement in killing efficiency. In conclusion, our findings suggest that CRISPR-Cas9-based knockout strategies for immune checkpoints might not be sufficient to efficiently boost the antileukemic functions of expanded (and activated) NK cells and, at the same time, point to the need for strong cellular activating signals, as this can be achieved, for example, via transgenic chimeric antigen receptor expression.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Miso Kim
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Ralph Sinn
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Guillermo Ureña-Bailén
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Sarah Stegmeyer
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Paul Gerhard Gratz
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Fatemeh Zahedipour
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | | | - Justin S. Antony
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Markus Mezger
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| |
Collapse
|
20
|
Gao Y, Li W, Wang Z, Zhang C, He Y, Liu X, Tang K, Zhang W, Long Q, Liu Y, Zhang J, Zhang B, Zhang L. SEL1L preserves CD8 + T-cell survival and homeostasis by fine-tuning PERK signaling and the IL-15 receptor-mediated mTORC1 axis. Cell Mol Immunol 2023; 20:1232-1250. [PMID: 37644166 PMCID: PMC10541435 DOI: 10.1038/s41423-023-01078-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
SEL1L-mediated endoplasmic reticulum-associated degradation (ERAD) plays critical roles in controlling protein homeostasis by degrading misfolded or terminal unfolded proteins. However, it remains unclear how SEL1L regulates peripheral T-cell survival and homeostasis. Herein, we found that SEL1L deficiency led to a greatly reduced frequency and number of mature T cells, which was further validated by adoptive transfer experiments or bone marrow chimera experiments, accompanied by the induction of multiple forms of cell death. Furthermore, SEL1L deficiency selectively disrupted naïve CD8+ T-cell homeostasis, as indicated by the severe loss of the naïve T-cell subset but an increase in the memory T-cell subset. We also found that SEL1L deficiency fueled mTORC1/c-MYC activation and induced a metabolic shift, which was largely attributable to enhanced expression of the IL-15 receptor α and β chains. Mechanistically, single-cell transcriptomic profiling and biochemical analyses further revealed that Sel1l-/- CD8+ T cells harbored excessive ER stress, particularly aberrant activation of the PERK-ATF4-CHOP-Bim pathway, which was alleviated by supplementing IL-7 or IL-15. Importantly, PERK inhibition greatly resolved the survival defects of Sel1l-/- CD8+ T cells. In addition, IRE1α deficiency decreased mTORC1 signaling in Sel1l-/- naïve CD8+ T cells by downregulating the IL-15 receptor α chain. Altogether, these observations suggest that the ERAD adaptor molecule SEL1L acts as an important checkpoint for preserving the survival and homeostasis of peripheral T cells by regulating the PERK signaling cascade and IL-15 receptor-mediated mTORC1 axis.
Collapse
Affiliation(s)
- Yafeng Gao
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Zhenghao Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Yaping He
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowei Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Kexin Tang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jinping Zhang
- Institute of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
21
|
Howard JN, Bosque A. IL-15 and N-803 for HIV Cure Approaches. Viruses 2023; 15:1912. [PMID: 37766318 PMCID: PMC10537516 DOI: 10.3390/v15091912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In spite of the advances in antiretroviral therapy to treat HIV infection, the presence of a latent reservoir of HIV-infected cells represents the largest barrier towards finding a cure. Among the different strategies being pursued to eliminate or reduce this latent reservoir, the γc-cytokine IL-15 or its superagonist N-803 are currently under clinical investigation, either alone or with other interventions. They have been shown to reactivate latent HIV and enhance immune effector function, both of which are potentially required for effective reduction of latent reservoirs. In here, we present a comprehensive literature review of the different in vitro, ex vivo, and in vivo studies conducted to date that are aimed at targeting HIV reservoirs using IL-15 and N-803.
Collapse
Affiliation(s)
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, USA;
| |
Collapse
|
22
|
Nakazawa T, Morimoto T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Ouji N, Yamada S, Nakagawa I, Park YS, Ito T, Nakase H, Tsujimura T. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma. J Exp Clin Cancer Res 2023; 42:205. [PMID: 37563692 PMCID: PMC10413513 DOI: 10.1186/s13046-023-02770-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor and has "immunologically cold" features. Changing GBM to an "immunologically hot" tumor requires a strong trigger that induces initial immune responses in GBM. Allogeneic natural killer cells (NKCs) have gained considerable attention as promising immunotherapeutic tools against cancer, where gene-edited NKCs would result in effective anti-cancer treatment. The present study focused on the immune checkpoint molecule cytokine-inducible SH2-containing protein (CISH, or CIS) as a critical negative regulator in NKCs. METHODS The GBM tumor environment featured with immunological aspect was analyzed with Cancer immunogram and GlioVis. We generated human primary CIS-deleted NKCs (NK dCIS) using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) with single guide RNA targeting genome sites on CIS coding exons. The genome-edited NKCs underwent microarray with differential expression analysis and gene set enrichment analysis (GSEA). The anti-GBM activity of the genome-edited NKCs was evaluated by apoptosis induction effects against allogeneic GBM cells and spheroids. We further detected in vivo antitumor effects using xenograft brain tumor mice. RESULTS We successfully induced human CIS-deleted NKCs (NK dCIS) by combining our specific human NKC expansion method available for clinical application and genome editing technology. CIS gene-specific guide RNA/Cas9 protein complex suppressed CIS expression in the expanded NKCs with high expansion efficacy. Comprehensive gene expression analysis demonstrated increased expression of 265 genes and decreased expression of 86 genes in the NK dCIS. Gene set enrichment analysis revealed that the enriched genes were involved in NKC effector functions. Functional analysis revealed that the NK dCIS had increased interferon (IFN)ɤ and tumor necrosis factor (TNF) production. CIS deletion enhanced NKC-mediated apoptosis induction against allogeneic GBM cells and spheroids. Intracranial administration of the allogeneic NKCs prolonged the overall survival of xenograft brain tumor mice. Furthermore, the NK dCIS extended the overall survival of the mice. CONCLUSION The findings demonstrated the successful induction of human primary NK dCIS with CRISPR/Cas9 with efficient expansion. CIS deletion enhanced the NKC-mediated anti-tumor effects in allogeneic GBM and could be a promising immunotherapeutic alternative for patients with GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Grandsoul Research Institute for Immunology, Inc, 8-1 Matsui, Uda, Nara, 634-8522, Japan.
- Clinic Grandsoul Nara, Uda, Nara, Japan.
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan.
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsutoshi Nakamura
- Clinic Grandsoul Nara, Uda, Nara, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Noriko Ouji
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Young Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc, 8-1 Matsui, Uda, Nara, 634-8522, Japan
- Clinic Grandsoul Nara, Uda, Nara, Japan
| |
Collapse
|
23
|
Renauer P, Park JJ, Bai M, Acosta A, Lee WH, Lin GH, Zhang Y, Dai X, Wang G, Errami Y, Wu T, Clark P, Ye L, Yang Q, Chen S. Immunogenetic Metabolomics Reveals Key Enzymes That Modulate CAR T-cell Metabolism and Function. Cancer Immunol Res 2023; 11:1068-1084. [PMID: 37253111 PMCID: PMC10527769 DOI: 10.1158/2326-6066.cir-22-0565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/26/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we investigated whether it is possible to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism whereby cancer cells suppress T-cell function by generating a metabolically unfavorable tumor microenvironment (TME). In an in silico screen, we identified ADA and PDK1 as metabolic regulators. We then showed that overexpression (OE) of these genes enhanced the cytolysis of CD19-specific chimeric antigen receptor (CAR) T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampened this effect. ADA-OE in CAR T cells improved cancer cytolysis under high concentrations of adenosine, the ADA substrate, and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics analysis of these CAR T cells revealed alterations of global gene expression and metabolic signatures in both ADA- and PDK1-engineered CAR T cells. Functional and immunologic analyses demonstrated that ADA-OE increased proliferation and decreased exhaustion in CD19-specific and HER2-specific CAR T cells. ADA-OE improved tumor infiltration and clearance by HER2-specific CAR T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR T cells and reveal potential targets for improving CAR T-cell therapy.
Collapse
Affiliation(s)
- Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
| | - Jonathan J. Park
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- M.D.-Ph.D. Program, Yale University, West Haven, Connecticut, USA
| | - Meizhu Bai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Arianny Acosta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Won-Ho Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Guang Han Lin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Youssef Errami
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Tulane University, New Orleans, LA, USA
| | - Terence Wu
- West Campus Analytical Core, Mass Spectrometry/Proteomics Facility, West Haven, Connecticut, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Nanjing University, Nanjing, Jiangsu, China
| | - Quanjun Yang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Present Address: Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Center for Cancer Systems Biology, Yale University, West Haven, Connecticut, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- M.D.-Ph.D. Program, Yale University, West Haven, Connecticut, USA
- Immunobiology Program, Yale University, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Wu-Tsai Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Kaulfuss M, Mietz J, Fabri A, Vom Berg J, Münz C, Chijioke O. The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells. Sci Rep 2023; 13:10555. [PMID: 37386090 PMCID: PMC10310841 DOI: 10.1038/s41598-023-37779-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Human natural killer (NK) cells are cytotoxic effector cells that are increasingly harnessed in cancer immunotherapy. NKG2A/CD94 is an inhibitory receptor on NK cells that has established regulatory functions in the direct interaction with target cells when engaged with its ligand, the non-classical HLA class I molecule HLA-E. Here, we confirmed NKG2A as a checkpoint molecule in primary human NK cells and identified a novel role for NKG2A in maintaining NK cell expansion capacity by dampening both proliferative activity and excessive activation-induced cell death. Maintenance of NK cell expansion capacity might contribute to the preferential accumulation of human NKG2A+ NK cells after hematopoietic cell transplantation and enrichment of functionally impaired NK cells in human cancers. Functional silencing of NKG2A for cancer immunotherapy is highly attractive but will need to consider that this might also lead to a reduced survival by driving activation-induced cell death in targeted NK cells.
Collapse
Affiliation(s)
- Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Astrid Fabri
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zürich, Schlieren, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
25
|
Trinh T, Adams WA, Calescibetta A, Tu N, Dalton R, So T, Wei M, Ward G, Kostenko E, Christiansen S, Cen L, McLemore A, Reed K, Whitting J, Gilvary D, Blanco NL, Segura CM, Nguyen J, Kandell W, Chen X, Cheng P, Wright GM, Cress WD, Liu J, Wright KL, Wei S, Eksioglu EA. CX3CR1 deficiency-induced TIL tumor restriction as a novel addition for CAR-T design in solid malignancies. iScience 2023; 26:106443. [PMID: 37070068 PMCID: PMC10105289 DOI: 10.1016/j.isci.2023.106443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.
Collapse
Affiliation(s)
- ThuLe Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Max Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Grace Ward
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Bioinformatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amy McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kayla Reed
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Junmin Whitting
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neale Lopez Blanco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran Segura
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Nguyen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wendy Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gabriela M. Wright
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W. Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinghong Liu
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Metabolic regulation of NK cell function: implications for immunotherapy. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00020. [PMID: 36710923 PMCID: PMC9869966 DOI: 10.1097/in9.0000000000000020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes capable of rapidly responding to tumors and infection without prior sensitization. There is increasing interest and success in harnessing NK cell function for the treatment of disease, in particular cancers. NK cell activation is dependent on integration of signals through cytokine and germline-encoded activating and inhibitory receptors. The availability of metabolic fuels and pathways is required for NK effector functions including proliferation, killing, and production of interferon gamma (IFN-γ). An understanding of NK cell immunometabolism is thus essential for developing immunotherapy approaches that will allow for optimal effector functions in patients. Studies in mice and humans have demonstrated stimulation-dependent metabolic changes that are required for NK cell function. Here we review the most recent findings in NK cell immunometabolism relevant to disease models and translation to therapy of patients.
Collapse
|
28
|
Zhang X, Jiang D, Li S, Zhang X, Zheng W, Cheng B. A signature-based classification of lung adenocarcinoma that stratifies tumor immunity. Front Oncol 2023; 12:1023833. [PMID: 36713530 PMCID: PMC9878554 DOI: 10.3389/fonc.2022.1023833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Immune-related subgroup classification in immune checkpoint blockade (ICB) therapy is largely inconclusive in lung adenocarcinoma (LUAD). Materials and methods First, the single-sample Gene Set Enrichment Analysis (ssGSEA) and K-means algorithms were used to identify immune-based subtypes for the LUAD cohort based on the immunogenomic profiling of 29 immune signatures from The Cancer Genome Atlas (TCGA) database (n = 504). Second, we examined the prognostic and predictive value of immune-based subtypes using bioinformatics analysis. Survival analysis and additional COX proportional hazards regression analysis were conducted for LUAD. Then, the immune score, tumor-infiltrating immune cells (TIICs), and immune checkpoint expression of the three subtypes were analyzed. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of the differentially expressed genes (DEGs) between three immune-based subtypes were subsequently analyzed for functional enrichment pathways. Result A total of three immune-based subtypes with distinct immune signatures have been identified for LUAD and designated as cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). Patients in C3 had higher stromal, immune, and ESTIMATE scores, whereas those in C1 had the opposite. Patients in C1 had an enrichment of macrophages M0 and activation of dendritic cells, whereas tumors in C3 had an enrichment of CD8+ T cells, activation of CD4+ memory T cells, and macrophages M1. C3 had a higher immune cell infiltration and a better survival prognosis than other subtypes. Furthermore, patients in C3 had higher expression levels of immune checkpoint proteins such as PD-L1, PD1, CTLA4, LAG3, IDO1, and HAVCR2. No significant differences were found in cluster TMB scores. We also found that immune-related pathways were enriched in C3. Conclusion LUAD subtypes based on immune signatures may aid in the development of novel treatment strategies for LUAD.
Collapse
|
29
|
Oh BLZ, Chan LWY, Chai LYA. Manipulating NK cellular therapy from cancer to invasive fungal infection: promises and challenges. Front Immunol 2023; 13:1044946. [PMID: 36969979 PMCID: PMC10034767 DOI: 10.3389/fimmu.2022.1044946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
The ideal strategy to fight an infection involves both (i) weakening the invading pathogen through conventional antimicrobial therapy, and (ii) strengthening defense through the augmentation of host immunity. This is even more pertinent in the context of invasive fungal infections whereby the majority of patients have altered immunity and are unable to mount an appropriate host response against the pathogen. Natural killer (NK) cells fit the requirement of an efficient, innate executioner of both tumour cells and pathogens – their unique, targeted cell killing mechanism, combined with other arms of the immune system, make them potent effectors. These characteristics, together with their ready availability (given the various sources of extrinsic NK cells available for harvesting), make NK cells an attractive choice as adoptive cellular therapy against fungi in invasive infections. Improved techniques in ex vivo NK cell activation with expansion, and more importantly, recent advances in genetic engineering including state-of-the-art chimeric antigen receptor platform development, have presented an opportune moment to harness this novel therapeutic as a key component of a multipronged strategy against invasive fungal infections.
Collapse
Affiliation(s)
- Bernice Ling Zhi Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Louis Wei Yong Chan
- Clinician Scientist Academy, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- *Correspondence: Louis Yi Ann Chai,
| |
Collapse
|
30
|
Osuna-Espinoza KY, Rosas-Taraco AG. Metabolism of NK cells during viral infections. Front Immunol 2023; 14:1064101. [PMID: 36742317 PMCID: PMC9889541 DOI: 10.3389/fimmu.2023.1064101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Collapse
Affiliation(s)
- Kenia Y Osuna-Espinoza
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Adrián G Rosas-Taraco
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
31
|
Chen Z, Tong L, Neo SY, Li S, Gao J, Schlisio S, Lundqvist A. CD25 bright NK cells display superior function and metabolic activity under regulatory T cell-mediated suppression. Oncoimmunology 2023; 12:2175517. [PMID: 36970070 PMCID: PMC10038043 DOI: 10.1080/2162402x.2023.2175517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Infusion of natural killer (NK) cells is an attractive therapeutic modality in patients with cancer. However, the activity of NK cells is regulated by several mechanisms operating within solid tumors. Regulatory T (Treg) cells suppress NK cell activity through various mechanisms including deprivation of IL-2 via the IL-2 receptor alpha (CD25). Here, we investigate CD25 expression on NK cells to confer persistence in Treg cells containing solid tumor models of renal cell carcinoma (RCC). Compared with IL-2, stimulation with IL-15 increases the expression of CD25 resulting in enhanced response to IL-2 as evidenced by increased phosphorylation of STAT5. Compared with CD25dim NK cells, CD25bright NK cells isolated from IL-15 primed NK cells display increased proliferative and metabolic activity as well as increased ability to persist in Treg cells containing RCC tumor spheroids. These results support strategies to enrich for or selectively expand CD25bright NK cells for adoptive cellular therapy of NK cells.
Collapse
Affiliation(s)
- Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Republic of Singapore
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Andreas Lundqvist Department of Oncology-Pathology, Karolinska Institutet, Solna17164, Sweden
| |
Collapse
|
32
|
Shemesh A, Su Y, Calabrese DR, Chen D, Arakawa-Hoyt J, Roybal KT, Heath JR, Greenland JR, Lanier LL. Diminished cell proliferation promotes natural killer cell adaptive-like phenotype by limiting FcεRIγ expression. J Exp Med 2022; 219:e20220551. [PMID: 36066491 PMCID: PMC9448639 DOI: 10.1084/jem.20220551] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFβ or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFβ and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFβ and IFNα levels in COVID-19 infection associated with disease severity.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA
- Department of Microbiology, University of Washington, Seattle, WA
- Department of Informatics, University of Washington, Seattle, WA
| | - Janice Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
33
|
Mellouk A, Hutteau-Hamel T, Legrand J, Safya H, Benbijja M, Mercier-Nomé F, Benihoud K, Kanellopoulos JM, Bobé P. P2X7 purinergic receptor plays a critical role in maintaining T-cell homeostasis and preventing lupus pathogenesis. Front Immunol 2022; 13:957008. [PMID: 36248812 PMCID: PMC9556828 DOI: 10.3389/fimmu.2022.957008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Faslpr mutation and MRL genetic background. Thus, the Faslpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4–CD8– double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.
Collapse
Affiliation(s)
- Amine Mellouk
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | | | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Hanaa Safya
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Françoise Mercier-Nomé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Plateforme d’Histologie Immunopathologie de Clamart, IPSIT, INSERM, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Karim Benihoud
- UMR 9018, Institut Gustave Roussy, CNRS, Université Paris-Saclay, Villejuif, France
| | - Jean M. Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Bobé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
- *Correspondence: Pierre Bobé,
| |
Collapse
|
34
|
Wang J, Liu X, Jin T, Cao Y, Tian Y, Xu F. NK cell immunometabolism as target for liver cancer therapy. Int Immunopharmacol 2022; 112:109193. [PMID: 36087507 DOI: 10.1016/j.intimp.2022.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells are being used effectively as a potential candidate in tumor immunotherapy. However, the migration and transport of NK cells to solid tumors is inadequate. NK cell dysfunction, tumor invasiveness, and metastasis are associated with altered metabolism of NK cells in the liver cancer microenvironment. However, in liver cancers, metabolic impairment of NK cells is still not understood fully. Evidence from various sources has shown that the interaction of NK cell's immune checkpoints with its metabolic checkpoints is responsible for the regulation of the development and function of these cells. How immune checkpoints contribute to metabolic programming is still not fully understood, and how this can be beneficial needs a better understanding, but they are emerging to be incredibly compelling to rebuilding the function of NK cells in the tumor. It is expected to represent a potential aim that focuses on improving the efficacy of therapies based on NK cells for treating liver cancer. Here, the recent advancements made to understand the NK cell's metabolic reprogramming in liver cancer have been summarized, along with the possible interplay between the immune and the metabolic checkpoints in NK cell function. Finally, an overview of some potential metabolic-related targets that can be used for liver cancer therapy treatment has been presented.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaolin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
35
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
36
|
MacMullan MA, Wang P, Graham NA. Phospho-proteomics reveals that RSK signaling is required for proliferation of natural killer cells stimulated with IL-2 or IL-15. Cytokine 2022; 157:155958. [PMID: 35841827 DOI: 10.1016/j.cyto.2022.155958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics. Following stimulation of the immortalized NK cell line NK-92 with IL-2 or IL-15 for 5, 10, 15, or 30 min, we identified 8,692 phospho-peptides from 3,023 proteins. Comparing the kinetic profiles of 3,619 fully quantified phospho-peptides, we found that IL-2 and IL-15 induced highly similar signaling in NK-92 cells. Among the IL-2/IL-15-regulated phospho-peptides were both well-known signaling events like the JAK/STAT pathway and novel signaling events with potential functional significance including LCP1 pSer5, STMN1 pSer25, CHEK1 pSer286, STIM1 pSer608, and VDAC1 pSer104. Using bioinformatic approaches, we sought to identify kinases regulated by IL-2/IL-15 stimulation and found that the p90 ribosomal S6 kinase (p90RSK) family was activated by both cytokines. Using pharmacological inhibitors, we then discovered that RSK signaling is required for IL-2 and IL-15-induced proliferation in NK-92 cells. Taken together, our analysis represents the first phospho-proteomic characterization of cytokine signaling in NK cells and increases our understanding of how cytokine signaling regulates NK cell function.
Collapse
Affiliation(s)
- Melanie A MacMullan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States.
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, United States.
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
37
|
Dong H, Ham JD, Hu G, Xie G, Vergara J, Liang Y, Ali A, Tarannum M, Donner H, Baginska J, Abdulhamid Y, Dinh K, Soiffer RJ, Ritz J, Glimcher LH, Chen J, Romee R. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2122379119. [PMID: 35696582 PMCID: PMC9231490 DOI: 10.1073/pnas.2122379119] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.
Collapse
Affiliation(s)
- Han Dong
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02215
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02215
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Guozhu Xie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Juliana Vergara
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Yong Liang
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Alaa Ali
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Mubin Tarannum
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Hannah Donner
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joanna Baginska
- Center for Immuno-oncology, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Yasmin Abdulhamid
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Khanhlinh Dinh
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Robert J. Soiffer
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Jerome Ritz
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Laurie H. Glimcher
- Department of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02215
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02215
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rizwan Romee
- Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
38
|
Wantoch M, Wilson EB, Droop AP, Phillips SL, Coffey M, El‐Sherbiny YM, Holmes TD, Melcher AA, Wetherill LF, Cook GP. Oncolytic virus treatment differentially affects the CD56 dim and CD56 bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology 2022; 166:104-120. [PMID: 35156714 PMCID: PMC10357483 DOI: 10.1111/imm.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells protect against intracellular infection and cancer. These properties are exploited in oncolytic virus (OV) therapy, where antiviral responses enhance anti-tumour immunity. We have analysed the mechanism by which reovirus, an oncolytic dsRNA virus, modulates human NK cell activity. Reovirus activates NK cells in a type I interferon (IFN-I) dependent manner, inducing STAT1 and STAT4 signalling in both CD56dim and CD56bright NK cell subsets. Gene expression profiling revealed the dominance of IFN-I responses and identified induction of genes associated with NK cell cytotoxicity and cell cycle progression, with distinct responses in the CD56dim and CD56bright subsets. However, reovirus treatment inhibited IL-15 induced NK cell proliferation in an IFN-I dependent manner and was associated with reduced AKT signalling. In vivo, human CD56dim and CD56bright NK cells responded with similar kinetics to reovirus treatment, but CD56bright NK cells were transiently lost from the peripheral circulation at the peak of the IFN-I response, suggestive of their redistribution to secondary lymphoid tissue. Coupled with the direct, OV-mediated killing of tumour cells, the activation of both CD56dim and CD56bright NK cells by antiviral pathways induces a spectrum of activity that includes the NK cell-mediated killing of tumour cells and modulation of adaptive responses via the trafficking of IFN-γ expressing CD56bright NK cells to lymph nodes.
Collapse
Affiliation(s)
- Michelle Wantoch
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Erica B. Wilson
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Alastair P. Droop
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome Trust Sanger InstituteCambridgeUK
| | - Sarah L. Phillips
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | | | - Yasser M. El‐Sherbiny
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Present address:
Clinical Pathology DepartmentFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Tim D. Holmes
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Alan A. Melcher
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Institute of Cancer ResearchLondonUK
| | - Laura F. Wetherill
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Graham P. Cook
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| |
Collapse
|
39
|
Pelletier A, Stockmann C. The Metabolic Basis of ILC Plasticity. Front Immunol 2022; 13:858051. [PMID: 35572512 PMCID: PMC9099248 DOI: 10.3389/fimmu.2022.858051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are the innate counterpart of adaptive lymphoid T cells. They are key players in the regulation of tissues homeostasis and early inflammatory host responses. ILCs are divided into three groups, and further subdivided into five subsets, that are characterised by distinct transcription factors, surface markers and their cytokine expression profiles. Group 1 ILCs, including natural killer (NK) cells and non-NK cell ILC1s, express T-bet and produce IFN-γ. Group 2 ILCs depend on GATA3 and produce IL-4, IL-5 and IL-13. Group 3 ILCs, composed of ILC3s and Lymphoid Tissue Inducer (LTi) cells, express RORγt and produce IL-17 and IL-22. Even though, the phenotype of each subset is well defined, environmental signals can trigger the interconversion of phenotypes and the plasticity of ILCs, in both mice and humans. Several extrinsic and intrinsic drivers of ILC plasticity have been described. However, the changes in cellular metabolism that underlie ILC plasticity remain largely unexplored. Given that metabolic changes critically affect fate and effector function of several immune cell types, we, here, review recent findings on ILC metabolism and discuss the implications for ILC plasticity.
Collapse
|
40
|
Interleukin-15 enhanced the survival of human γδT cells by regulating the expression of Mcl-1 in neuroblastoma. Cell Death Dis 2022; 8:139. [PMID: 35351861 PMCID: PMC8964681 DOI: 10.1038/s41420-022-00942-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor and the treatment efficacy of high-risk NB is unsatisfactory. γδT-cell-based adoptive cell transfer is a promising approach for high-risk NB treatment. Our previous study has revealed that γδT cells in NB patients exhibit a poor proliferation activity and a decreased anti-tumor capacity in vitro. In the present study, we found that IL-15 could effectively enhance the proliferation of NB γδT cells, to a level that remains lower than healthy controls though. In addition, IL-15-fostered NB γδT cells robustly boosted cell survival against apoptosis induced by cytokines depletion. Our data revealed that Mcl-1 was a key anti-apoptotic protein in IL-15-fostered γδT cells during cytokine withdrawal and its expression was regulated via the activation of STAT5 and ERK. In addition, IL-2 and IL-15-fostered γδT cells harbored higher levels of tumoricidal capacity which is also beneficial for γδ T-cell based immune therapy in NB. Understanding the survival control of γδT cells in a sub-optimal cytokine supportive microenvironment will expedite the clinical application of γδT cells for immunotherapy.
Collapse
|
41
|
Klopotowska M, Bajor M, Graczyk-Jarzynka A, Kraft A, Pilch Z, Zhylko A, Firczuk M, Baranowska I, Lazniewski M, Plewczynski D, Goral A, Soroczynska K, Domagala J, Marhelava K, Slusarczyk A, Retecki K, Ramji K, Krawczyk M, Temples MN, Sharma B, Lachota M, Netskar H, Malmberg KJ, Zagozdzon R, Winiarska M. PRDX-1 Supports the Survival and Antitumor Activity of Primary and CAR-Modified NK Cells under Oxidative Stress. Cancer Immunol Res 2022; 10:228-244. [PMID: 34853030 PMCID: PMC9414282 DOI: 10.1158/2326-6066.cir-20-1023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Oxidative stress, caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses, is one of the characteristic features of cancer. Here, we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo, when compared with blood or normal subcutaneous fluid. Therefore, we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells, and by comparing T, B, and NK cells' sensitivities to redox stress and their antioxidant capacities, we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However, the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore, we genetically modified NK cells to stably overexpress PRDX1, which led to increased survival and NK cell activity in redox stress conditions. Finally, we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide, at concentrations detected in the TME, suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors.
Collapse
Affiliation(s)
- Marta Klopotowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Bajor
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kraft
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Zofia Pilch
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | | | - Iwona Baranowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Joanna Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Kuba Retecki
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Kavita Ramji
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Madison N. Temples
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Herman Netskar
- Department of Cancer Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Corresponding Author: Magdalena Winiarska, Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland. Phone: 4822-599-21-72; Fax: 4822-599-21-94; E-mail:
| |
Collapse
|
42
|
Tang J, Zhu Q, Li Z, Yang J, Lai Y. Natural killer cell-targeted immunotherapy for cancer. Curr Stem Cell Res Ther 2022; 17:513-526. [PMID: 34994316 DOI: 10.2174/1574888x17666220107101722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells were initially described in the early 1970s as major histocompatibility complex unrestricted killers due to their ability to spontaneously kill certain tumor cells. In the past decade, the field of NK cell-based treatment has been accelerating exponentially, holding a dominant position in cancer immunotherapy innovation. Generally, research on NK cell-mediated antitumor therapies can be categorized into three areas: choosing the optimal source of allogenic NK cells to yield massively amplified "off-the-shelf" products, improving NK cell cytotoxicity and longevity, and engineering NK cells with the ability of tumor-specific recognition. In this review, we focused on NK cell manufacturing techniques, some auxiliary methods to enhance the therapeutic efficacy of NK cells, chimeric antigen receptor NK cells, and monoclonal antibodies targeting inhibitory receptors, which can significantly augment the antitumor activity of NK cells. Notably, emerging evidence suggests that NK cells are a promising constituent of multipronged therapeutic strategies, strengthening immune responses to cancer.
Collapse
Affiliation(s)
- Jingyi Tang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhu
- Sichuan Fine Arts Institute, Chongqing, China
| | - Zhaoyang Li
- Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Younes SA. Mitochondrial Exhaustion of Memory CD4 T-Cells in Treated HIV-1 Infection. IMMUNOMETABOLISM 2022; 4:e220013. [PMID: 35633761 PMCID: PMC9140223 DOI: 10.20900/immunometab20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
People living with HIV (PLWH) who are immune non-responders (INR) to therapy are unable to restore their CD4 T-cell count and remain at great risk of morbidity and mortality. Here the mitochondrial defects that characterize memory CD4 T-cells in INR and causes of this mitochondrial exhaustion are reviewed. This review also describes the various reagents used to induce the expression of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis, which can restore mitochondria fitness and CD4 T-cell proliferation in INR. Due to sustained heightened inflammation in INR, the mitochondrial network is unable to be rejuvenated and requires attenuation of mediators of inflammation to rescue mitochondria and CD4 T-cell counts in INR.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine, Emory University, Atlanta 30322, USA
| |
Collapse
|
44
|
Significance of bystander T cell activation in microbial infection. Nat Immunol 2022; 23:13-22. [PMID: 34354279 DOI: 10.1038/s41590-021-00985-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
During microbial infection, pre-existing memory CD8+ T cells that are not specific for the infecting pathogens can be activated by cytokines without cognate antigens, termed bystander activation. Studies in mouse models and human patients demonstrate bystander activation of memory CD8+ T cells, which exerts either protective or detrimental effects on the host, depending on the infection model or disease. Research has elucidated mechanisms underlying the bystander activation of CD8+ T cells in terms of the responsible cytokines and the effector mechanisms of bystander-activated CD8+ T cells. In this Review, we describe the history of research on bystander CD8+ T cell activation as well as evidence of bystander activation. We also discuss the mechanisms and immunopathological roles of bystander activation in various microbial infections.
Collapse
|
45
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
46
|
Bou-Tayeh B, Laletin V, Salem N, Just-Landi S, Fares J, Leblanc R, Balzano M, Kerdiles YM, Bidaut G, Hérault O, Olive D, Aurrand-Lions M, Walzer T, Nunès JA, Fauriat C. Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Front Immunol 2021; 12:730970. [PMID: 34975835 PMCID: PMC8718679 DOI: 10.3389/fimmu.2021.730970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rβ expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.
Collapse
Affiliation(s)
- Berna Bou-Tayeh
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Vladimir Laletin
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Nassim Salem
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Sylvaine Just-Landi
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Joanna Fares
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Raphael Leblanc
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Marielle Balzano
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Yann M. Kerdiles
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Ghislain Bidaut
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- Cibi Technological Platform, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Olivier Hérault
- Centre National de la Recherche Scientifique (CNRS) UMR 7292, LNOx Team, François Rabelais University, Tours, France
| | - Daniel Olive
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- IBiSA Immunomonitoring Platform, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Jacques A. Nunès
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université UM105, Centre National de la Recherche Scientifique (CNRS) UMR7258, Inserm UMR1068, Institut Paoli-Calmettes, Cancer Research Center of Marseille (CRCM), Marseille, France
- *Correspondence: Cyril Fauriat,
| |
Collapse
|
47
|
Tan W, Pan T, Wang S, Li P, Men Y, Tan R, Zhong Z, Wang Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem 2021; 376:131860. [PMID: 34971892 DOI: 10.1016/j.foodchem.2021.131860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
The edible and medicinal plants (EMPs) are becoming an abundant source for cancer prevention and treatment since the natural and healthy trend for modern human beings. Currently, there are more than one hundred species of EMPs widely used and listed by the national health commission of China, and most of them indicate immune or metabolic regulation potential in cancer treatment with numerous studies over the past two decades. In the present review, we focused on the metabolic influence in immunocytes and tumor microenvironment, including immune response, immunosuppressive factors and cancer cells, discussing the immunometabolic potential of EMPs in cancer treatment. There are more than five hundred references collected and analyzed through retrieving pharmacological studies deposited in PubMed by medical subject headings and the corresponding names derived from pharmacopoeia of China as a sole criterion. Finally, the immunometabolism modulation of EMPs was sketch out implying an immunometabolic control in cancer treatment.
Collapse
Affiliation(s)
- Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
48
|
Sun Y, Sedgwick AJ, Khan MAAK, Palarasah Y, Mangiola S, Barrow AD. A Transcriptional Signature of IL-2 Expanded Natural Killer Cells Predicts More Favorable Prognosis in Bladder Cancer. Front Immunol 2021; 12:724107. [PMID: 34858395 PMCID: PMC8631443 DOI: 10.3389/fimmu.2021.724107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and secreted factors upregulated in the tumor microenvironment, such as platelet-derived growth factor D (PDGF-DD). In order to elucidate a clinical role for these important regulators of NK cell function in antitumor immunity, we generated transcriptional signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell phenotypes and established their abundance in The Cancer Genome Atlas bladder cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was the most abundant in low and high grades of BLCA tumors and was associated with improved prognosis. In contrast, PDGFD expression was associated with numerous cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell phenotype were associated with a poor BLCA prognosis. Finally, high tumor expression of transcripts encoding the activating NK cell receptors, KLRK1 and the CD160-TNFRSF14 receptor-ligand pair, was strongly correlated with the IL-2-expanded NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we describe may be optimized to improve BLCA patient prognosis and risk stratification in the clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell antitumor immunity in BLCA.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexander James Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Md Abdullah-Al-Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yaseelan Palarasah
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Nguyen OTP, Misun PM, Lohasz C, Lee J, Wang W, Schroeder T, Hierlemann A. An Immunocompetent Microphysiological System to Simultaneously Investigate Effects of Anti-Tumor Natural Killer Cells on Tumor and Cardiac Microtissues. Front Immunol 2021; 12:781337. [PMID: 34925361 PMCID: PMC8675866 DOI: 10.3389/fimmu.2021.781337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity of cancers, so that new therapeutic approaches are urgently needed. Among novel alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer treatment in recent years. The limited clinical applications of ACT, despite its advantages over standard-of-care therapies, can be attributed to (i) time-consuming and cost-intensive procedures to screen for potent anti-tumor immune cells and the corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the safety assessment of ACT. Suitable experimental models and testing platforms have the potential to accelerate the development of ACT. Immunocompetent microphysiological systems (iMPS) are microfluidic platforms that enable complex interactions of advanced tissue models with different immune cell types, bridging the gap between in-vitro and in-vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and human-derived natural killer (NK) cells in the same microfluidic network. Different aspects of tumor-NK cell interactions were characterized using this iMPS including: (i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived chemokines and cytokines, indicating crosstalk and development of an inflammatory milieu. While viability and morphological integrity of cardiac microtissues remained mostly unaffected, we were able to detect alterations in their beating behavior, which shows the potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Patrick M. Misun
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christian Lohasz
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jihyun Lee
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Weijia Wang
- Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Schroeder
- Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
50
|
Mandó P, Rivero SG, Rizzo MM, Pinkasz M, Levy EM. Targeting ADCC: A different approach to HER2 breast cancer in the immunotherapy era. Breast 2021; 60:15-25. [PMID: 34454323 PMCID: PMC8399304 DOI: 10.1016/j.breast.2021.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
The clinical outcome of patients with human epidermal growth factor receptor 2 (HER2) amplified breast carcinoma (BC) has improved with the development of anti-HER2 targeted therapies. However, patients can experience disease recurrence after curative intent and disease progression in the metastatic setting. In the current era of evolving immunotherapy agents, the understanding of the immune response against HER2 tumor cells developed by anti-HER2 antibodies (Abs) is rapidly evolving. Trastuzumab therapy promotes Natural Killer (NK) cell activation in patients with BC overexpressing HER2, indicating that the efficacy of short-term trastuzumab monotherapy, albeit direct inhibition of HER, could also be related with antibody-dependent cell-mediated cytotoxicity (ADCC). Currently, dual HER2 blockade using trastuzumab and pertuzumab is the standard of care in early and advanced disease as this combination could confer an additive effect in ADCC. In patients with disease relapse or progression, ADCC may be hampered by several factors such as FcγRIIIa polymorphism and an immunosuppressive environment, among others. Hence, new drug development strategies are being investigated aiming to boost the ADCC response triggered by anti-HER2 therapy. In this review, we summarize these strategies and the rationale, through mAbs engineering and combinatorial strategies, focusing on clinical results and ongoing trials.
Collapse
Affiliation(s)
- Pablo Mandó
- Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sergio G Rivero
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Manglio M Rizzo
- Cancer Immunobiology, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina; Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Marina Pinkasz
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - Estrella M Levy
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|