1
|
Ryback AA, Cowan GJM. Deep sequencing of BCR heavy chain repertoires in myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol 2025; 16:1489312. [PMID: 40034707 PMCID: PMC11872726 DOI: 10.3389/fimmu.2025.1489312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a common and debilitating chronic illness of unknown aetiology. Chronic infection and autoimmune responses have been proposed as two mechanisms that potentially underlie the pathogenesis of ME/CFS. To explore these disease hypotheses, we characterised the antigen-specific receptors of B cells using adaptive immune receptor repertoire sequencing. We compared the B-cell receptor (BCR) repertoires of 25 patients with mild/moderate ME/CFS, 36 patients with severe ME/CFS, 21 healthy controls, and 28 patients with multiple sclerosis (MS) to identify signatures of infection or autoimmune responses. ME/CFS patients did not display increased clonality or differential somatic hypermutation compared to healthy controls and patients with MS. One of two immunoglobulin heavy variable (IGHV) genes, IGHV3-30, reported to be increased in ME/CFS patients in a previous study, was replicated in patients with mild/moderate disease in our cohort. However, there was no evidence of ongoing adaptive responses in IGHV3-30 repertoires from mild/moderate ME/CFS patients with increased IGHV3-30 usage. There were no detectable repertoire signatures associated with infection or autoimmunity in repertoires from ME/CFS patients, but we observed skewing of the ratio of IgM to IgG BCRs in patients with mild/moderate ME/CFS, a preliminary finding that presents an opportunity for follow-up work.
Collapse
Affiliation(s)
- Audrey A. Ryback
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
2
|
von La Roche D, Schumacher M, Kohn M, Trapp J, Schusser B, Rautenschlein S, Härtle S. Characterization of class-switched B cells in chickens. Front Immunol 2024; 15:1484288. [PMID: 39640270 PMCID: PMC11617357 DOI: 10.3389/fimmu.2024.1484288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
While B cell development in the birds' primary B cell organ, the bursa Fabricius, is relatively well understood, very little is known about post bursal B cell differentiation into plasma and memory cells though these cells are essential for a protecting antibody response and so far, no specific markers for these cells were available. Since immunoglobulin class switch is one part of the B cell differentiation process, our objective was to conduct a first detailed investigation of class-switched chicken B cells. As only very few IgY and IgA expressing cells were detected in lymphoid organs of young chickens, we used CD40L and IL-10 to establish a prolonged in vitro culture system, which induces B cell proliferation, class switch to IgY and IgA and enhanced antibody secretion. This enabled a phenotypic analysis of differentiating B cells. Importantly, these cells lost surface expression of the B cell markers chB6 and BAFF-R. B cell receptor surface expression remained unchanged, showing that while differentiating toward plasma cells, B cells can be addressed by L chain staining. Newly generated potential plasma cell markers CD138 and TACI showed only a transient expression on cultured cells and rather act as markers for B cell activation than plasma/memory cells in general. CD57 upregulation was connected to activation and blast formation but not to class switch. We also examined potential changes in class-switched cells in different age groups and post vaccination. Surprisingly, bursa involution, laying and age had no distinct effects on the presence of class-switched cells, but we detected significantly more class-switched B cells post vaccination. Hence, we are now able to generate class-switched plasmablasts in vitro for a more detailed characterization and can address them under different conditions in chickens for further analysis of their B cell response.
Collapse
Affiliation(s)
- Dominik von La Roche
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Magdalena Schumacher
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marina Kohn
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Benjamin Schusser
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- Center of Infection Prevention (ZIP), Technische Universität München, Freising, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
3
|
Schultheiß C, Willscher E, Paschold L, Ackermann C, Escher M, Scholz R, Knapp M, Lützkendorf J, Müller LP, Schulze Zur Wiesch J, Binder M. B cells expressing mutated IGHV1-69-encoded antigen receptors related to virus neutralization show lymphoma-like transcriptomes in patients with chronic HCV infection. Hepatol Commun 2024; 8:e0503. [PMID: 39082968 DOI: 10.1097/hc9.0000000000000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/11/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Chronic HCV infection leads to a complex interplay with adaptive immune cells that may result in B cell dyscrasias like cryoglobulinemia or lymphoma. While direct-acting antiviral therapy has decreased the incidence of severe liver damage, its effect on extrahepatic HCV manifestations such as B cell dyscrasias is still unclear. METHODS We sequenced B cell receptor (BCR) repertoires in patients with chronic HCV mono-infection and patients with HCV with a sustained virological response (SVR) after direct-acting antiviral therapy. This data set was mined for highly neutralizing HCV antibodies and compared to a diffuse large B cell lymphoma data set. The TKO model was used to test the signaling strength of selected B-BCRs in vitro. Single-cell RNA sequencing of chronic HCV and HCV SVR samples was performed to analyze the transcriptome of B cells with HCV-neutralizing antigen receptors. RESULTS We identified a B cell fingerprint with high richness and somatic hypermutation in patients with chronic HCV and SVR. Convergence to specific immunoglobulin genes produced high-connectivity complementarity-determining region 3 networks. In addition, we observed that IGHV1-69 CDR1 and FR3 mutations characterizing highly neutralizing HCV antibodies corresponded to recurrent point mutations found in clonotypic BCRs of high-grade lymphomas. These BCRs did not show autonomous signaling but a lower activation threshold in an in vitro cell model for the assessment of BCR signaling strength. Single-cell RNA sequencing revealed that B cells carrying these point mutations showed a persisting oncogenic transcriptome signature with dysregulation in signaling nodes such as CARD11, MALT1, RelB, MAPK, and NFAT. CONCLUSIONS We provide evidence that lymphoma-like cells derive from the anti-HCV immune response. In many patients, these cells persist for years after SVR and can be interpreted as a mechanistic basis for HCV-related B cell dyscrasias and increased lymphoma risk even beyond viral elimination.
Collapse
MESH Headings
- Humans
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/complications
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Transcriptome
- B-Lymphocytes/immunology
- Hepacivirus/immunology
- Hepacivirus/genetics
- Sustained Virologic Response
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Antibodies, Neutralizing/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Male
- Antiviral Agents/therapeutic use
- Mutation
- Female
- Middle Aged
Collapse
Affiliation(s)
- Christoph Schultheiß
- Divison of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Edith Willscher
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lisa Paschold
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christin Ackermann
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Escher
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rebekka Scholz
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Maximilian Knapp
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Lützkendorf
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lutz P Müller
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Schulze Zur Wiesch
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Divison of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Dashjamts G, Ganzorig AE, Tsedendorj Y, Dondov G, Nergui O, Badamjav T, Huang CF, Liang PC, Lonjid T, Batsaikhan B, Dai CY. Post-Treatment Occurrence of Serum Cryoglobulinemia in Chronic Hepatitis C Patients. Diagnostics (Basel) 2024; 14:1188. [PMID: 38893714 PMCID: PMC11171999 DOI: 10.3390/diagnostics14111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Persistent cryoglobulinemia after the completion of antiviral treatment is an important consideration of clinical management in chronic hepatitis C patients. We aimed to investigate the occurrence of serum cryoglobulinemia in chronic hepatitis C patients without cryoglobulinemia at the initiation of antiviral treatment. METHODS In total, 776 patients without cryoglobulinemia were assessed for serum cryoglobulinemia after the completion of anti-HCV treatment. Serum cryoglobulinemia precipitation was assessed upon both the initiation and the completion of the treatment and analyzed for the clinical laboratory factors associated with chronic hepatitis C. RESULTS One hundred eighteen (118) patients were checked for serum cryo-precipitation after the completion of the treatment, and eight patients (4.6%) were positive for serum cryoglobulinemia. The patients who tested positive for cryoglobulinemia included a higher proportion of liver cirrhosis patients (4/50%, p = 0.033) and other organ cancer patients (5/62.5%, p = 0.006) than patients who showed no signs of cryoglobulinemia after treatment. In a multivariate analysis, liver cirrhosis (odds ratio [OR]-17.86, 95% confidence interval [95% CI]-1.79-177.35, p = 0.014) and other organ cancer (OR-25.17 95% CI-2.59-244.23, p = 0.005) were independently and significantly associated with positive cryoglobulinemia 3 months after antiviral treatment. CONCLUSIONS Three months after the antiviral DAA therapy had concluded, eight patients tested positive for cryoglobulinemia, representing a 6.7% prevalence. Liver cirrhosis and other organ cancer were independently and significantly associated with positive cryoglobulinemia after antiviral treatment. Further investigation into the causes of positive cryoglobulinemia after DAA antiviral therapy is warranted.
Collapse
Affiliation(s)
- Gantogtokh Dashjamts
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
| | - Amin-Erdene Ganzorig
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
| | - Yumchinsuren Tsedendorj
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
| | - Ganchimeg Dondov
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
| | - Otgongerel Nergui
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
| | - Tegshjargal Badamjav
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
- Department of Biological Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Chung-Feng Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (C.-F.H.); (P.-C.L.)
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Po-Cheng Liang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (C.-F.H.); (P.-C.L.)
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tulgaa Lonjid
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
| | - Batbold Batsaikhan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (G.D.); (A.-E.G.); (Y.T.); (G.D.); (O.N.); (T.B.); (T.L.)
- Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Chia-Yen Dai
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (C.-F.H.); (P.-C.L.)
- Ph.D. Program in Environmental and Occupational Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
Natali EN, Horst A, Meier P, Greiff V, Nuvolone M, Babrak LM, Fink K, Miho E. The dengue-specific immune response and antibody identification with machine learning. NPJ Vaccines 2024; 9:16. [PMID: 38245547 PMCID: PMC10799860 DOI: 10.1038/s41541-023-00788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.
Collapse
Affiliation(s)
- Eriberto Noel Natali
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Alexander Horst
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Patrick Meier
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lmar Marie Babrak
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | | | - Enkelejda Miho
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- aiNET GmbH, Basel, Switzerland.
| |
Collapse
|
6
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
7
|
Kreer C, Lupo C, Ercanoglu MS, Gieselmann L, Spisak N, Grossbach J, Schlotz M, Schommers P, Gruell H, Dold L, Beyer A, Nourmohammad A, Mora T, Walczak AM, Klein F. Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals. Nat Commun 2023; 14:7137. [PMID: 37932288 PMCID: PMC10628170 DOI: 10.1038/s41467-023-42906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cosimo Lupo
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma I, 00185, Rome, Italy
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Natanael Spisak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Ave Northeast, Seattle, WA, 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA, 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA, 98102, USA
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
8
|
Levi R, Dvorkin S, Louzoun Y. Shared bias in H chain V-J pairing in naive and memory B cells. Front Immunol 2023; 14:1166116. [PMID: 37790930 PMCID: PMC10543446 DOI: 10.3389/fimmu.2023.1166116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction H chain rearrangement in B cells is a two-step process where first DH binds JH, and only then VH is joined to the complex. As such, there is no direct rearrangement between VH and JH. Results Nevertheless, we here show that the VHJH combinations frequency in humans deviates from the one expected based on each gene usage frequency. This bias is observed mainly in functional rearrangements, and much less in out-of-frame rearrangements. The bias cannot be explained by preferred binding for DH genes or a preferred reading frame. Preferred VH JH combinations are shared between donors. Discussion These results suggest a common structural mechanism for these biases. Through development, thepreferred VH JH combinations evolve during peripheral selection to become stronger, but less shared. We propose that peripheral Heavy chain VH JH usage is initially shaped by a structural selection before the naive B cellstate, followed by pathogen-induced selection for host specific VH-JH pairs.
Collapse
Affiliation(s)
| | | | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Mu Y, Fan X, Chen T, Meng Y, Lin J, Yuan J, Yu S, Chen Y, Liu L. MYD88-Mutated Chronic Lymphocytic Leukaemia/Small Lymphocytic Lymphoma as a Distinctive Molecular Subgroup Is Associated with Atypical Immunophenotypes in Chinese Patients. J Clin Med 2023; 12:jcm12072667. [PMID: 37048750 PMCID: PMC10094974 DOI: 10.3390/jcm12072667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) is a heterogeneous disease in Western and Chinese populations, and it is still not well characterized in Chinese patients. Based on a large cohort of newly diagnosed CLL/SLL patients from China, we investigated immunophenotypes, genetic abnormalities, and their correlations. Eighty-four percent of the CLL/SLL patients showed typical immunophenotypes with scores of 4 or 5 points in the Royal Marsden Hospital (RMH) scoring system (classic group), and the remaining 16% of patients were atypical with scores lower than 4 points (atypical group). Trisomy 12 and variants of TP53, NOTCH1, SF3B1, ATM, and MYD88 were the most recurrent genetic aberrations. Additionally, unsupervised genomic analysis based on molecular genetics revealed distinctive characteristics of MYD88 variants in CLL/SLL. By overlapping different correlation grouping analysis from genetics to immunophenotypes, the results showed MYD88 variants to be highly related to atypical CLL/SLL immunophenotypes. Furthermore, compared with mantle cell lymphoma (MCL), the genetic landscape showed potential value in clinical differential diagnosis of atypical CLL/SLL and MCL patients. These results reveal immunophenotypic and genetic features, and may provide insights into the tumorigenesis and clinical management of Chinese CLL/SLL patients.
Collapse
Affiliation(s)
- Yafei Mu
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Xijie Fan
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
| | - Tao Chen
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Yuhuan Meng
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Junwei Lin
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Jiecheng Yuan
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Shihui Yu
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou 510320, China
- Clinical Genome Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou 510320, China
| | - Yuxin Chen
- Guangzhou KingMed Transformative Medicine Institute Co., Ltd., Guangzhou 510320, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou 510320, China
- Clinical Genome Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou 510320, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University and Sun Yat-sen Institute of Hematology, Guangzhou 510630, China
| |
Collapse
|
10
|
Arcari A, Tabanelli V, Merli F, Marcheselli L, Merli M, Balzarotti M, Zilioli VR, Fabbri A, Cavallo F, Casaluci GM, Tucci A, Puccini B, Pennese E, Di Rocco A, Zanni M, Flenghi L, Gini G, Sartori R, Chiappella A, Usai SV, Tani M, Marino D, Arcaini L, Vallisa D, Spina M. Biological features and outcome of diffuse large B-cell lymphoma associated with hepatitis C virus in elderly patients: Results of the prospective 'Elderly Project' by the Fondazione Italiana Linfomi. Br J Haematol 2023; 201:653-662. [PMID: 36733229 DOI: 10.1111/bjh.18678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Up to 10%-15% of diffuse large B-cell lymphoma (DLBCL) are related to hepatitis C virus (HCV) infection, in particular in elderly patients. The Fondazione Italiana Linfomi has recently published a multicentre prospective observational study, the 'Elderly Project', on the outcome of DLBCL in patients aged ≥65 years, evaluated using a simplified comprehensive geriatric assessment. The aim of this study was to compare biological and clinical features of HCV positive (HCV+) with HCV negative (HCV-) cases. A total of 89 HCV+ patients were identified out of 1095 evaluated for HCV serology (8.1%). The HCV+ patients were older, less fit, and had frequent extranodal involvement. The cell-of-origin determination by Nanostring showed that HCV+ cases less frequently had an activated B-cell profile compared to HCV- patients (18% vs. 43%). In all, 86% of HCV+ patients received rituximab-cyclophosphamide, doxorubicin, vincristine (Oncovin) and prednisone (R-CHOP)-like immunochemotherapy. Grade 3-4 liver toxicity occurred in 3% of cases. Among centrally reviewed cases confirmed as DLBCL, the 3-year overall survival of HCV+ patients was very similar to HCV- (63% vs. 61%, p = 0.926). In all, 20 HCV+ patients were treated with direct-acting antiviral agents (DAAs), with good tolerance and sustained virological response in all cases. The 3-year progression-free survival for this subgroup was excellent (77%), suggesting DAAs' possible role in reducing the risk of relapse by eliminating the viral trigger.
Collapse
Affiliation(s)
- Annalisa Arcari
- Hematology Unit, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Valentina Tabanelli
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Merli
- Hematology Unit, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | | | - Michele Merli
- Division of Hematology, Ospedale di Circolo and Fondazione Macchi, University of Insubria, Varese, Italy
| | - Monica Balzarotti
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Federica Cavallo
- Division of Hematology, Department of Molecular Biotechnologies and Health Sciences, University of Torino/AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Gloria Margiotta Casaluci
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Benedetta Puccini
- Hematology Department, University of Florence and AOU Careggi, Florence, Italy
| | - Elsa Pennese
- Lymphoma Unit, Department of Hematology, Ospedale Spirito Santo, Pescara, Italy
| | - Alice Di Rocco
- Department of Traslational and Precision Medicine, Sapienza University, Rome, Italy
| | - Manuela Zanni
- Division of Hematology, A.O. SS Antonio e Biagio and Cesare Arrigo, Alessandria, Italy
| | - Leonardo Flenghi
- Division of Hematology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Guido Gini
- Clinic of Hematology, Azienda Ospedaliera Universitaria Ospedali Riuniti, Ancona, Italy
| | - Roberto Sartori
- Onco Hematology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Sara Veronica Usai
- Division of Hematology, Ospedale Oncologico Armando Businco, Cagliari, Italy
| | - Monica Tani
- Hematology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
| | - Dario Marino
- Department of Clinical and Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS Padova, Padova, Italy
| | - Luca Arcaini
- Department of Molecular Medicine, University of Pavia and Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Vallisa
- Hematology Unit, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Michele Spina
- Division of Medical Oncology and Immunerelated tumors, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
11
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
12
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
13
|
Gao H, Yu L, Yan F, Zheng Y, Huang H, Zhuang X, Zeng Y. Landscape of B Cell Receptor Repertoires in COVID-19 Patients Revealed Through CDR3 Sequencing of Immunoglobulin Heavy and Light Chains. Immunol Invest 2022; 51:1994-2008. [PMID: 35797435 DOI: 10.1080/08820139.2022.2092407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.
Collapse
Affiliation(s)
- Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Youxian Zheng
- Department of Microbiology, Quanzhou Municipal Center for Disease Control and Prevention, Fujian Province, Quanzhou, China
| | - Hongbo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xibin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
14
|
Chang ML, Cheng JS, Chuang YH, Pao LH, Wu TS, Chen SC, Chang MY, Chien RN. Evolution of Cryoglobulinemia in Direct-Acting Antiviral-Treated Asian Hepatitis C Patients With Sustained Virological Responses: A 4-Year Prospective Cohort Study. Front Immunol 2022; 13:823160. [PMID: 35371039 PMCID: PMC8964347 DOI: 10.3389/fimmu.2022.823160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background How cryoglobulinemia evolves after sustained virological response (SVR) following direct-acting antiviral (DAA) treatment in Asian hepatitis C virus (HCV)-infected patients remains elusive. Methods A prospective cohort study was conducted in 422 Taiwanese patients (358 completed DAA therapy and 353 experienced SVRs). Serum cryoglobulins were surveyed at baseline and every 3-6 months posttherapy. Results Of 422, 227 (53.8%) had cryoglobulinemia, 8 (1.89%) had cryoglobulinemic vasculitis. Of 227, 54 (23.8%), 57 (25.1%) and 116 (51.1%) had 1, 2 and 3 cryoglobulins, respectively; those with 3 cryoglobulins had the highest alanine aminotransferase, immunoglobulin G (IgG) and fibrosis-4 index. During a 4-year follow-up, among SVR patients, cryoglobulinemia rates decreased from 56.4% to 15.4%, single cryoglobulin rates increased (21.6% to 63.9%) and 3 cryoglobulin rates decreased (55.7% to 11.1%). Compared with baseline values, among SVR patients with baseline cryoglobulinemia, complement component 4 levels increased, and IgG and IgM levels decreased until 48 weeks posttherapy for those without posttherapy cryoglobulinemia. All 8 cryoglobulinemic vasculitis patients exhibited SVRs; 5 (62.5%) achieved complete clinical response 12 weeks posttherapy, of whom, 2 (40%) experienced clinical relapse 24~48 weeks posttherapy. Baseline IgM levels were associated with posttherapy cryoglobulinemia in SVR patients (cut-off values at 12, 24, 48 weeks and 4 years posttherapy: 130, 105, 118 and 168 mg/dL, respectively). Conclusions Among DAA-treated SVR patients, in 4 years, cryoglobulinemia rates decreased from 56.4% to 15.4%, multiple cryoglobulin rates decreased, cryoglobulinemia signals reversed, 62.5% of cryoglobulinemic vasculitis patients achieved complete clinical response (40% had relapse), and baseline IgM levels indicated posttherapy cryoglobulinemia.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ya-Hui Chuang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Chang Gung Memorial Hospital, Taipei and Linkou, Taiwan
| | - Li-Heng Pao
- Graduate Institute of Health-Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ting-Shu Wu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Shiang-Chi Chen
- Department of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yu Chang
- Division of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Rong-Nan Chien
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Chernyshev M, Kaduk M, Corcoran M, Karlsson Hedestam GB. VDJ Gene Usage in IgM Repertoires of Rhesus and Cynomolgus Macaques. Front Immunol 2022; 12:815680. [PMID: 35087534 PMCID: PMC8786739 DOI: 10.3389/fimmu.2021.815680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Macaques are frequently used to evaluate candidate vaccines and to study infection-induced antibody responses, requiring an improved understanding of their naïve immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies of antigen-specific immune responses, providing information about how easily one may stimulate a response with a particular VDJ recombination. Studies of human IgM repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude between the most and least utilized genes in a manner that is consistent across many individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques, belonging to two species and four commonly used subgroups: Indian and Chinese origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We show that VDJ gene frequencies differed greatly between the most and least used genes, with similar overall patterns observed in macaque subgroups and individuals. However, there were also clear differences affecting the use of specific V, D and J genes. Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family genes to a much higher extent and showed evidence of evolutionary expansion of genes of this family. Finally, we used the results to inform the analysis of a broadly neutralizing HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss the likelihood that similar antibodies could be elicited in different macaque subgroups.
Collapse
|
16
|
Desombere I, Van Houtte F, Farhoudi A, Verhoye L, Buysschaert C, Gijbels Y, Couvent S, Swinnen W, Van Vlierberghe H, Elewaut A, Magri A, Stamataki Z, Meuleman P, McKeating JA, Leroux-Roels G. A Role for B Cells to Transmit Hepatitis C Virus Infection. Front Immunol 2021; 12:775098. [PMID: 34975862 PMCID: PMC8716873 DOI: 10.3389/fimmu.2021.775098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge on the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We and others have reported that HCV can associate with and infect immune cells and may thereby evade host immune surveillance and elimination. To evaluate whether B cells play a role in HCV transmission, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) HCV patients to infect humanized liver chimeric mice. HCV was transmitted by B cells from chronic infected patients whereas the sera were non-infectious. In contrast, B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. We observed an association between circulating anti-glycoprotein E1E2 antibodies and B cell HCV transmission. Taken together, our studies provide evidence for HCV transmission by B cells, findings that have clinical implications for prophylactic and therapeutic antibody-based vaccine design.
Collapse
Affiliation(s)
| | - Freya Van Houtte
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Ali Farhoudi
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lieven Verhoye
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Yvonne Gijbels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sibyl Couvent
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - André Elewaut
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Researc (NIHR) Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Philip Meuleman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
17
|
Ye H, Cheng L, Ju B, Xu G, Liu Y, Zhang S, Wang L, Zhang Z. SCIGA: Software for large-scale, single-cell immunoglobulin repertoire analysis. Gigascience 2021; 10:giab050. [PMID: 34585238 PMCID: PMC8478610 DOI: 10.1093/gigascience/giab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND B-cell immunoglobulin repertoires with paired heavy and light chain can be determined by means of 10X single-cell V(D)J sequencing. Precise and quick analysis of 10X single-cell immunoglobulin repertoires remains a challenge owing to the high diversity of immunoglobulin repertoires and a lack of specialized software that can analyze such diverse data. FINDINGS In this study, specialized software for 10X single-cell immunoglobulin repertoire analysis was developed. SCIGA (Single-Cell Immunoglobulin Repertoire Analysis) is an easy-to-use pipeline that performs read trimming, immunoglobulin sequence assembly and annotation, heavy and light chain pairing, statistical analysis, visualization, and multiple sample integration analysis, which is all achieved by using a 1-line command. Then SCIGA was used to profile the single-cell immunoglobulin repertoires of 9 patients with coronavirus disease 2019 (COVID-19). Four neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified from these repertoires. CONCLUSIONS SCIGA provides a complete and quick analysis for 10X single-cell V(D)J sequencing datasets. It can help researchers to interpret B-cell immunoglobulin repertoires with paired heavy and light chain.
Collapse
Affiliation(s)
- Haocheng Ye
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lifei Wang
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen, Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| |
Collapse
|
18
|
Stevenson FK, Forconi F, Kipps TJ. Exploring the pathways to chronic lymphocytic leukemia. Blood 2021; 138:827-835. [PMID: 34075408 PMCID: PMC8432043 DOI: 10.1182/blood.2020010029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), increasing knowledge of the biology of the tumor cells has led to transformative improvements in our capacity to assess and treat patients. The dependence of tumor cells on surface immunoglobulin receptor signaling, survival pathways, and accessory cells within the microenvironment has led to a successful double-barreled attack with designer drugs. Studies have revealed that CLL should be classified based on the mutational status of the expressed IGHV sequences into 2 diseases, either unmutated (U) or mutated (M) CLL, each with a distinctive cellular origin, biology, epigenetics/genetics, and clinical behavior. The origin of U-CLL lies among the natural antibody repertoire, and dominance of IGHV1-69 reveals a superantigenic driver. In both U-CLL and M-CLL, a calibrated stimulation of tumor cells by self-antigens apparently generates a dynamic reiterative cycle as cells, protected from apoptosis, transit between blood and tissue sites. But there are differences in outcome, with the balance between proliferation and anergy favoring anergy in M-CLL. Responses are modulated by an array of microenvironmental interactions. Availability of T-cell help is a likely determinant of cell fate, the dependency on which varies between U-CLL and M-CLL, reflecting the different cells of origin, and affecting clinical behavior. Despite such advances, cell-escape strategies, Richter transformation, and immunosuppression remain as challenges, which only may be met by continued research into the biology of CLL.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Freda K Stevenson
- School of Cancer Sciences, Cancer Research UK Southampton Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Cancer Research UK Southampton Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton NHS Trust, Southampton, United Kingdom; and
| | - Thomas J Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
19
|
Sun H, Yang HQ, Zhai K, Tong ZH. Signatures of B Cell Receptor Repertoire Following Pneumocystis Infection. Front Microbiol 2021; 12:636250. [PMID: 34135870 PMCID: PMC8202503 DOI: 10.3389/fmicb.2021.636250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
B cells play vital roles in host defense against Pneumocystis infection. However, the features of the B cell receptor (BCR) repertoire in disease progression remain unclear. Here, we integrated single-cell RNA sequencing and single-cell BCR sequencing of immune cells from mouse lungs in an uninfected state and 1–4 weeks post-infection in order to illustrate the dynamic nature of B cell responses during Pneumocystis infection. We identified continuously increased plasma cells and an elevated ratio of (IgA + IgG) to (IgD + IgM) after infection. Moreover, Pneumocystis infection was associated with an increasing naïve B subset characterized by elevated expression of the transcription factor ATF3. The proportion of clonal expanded cells progressively increased, while BCR diversity decreased. Plasma cells exhibited higher levels of somatic hypermutation than naïve B cells. Biased usage of V(D)J genes was observed, and the usage frequency of IGHV9-3 rose. Overall, these results present a detailed atlas of B cell transcriptional changes and BCR repertoire features in the context of Pneumocystis infection, which provides valuable information for finding diagnostic biomarkers and developing potential immunotherapeutic targets.
Collapse
Affiliation(s)
- Han Sun
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hu-Qin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhao-Hui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Su Z, Jin Y, Zhang Y, Guan Z, Li H, Chen X, Xie C, Zhang C, Liu X, Li P, Ye P, Zhang L, Kong Y, Luo W. The Diagnostic and Prognostic Potential of the B-Cell Repertoire in Membranous Nephropathy. Front Immunol 2021; 12:635326. [PMID: 34122405 PMCID: PMC8190383 DOI: 10.3389/fimmu.2021.635326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Membranous nephropathy (MN), an autoimmune glomerular disease, is one of the most common causes of nephrotic syndrome in adults. In current clinical practice, the diagnosis is dependent on renal tissue biopsy. A new method for diagnosis and prognosis surveillance is urgently needed for patients. In the present study, we recruited 66 MN patients before any treatment and 11 healthy control (HC) and analyzed multiple aspects of the immunoglobulin heavy chain (IGH) repertoire of these samples using high-throughput sequencing. We found that the abnormalities of CDR-H3 length, hydrophobicity, somatic hypermutation (SHM), and germ line index were progressively more prominent in patients with MN, and the frequency of IGHV3-66 in post-therapy patients was significantly lower than that in pre-therapy patients. Moreover, we found that the IGHV3-38 gene was significantly related to PLA2R, which is the most commonly used biomarker. The most important discovery was that several IGHV, IGHD transcripts, CDR-H3 length, and SHM rate in pre-therapy patients had the potential to predict the therapeutic effect. Our study further demonstrated that the IGH repertoire could be a potential biomarker for prognosis prediction of MN. The landscape of circulating B-lymphocyte repertoires sheds new light on the detection and surveillance of MN.
Collapse
Affiliation(s)
- Zuhui Su
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yu Zhang
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Zhanwen Guan
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Huishi Li
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Xiangping Chen
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Chao Xie
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Chuling Zhang
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Xiaofen Liu
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Peixian Li
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Peiyi Ye
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Lifang Zhang
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yaozhong Kong
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
21
|
Zhang S, Zhang S, Lin Z, Zhang X, Dou X, Zhou X, Wang X, Wang Z, Zhang Q. Deep sequencing reveals the skewed B-cell receptor repertoire in plaques and the association between pathogens and atherosclerosis. Cell Immunol 2020; 360:104256. [PMID: 33360167 DOI: 10.1016/j.cellimm.2020.104256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
The immune/inflammatory responses regulated by B cells are the critical determinants of atherosclerosis. B-cell receptor (BCR) plays pivotal roles in regulating B cell function. However, the composition and molecular characteristics of the BCR repertoire in atherosclerotic patients have not been fully elucidated. Herein we analyzed BCR repertoire in circulation and plaques of atherosclerotic patients by sequencing the BCR heavy chain complement determining region 3 (BCRH CDR3). Our data showed that in plaques, BCR repertoire was dramatically skewed and their combinations and diversity were significantly decreased, while the frequency of public and dominant B-cell clones was markedly increased. Additionally, BCRH CDR3 in plaques had higher positive selection pressure than that in the peripheral blood of normal subjects and atherosclerotic patients. Moreover, the BCRH CDR3 of some B cell clones specifically expanded in plaques were similar to that of antibodies which recognized certain pathogens including Influenza A virus, implying the possibility of the association between pathogens and atherosclerosis. The present study contributed to understand the roles of B cells in atherosclerosis. The design of specific antibodies based on the B cell clones specifically expanded in plaques might yield useful tools to reveal the pathogenesis of atherosclerosis, assess or alleviate the progression of atherosclerosis.
Collapse
Affiliation(s)
- Shucui Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shigang Zhang
- Neurosurgical Department, Liaocheng People's Hospital, Liaocheng, China
| | - Zongwei Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Xinyao Dou
- Shandong Experimental High School, Jinan, China
| | - Xiaoming Zhou
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
22
|
Marinucci C, Zardo F, Diella F, Cocito D, Ciancio A, Porta M, Zanone MM. A deceiving case of paraplegia. Intern Emerg Med 2020; 15:473-478. [PMID: 30815781 DOI: 10.1007/s11739-019-02059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Claudia Marinucci
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Federica Zardo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Francesco Diella
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Dario Cocito
- Department of Neurosciences, University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Alessia Ciancio
- Division of Gastroenterology and Hepathology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Maria Maddalena Zanone
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| |
Collapse
|
23
|
Thammasonthijarern N, Puangmanee W, Sriburin P, Injampa S, Chatchen S, Phumirattanaprapin W, Pipattanaboon C, Ramasoota P, Pitaksajjakul P. Human Heavy Chain Antibody Genes Elicited in Thai Dengue Patients during DENV2 Secondary Infection. Jpn J Infect Dis 2020; 73:140-147. [PMID: 31787738 DOI: 10.7883/yoken.jjid.2019.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue is one of the most serious mosquito-borne viral diseases occurring in humans. To combat the complexity of 4 antigenically distinct serotypes, the ideal vaccine for dengue should be able to stimulate cross-neutralizing antibodies. Recently, genetics-based immune responses have been studied to guide vaccine design against several viral pathogens. Despite a recent approval of dengue vaccine, information on genetics-based immune responses against dengue virus (DENV) is still limited. Consequently, we aimed to determine the profiles of immunoglobulin heavy chain genes from DENV2 infected patients. The immunoglobulin heavy chain variable region genes (IGHV) were amplified from peripheral blood mononuclear cells of DENV2 secondary infected patients in the acute, convalescence, and recovery phases. Antibody heavy chain genes were sequenced using next-generation sequencing, and analyzed to identify correlations with neutralizing and enhancing activities of the serum samples. IGHV1-69, 3-23, and 3-30 were frequently discovered in our Thai DENV2 infected patients. Our findings provide new data on the human B cell response during secondary DENV2 infections in Thai dengue patients that offer supportive information for dengue vaccine design and therapeutics development.
Collapse
Affiliation(s)
- Nipa Thammasonthijarern
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University
| | - Wilarat Puangmanee
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University
| | - Subenya Injampa
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University
| | | | | | - Pongrama Ramasoota
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University.,Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University
| | - Pannamthip Pitaksajjakul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University.,Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University
| |
Collapse
|
24
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Russi S, Vincenti A, Vinella A, Mariggiò MA, Pavone F, Dammacco F, Lauletta G. CD5/CD20 expression on circulating B cells in HCV-related chronic hepatitis and mixed cryoglobulinemia. Eur J Intern Med 2019; 66:48-56. [PMID: 31126779 DOI: 10.1016/j.ejim.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/09/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The role of CD5+ B cells in patients with HCV infection and HCV-related disorders, including mixed cryoglobulinemia (MC), has been addressed in previous reports with conflicting results. We established a correlation between CD5/CD20 expression on circulating B lymphocytes, characterizing monoclonal B cell lymphocytosis (MBL), and clinical features in a cohort of 45 patients with chronic HCV hepatitis [without MC: 23 patients (MC- group); with MC: 22 patients (MC+ group)], and 45 HCV-negative healthy subjects as controls. By flow cytometry analysis, three B cells phenotypes were singled out: 1) CD5+CD20dim (CLL-like phenotype); 2) CD5+CD20bright (atypical phenotype); and 3) CD5-CD20+ phenotype. CD5+CD20bright cells were reduced in MC- patients (p=0.049). CD5+CD20dim B cells were significantly higher in group B than in the control group (p=0.003). ROC curve analysis in MC+ patients showed the highest positive likelihood ratio at ≥7.35% (p=0.008) for CLL-like phenotype and at ≤63.6% (p=0.03) for the CD5-CD20+ B cell phenotype. HCV infection was associated with a higher frequency of CLL-like (odds ratio=16, p=0.002) and a lower frequency of atypical (odds ratio: 3.1, p=0.02) and CD5-CD20+ (odds ratio: 11, p=0.01) phenotypes. The association with higher levels of CLL-like phenotype progressively increased from group of MC- patients (odds ratio: 9.3, p=0.04) to the group of MC+ patients (odds ratio: 25.1, p=0.0003). CONCLUSIONS: The occurrence of a CLL-like pattern may allow to identify HCV-infected patients at risk of developing MC and eventually non-Hodgkin lymphoma, who should require a closer surveillance and a longer follow-up.
Collapse
Affiliation(s)
- Sabino Russi
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy; Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.
| | - Alessandra Vincenti
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Vinella
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | | | - Fabio Pavone
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, FC, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Gianfranco Lauletta
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
26
|
Minervina A, Pogorelyy M, Mamedov I. T‐cell receptor and B‐cell receptor repertoire profiling in adaptive immunity. Transpl Int 2019; 32:1111-1123. [DOI: 10.1111/tri.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Anastasia Minervina
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Mikhail Pogorelyy
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Molecular Biology Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology Oncology and Immunology Moscow Russia
| |
Collapse
|
27
|
Rheumatoid factor and immunoglobulin M mark hepatitis C-associated mixed cryoglobulinaemia: an 8-year prospective study. Clin Microbiol Infect 2019; 26:366-372. [PMID: 31229596 DOI: 10.1016/j.cmi.2019.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The prevalence and factors of hepatitis C virus (HCV) -associated mixed cryoglobulinaemia in Asia remain elusive, and we aimed to investigate these topics. METHODS An 8-year prospective cohort study was conducted in 678 consecutive Taiwanese individuals with chronic HCV infection (438 completed an anti-HCV therapy course). RESULTS Of 678 individuals, 437 (64.5%) had mixed cryoglobulinaemia and 20 (2.9%) had mixed cryoglobulinaemic syndrome. At baseline, IgM (cut-off >122 mg/dL), triglycerides and IgG levels, and HCV genotype 3 were independently associated with mixed cryoglobulinaemia. Rheumatoid factor (RF) levels were associated with mixed cryoglobulinaemic syndrome (cut-off >12.2 IU/mL). At 24 weeks post-therapy, the 362 individuals with a sustained virological response (SVR) had higher cured (106/362 (29.3%) versus 10/76 (13.2%), p = 0.003) and lower persistent (100/362 (27.6%) versus 33/76 (43.4%), p = 0.003) mixed cryoglobulinaemia rates than non-SVR patients. Among SVR patients, compared with baseline levels, RF, IgG and IgM levels decreased, except in individuals with new mixed cryoglobulinaemia. Pre-therapy IgM levels were associated with 24-week post-therapy new (95% CI of OR 1.002-1.023) and persistent (95% CI of OR 1.004-1.015) mixed cryoglobulinaemia in SVR patients. After up to 8 years, 24-week post-therapy IgM levels were associated with mixed cryoglobulinaemia in SVR patients (9/51; 17.64%; 95% CI of HR 1.004-1.011). Among 17 SVR patients with pre-therapy mixed cryoglobulinaemic syndrome, 5 (29.4%) had long-term mixed cryoglobulinaemia and 4 (23.5%) had mixed cryoglobulinaemic syndrome. CONCLUSIONS Over 60% of chronic HCV-infected individuals had mixed cryoglobulinaemia, and 17.64% of SVR patients had mixed cryoglobulinaemia 8 years post-therapy. Pre-therapy RF and IgM levels marked HCV-associated mixed cryoglobulinaemic syndrome and mixed cryoglobulinaemia, respectively.
Collapse
|
28
|
Dunn‐Walters D, Townsend C, Sinclair E, Stewart A. Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunol Rev 2018; 284:132-147. [PMID: 29944755 PMCID: PMC6033188 DOI: 10.1111/imr.12659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human immunoglobulin repertoire is a hugely diverse set of sequences that are formed by processes of gene rearrangement, heavy and light chain gene assortment, class switching and somatic hypermutation. Early B cell development produces diverse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that can bind many foreign antigens but which has had self-reactive B cells removed. Later antigen-dependent development processes adjust the antigen affinity of the receptor by somatic hypermutation. The effector mechanism of the antibody is also adjusted, by switching the class of the antibody from IgM to one of seven other classes depending on the required function. There are many instances in human biology where positive and negative selection forces can act to shape the immunoglobulin repertoire and therefore repertoire analysis can provide useful information on infection control, vaccination efficacy, autoimmune diseases, and cancer. It can also be used to identify antigen-specific sequences that may be of use in therapeutics. The juxtaposition of lymphocyte development and numerical evaluation of immune repertoires has resulted in the growth of a new sub-speciality in immunology where immunologists and computer scientists/physicists collaborate to assess immune repertoires and develop models of immune action.
Collapse
Affiliation(s)
| | | | - Emma Sinclair
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Alex Stewart
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
29
|
DeStefano CB, Desai SH, Shenoy AG, Catlett JP. Management of post-transplant lymphoproliferative disorders. Br J Haematol 2018; 182:330-343. [DOI: 10.1111/bjh.15263] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Sanjal H. Desai
- Department of Hematology; MedStar Washington Hospital Center; Washington DC USA
| | - Aarthi G. Shenoy
- Department of Hematology; MedStar Washington Hospital Center; Washington DC USA
| | - Joseph P. Catlett
- Department of Hematology; MedStar Washington Hospital Center; Washington DC USA
| |
Collapse
|