1
|
Sabakhtarishvili G, Alshebli M, Bajwa O, Tabbara IA. Bruton Tyrosine Kinase Degraders: Current Concepts. Am J Clin Oncol 2025; 48:257-261. [PMID: 39950399 DOI: 10.1097/coc.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Bruton tyrosine kinase (BTK) is a key enzyme involved in B-cell development and signaling, making it a crucial target in the treatment of B-cell malignancies, such as chronic lymphocytic leukemia and non-Hodgkin lymphoma. While BTK inhibitors (BTKi), such as ibrutinib, have been effective, resistance-both intrinsic and acquired-poses a significant challenge, often associated with BTK mutations like C481S. To address this, novel BTK degraders have been developed, leveraging proteolysis-targeting chimeras to selectively degrade both wild-type and mutant BTK forms. This approach offers a promising strategy to overcome BTKi resistance. Agents such as NRX-0492, BGB-16673, NX-5948, NX-2127, HZ-Q1060, ABBV-101, and AC676 have shown significant BTK degradation in preclinical and early clinical trials. NRX-0492 demonstrated over 90% BTK degradation with sustained pharmacodynamic effects, whereas BGB-16673 achieved clinical responses in 67% of patients with relapsed/refractory B-cell malignancies. Similarly, NX-5948 and NX-2127 showed potent BTK degradation, with NX-2127, in addition, targeting immunomodulatory proteins, resulting in partial and stable responses in chronic lymphocytic leukemia and non-Hodgkin lymphoma patients. HZ-Q1060, a preclinical candidate, displayed rapid and sustained BTK degradation in vivo. Early-phase trials of ABBV-101 and AC676 are also showing promising results. These BTK degraders have demonstrated favorable safety profiles, with manageable adverse events, and offer a novel therapeutic avenue for patients with BTKi-resistant malignancies. As clinical trials progress, these degraders hold the potential to significantly enhance treatment outcomes, offering a new frontier in personalized cancer therapy.
Collapse
Affiliation(s)
| | - Mouza Alshebli
- Division of Hematology/Oncology, Anne Arundel Medical Center
| | - Omer Bajwa
- Division of Hematology/Oncology, Anne Arundel Medical Center
| | - Imad A Tabbara
- Chief Division of Hematology/Oncology, Anne Arundel Medical Center, Annapolis, MD
| |
Collapse
|
2
|
He Y, Wang C, Pan T, Cai Q, Zhou D, Zhang H, Liang R, Zeng D, Ye H, Liang Y, Sun X, Xiao L, Zhou H. POD24-Based prognostic signature enables personalized risk stratification in mantle cell lymphoma. Sci Rep 2025; 15:8687. [PMID: 40082544 PMCID: PMC11906600 DOI: 10.1038/s41598-025-92963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Mantle cell lymphoma (MCL) exhibits significant biological and clinical heterogeneity, necessitating a refined prognostic model. According to the drawbacks of existing models which do not truly define the complexity of the disease, we used the clinical and molecular data from nine medical centers of China to validate the predictive utility of progression of disease within 24 months (POD24), and also established a novel prognostic risk model to predict the survival outcome of MCL patients. POD24 occurred in 37.7% of evaluable patients, with the median over survival being 21 months (vs. 122 months for those without POD24, P < 0.0001). The POD24-based risk model had the highest sensitivity to predict survival with the most satisfying AUC value for risk score (AUC = 0.869). In conclusion, we confirm the obviously predictive performance of POD24 and established a novel risk model combined POD24 and clinical factors. Our new prognostic model might be helpful in effectively classify MCL patients with high-risk groups in terms of survival rate, which may help in selecting high-risk MCL patients for more intensive treatment at time of relapse.
Collapse
Affiliation(s)
- Yizi He
- Department of Lymphoma & Hematology, the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Caiqin Wang
- Department of Lymphoma & Hematology, the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Tao Pan
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingqing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dehui Zhou
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin'S Clinical Research Center for Cancer, Tianjin, China
| | - Rong Liang
- Department of Hematology, Department of Internal Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun Liang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiuhua Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| | - Hui Zhou
- Department of Lymphoma & Hematology, the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Hallek M. Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy. Am J Hematol 2025; 100:450-480. [PMID: 39871707 PMCID: PMC11803567 DOI: 10.1002/ajh.27546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the most frequent type of leukemia. It typically occurs in older patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that interfere with the regulation of proliferation and apoptosis in clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as typical B-cell markers. PROGNOSIS AND STAGING Two clinical staging systems, Rai and Binet, provide prognostic information by using the results of physical examination and blood counts. Various biological and genetic markers provide additional prognostic information. Deletions of the short arm of chromosome 17 (del(17p)) and/or mutations of the TP53 gene predict a shorter time to progression with most targeted therapies. The CLL international prognostic index (CLL-IPI) integrates genetic, biological, and clinical variables to identify distinct risk groups of patients with CLL. The CLL-IPI retains its significance in the era of targeted agents, but the overall prognosis of CLL patients with high-risk stages has improved. THERAPY Only patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. When treatment is indicated, several therapeutic options exist: combinations of the BCL2 inhibitor venetoclax with obinutuzumab, or venetoclax with ibrutinib, or monotherapy with one of the inhibitors of Bruton tyrosine kinase (BTK). At relapse, the initial treatment may be repeated if the treatment-free interval exceeds 3 years. If the leukemia relapses earlier, therapy should be changed using an alternative regimen. FUTURE CHALLENGES Combinations of targeted agents now provide efficient therapies with a fixed duration that generate deep and durable remissions. These fixed-duration therapies have gained territory in the management of CLL, as they are cost-effective, avoid the emergence of resistance, and offer treatment free time to the patient. The cure rate of these novel combination regimens is unknown. Moreover, the optimal sequencing of targeted therapies remains to be determined. A medical challenge is to treat patients who are double-refractory to both BTK and BCL2 inhibitors. These patients need to be treated within experimental protocols using novel drugs.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Prognosis
- Mutation
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine and Medical FacultyUniversity of CologneKölnGermany
- Center for Integrated Oncology Aachen Bonn Köln DüsseldorfKölnGermany
- Center of Excellence on “Cellular Stress Responses in Aging‐Associated Diseases,” University of CologneKölnGermany
- Center of Cancer Research Cologne EssenKölnGermany
- National Center for Tumor Diseases (NCT) WestKölnGermany
| |
Collapse
|
4
|
Sarkozy C, Tessoulin B, Chiron D. Unraveling MCL biology to understand resistance and identify vulnerabilities. Blood 2025; 145:696-707. [PMID: 38551811 DOI: 10.1182/blood.2023022351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 02/14/2025] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is a rare (5%-7%), aggressive B-cell non-Hodgkin lymphoma with well-defined hallmarks (eg, cyclin D1, SOX11), and its expansion is highly dependent on the tumor microenvironment (TME). Parallel drastic progress in the understanding of lymphomagenesis and improved treatments led to a paradigm shift in this B-cell malignancy with now prolonged disease-free survival after intensive chemotherapy and anti-CD20-based maintenance. However, this toxic strategy is not applicable in frail or older patients, and a small but significant part of the cases present a refractory disease representing unmet medical needs. Importantly, the field has recently seen the rapid emergence of targeted and immune-based strategies with effective combinations relying on biological rationales to overcome malignant plasticity and intratumor heterogeneity. In this review, we expose how unraveling the biology of MCL allows to better understand the therapeutic resistances and to identify neo-vulnerabilities in tumors, which are essential to offer efficient novel strategies for high-risk patients. We first highlight the tumor intrinsic resistance mechanisms and associated Achilles heels within various pathways, such as NF-κB, mitochondrial apoptosis, DNA repair, and epigenetic regulators. We then place the tumor in its complex ecosystem to decipher the dialog with the multiple TME components and show how the resulting protumoral signals could be disrupted with innovative therapeutic strategies. Finally, we discuss how these progresses could be integrated into a personalized approach in MCL.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- Service d'Hématologie, Institut Curie, Saint Cloud, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, U1288 Inserm/Institut Curie Centre de Recherche, Paris, France
| | - Benoit Tessoulin
- Service d'Hématologie, Centre Hospitalier Universitaire Nantes, Nantes, France
- reMoVE-B, Nantes Université, INSERM, Centre National de la Recherche Scientifique, Université d'Angers, CRCI2NA, Nantes, France
| | - David Chiron
- reMoVE-B, Nantes Université, INSERM, Centre National de la Recherche Scientifique, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
5
|
Fan AT, Gadbois GE, Huang HT, Chaudhry C, Jiang J, Sigua LH, Smith ER, Wu S, Poirier GJ, Dunne-Dombrink K, Goyal P, Tao AJ, Sellers WR, Fischer ES, Donovan KA, Ferguson FM. A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development. Angew Chem Int Ed Engl 2025; 64:e202417272. [PMID: 39602499 PMCID: PMC11890178 DOI: 10.1002/anie.202417272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Bifunctional molecules such as targeted protein degraders induce proximity to promote gain-of-function pharmacology. These powerful approaches have gained broad traction across academia and the pharmaceutical industry, leading to an intensive focus on strategies that can accelerate their identification and optimization. We and others have previously used chemical proteomics to map degradable target space, and these datasets have been used to develop and train multiparameter models to extend degradability predictions across the proteome. In this study, we now turn our attention to develop generalizable chemistry strategies to accelerate the development of new bifunctional degraders. We implement lysine-targeted reversible-covalent chemistry to rationally tune the binding kinetics at the protein-of-interest across a set of 25 targets. We define an unbiased workflow consisting of global proteomics analysis, IP/MS of ternary complexes and the E-STUB assay, to mechanistically characterize the effects of ligand residence time on targeted protein degradation and formulate hypotheses about the rate-limiting step of degradation for each target. Our key finding is that target residence time is a major determinant of degrader activity, and this can be rapidly and rationally tuned through the synthesis of a minimal number of analogues to accelerate early degrader discovery and optimization.
Collapse
Affiliation(s)
- Angela T. Fan
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Gillian E. Gadbois
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Hai-Tsang Huang
- The Broad Institute of Harvard and MIT
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - Charu Chaudhry
- Discovery Technologies Molecular Pharmacology, J&J Innovative Medicine, Spring House, Pennsylvania 19477, United States
| | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Logan H. Sigua
- Medical Scientist Training Program, University of California, San Diego
| | - Emily R. Smith
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Grace J. Poirier
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Kara Dunne-Dombrink
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Pavitra Goyal
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Andrew J. Tao
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - William R. Sellers
- The Broad Institute of Harvard and MIT
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston
| | - Fleur M. Ferguson
- Department of Chemistry and Biochemistry, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
6
|
Trunov D, Ižovský J, Beranek J, Dammer O, Šoóš M. Characterization of Amorphous Ibrutinib Thermal Stability. Org Process Res Dev 2025; 29:56-65. [PMID: 39839540 PMCID: PMC11744788 DOI: 10.1021/acs.oprd.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
The choice of method for drug amorphization depends on various factors, including the physicochemical properties of the active pharmaceutical ingredients, the desired formulation, and scalability requirements. It is often important to consider a combination of methods or the use of excipients to further enhance the stability and performance of the amorphous drug. This study presents a comparison of techniques including melt quench, hot melt extrusion, solvent evaporation, ball milling, and lyophilization used for the preparation of amorphous ibrutinib. The amorphous material was thoroughly investigated using numerous techniques to examine changes in the physicochemical properties, stability, and degradation pathways of the drug product. During the examination, the temperature was discovered to be a key parameter for controlling the solubility and permeability of ibrutinib, which is influenced by the presence of the degradation product. We found that this degradation product could potentially polymerize and increase the molecular weight. The quantity, polymerization rate, and structure of the impurity can be regulated by the temperature variation during the amorphization processes. Additionally, the molecular weight of the degradation product was determined using Zimm plot analysis, which appeared for the first time in the literature for molecules of this category.
Collapse
Affiliation(s)
- Dan Trunov
- Department
of Chemical Engineering, University of Chemistry
and Technology, Technická 3, Prague 6, Dejvice 166 28, Czech Republic
| | - Jan Ižovský
- Department
of Chemical Engineering, University of Chemistry
and Technology, Technická 3, Prague 6, Dejvice 166 28, Czech Republic
| | - Josef Beranek
- Zentiva,
k.s., U Kabelovny 130, Prague 10 102 00, Czech Republic
| | - Ondřej Dammer
- Zentiva,
k.s., U Kabelovny 130, Prague 10 102 00, Czech Republic
| | - Miroslav Šoóš
- Department
of Chemical Engineering, University of Chemistry
and Technology, Technická 3, Prague 6, Dejvice 166 28, Czech Republic
| |
Collapse
|
7
|
Trory JS, Vautrinot J, May CJ, Hers I. PROTACs in platelets: emerging antithrombotic strategies and future perspectives. Curr Opin Hematol 2025; 32:34-42. [PMID: 39446364 DOI: 10.1097/moh.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Proteolysis-targeted chimeras (PROTACs) are heterobifunctional compounds that selectively target proteins for degradation and are an emerging therapeutic modality to treat diseases such as cancer and neurodegenerative disorders. This review will widen the area of application by highlighting the ability of PROTACs to remove proteins from the anucleate platelets and evaluate their antithrombotic potential. RECENT FINDINGS Proteomic and biochemical studies demonstrated that human platelets possess the Ubiquitin Proteasomal System as well as the E3 ligase cereblon (CRBN) and therefore may be susceptible to PROTAC-mediated protein degradation. Recent findings confirmed that CRBN ligand-based PROTACs targeting generic tyrosine kinases, Btk and/or Fak lead to efficacious and selective protein degradation in human platelets. Downregulation of Btk, a key player involved in signalling to thrombosis, but not haemostasis, resulted in impaired in-vitro thrombus formation. SUMMARY Platelets are susceptible to targeted protein degradation by CRBN ligand-based PROTACs and have limited ability to resynthesise proteins, ensuring long-term downregulation of target proteins. Therefore, PROTACs serve as an additional research tool to study platelet function and offer new therapeutic potential to prevent thrombosis. Future studies should focus on enhancing cell specificity to avoid on-target side effects on other blood cells.
Collapse
Affiliation(s)
- Justin S Trory
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
8
|
Wu Y, Meibohm B, Zhang T, Hou X, Wang H, Sun X, Jiang M, Zhang B, Zhang W, Liu Y, Jin W, Wang F. Translational modelling to predict human pharmacokinetics and pharmacodynamics of a Bruton's tyrosine kinase-targeted protein degrader BGB-16673. Br J Pharmacol 2024; 181:4973-4987. [PMID: 39289908 DOI: 10.1111/bph.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Bifunctional small molecule degraders, which link the target protein with E3 ubiquitin ligase, could lead to the efficient degradation of the target protein. BGB-16673 is a Bruton's tyrosine kinase (BTK) degrader. A translational PK/PD modelling approach was used to predict the human BTK degradation of BGB-16673 from preclinical in vitro and in vivo data. EXPERIMENTAL APPROACH A simplified mechanistic PK/PD model was used to establish the correlation between the in vitro and in vivo BTK degradation by BGB-16673 in a mouse model. Human and mouse species differences were compared using the parameters generated from in vitro human or mouse blood, and human or mouse serum spiked TMD-8 cells. Human PD was then predicted using the simplified mechanistic PK/PD model. KEY RESULTS BGB-16673 showed potent BTK degradation in mouse whole blood, human whole blood, and TMD-8 tumour cells in vitro. Furthermore, BGB-16673 showed BTK degradation in a murine TMD-8 xenograft model in vivo. The PK/PD model predicted human PD and the observed BTK degradation in clinical studies both showed robust BTK degradation in blood and tumour at clinical dose range. CONCLUSION AND IMPLICATIONS The presented simplified mechanistic model with reduced number of model parameters is practically easier to be applied to research projects compared with the full mechanistic model. It can be used as a tool to better understand the PK/PD behaviour for targeted protein degraders and increase the confidence when moving to the clinical stage.
Collapse
Affiliation(s)
- Yue Wu
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Taichang Zhang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinfeng Hou
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
- Migrasome Therapeutics Co. Ltd., Beijing, China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaona Sun
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ming Jiang
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bo Zhang
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wei Jin
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Fan Wang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
9
|
Zhao M, Ma W, Liang J, Xie Y, Wei T, Zhang M, Qin J, Lao L, Tian R, Wu H, Cheng J, Li M, Liu Y, Hong L, Li G. Design, Synthesis, and Activity Evaluation of BRD4 PROTAC Based on Alkenyl Oxindole-DCAF11 Pair. J Med Chem 2024; 67:19428-19447. [PMID: 39475482 DOI: 10.1021/acs.jmedchem.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (8a-8o, 14a-14f, 22a-22m) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified L134 (22a) as a potent BRD4 degrader, achieving BRD4 degradation (Dmax > 98%, DC50 = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by L134 was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC L134 based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.
Collapse
Affiliation(s)
- Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Ma
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinyi Liang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tianzi Wei
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jiajie Qin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Lingyin Lao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ruilin Tian
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyang Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
11
|
Bravo-Gonzalez A, Alasfour M, Soong D, Noy J, Pongas G. Advances in Targeted Therapy: Addressing Resistance to BTK Inhibition in B-Cell Lymphoid Malignancies. Cancers (Basel) 2024; 16:3434. [PMID: 39456530 PMCID: PMC11506569 DOI: 10.3390/cancers16203434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024] Open
Abstract
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton's tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent the downstream signaling. Resistance to covalent BTK inhibitors (BTKi) can occur through mutations at the BTK binding site (C481S) but also other BTK sites and the phospholipase C gamma 2 (PLCγ2) resulting in downstream signaling. To bypass the C481S mutation, non-covalent BTKi, such as Pirtobrutinib, were developed and are active against both wild-type and the C481S mutation. In this review, we discuss the molecular and genetic mechanisms which contribute to acquisition of resistance to covalent and non-covalent BTKi. In addition, we discuss the new emerging class of BTK degraders, which utilize the evolution of proteolysis-targeting chimeras (PROTACs) to degrade the BTK protein and constitute an important avenue of overcoming resistance. The moving landscape of resistance to BTKi and the development of new therapeutic strategies highlight the ongoing advances being made towards the pursuit of a cure for B-cell lymphoid malignancies.
Collapse
Affiliation(s)
| | - Maryam Alasfour
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Deborah Soong
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Jose Noy
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Georgios Pongas
- Division of Hematology, Department of Medicine, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
12
|
Fan AT, Gadbois GE, Huang HT, Jiang J, Sigua LH, Smith ER, Wu S, Dunne-Dombrink K, Goyal P, Tao AJ, Sellers W, Fischer ES, Donovan KA, Ferguson FM. A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612508. [PMID: 39345570 PMCID: PMC11429919 DOI: 10.1101/2024.09.17.612508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bifunctional molecules such as targeted protein degraders induce proximity to promote gain-of-function pharmacology. These powerful approaches have gained broad traction across academia and the pharmaceutical industry, leading to an intensive focus on strategies that can accelerate their identification and optimization. We and others have previously used chemical proteomics to map degradable target space, and these datasets have been used to develop and train multiparameter models to extend degradability predictions across the proteome. In this study, we now turn our attention to develop generalizable chemistry strategies to accelerate the development of new bifunctional degraders. We implement lysine-targeted reversible-covalent chemistry to rationally tune the binding kinetics at the protein-of-interest across a set of 25 targets. We define an unbiased workflow consisting of global proteomics analysis, IP/MS of ternary complexes and the E-STUB assay, to mechanistically characterize the effects of ligand residence time on targeted protein degradation and formulate hypotheses about the rate-limiting step of degradation for each target. Our key finding is that target residence time is a major determinant of degrader activity, and this can be rapidly and rationally tuned through the synthesis of a minimal number of analogues to accelerate early degrader discovery and optimization efforts.
Collapse
Affiliation(s)
- Angela T. Fan
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Gillian E. Gadbois
- Department of Chemistry and Biochemistry, University of California, San Diego
| | | | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Logan H. Sigua
- Medical Scientist Training Program, University of California, San Diego
| | - Emily R. Smith
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Kara Dunne-Dombrink
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Pavitra Goyal
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Andrew J. Tao
- Department of Chemistry and Biochemistry, University of California, San Diego
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston
| | - Fleur M. Ferguson
- Department of Chemistry and Biochemistry, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
13
|
Skånland SS, Okkenhaug K, Davids MS. PI3K Inhibitors in Hematology: When One Door Closes…. Clin Cancer Res 2024; 30:3667-3675. [PMID: 38967552 PMCID: PMC11371526 DOI: 10.1158/1078-0432.ccr-24-0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
The PI3K signaling pathway regulates key cellular processes and is one of the most aberrantly activated pathways in cancer. The class I PI3K catalytic subunits p110γ and p110δ are highly enriched in leukocytes, providing an additional rationale for targeting these PI3Ks in hematologic malignancies. In 2014, the PI3Kδ inhibitor idelalisib was the first of four PI3K inhibitors (PI3Ki) to receive regulatory approval for relapsed B-cell malignancies. This was followed by approvals of the pan-class I inhibitor copanlisib (2017), the dual PI3Kγ/δ inhibitor duvelisib (2018), and the PI3Kδ and casein kinase 1ε inhibitor umbralisib (2021). Copanlisib and umbralisib received accelerated approvals, whereas idelalisib and duvelisib received initial accelerated approvals followed by full approvals. The accelerated approvals were based on overall response rates; however, follow-up studies showed increased risk of death and serious side effects. Furthermore, the confirmatory trial with copanlisib failed to show an improvement in progression-free survival when compared with chemoimmunotherapy. These developments led to black box warnings for idelalisib and duvelisib and withdrawal of copanlisib and umbralisib from the market by their manufacturers. Given the uncertain future of this drug class, additional manufacturers terminated ongoing phase III trials with novel PI3Kis. In this study, we review the development and current status of PI3Kis in hematology, limitations to their use, and our perspective on whether there is a future for PI3Kis in hematology.
Collapse
Affiliation(s)
- Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
14
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Feng Y, Hu X, Wang X. Targeted protein degradation in hematologic malignancies: clinical progression towards novel therapeutics. Biomark Res 2024; 12:85. [PMID: 39169396 PMCID: PMC11340087 DOI: 10.1186/s40364-024-00638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Targeted therapies, such as small molecule kinase inhibitors, have made significant progress in the treatment of hematologic malignancies by directly modulating protein activity. However, issues such as drug toxicity, drug resistance due to target mutations, and the absence of key active sites limit the therapeutic efficacy of these drugs. Targeted protein degradation (TPD) presents an emergent and rapidly evolving therapeutic approach that selectively targets proteins of interest (POI) based on endogenous degradation processes. With an event-driven pharmacology of action, TPD achieves efficacy with catalytic amounts, avoiding drug-related toxicity. Furthermore, TPD has the unique mode of degrading the entire POI, such that resistance derived from mutations in the targeted protein has less impact on its degradation function. Proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) are the most maturely developed TPD techniques. In this review, we focus on both preclinical experiments and clinical trials to provide a comprehensive summary of the safety and clinical effectiveness of PROTACs and MGDs in hematologic malignancies over the past two decades. In addition, we also delineate the challenges and opportunities associated with these burgeoning degradation techniques. TPD, as an approach to the precise degradation of specific proteins, provides an important impetus for its future application in the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Yupiao Feng
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
16
|
Lin H, Riching K, Lai MP, Lu D, Cheng R, Qi X, Wang J. Lysineless HiBiT and NanoLuc Tagging Systems as Alternative Tools for Monitoring Targeted Protein Degradation. ACS Med Chem Lett 2024; 15:1367-1375. [PMID: 39140070 PMCID: PMC11318018 DOI: 10.1021/acsmedchemlett.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Target protein degradation (TPD) has emerged as a revolutionary approach in drug discovery, leveraging the cell's intrinsic machinery to selectively degrade disease-associated proteins. Nanoluciferase (nLuc) fusion proteins and the NanoBiT technology offer two robust and sensitive screening platforms to monitor the subtle changes in protein abundance induced by TPD molecules. Despite these advantages, concerns have arisen regarding potential degradation artifacts introduced by tagging systems due to the presence of lysine residues on them, prompting the development of alternative tools. In this study, we introduce HiBiT-RR and nLucK0, variants devoid of lysine residues, to mitigate such artifacts. Our findings demonstrate that HiBiT-RR maintains a similar sensitivity and binding affinity with the original HiBiT. Moreover, the comparison between nLucWT and nLucK0 constructs reveals variations in degradation patterns induced by certain TPD molecules, emphasizing the importance of choosing appropriate tagging systems to ensure the reliability of experimental outcomes in studying protein degradation processes.
Collapse
Affiliation(s)
- Hanfeng Lin
- The
Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center
for NextGen Therapeutics, Baylor College
of Medicine, Houston, Texas 77030, United
States
| | - Kristin Riching
- Promega
Corporation, 2800 Woods Hollow Road, Madison, Wisconsin 53711, United States
| | - May Poh Lai
- Malvern
Panalytical Inc., 2400
Computer Drive, Westborough, Massachusetts 01581, United States
| | - Dong Lu
- The
Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ran Cheng
- The
Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center
for NextGen Therapeutics, Baylor College
of Medicine, Houston, Texas 77030, United
States
| | - Xiaoli Qi
- The
Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center
for NextGen Therapeutics, Baylor College
of Medicine, Houston, Texas 77030, United
States
| | - Jin Wang
- The
Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Department
of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
- Center
for NextGen Therapeutics, Baylor College
of Medicine, Houston, Texas 77030, United
States
| |
Collapse
|
17
|
Lewis RI, Vom Stein AF, Hallek M. Targeting the tumor microenvironment for treating double-refractory chronic lymphocytic leukemia. Blood 2024; 144:601-614. [PMID: 38776510 DOI: 10.1182/blood.2023022861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT The introduction of BTK inhibitors and BCL2 antagonists to the treatment of chronic lymphocytic leukemia (CLL) has revolutionized therapy and improved patient outcomes. These agents have replaced chemoimmunotherapy as standard of care. Despite this progress, a new group of patients is currently emerging, which has become refractory or intolerant to both classes of agents, creating an unmet medical need. Here, we propose that the targeted modulation of the tumor microenvironment provides new therapeutic options for this group of double-refractory patients. Furthermore, we outline a sequential strategy for tumor microenvironment-directed combination therapies in CLL that can be tested in clinical protocols.
Collapse
Affiliation(s)
- Richard I Lewis
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Alexander F Vom Stein
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| |
Collapse
|
18
|
Thomas CJ, Carvajal V, Barta SK. Targeted Therapies in the Treatment of Mantle Cell Lymphoma. Cancers (Basel) 2024; 16:1937. [PMID: 38792015 PMCID: PMC11119355 DOI: 10.3390/cancers16101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, heterogeneous B-cell non-Hodgkin's lymphoma. The standard front-line treatment utilizes chemotherapy, often followed by consolidation with an autologous hematopoietic cell transplant; however, in most patients, the lymphoma will recur and require subsequent treatments. Additionally, mantle cell lymphoma primarily affects older patients and is frequently chemotherapy-resistant, which has further fostered the necessity for new, chemotherapy-free treatment options. In the past decade, targeted therapies in mantle cell lymphoma have been practice-changing as the treatment paradigm shifts further away from relying primarily on cytotoxic agents. Here, we will review the pathophysiology of mantle cell lymphoma and discuss the emergence of targeted, chemotherapy-free treatments aimed at disrupting the abnormal biology driving its lymphomagenesis. Treatments targeting the constitutive activation of NF-kB, Bruton's Tyrosine Kinase signaling, and anti-apoptosis will be the primary focus as we discuss their clinical data and toxicities. Our review will also focus primarily on the emergence and use of targeted therapies in the relapsed/refractory setting but will also discuss the emergence of their use in front-line therapy and in combination with other agents.
Collapse
Affiliation(s)
- Colin J. Thomas
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronica Carvajal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan K. Barta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Lin H, Riching K, Lai MP, Lu D, Cheng R, Qi X, Wang J. Lysineless HiBiT and NanoLuc Tagging Systems as Alternative Tools Monitoring Targeted Protein Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594249. [PMID: 38798562 PMCID: PMC11118299 DOI: 10.1101/2024.05.14.594249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Target protein degradation (TPD) has emerged as a revolutionary approach in drug discovery, leveraging the cell's intrinsic machinery to selectively degrade disease-associated proteins. Proteolysis-Targeting Chimeras (PROTACs) exemplify this strategy, exploiting heterobifunctional molecules to induce ubiquitination and subsequent degradation of target proteins. The clinical advancement of PROTACs underscores their potential in therapeutic intervention, with numerous projects progressing through clinical stages. However, monitoring subtle changes in protein abundance induced by TPD molecules demands highly sensitive assays. Nano-luciferase (nLuc) fusion proteins, or the NanoBiT technology derived from it, offer a robust screening platform due to their high sensitivity and stability. Despite these advantages, concerns have arisen regarding potential degradation artifacts introduced by tagging systems due to the presence of lysine residues on them, prompting the development of alternative tools. In this study, we introduce HiBiT-RR and nLuc K0 , variants devoid of lysine residues, to mitigate such artifacts. Our findings demonstrate that HiBiT-RR maintains similar sensitivity and binding affinity with the original HiBiT. Moreover, the comparison between nLuc WT and nLuc K0 constructs reveals variations in degradation patterns induced by certain PROTAC molecules, emphasizing the importance of choosing appropriate tagging systems to ensure the reliability of experimental outcomes in studying protein degradation processes.
Collapse
|
20
|
Li L, Liu S, Luo Y. Application of covalent modality in proximity-induced drug pharmacology: Early development, current strategy, and feature directions. Eur J Med Chem 2024; 271:116394. [PMID: 38643668 DOI: 10.1016/j.ejmech.2024.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
With a growing number of covalent drugs securing FDA approval as successful therapies across various indications, particularly in the realm of cancer treatment, the covalent modulating strategy is undergoing a resurgence. The renewed interest in covalent bioactive compounds has captured significant attention from both the academic and biopharmaceutical industry sectors. Covalent chemistry presents several advantages over traditional noncovalent proximity-induced drugs, including heightened potency, reduced molecular size, and the ability to target "undruggable" entities. Within this perspective, we have compiled a comprehensive overview of current covalent modalities applied to proximity-induced molecules, delving into their advantages and drawbacks. Our aim is to stimulate more profound insights and ideas within the scientific community, guiding future research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Linjie Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Huynh T, Rodriguez-Rodriguez S, Danilov AV. Bruton Tyrosine Kinase Degraders in B-Cell Malignancies. Mol Cancer Ther 2024; 23:619-626. [PMID: 38693903 DOI: 10.1158/1535-7163.mct-23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 05/03/2024]
Affiliation(s)
- Tiana Huynh
- City of Hope National Medical Center, Duarte, California
| | | | | |
Collapse
|
22
|
Robbins DW, Noviski MA, Tan YS, Konst ZA, Kelly A, Auger P, Brathaban N, Cass R, Chan ML, Cherala G, Clifton MC, Gajewski S, Ingallinera TG, Karr D, Kato D, Ma J, McKinnell J, McIntosh J, Mihalic J, Murphy B, Panga JR, Peng G, Powers J, Perez L, Rountree R, Tenn-McClellan A, Sands AT, Weiss DR, Wu J, Ye J, Guiducci C, Hansen G, Cohen F. Discovery and Preclinical Pharmacology of NX-2127, an Orally Bioavailable Degrader of Bruton's Tyrosine Kinase with Immunomodulatory Activity for the Treatment of Patients with B Cell Malignancies. J Med Chem 2024; 67:2321-2336. [PMID: 38300987 DOI: 10.1021/acs.jmedchem.3c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, is an essential effector of B-cell receptor (BCR) signaling. Chronic activation of BTK-mediated BCR signaling is a hallmark of many hematological malignancies, which makes it an attractive therapeutic target. Pharmacological inhibition of BTK enzymatic function is now a well-proven strategy for the treatment of patients with these malignancies. We report the discovery and characterization of NX-2127, a BTK degrader with concomitant immunomodulatory activity. By design, NX-2127 mediates the degradation of transcription factors IKZF1 and IKZF3 through molecular glue interactions with the cereblon E3 ubiquitin ligase complex. NX-2127 degrades common BTK resistance mutants, including BTKC481S. NX-2127 is orally bioavailable, exhibits in vivo degradation across species, and demonstrates efficacy in preclinical oncology models. NX-2127 has advanced into first-in-human clinical trials and achieves deep and sustained degradation of BTK following daily oral dosing at 100 mg.
Collapse
Affiliation(s)
- Daniel W Robbins
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Mark A Noviski
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ying Siow Tan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Zef A Konst
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Aileen Kelly
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Paul Auger
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Nivetha Brathaban
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Robert Cass
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ming Liang Chan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ganesh Cherala
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Matthew C Clifton
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Stefan Gajewski
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Timothy G Ingallinera
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Dane Karr
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Daisuke Kato
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jun Ma
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jenny McKinnell
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Joel McIntosh
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jeff Mihalic
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Brent Murphy
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jaipal Reddy Panga
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ge Peng
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Janine Powers
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Luz Perez
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Ryan Rountree
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Austin Tenn-McClellan
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Arthur T Sands
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Dahlia R Weiss
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jeffrey Wu
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Jordan Ye
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Cristiana Guiducci
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Gwenn Hansen
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| | - Frederick Cohen
- Nurix Therapeutics, Inc., 1700 Owens St., San Francisco, California 94158, United States
| |
Collapse
|
23
|
Zhang A, Seiss K, Laborde L, Palacio-Ramirez S, Guthy D, Lanter M, Lorber J, Vulpetti A, Arista L, Zoller T, Radimerski T, Thoma C, Hebach C, Tschantz WR, Karpov A, Hollingworth GJ, D'Alessio JA, Ferretti S, Burger MT. Design, Synthesis, and In Vitro and In Vivo Evaluation of Cereblon Binding Bruton's Tyrosine Kinase (BTK) Degrader CD79b Targeted Antibody-Drug Conjugates. Bioconjug Chem 2024; 35:140-146. [PMID: 38265691 DOI: 10.1021/acs.bioconjchem.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Antibody-drug conjugates (ADCs) are an established modality that allow for targeted delivery of a potent molecule, or payload, to a desired site of action. ADCs, wherein the payload is a targeted protein degrader, are an emerging area in the field. Herein we describe our efforts of delivering a Bruton's tyrosine kinase (BTK) bifunctional degrader 1 via a CD79b mAb (monoclonal antibody) where the degrader is linked at the ligase binding portion of the payload via a cleavable linker to the mAb. The resulting CD79b ADCs, 3 and 4, exhibit in vitro degradation and cytotoxicity comparable with that of 1, and ADC 3 can achieve more sustained in vivo degradation than intravenously administered 1 with markedly reduced systemic exposure of the payload.
Collapse
Affiliation(s)
- Alan Zhang
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139 United States
| | - Katherine Seiss
- Oncology Biotherapeutics, Novartis Biomedical Research, Cambridge, Massachusetts 02139 United States
| | - Laurent Laborde
- Oncology, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Sebastian Palacio-Ramirez
- Novartis Biologics Center, Novartis Biomedical Research, Cambridge, Massachusetts 02139 United States
| | - Daniel Guthy
- Oncology, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Mylene Lanter
- Oncology, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Julien Lorber
- Global Discovery Chemistry, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Luca Arista
- Global Discovery Chemistry, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Thomas Zoller
- Global Discovery Chemistry, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Claudio Thoma
- Oncology, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Christina Hebach
- Oncology, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - William R Tschantz
- Novartis Biologics Center, Novartis Biomedical Research, Cambridge, Massachusetts 02139 United States
| | - Alexei Karpov
- Global Discovery Chemistry, Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Joseph A D'Alessio
- Oncology Biotherapeutics, Novartis Biomedical Research, Cambridge, Massachusetts 02139 United States
| | | | - Matthew T Burger
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139 United States
| |
Collapse
|
24
|
Yang H, Qin J, Pei Y, Guan S, Zhao M, Wang Y, Yao Y, Duan Y, Sun M. Discovery of the cereblon-recruiting tubulin PROTACs effective in overcoming Taxol resistance in vitro and in vivo. Eur J Med Chem 2024; 265:116067. [PMID: 38171146 DOI: 10.1016/j.ejmech.2023.116067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Overexpression of β3-tubulin is a common occurrence in human tumors and is associated with resistance to microtubule-targeting agents. PROTAC strategy has demonstrated significant potential in overcoming drug resistance. Herein, we report the discovery of W13 as the first PROTAC against tubulin, which was created by connecting a CRBN ligand to the widely recognized microtubule-destabilizing agent CA-4. Notably, it retains the inhibitory activity of the parental CA-4 and further exhibits substantial degradation of α/β/β3-tubulin in both A549 and A549/Taxol cell lines. The degradation of tubulin was subsequently verified to be mediated by the ubiquitin-proteasome system. Importantly, tumor xenograft research clearly showed W13's promising antitumor activity against human lung cancer. Taken together, the discovery of W13 demonstrated the practicality and feasibility of PROTAC targeting tubulin, hence establishing a potential therapeutic approach for treating NSCLC caused by the overexpression of β3-tubulin.
Collapse
Affiliation(s)
- Hua Yang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jinling Qin
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yuanyuan Pei
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Sumeng Guan
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Mei Zhao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yingge Wang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| | - Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
25
|
Montoya S, Bourcier J, Noviski M, Lu H, Thompson MC, Chirino A, Jahn J, Sondhi AK, Gajewski S, Tan YS(M, Yung S, Urban A, Wang E, Han C, Mi X, Kim WJ, Sievers Q, Auger P, Bousquet H, Brathaban N, Bravo B, Gessner M, Guiducci C, Iuliano JN, Kane T, Mukerji R, Reddy PJ, Powers J, Sanchez Garcia de los Rios M, Ye J, Risso CB, Tsai D, Pardo G, Notti RQ, Pardo A, After M, Nawaratne V, Totiger TM, Pena-Velasquez C, Rhodes JM, Zelenetz AD, Alencar A, Roeker LE, Mehta S, Garippa R, Linley A, Soni RK, Skånland SS, Brown RJ, Mato AR, Hansen GM, Abdel-Wahab O, Taylor J. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 2024; 383:eadi5798. [PMID: 38301010 PMCID: PMC11103405 DOI: 10.1126/science.adi5798] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.
Collapse
Affiliation(s)
- Skye Montoya
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jessie Bourcier
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hao Lu
- Nurix Therapeutics, San Francisco, CA, USA
| | - Meghan C. Thompson
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Chirino
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anya K. Sondhi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Aleksandra Urban
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Xiaoli Mi
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quinlan Sievers
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Auger
- Nurix Therapeutics, San Francisco, CA, USA
| | | | | | | | | | | | | | - Tim Kane
- Nurix Therapeutics, San Francisco, CA, USA
| | | | | | | | | | - Jordan Ye
- Nurix Therapeutics, San Francisco, CA, USA
| | - Carla Barrientos Risso
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Tsai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gabriel Pardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY, USA
| | - Alejandro Pardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maurizio After
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vindhya Nawaratne
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tulasigeri M. Totiger
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camila Pena-Velasquez
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joanna M. Rhodes
- division of Hematology-Oncology, Department of Medicine at Zucker School of Medicine at Hofstra/Northwell, CLL Research and Treatment Center, Lake Success, NY, USA
| | - Andrew D. Zelenetz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvaro Alencar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lindsey E. Roeker
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Adam Linley
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sigrid S. Skånland
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Anthony R. Mato
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
27
|
Gribbin C, Chen J, Martin P, Ruan J. Novel treatment for mantle cell lymphoma - impact of BTK inhibitors and beyond. Leuk Lymphoma 2024; 65:1-13. [PMID: 37800170 DOI: 10.1080/10428194.2023.2264430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Mantle cell lymphoma (MCL) primarily affects older adults, accounting for 3-10% of all non-Hodgkin lymphoma (NHL) in western countries. The disease course of MCL is heterogenous; driven by clinical, cytogenetics, and molecular features that shape differences in outcomes, including proliferation index, MIPI scores, and mutational profile such as TP53 aberration. The advent of novel agents has fundamentally evolved the treatment landscape for MCL with treatment strategies that can now be more effectively tailored based on both patient- and disease-specific factors. In this review, we discuss the major classes of novel agents used for the treatment of MCL, focusing on efficacy and notable toxicities of BTK inhibitors. We further examine effective novel combination regimens and, lastly, discuss future directions for the evolution of targeted approaches for the treatment of MCL.
Collapse
Affiliation(s)
- Caitlin Gribbin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jane Chen
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Peter Martin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia: Targeted Agents Taking Center Stage. Drugs 2024; 84:17-25. [PMID: 38055179 DOI: 10.1007/s40265-023-01974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
With the worldwide approval of the oral covalent Bruton tyrosine kinase (BTK) inhibitors ibrutinib and zanubrutinib for treating patients with Waldenström macroglobulinemia (WM), targeted agents have certainly taken center stage in the therapeutic landscape of WM. This review discusses the biological and clinical data supporting current and up-and-coming targeted agents in WM. Bruton tyrosine kinase inhibitors induce fast, deep, and durable responses in patients with WM, comparable to chemoimmunotherapy; however, there is a glaring absence of comparative studies between these regimens. The high response and progression-free survival rate and the ease of administration of BTK inhibitors must be balanced against their specific adverse-event profile with unique toxicity (e.g., bleeding and cardiac arrhythmia) and the indefinite duration of the therapy. Novel targeted agents of interest include BCL2 antagonists (e.g., venetoclax and sonrotoclax) and non-covalent BTK inhibitors (e.g., pirtobrutinib and nemtabrutinib), among others. The therapeutic landscape of patients with WM will benefit from the robust participation of patients in clinical trials.
Collapse
Affiliation(s)
- Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 221, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 221, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Decombis S, Bellanger C, Le Bris Y, Madiot C, Jardine J, Santos JC, Boulet D, Dousset C, Menard A, Kervoelen C, Douillard E, Moreau P, Minvielle S, Moreau-Aubry A, Tessoulin B, Roue G, Bidère N, Le Gouill S, Pellat-Deceunynck C, Chiron D. CARD11 gain of function upregulates BCL2A1 expression and promotes resistance to targeted therapies combination in B-cell lymphoma. Blood 2023; 142:1543-1555. [PMID: 37562004 DOI: 10.1182/blood.2023020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.
Collapse
Affiliation(s)
- Salomé Decombis
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Celine Bellanger
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Yannick Le Bris
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Candice Madiot
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Jane Jardine
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | | | - Delphine Boulet
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Christelle Dousset
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Audrey Menard
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Charlotte Kervoelen
- Therassay (Onco-Hemato) Core Facility, Nantes Université, Capacités, Nantes, France
| | - Elise Douillard
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Philippe Moreau
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Stephane Minvielle
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Agnes Moreau-Aubry
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Benoit Tessoulin
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Gael Roue
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Nicolas Bidère
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | | | | | - David Chiron
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
30
|
Koide E, Mohardt ML, Doctor ZM, Yang A, Hao M, Donovan KA, Kuismi CC, Nelson AJ, Abell K, Aguiar M, Che J, Stokes MP, Zhang T, Aguirre AJ, Fischer ES, Gray NS, Jiang B, Nabet B. Development and Characterization of Selective FAK Inhibitors and PROTACs with In Vivo Activity. Chembiochem 2023; 24:e202300141. [PMID: 37088717 PMCID: PMC10590827 DOI: 10.1002/cbic.202300141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials. Here, using structure-guided design, we report the development of a selective FAK inhibitor (BSJ-04-175) and degrader (BSJ-04-146) to evaluate the consequences and advantages of abolishing all FAK activity in cancer models. BSJ-04-146 achieves rapid and potent FAK degradation with high proteome-wide specificity in cancer cells and induces durable degradation in mice. Compared to kinase inhibition, targeted degradation of FAK exhibits pronounced improved activity on downstream signaling and cancer cell viability and migration. Together, BSJ-04-175 and BSJ-04-146 are valuable chemical tools to dissect the specific consequences of targeting FAK through small-molecule inhibition or degradation.
Collapse
Affiliation(s)
- Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mikaela L. Mohardt
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zainab M. Doctor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Annan Yang
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Andrew J. Aguirre
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
31
|
Easaw S, Ezzati S, Coombs CC. SOHO State of the Art Updates and Next Questions: Updates on BTK Inhibitors for the Treatment of Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:697-704. [PMID: 37544810 DOI: 10.1016/j.clml.2023.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Over the last decade, targeted inhibition of Bruton's tyrosine kinase (BTK) has led to a paradigm shift in the way chronic lymphocytic leukemia (CLL) is managed. BTK inhibitors (BTKi) are broadly classified as covalent BTKI and noncovalent BTKi (cBTKi and ncBTK) Ibrutinib, as the first approved cBTKi, vastly improved outcomes for patients with CLL over prior chemoimmunotherapy regimens. However, long-term use is limited by both intolerance and resistance. The second generation of more selective BTKi were developed to improve tolerability. While these agents have led to an improved safety profile in comparison to Ibrutinib (both acalabrutinib and zanubrutinib), and improved efficacy (zanubrutinib), intolerance occasionally occurs, and resistance remains a challenge. The third generation of BTKi, which noncovalently or reversibly inhibits BTK, has shown promising results in early phase trials and are being evaluated in the phase 3 setting. These drugs could be an effective treatment option in patients with either resistance and intolerance to cBTKi. The most recent development in therapeutic agents targeting BTK is the development of BTK degraders. By removing BTK, as opposed to inhibiting it, these drugs could remain efficacious irrespective of BTK resistance mutations, however clinical data are limited at this time. This review summarizes the evolution and ongoing development of newer BTKi and BTK degraders in the management of CLL, with a focus of future directions in this field, including how emerging clinical data could inform therapeutic sequencing in CLL management.
Collapse
Affiliation(s)
| | - Shawyon Ezzati
- California Northstate University College of Medicine, Elk Grove, CA
| | | |
Collapse
|
32
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
33
|
Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, Epperla N. Beyond Bruton's tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol 2023; 16:99. [PMID: 37626420 PMCID: PMC10463717 DOI: 10.1186/s13045-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.
Collapse
Affiliation(s)
- Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology and Hematology, All India Institute of Medical Sciences, Rishikesh, India
| | - Sayan Mullick Chowdhury
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Lalit Sehgal
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Narendranath Epperla
- The Ohio State University Comprehensive Cancer Center, Suite 7198, 2121 Kenny Rd, Columbus, OH, 43221, USA.
| |
Collapse
|
34
|
Yamanaka S, Furihata H, Yanagihara Y, Taya A, Nagasaka T, Usui M, Nagaoka K, Shoya Y, Nishino K, Yoshida S, Kosako H, Tanokura M, Miyakawa T, Imai Y, Shibata N, Sawasaki T. Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation. Nat Commun 2023; 14:4683. [PMID: 37596276 PMCID: PMC10439208 DOI: 10.1038/s41467-023-40385-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Lenalidomide, an immunomodulatory drug (IMiD), is commonly used as a first-line therapy in many haematological cancers, such as multiple myeloma (MM) and 5q myelodysplastic syndromes (5q MDS), and it functions as a molecular glue for the protein degradation of neosubstrates by CRL4CRBN. Proteolysis-targeting chimeras (PROTACs) using IMiDs with a target protein binder also induce the degradation of target proteins. The targeted protein degradation (TPD) of neosubstrates is crucial for IMiD therapy. However, current IMiDs and IMiD-based PROTACs also break down neosubstrates involved in embryonic development and disease progression. Here, we show that 6-position modifications of lenalidomide are essential for controlling neosubstrate selectivity; 6-fluoro lenalidomide induced the selective degradation of IKZF1, IKZF3, and CK1α, which are involved in anti-haematological cancer activity, and showed stronger anti-proliferative effects on MM and 5q MDS cell lines than lenalidomide. PROTACs using these lenalidomide derivatives for BET proteins induce the selective degradation of BET proteins with the same neosubstrate selectivity. PROTACs also exert anti-proliferative effects in all examined cell lines. Thus, 6-position-modified lenalidomide is a key molecule for selective TPD using thalidomide derivatives and PROTACs.
Collapse
Affiliation(s)
- Satoshi Yamanaka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
- Division of Proteo-Interactome, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Hirotake Furihata
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yuta Yanagihara
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
| | - Akihito Taya
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takato Nagasaka
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Mai Usui
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Koya Nagaoka
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuki Shoya
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Shuhei Yoshida
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
35
|
Li W, Zhu S, Liu J, Liu Z, Zhou H, Zhang Q, Yang Y, Chen L, Guo X, Zhang T, Meng L, Chai D, Tang G, Li X, Yang C. Zanubrutinib Ameliorates Cardiac Fibrosis and Inflammation Induced by Chronic Sympathetic Activation. Molecules 2023; 28:6035. [PMID: 37630287 PMCID: PMC10458081 DOI: 10.3390/molecules28166035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Heart failure (HF) is the final stage of multiple cardiac diseases, which have now become a severe public health problem worldwide. β-Adrenergic receptor (β-AR) overactivation is a major pathological factor associated with multiple cardiac diseases and mediates cardiac fibrosis and inflammation. Previous research has demonstrated that Bruton's tyrosine kinase (BTK) mediated cardiac fibrosis by TGF-β related signal pathways, indicating that BTK was a potential drug target for cardiac fibrosis. Zanubrutinib, a second-generation BTK inhibitor, has shown anti-fibrosis effects in previous research. However, it is unclear whether Zanubrutinib can alleviate cardiac fibrosis induced by β-AR overactivation; (2) Methods: In vivo: Male C57BL/6J mice were treated with or without the β-AR agonist isoproterenol (ISO) to establish a cardiac fibrosis animal model; (3) Results: In vivo: Results showed that the BTK inhibitor Zanubrutinib (ZB) had a great effect on cardiac fibrosis and inflammation induced by β-AR. In vitro: Results showed that ZB alleviated β-AR-induced cardiac fibroblast activation and macrophage pro-inflammatory cytokine production. Further mechanism studies demonstrated that ZB inhibited β-AR-induced cardiac fibrosis and inflammation by the BTK, STAT3, NF-κB, and PI3K/Akt signal pathways both in vivo and in vitro; (4) Conclusions: our research provides evidence that ZB ameliorates β-AR-induced cardiac fibrosis and inflammation.
Collapse
Affiliation(s)
- Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Shuwen Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Qianyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Yue Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Li Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Xiaowei Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Guodong Tang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (W.L.); (S.Z.); (J.L.); (Z.L.); (H.Z.); (Q.Z.); (Y.Y.); (L.C.); (X.G.); (T.Z.); (L.M.); (D.C.)
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| |
Collapse
|
36
|
Abstract
Owing to the indolent nature of Waldenström macroglobulinemia, most patients experience a prolonged life expectancy, although many lines of therapy will likely be required to maintain disease control. Despite the currently available therapies, most patients will develop intolerance or resistance to multiple treatments. Therefore, new therapeutic options are being developed with a focus on targeted agents, such as novel Bruton tyrosine kinase (BTK) inhibitors and BTK degraders, as well as C-X-C chemokine receptor type 4, mucosa-associated lymphoid tissue translocation protein 1, and interleukin-1 receptor-associated kinase 4.
Collapse
Affiliation(s)
- Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Guo J, Zhou Y, Lu X. Advances in protein kinase drug discovery through targeting gatekeeper mutations. Expert Opin Drug Discov 2023; 18:1349-1366. [PMID: 37811637 DOI: 10.1080/17460441.2023.2265303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Acquired resistance caused by gatekeeper mutations has become a major challenge for approved kinase inhibitors used in the clinic. Consequently, the development of new-generation inhibitors or degraders to overcome clinical resistance has become an important research focus for the field. AREAS COVERED This review summarizes the common gatekeeper mutations in druggable kinases and the constantly evolving inhibitors or degraders designed to overcome single or double mutations of gatekeeper residues. Furthermore, the authors provide their perspectives on the medicinal chemistry strategies for addressing clinical resistance with gatekeeper mutations. EXPERT OPINION The authors suggest optimizing kinase inhibitors to interact effectively with gatekeeper residues, altering the binding mode or binding pocket to avoid steric clashes, improving binding affinity with the target, utilizing protein degraders, and developing combination therapy. These approaches have the potential to be effective in overcoming resistance due to gatekeeper residues.
Collapse
Affiliation(s)
- Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Li YQ, Lannigan WG, Davoodi S, Daryaee F, Corrionero A, Alfonso P, Rodriguez-Santamaria JA, Wang N, Haley JD, Tonge PJ. Discovery of Novel Bruton's Tyrosine Kinase PROTACs with Enhanced Selectivity and Cellular Efficacy. J Med Chem 2023; 66:7454-7474. [PMID: 37195170 PMCID: PMC10332445 DOI: 10.1021/acs.jmedchem.3c00176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases, and several BTK inhibitors are already approved for use in humans. Heterobivalent BTK protein degraders are also in development, based on the premise that proteolysis targeting chimeras (PROTACs) may provide additional therapeutic benefits. However, most BTK PROTACs are based on the BTK inhibitor ibrutinib raising concerns about their selectivity profiles, given the known off-target effects of ibrutinib. Here, we disclose the discovery and in vitro characterization of BTK PROTACs based on the selective BTK inhibitor GDC-0853 and the cereblon recruitment ligand pomalidomide. PTD10 is a highly potent BTK degrader (DC50 0.5 nM) that inhibited cell growth and induced apoptosis at lower concentrations than the two parent molecules, as well as three previously reported BTK PROTACs, and had improved selectivity compared to ibrutinib-based BTK PROTACs.
Collapse
Affiliation(s)
- Yi-Qian Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - William G. Lannigan
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shabnam Davoodi
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Ana Corrionero
- Enzymlogic S.L., QUBE Technology Park, C/ Santiago Grisolía, 2, 28760, Madrid, Spain
| | - Patricia Alfonso
- Enzymlogic S.L., QUBE Technology Park, C/ Santiago Grisolía, 2, 28760, Madrid, Spain
| | | | - Nan Wang
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - John D. Haley
- Department of Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
39
|
Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized Mice. Cancers (Basel) 2023; 15:2989. [PMID: 37296949 PMCID: PMC10251926 DOI: 10.3390/cancers15112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to numerous patients with malignant disease. However, only a fraction of patients experiences complete and durable responses to currently available immunotherapies. This highlights the need for more effective immunotherapies, combination treatments and predictive biomarkers. The molecular properties of a tumor, intratumor heterogeneity and the tumor immune microenvironment decisively shape tumor evolution, metastasis and therapy resistance and are therefore key targets for precision cancer medicine. Humanized mice that support the engraftment of patient-derived tumors and recapitulate the human tumor immune microenvironment of patients represent a promising preclinical model to address fundamental questions in precision immuno-oncology and cancer immunotherapy. In this review, we provide an overview of next-generation humanized mouse models suitable for the establishment and study of patient-derived tumors. Furthermore, we discuss the opportunities and challenges of modeling the tumor immune microenvironment and testing a variety of immunotherapeutic approaches using human immune system mouse models.
Collapse
Affiliation(s)
| | | | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090 Vienna, Austria; (A.C.); (I.N.)
| |
Collapse
|
40
|
Trory JS, Munkacsi A, Śledź KM, Vautrinot J, Goudswaard LJ, Jackson ML, Heesom KJ, Moore SF, Poole AW, Nabet B, Aggarwal VK, Hers I. Chemical degradation of BTK/TEC as a novel approach to inhibit platelet function. Blood Adv 2023; 7:1692-1696. [PMID: 36342848 PMCID: PMC10182296 DOI: 10.1182/bloodadvances.2022008466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Justin S. Trory
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Attila Munkacsi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Kamila M. Śledź
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Jordan Vautrinot
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Lucy J. Goudswaard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
- Bristol Medical School, Population Health Sciences, University of Bristol, Oakfield House, Bristol, United Kingdom
| | - Molly L. Jackson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Kate J. Heesom
- Faculty of Life Sciences, Proteomics Facility, University of Bristol, University Walk, Biomedical Sciences Building, Bristol, United Kingdom
| | - Samantha F. Moore
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Alastair W. Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
41
|
Jiang B, Weinstock DM, Donovan KA, Sun HW, Wolfe A, Amaka S, Donaldson NL, Wu G, Jiang Y, Wilcox RA, Fischer ES, Gray NS, Wu W. ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas. Cell Chem Biol 2023; 30:383-393.e6. [PMID: 37015223 PMCID: PMC10151063 DOI: 10.1016/j.chembiol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Amaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas L Donaldson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Wenchao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
42
|
Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer 2023; 22:62. [PMID: 36991452 PMCID: PMC10061819 DOI: 10.1186/s12943-022-01707-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 03/31/2023] Open
Abstract
Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.
Collapse
Affiliation(s)
- Jeremy M Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Deepti S Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Evan Malin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Hussein Kansou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
43
|
Zhang D, Harris HM, Chen J, Judy J, James G, Kelly A, McIntosh J, Tenn-McClellan A, Ambing E, Tan YS, Lu H, Gajewski S, Clifton MC, Yung S, Robbins DW, Pirooznia M, Skånland SS, Gaglione E, Mhibik M, Underbayev C, Ahn IE, Sun C, Herman SEM, Noviski M, Wiestner A. NRX-0492 degrades wild-type and C481 mutant BTK and demonstrates in vivo activity in CLL patient-derived xenografts. Blood 2023; 141:1584-1596. [PMID: 36375120 PMCID: PMC10163313 DOI: 10.1182/blood.2022016934] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bruton tyrosine kinase (BTK) is essential for B-cell receptor (BCR) signaling, a driver of chronic lymphocytic leukemia (CLL). Covalent inhibitors bind C481 in the active site of BTK and have become a preferred CLL therapy. Disease progression on covalent BTK inhibitors is commonly associated with C481 mutations. Here, we investigated a targeted protein degrader, NRX-0492, that links a noncovalent BTK-binding domain to cereblon, an adaptor protein of the E3 ubiquitin ligase complex. NRX-0492 selectively catalyzes ubiquitylation and proteasomal degradation of BTK. In primary CLL cells, NRX-0492 induced rapid and sustained degradation of both wild-type and C481 mutant BTK at half maximal degradation concentration (DC50) of ≤0.2 nM and DC90 of ≤0.5 nM, respectively. Sustained degrader activity was maintained for at least 24 hours after washout and was equally observed in high-risk (deletion 17p) and standard-risk (deletion 13q only) CLL subtypes. In in vitro testing against treatment-naïve CLL samples, NRX-0492 was as effective as ibrutinib at inhibiting BCR-mediated signaling, transcriptional programs, and chemokine secretion. In patient-derived xenografts, orally administered NRX-0492 induced BTK degradation and inhibited activation and proliferation of CLL cells in blood and spleen and remained efficacious against primary C481S mutant CLL cells collected from a patient progressing on ibrutinib. Oral bioavailability, >90% degradation of BTK at subnanomolar concentrations, and sustained pharmacodynamic effects after drug clearance make this class of targeted protein degraders uniquely suitable for clinical translation, in particular as a strategy to overcome BTK inhibitor resistance. Clinical studies testing this approach have been initiated (NCT04830137, NCT05131022).
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Heterografts
- Drug Resistance, Neoplasm
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Deyi Zhang
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Hailey M. Harris
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jonathan Chen
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jen Judy
- Bioinformatics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gabriella James
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | - Hao Lu
- Nurix Therapeutics, Inc, San Francisco, CA
| | | | | | | | | | - Mehdi Pirooznia
- Bioinformatics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sigrid S. Skånland
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erika Gaglione
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Maissa Mhibik
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chingiz Underbayev
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Inhye E. Ahn
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Clare Sun
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sarah E. M. Herman
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Adrian Wiestner
- Laboratory of Lymphoid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
44
|
Lu LD, Salvino JM. The In-Cell Western immunofluorescence assay to monitor PROTAC mediated protein degradation. Methods Enzymol 2023; 681:115-153. [PMID: 36764754 DOI: 10.1016/bs.mie.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The In-Cell Western plate-based immunofluorescence assay is a useful methodology for monitoring protein levels and provides a facile moderate through-put method for PROTAC and degrader optimization. The method is compared to other reported assays used for PROTAC development. The advantages of this method are the greater through-put compared to Western blots due to its plate-based method and the ease to transfer between cells lines. Adherent cell lines are preferred, although suspension cells can be used following recommended modifications and precautions to the protocol. This method requires a high-quality antibody that recognizes the protein epitope in its cellular context, and in general provides data similar to Western blots with higher assay through-put.
Collapse
Affiliation(s)
- Lily D Lu
- Molecular Screening and Protein Expression Facility, The Wistar Institute, Philadelphia, PA, United States
| | - Joseph M Salvino
- Molecular Screening and Protein Expression Facility, The Wistar Institute, Philadelphia, PA, United States; Medicinal Chemistry, The Wistar Institute, Philadelphia, PA, United States; Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States.
| |
Collapse
|
45
|
Chakravarty A, Yang PL. Targeted protein degradation as an antiviral approach. Antiviral Res 2023; 210:105480. [PMID: 36567024 PMCID: PMC10178900 DOI: 10.1016/j.antiviral.2022.105480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Targeted protein degradation (TPD) has emerged as a new modality in drug discovery. In this approach, small molecules are used to drive degradation of the target protein of interest. Whereas most direct-acting antivirals (DAAs) inhibit or derange the activity of their viral protein targets and have occupancy-driven pharmacology, small molecules with a TPD-based mechanism have event-driven pharmacology exerted through their ability to induce target degradation. These contrasting mechanisms can result in significant differences in drug efficacy and pharmacodynamics that may be useful in the development of new classes of antivirals. While now being widely pursued in cancer biology and autoimmune disease, TPD has not yet been widely applied as an antiviral strategy. Here, we briefly review TPD pharmacology along with the current status of tools available for developing small molecules that achieve antiviral activity through a TPD mechanism. We also highlight aspects of TPD that may be especially useful in the development of antivirals and that we hope will motivate pursuit of TPD-based antivirals by the antivirals research community.
Collapse
Affiliation(s)
- Antara Chakravarty
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
46
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
47
|
Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
48
|
Bou Malhab LJ, Alsafar H, Ibrahim S, Rahmani M. PROTACs: Walking through hematological malignancies. Front Pharmacol 2023; 14:1086946. [PMID: 36909156 PMCID: PMC9994433 DOI: 10.3389/fphar.2023.1086946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that uses the proteasome ubiquitin system to target proteins of interest and promote their degradation with remarkable selectivity. Importantly, unlike conventional small molecule inhibitors, PROTACs have proven highly effective in targeting undruggable proteins and those bearing mutations. Because of these considerations, PROTACs have increasingly become an emerging technology for the development of novel targeted anticancer therapeutics. Interestingly, many PROTACs have demonstrated a great potency and specificity in degrading several oncogenic drivers. Many of these, following extensive preclinical evaluation, have reached advanced stages of clinical testing in various cancers including hematologic malignancies. In this review, we provide a comprehensive summary of the recent advances in the development of PROTACs as therapeutic strategies in diverse hematological malignancies. A particular attention has been given to clinically relevant PROTACs and those targeting oncogenic mutants that drive resistance to therapies. We also discus limitations, and various considerations to optimize the design for effective PROTACs.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Ibrahim
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
49
|
Koroleva OA, Dutikova YV, Trubnikov AV, Zenov FA, Manasova EV, Shtil AA, Kurkin AV. PROTAC: targeted drug strategy. Principles and limitations. Russ Chem Bull 2022; 71:2310-2334. [PMID: 36569659 PMCID: PMC9762658 DOI: 10.1007/s11172-022-3659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/23/2022]
Abstract
The PROTAC (PROteolysis TArgeting Chimera) technology is a method of targeting intracellular proteins previously considered undruggable. This technology utilizes the ubiquitin-proteasome system in cells to specifically degrade target proteins, thereby offering significant advantages over conventional small-molecule inhibitors of the enzymatic function. Preclinical and preliminary clinical trials of PROTAC-based compounds (degraders) are presented. The review considers the general principles of the design of degraders. Advances and challenges of the PROTAC technology are discussed.
Collapse
Affiliation(s)
- O. A. Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - Yu. V. Dutikova
- Patent & Law Firm “A. Zalesov and Partners”, Build. 9, 2 ul. Marshala Rybalko, 123060 Moscow, Russian Federation
| | - A. V. Trubnikov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - F. A. Zenov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - E. V. Manasova
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - A. A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Build. 15, 24 Kashirskoe shosse, 115478 Moscow, Russian Federation
| | - A. V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| |
Collapse
|
50
|
Liu J, Peng Y, Inuzuka H, Wei W. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Semin Cancer Biol 2022; 86:269-279. [PMID: 35798235 PMCID: PMC11000491 DOI: 10.1016/j.semcancer.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 10/31/2022]
Abstract
Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|