1
|
Snoeck HW. Direct megakaryopoiesis. Curr Opin Hematol 2025; 32:213-220. [PMID: 40197720 DOI: 10.1097/moh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Megakaryocytes are large, polyploid cells that produce platelets and originate from hematopoietic stem cells (HSCs) in the bone marrow. While in the classical paradigm, megakaryocytes are generated in a stepwise fashion through increasingly committed progenitor stages, studies using in-vivo barcoding, transplantation, and in-vitro culture have suggested that, in addition, a more direct pathway existed. The relevance of this direct pathway and its functional and phenotypic characteristics were unclear, however. RECENT FINDINGS Recent publications using fate-mapping and single-cell transplantation now unequivocally demonstrate the existence of a direct megakaryocyte differentiation pathway, provide molecular characterization, and indicate distinct roles and regulation of both pathways. The direct pathway originates from a separate subset of 'top' HSCs, is enhanced by hematopoietic stress, inflammation and aging, bypasses multipotential progenitors, may be more active in myeloproliferative neoplasms, and generates phenotypically distinct megakaryocyte progenitors and more reactive platelets. SUMMARY Novel insights into the direct megakaryocyte differentiation pathway provide a deeper understanding of HSC biology, hematological recovery after myeloablation, and aging of the hematopoietic system, and suggest that this pathway may contribute to the increase in thrombotic incidents with age and in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons
- Division of Pulmonary Medicine, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Durrani J, Chen LN, Shalhoub RN, Baez V, Glass J, Cha NR, Ma X, Wu Z, Gao S, Lotter J, Rios O, Wu CO, Flegel WA, Young NS, Groarke EM, Patel BA. Impact of HLA alloimmunization on clinical outcomes of severe aplastic anemia treated with immunosuppressive therapy. Blood Adv 2025; 9:2639-2650. [PMID: 40085951 DOI: 10.1182/bloodadvances.2024015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
ABSTRACT Immune aplastic anemia (iAA) frequently results in transfusion dependence on platelets and packed red blood cells, increasing the risk for complications. The most common immune-mediated cause for platelet-transfusion refractoriness is alloimmunization with HLA antibody (Ab) to nonself class I antigens. The clinical impact of the HLA alloimmunization has not been well studied in patients with iAA. We investigated the clinical relevance of HLA alloimmunization in our large cohort of patients with iAA from 5 prospective trials and correlated with disease outcomes. Of 444 patients with severe AA treated with immunosuppressive therapy (IST), 99 (22%) had HLA alloimmunization. The presence of HLA Ab was associated with shorter overall survival, reduced responses to IST and higher risk of clonal evolution. Our data suggest that HLA alloimmunization is a marker of disease outcome. Furthermore, using single-cell RNA sequencing, we show enhanced activation of both complement-mediated pathways and the adaptive immune system in alloimmunized patients, indicating an interconnection between immune compartments.
Collapse
Affiliation(s)
- Jibran Durrani
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Leonard N Chen
- Blood Services Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Ruba N Shalhoub
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Valentina Baez
- Laboratory Services Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Joshua Glass
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Division of Hematology, Cancer and Blood Disorders Center, Children's National Hospital, Washington, DC
| | - Nu Ri Cha
- Laboratory Services Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Xiaoyang Ma
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shouguo Gao
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer Lotter
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Olga Rios
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Willy A Flegel
- Laboratory Services Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Chang L, Li WX, Cai H, Li J, Duan MH. Efficacy and safety of pegylated interferon in the treatment of JAK2 V617F-positive polycythemia vera with a dose de-escalation strategy: a single-center retrospective study. Front Oncol 2025; 15:1586839. [PMID: 40438689 PMCID: PMC12116614 DOI: 10.3389/fonc.2025.1586839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Although pegylated interferon (PEG-IFN) has been widely used in the treatment of polycythemia vera (PV), there is still a significant variability in its specific dosage and administration. Methods This single-center retrospective study assessed the efficacy and safety of PEG-IFN in JAK2V617F-positive PV patients using a dose de-escalation strategy. Results From 2018 to 2022, 110 PV patients received PEG-IFN treatment and monitored for JAK2V617F variant allele frequency (VAF) over 12 months, with 95.4% achieving complete hematological response (CHR) and 70.8% and 71.8% achieving molecular response (MR) according to the ELN2009 and 2013 criteria respectively. Patients with increased Immunoglobulin level after treatment seemed to have a higher MR rate according to the ELN2013 criteria, but the statistical difference was not significant. According to the 2013 criteria, patients with a baseline JAK2V617F VAF ≥75% had a significantly lower MR rate, and those who achieved MR had a significantly lower neutrophil-to-lymphocyte ratio (NLR) after 3 months of treatment. Although 98.2% patients experienced laboratory adverse events, only 6 patients stopping due to adverse reactions. Discussion The study found that initiating PEG-IFN at 180ug weekly and adjusting only for adverse events was well-tolerated and may offer superior outcomes to traditional dosing strategies. The 12-month hematological and molecular efficacy were promising, suggesting this approach has the potential to improve long-term survival in PV patients, although further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Long Chang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Wen-Xin Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Hao Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Hui Duan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Kalmer M, Grasshoff M, Maié T, Pannen K, Toledo MA, Vieri M, Olschok K, Lemanzyk R, Lazarevic J, Junge B, Baumeister J, Galauner A, Chapal Ilani N, Bar D, Colin E, Cheng M, Schifflers J, Kricheldorf K, Schemionek M, Brümmendorf TH, Weiskirchen R, Shlush L, Zenke M, Chatain N, Costa IG, Koschmieder S. Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alfa. Blood Adv 2025; 9:1873-1887. [PMID: 39874500 PMCID: PMC12008703 DOI: 10.1182/bloodadvances.2024012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
ABSTRACT Interferon alfa (IFN-α) is approved for the therapy of patients with polycythemia vera (PV), a subtype of myeloproliferative neoplasm (MPN). Some patients achieve molecular responses (MRs), but clonal factors sensitizing for MRs remain elusive. We integrated colony formation assays with single-cell RNA sequencing (scRNA-seq) and genotyping in PV-derived cells and healthy controls (HCs) to dissect how IFN-α targets diseased clones during erythroid differentiation. IFN-α significantly decreased colony growth in MPNs and HCs with variable transcriptional responses observed in individual colonies. scRNA-seq of colonies demonstrated more mature erythroid colonies in PV than HCs. JAK2V617F-mutant cells exhibited upregulated STAT5A, heme, and G2M checkpoint pathways compared with JAK2WT cells from the same patients. Subgroup analysis revealed that IFN-α significantly decreased immature erythrocytic cells in PV (basophilic erythroblasts P < .05; polychromatic erythroblasts P < .05) but not in HCs. CD71-/CD235a+ cells from HCs (P < .05) but not PV were inhibited by IFN-α, and the number of reticulocytes was less affected in PV. Robust IFN-α responses persisted throughout differentiation, leading to significant apoptosis in PV. Apoptotic cells displayed downregulation of ribosomal genes. This link between apoptosis and ribosomal genes was corroborated through the analysis of mitochondrial variants, demonstrating IFN-α-induced eradication of specific clones, characterized by elevated expression of ribosomal genes. Our findings indicate that PV-derived clones either undergo apoptosis or pass through differentiation, overall reducing the cycling mutant cells over long-term treatment. Furthermore, the significance of ribosomal genes and clonal prerequisites in IFN-α's therapeutic mechanism is underscored, shedding light on the intricate dynamics of IFN-α treatment in PV.
Collapse
Affiliation(s)
- Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Martin Grasshoff
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Marcelo A.S. Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Rebecca Lemanzyk
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Jelena Lazarevic
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Baerbel Junge
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Angela Galauner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Noa Chapal Ilani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Bar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elia Colin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Joelle Schifflers
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kim Kricheldorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Liran Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| |
Collapse
|
5
|
Pan Y, Chen L, Jiang Q, Chen D, Wu Y, Hou L, Lang H, Yan J. Research trends in essential thrombocythemia from 2001 to 2024: a bibliometric analysis. Discov Oncol 2025; 16:528. [PMID: 40232559 PMCID: PMC11999923 DOI: 10.1007/s12672-025-02232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE This study aims to conduct a comprehensive bibliometric analysis of ET research, focusing on contributions from authors, institutions, and countries or regions, while mapping collaboration networks. Furthermore, it identifies development trends to provide insights for future research. METHODS A bibliometric analysis of ET-related publications (2001-2024) was conducted using data from the Web of Science Core Collection, focusing on publication trends, co-authorship networks, co-citation relationships, and citation bursts. RESULTS A total of 4,297 studies published in 778 journals were included in the analysis. ET research has grown rapidly, with major contributions from researchers in the United States and Europe, particularly through extensive collaborations. Leading figures such as Ayalew Tefferi and Alessandro M. Vannucchi have driven advances in ET classification, molecular mechanisms, and targeted therapies. The discovery of driver mutations, such as JAK2, has revolutionized the diagnostic and therapeutic approaches to ET. Research focus has shifted from clinical morphological diagnosis to molecular diagnostics, with the field now entering the era of targeted therapies. However, the heterogeneity of ET, the limitations of targeted therapies, particularly the lack of management experience and data for high-risk and special populations, as well as the incomplete understanding of the role of inflammation in the disease mechanism, continue to hinder both clinical and scientific progress in ET research. CONCLUSIONS Bibliometric analysis demonstrates significant advances in ET research, particularly in molecular pathology and targeted therapies. Future research should address ET heterogeneity, optimize management of high-risk and special populations, overcome the limitations of targeted therapies, and further elucidate the role of inflammation to achieve individualized precision therapy.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Lingyan Chen
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qun Jiang
- Department of Hematology, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejian Chen
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqin Wu
- Department of Hematology, Kunming Hospital of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Yunnan, China
| | - Li Hou
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Lang
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| | - Jun Yan
- Department of Respiratory Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Usart M, Kimmerlin Q, Stetka J, Stoll C, Rai S, Almeida Fonseca T, Karjalainen R, Hao-Shen H, Roux J, El Taher A, Lynch D, Makukhin N, Ciulli A, Skoda RC. Loss of Socs2 improves molecular responses to IFNα in a mouse model of myeloproliferative neoplasms driven by JAK2-V617F. Leukemia 2025; 39:876-887. [PMID: 40069287 DOI: 10.1038/s41375-025-02550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Therapy with pegylated interferon alpha (pegIFNα) can induce a deep molecular response in a subset of patients with myeloproliferative neoplasms (MPN). Here we investigated the role of Socs2, a negative regulator of cytokine signaling, in modulating the response to pegIFNα in a JAK2-V617F mouse model of MPN. Deleting Socs2 in JAK2-V617F mice resulted in increased sensitivity to cytokines, without causing significant alterations in the MPN phenotype. When subjected to pegIFNα, the loss of Socs2 enhanced the depletion of JAK2-mutant hematopoietic stem cells (HSCs), evidenced by reduced chimerism in peripheral blood and bone marrow compared to vehicle controls. Additionally, pegIFNα-treated Socs2-deficient JAK2-mutant HSCs exhibited functional impairments in secondary transplantations, reflecting long-term detrimental decline of their stemness. These findings demonstrate that loss of Socs2 enhances the effectiveness of pegIFNα in depleting the JAK2-mutant HSC clone. In line with the genetic ablation of Socs2, the SOCS2 inhibitor MN714 combined with IFNα exhibited better efficacy than IFNα alone in reducing the output of CD34+ cells from PV patients in vitro. Targeting SOCS2 could therefore improve therapeutic responsiveness in MPN patients receiving interferon therapy.
Collapse
Affiliation(s)
- Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
- Baylor College of Medicine, Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
- Baylor College of Medicine, Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cédric Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tiago Almeida Fonseca
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riikka Karjalainen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Athimed El Taher
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dylan Lynch
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee; 1 James Lindsay Place, Dundee, DD1 5JJ, UK
| | - Nikolai Makukhin
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee; 1 James Lindsay Place, Dundee, DD1 5JJ, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee; 1 James Lindsay Place, Dundee, DD1 5JJ, UK
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland.
- Baylor College of Medicine, Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Mosnier C, Bellal S, Cottin L, Boyer F, Lemoine S, Bachelot A, Argentin J, Pawlicki B, Copin MC, Jouanneau-Courville R, Malinge A, Riou J, Hunault-Berger M, Ugo V, Orvain C, Luque Paz D. Relationship between additional mutations at diagnosis and treatment response in patients with essential thrombocythemia. Blood Adv 2025; 9:1303-1311. [PMID: 39820709 PMCID: PMC11950951 DOI: 10.1182/bloodadvances.2024014791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT Patients with essential thrombocythemia (ET) have a chronic evolution with a risk of hematologic transformation associated with a dismal outcome. Because patients with resistance or intolerance have adverse prognosis, it is important to identify which patient will respond to first-line treatment. We, therefore, aim to describe the association between additional mutations and response to first-line treatment in patients with ET. In this retrospective study, we analyzed the molecular landscape of 121 ET patients first-line treated with hydroxyurea (HU; n = 86) or pegylated interferon (peg-IFN; n = 35). Patients undergoing peg-IFN therapy were younger and had higher proportion of low and very low risk of thrombosis recurrence. A total of 62 patients (51%) had ≥1 additional mutations at diagnosis. At 12 months of treatment, 75 patients (62%) achieved complete response (CR), 37 (31%) partial response, and 7 (6%) no response. The presence of at least 1 additional mutation at diagnosis was associated with not achieving CR (hazard ratio [HR], 0.65; P = .038), whereas treatment with peg-IFN was associated with higher CR (HR, 2.00; P = .002). The number of additional mutations at diagnosis was associated with hematologic progressions (P < .0001). None of the patients receiving peg-IFN therapy progressed to myelofibrosis, whereas 16 of 86 patients (19%) treated with HU developed secondary myelofibrosis. In conclusion, our results suggest that the presence of at least 1 additional mutation at diagnosis is associated with failure to achieve CR and also with an increased risk of hematologic evolution.
Collapse
Affiliation(s)
- Carole Mosnier
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Maladies du Sang, CHU d'Angers, Angers, France
| | - Sarah Bellal
- Service de Pathologie, Univ Angers, CHU Angers, Angers, France
| | - Laurane Cottin
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Laboratoire d'Hématologie, CHU Angers, Angers, France
| | | | - Sandrine Lemoine
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
| | | | | | | | - Marie-Christine Copin
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Service de Pathologie, Univ Angers, CHU Angers, Angers, France
| | | | - Anaïs Malinge
- Laboratoire d'Hématologie, CHU Angers, Angers, France
| | - Jérémie Riou
- Methodology and Biostatistics Department, Delegation to Clinical Research and Innovation, Angers University Hospital, Angers, France
| | - Mathilde Hunault-Berger
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Maladies du Sang, CHU d'Angers, Angers, France
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia (GOAL), Angers, France
| | - Valérie Ugo
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Laboratoire d'Hématologie, CHU Angers, Angers, France
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia (GOAL), Angers, France
| | - Corentin Orvain
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Maladies du Sang, CHU d'Angers, Angers, France
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia (GOAL), Angers, France
| | - Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
- Laboratoire d'Hématologie, CHU Angers, Angers, France
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia (GOAL), Angers, France
| |
Collapse
|
8
|
Kauppi M, Hyland CD, Viney EM, White CA, de Graaf CA, Welch AE, Yousef J, Dagley LF, Emery-Corbin SJ, Di Rago L, Kueh AJ, Herold MJ, Hilton DJ, Babon JJ, Nicola NA, Behrens K, Alexander WS. Cullin-5 controls the number of megakaryocyte-committed stem cells to prevent thrombocytosis in mice. Blood 2025; 145:1034-1046. [PMID: 39791603 PMCID: PMC11923429 DOI: 10.1182/blood.2024025406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Cullin-5 (Cul5) coordinates the assembly of cullin-RING-E3 ubiquitin ligase complexes that include the suppressors of cytokine signaling (SOCS)-box-containing proteins. The SOCS-box proteins function to recruit specific substrates to the complex for ubiquitination and degradation. In hematopoiesis, SOCS-box proteins are best known for regulating the actions of cytokines that utilize the JAK-STAT signaling pathway. However, the roles of most SOCS-box proteins have not been studied in physiological contexts and any actions for Cul5/SOCS complexes in signaling by several hematopoietic cytokines, including thrombopoietin (TPO) and interleukin-3 (IL-3), remain unknown. To define additional potential roles for Cul5/SOCS complexes, we generated mice lacking Cul5 in hematopoiesis; the absence of Cul5 is predicted to impair the SOCS-box-dependent actions of all proteins that contain this motif. Here, we show that Cul5-deficient mice develop excess megakaryopoiesis and thrombocytosis revealing a novel mechanism of negative regulation of megakaryocyte-committed stem cells, a distinct population within the hematopoietic stem cell pool that have been shown to rapidly, perhaps directly, generate megakaryocytes, and which are produced in excess in the absence of Cul5. Cul5-deficient megakaryopoiesis is distinctive in being largely independent of TPO/myeloproliferative leukemia protein and involves signaling via the β-common and/or β-IL-3 receptors, with evidence of deregulated responses to IL-3. This process is independent of the interferon-α/β receptor, previously implicated in inflammation-induced activation of stem-like megakaryocyte progenitor cells.
Collapse
Affiliation(s)
- Maria Kauppi
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Craig D. Hyland
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth M. Viney
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christine A. White
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Carolyn A. de Graaf
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - AnneMarie E. Welch
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jumana Yousef
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Laura F. Dagley
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Samantha J. Emery-Corbin
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ladina Di Rago
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Andrew J. Kueh
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Marco J. Herold
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Douglas J. Hilton
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jeffrey J. Babon
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nicos A. Nicola
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Kira Behrens
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Warren S. Alexander
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Faiz M, Riedemann M, Jutzi JS, Mullally A. Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications. Curr Hematol Malig Rep 2025; 20:4. [PMID: 39775969 DOI: 10.1007/s11899-024-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN. RECENT FINDINGS Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface. Targeting mutant CALR utilizing antibodies is the leading therapeutic approach, while mutant CALR-directed vaccines are also in early clinical trials. Additionally, chimeric antigen receptor (CAR) T-cells directed against mutant CALR are under evaluation in preclinical models. Approaches addressing the cellular effects of mutant CALR beyond MPL-JAK-STAT activation, such as targeting the unfolded protein response, proteasome, and N-glycosylation pathways, have been tested in preclinical models. In CALR-mutant MPN, the path from discovery to mechanistic understanding to direct therapeutic targeting has advanced rapidly. The longer-term goal remains clonally-selective therapies that modify the disease course in patients.
Collapse
Affiliation(s)
- Mifra Faiz
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Merle Riedemann
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
10
|
Carturan A, Morè S, Poloni A, Rupoli S, Morsia E. Shaping the Future of Myeloproliferative Neoplasm Therapy: Immune-Based Strategies and Targeted Innovations. Cancers (Basel) 2024; 16:4113. [PMID: 39682299 DOI: 10.3390/cancers16234113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous cutting-edge immunotherapy approaches have been developed for hematological malignancies, such as immune-checkpoint inhibitors for lymphomas, chimeric antigen receptor (CAR)-T-cell treatments for B-cell cancers, and monoclonal antibody therapies for acute myeloid leukemia (AML). However, achieving similar breakthroughs in MPNs has proven challenging. The key obstacles include the absence of universally expressed and MPN-specific surface markers, significant cellular and molecular variability among both individual patients and across different MPN subtypes, and the failure of treatments to stimulate an anti-tumor immune response due to the immune system disruptions caused by the myeloid neoplasm. Currently, there are several innovative therapies in clinical trials for MPNs. These include new JAK inhibitors with greater specificity for JAK2, as well as "add-on" medications designed to enhance the effectiveness of ruxolitinib, in both patients who are new to the drug and in those who have shown suboptimal responses. Additionally, there is ongoing exploration of novel therapeutic targets. In this review, we will explore the immunotherapy approaches that are currently used in clinical practice for MPNs, as well as emerging strategies that are likely to change the treatment of these diseases in the coming years.
Collapse
Affiliation(s)
- Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Morè
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Serena Rupoli
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Erika Morsia
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
11
|
Aksöz M, Gafencu GA, Stoilova B, Buono M, Zhang Y, Turkalj S, Meng Y, Jakobsen NA, Metzner M, Clark SA, Beveridge R, Thongjuea S, Vyas P, Nerlov C. Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved. Sci Immunol 2024; 9:eadk3469. [PMID: 39178276 DOI: 10.1126/sciimmunol.adk3469] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
Hematopoietic stem cells (HSCs) reconstitute multilineage human hematopoiesis after clinical bone marrow (BM) transplantation and are the cells of origin of some hematological malignancies. Although HSCs provide multilineage engraftment, individual murine HSCs are lineage biased and contribute unequally to blood cell lineages. Here, we performed high-throughput single-cell RNA sequencing in mice after xenograft with molecularly barcoded adult human BM HSCs. We demonstrated that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identified platelet-biased and multilineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young and aged BM showed that both the proportion of platelet-biased HSCs and their level of transcriptional platelet priming increase with age. Therefore, platelet-biased HSCs and their increased prevalence and transcriptional platelet priming during aging are conserved features of mammalian evolution.
Collapse
Affiliation(s)
- Merve Aksöz
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bilyana Stoilova
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mario Buono
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yiran Meng
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan Beveridge
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Gaertner F, Ishikawa-Ankerhold H, Stutte S, Fu W, Weitz J, Dueck A, Nelakuditi B, Fumagalli V, van den Heuvel D, Belz L, Sobirova G, Zhang Z, Titova A, Navarro AM, Pekayvaz K, Lorenz M, von Baumgarten L, Kranich J, Straub T, Popper B, Zheden V, Kaufmann WA, Guo C, Piontek G, von Stillfried S, Boor P, Colonna M, Clauß S, Schulz C, Brocker T, Walzog B, Scheiermann C, Aird WC, Nerlov C, Stark K, Petzold T, Engelhardt S, Sixt M, Hauschild R, Rudelius M, Oostendorp RAJ, Iannacone M, Heinig M, Massberg S. Plasmacytoid dendritic cells control homeostasis of megakaryopoiesis. Nature 2024; 631:645-653. [PMID: 38987596 PMCID: PMC11254756 DOI: 10.1038/s41586-024-07671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| | | | - Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wenwen Fu
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jutta Weitz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Bhavishya Nelakuditi
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Larissa Belz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Gulnoza Sobirova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Zhe Zhang
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatic Core facility, LMU Munich, Planegg-Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU Munich, Planegg-Martinsried, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Chenglong Guo
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St Louis, MO, USA
| | - Sebastian Clauß
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert A J Oostendorp
- Laboratory of Stem Cell Physiology, Department of Internal Medicine III-Hematology and Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
Usart M, Stetka J, Luque Paz D, Hansen N, Kimmerlin Q, Almeida Fonseca T, Lock M, Kubovcakova L, Karjalainen R, Hao-Shen H, Börsch A, El Taher A, Schulz J, Leroux JC, Dirnhofer S, Skoda RC. Loss of Dnmt3a increases self-renewal and resistance to pegIFN-α in JAK2-V617F-positive myeloproliferative neoplasms. Blood 2024; 143:2490-2503. [PMID: 38493481 PMCID: PMC11208296 DOI: 10.1182/blood.2023020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.
Collapse
Affiliation(s)
- Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Damien Luque Paz
- University of Angers, Nantes Université, Centre Hospitalier Universitaire Angers, INSERM, Centre National de la Recherche Scientifique, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Angers, France
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tiago Almeida Fonseca
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melissa Lock
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lucia Kubovcakova
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riikka Karjalainen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Athimed El Taher
- Department of Biomedicine, Bioinformatics, University of Basel and University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jessica Schulz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Liu Y, Wang Y, Huang G, Wu S, Liu X, Chen S, Luo P, Liu C, Zuo X. The role of leukocytes in myeloproliferative neoplasm thromboinflammation. J Leukoc Biol 2024; 115:1020-1028. [PMID: 38527797 DOI: 10.1093/jleuko/qiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Classic myeloproliferative neoplasms lacking the Philadelphia chromosome are stem cell disorders characterized by the proliferation of myeloid cells in the bone marrow and increased counts of peripheral blood cells. The occurrence of thrombotic events is a common complication in myeloproliferative neoplasms. The heightened levels of cytokines play a substantial role in the morbidity and mortality of these patients, establishing a persistent proinflammatory condition that culminates in thrombosis. The etiology of thrombosis remains intricate and multifaceted, involving blood cells and endothelial dysfunction, the inflammatory state, and the coagulation cascade, leading to hypercoagulability. Leukocytes play a pivotal role in the thromboinflammatory process of myeloproliferative neoplasms by releasing various proinflammatory and prothrombotic factors as well as interacting with other cells, which contributes to the amplification of the clotting cascade and subsequent thrombosis. The correlation between increased leukocyte counts and thrombotic risk has been established. However, there is a need for an accurate biomarker to assess leukocyte activation. Lastly, tailored treatments to address the thrombotic risk in myeloproliferative neoplasms are needed. Therefore, this review aims to summarize the potential mechanisms of leukocyte involvement in myeloproliferative neoplasm thromboinflammation, propose potential biomarkers for leukocyte activation, and discuss promising treatment options for controlling myeloproliferative neoplasm thromboinflammation.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Yingying Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing 400016, P.R. China
| | - Gang Huang
- Department of Cell Systems & Anatomy, Department of Pathology & Laboratory, Medicine UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Shuo Chen
- Biomedical Sciences Graduate Program, Ohio State University, Columbus, OH 43210, United States
| | - Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Chang Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169, East Lake Road, Wuchang District, Wuhan 430071, China
| |
Collapse
|
15
|
Shin E, Park C, Park T, Chung H, Hwang H, Bak SH, Chung KS, Yoon SR, Kim TD, Choi I, Lee CH, Jung H, Noh JY. Deficiency of thioredoxin-interacting protein results in age-related thrombocytopenia due to megakaryocyte oxidative stress. J Thromb Haemost 2024; 22:834-850. [PMID: 38072375 DOI: 10.1016/j.jtha.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Platelets are generated from megakaryocytes (MKs), mainly located in the bone marrow (BM). Megakaryopoiesis can be affected by genetic disorders, metabolic diseases, and aging. The molecular mechanisms underlying platelet count regulation have not been fully elucidated. OBJECTIVES In the present study, we investigated the role of thioredoxin-interacting protein (TXNIP), a protein that regulates cellular metabolism in megakaryopoiesis, using a Txnip-/- mouse model. METHODS Wild-type (WT) and Txnip-/- mice (2-27-month-old) were studied. BM-derived MKs were analyzed to investigate the role of TXNIP in megakaryopoiesis with age. The global transcriptome of BM-derived CD41+ megakaryocyte precursors (MkPs) of WT and Txnip-/- mice were compared. The CD34+ hematopoietic stem cells isolated from human cord blood were differentiated into MKs. RESULTS Txnip-/- mice developed thrombocytopenia at 4 to 5 months that worsened with age. During ex vivo megakaryopoiesis, Txnip-/- MkPs remained small, with decreased levels of MK-specific markers. Critically, Txnip-/- MkPs exhibited reduced mitochondrial reactive oxygen species, which was related to AKT activity. Txnip-/- MkPs also showed elevated glycolysis alongside increased glucose uptake for ATP production. Total RNA sequencing revealed enrichment for oxidative stress- and apoptosis-related genes in differentially expressed genes between Txnip-/- and WT MkPs. The effects of TXNIP on MKs were recapitulated during the differentiation of human cord blood-derived CD34+ hematopoietic stem cells. CONCLUSION We provide evidence that the megakaryopoiesis pathway becomes exhausted with age in Txnip-/- mice with a decrease in terminal, mature MKs that response to thrombocytopenic challenge. Overall, this study demonstrates the role of TXNIP in megakaryopoiesis, regulating mitochondrial metabolism.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea
| | - Charny Park
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Hyunmin Chung
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Hyeyeong Hwang
- Bioinformatics Team, Research Institute, National Cancer Center, Ilsandong-gu, Gyeonggi-do, Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Kyung-Sook Chung
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Stem Cell Convergence Research Center and Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Tae-Don Kim
- Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea; Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | - Chang Hoon Lee
- R&D Center, SCBIO Co, Ltd, Munji-ro, Yuseong-gu, Daejeon, Korea; Therapeutics and Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea; Department of Functional Genomics, Korea University of Science and Technology, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
16
|
Vachhani P, Mascarenhas J, Bose P, Hobbs G, Yacoub A, Palmer JM, Gerds AT, Masarova L, Kuykendall AT, Rampal RK, Mesa R, Verstovsek S. Interferons in the treatment of myeloproliferative neoplasms. Ther Adv Hematol 2024; 15:20406207241229588. [PMID: 38380373 PMCID: PMC10878223 DOI: 10.1177/20406207241229588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Interferons are cytokines with immunomodulatory properties and disease-modifying effects that have been used to treat myeloproliferative neoplasms (MPNs) for more than 35 years. The initial use of interferons was limited due to difficulties with administration and a significant toxicity profile. Many of these shortcomings were addressed by covalently binding polyethylene glycol to the interferon structure, which increases the stability, prolongs activity, and reduces immunogenicity of the molecule. In the current therapeutic landscape, pegylated interferons are recommended for use in the treatment of polycythemia vera, essential thrombocythemia, and primary myelofibrosis. We review recent efficacy, molecular response, and safety data for the two available pegylated interferons, peginterferon alfa-2a (Pegasys) and ropeginterferon alfa-2b-njft (BESREMi). The practical management of interferon-based therapies is discussed, along with our opinions on whether to and how to switch from hydroxyurea to one of these therapies. Key topics and questions related to use of interferons, such as their safety and tolerability, the significance of variant allele frequency, advantages of early treatment, and what the future of interferon therapy may look like, will be examined. Pegylated interferons represent an important therapeutic option for patients with MPNs; however, more research is still required to further refine interferon therapy.
Collapse
Affiliation(s)
- Pankit Vachhani
- Hematology Oncology at The Kirklin Clinic of UAB Hospital, North Pavilion, Room 2540C, 1720 2 Ave S, Birmingham, AL 35294-3300, USA
| | - John Mascarenhas
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prithviraj Bose
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriela Hobbs
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdulraheem Yacoub
- Division of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Cancer Center, Westwood, KS, USA
| | | | - Aaron T. Gerds
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Lucia Masarova
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew T. Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Raajit K. Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruben Mesa
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Srdan Verstovsek
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Verma T, Papadantonakis N, Peker Barclift D, Zhang L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers (Basel) 2024; 16:514. [PMID: 38339265 PMCID: PMC10854658 DOI: 10.3390/cancers16030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Myelofibrosis (MF) is an essential element of primary myelofibrosis, whereas secondary MF may develop in the advanced stages of other myeloid neoplasms, especially polycythemia vera and essential thrombocythemia. Over the last two decades, advances in molecular diagnostic techniques, particularly the integration of next-generation sequencing in clinical laboratories, have revolutionized the diagnosis, classification, and clinical decision making of myelofibrosis. Driver mutations involving JAK2, CALR, and MPL induce hyperactivity in the JAK-STAT signaling pathway, which plays a central role in cell survival and proliferation. Approximately 80% of myelofibrosis cases harbor additional mutations, frequently in the genes responsible for epigenetic regulation and RNA splicing. Detecting these mutations is crucial for diagnosing myeloproliferative neoplasms (MPNs), especially in cases where no mutations are present in the three driver genes (triple-negative MPNs). While fibrosis in the bone marrow results from the disturbance of inflammatory cytokines, it is fundamentally associated with mutation-driven hematopoiesis. The mutation profile and order of acquiring diverse mutations influence the MPN phenotype. Mutation profiling reveals clonal diversity in MF, offering insights into the clonal evolution of neoplastic progression. Prognostic prediction plays a pivotal role in guiding the treatment of myelofibrosis. Mutation profiles and cytogenetic abnormalities have been integrated into advanced prognostic scoring systems and personalized risk stratification for MF. Presently, JAK inhibitors are part of the standard of care for MF, with newer generations developed for enhanced efficacy and reduced adverse effects. However, only a minority of patients have achieved a significant molecular-level response. Clinical trials exploring innovative approaches, such as combining hypomethylation agents that target epigenetic regulators, drugs proven effective in myelodysplastic syndrome, or immune and inflammatory modulators with JAK inhibitors, have demonstrated promising results. These combinations may be more effective in patients with high-risk mutations and complex mutation profiles. Expanding mutation profiling studies with more sensitive and specific molecular methods, as well as sequencing a broader spectrum of genes in clinical patients, may reveal molecular mechanisms in cases currently lacking detectable driver mutations, provide a better understanding of the association between genetic alterations and clinical phenotypes, and offer valuable information to advance personalized treatment protocols to improve long-term survival and eradicate mutant clones with the hope of curing MF.
Collapse
Affiliation(s)
- Tanvi Verma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Fisher DAC, Laranjeira ABA, Kong T, Snyder SC, Shim K, Fulbright MC, Oh ST. Complementary and countervailing actions of Jak2 and Ikk2 in hematopoiesis in mice. Exp Hematol 2023; 128:48-66. [PMID: 37611729 PMCID: PMC11227100 DOI: 10.1016/j.exphem.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Hyperactivation of JAK2 kinase is a unifying feature of human Ph- myeloproliferative neoplasms (MPNs), most commonly due to the JAK2 V617F mutation. Mice harboring a homologous mutation in the Jak2 locus exhibit a phenotype resembling polycythemia vera. NFκB pathway hyperactivation is present in myeloid neoplasms, including MPNs, despite scarcity of mutations in NFκB pathway genes. To determine the impact of NFκB pathway hyperactivation in conjunction with Jak2 V617F, we utilized Ikk2 (Ikk2-CA) mice. Pan-hematopoietic Ikk2-CA alone produced depletion of hematopoietic stem cells and B cells. When combined with the Jak2 V617F mutation, Ikk2-CA rescued the polycythemia vera phenotype of Jak2 V617F. Likewise, Jak2 V617F ameliorated defects in hematopoiesis produced by Ikk2-CA. Single-cell RNA sequencing of hematopoietic stem and progenitor cells revealed multiple genes antagonistically regulated by Jak2 and Ikk2, including subsets whose expression was altered by Jak2 V617F and/or Ikk2-CA but partly or fully rectified in the double mutant. We hypothesize that Jak2 promotes hematopoietic stem cell population self-renewal, whereas Ikk2 promotes myeloid lineage differentiation, and biases cell fates at several branch points in hematopoiesis. Jak2 and Ikk2 both regulate multiple genes affecting myeloid maturation and cell death. Therefore, the presence of dual Jak2 and NFκB hyperactivation may present neomorphic therapeutic vulnerabilities in myeloid neoplasms.
Collapse
Affiliation(s)
- Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Steven C Snyder
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Kevin Shim
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO.
| |
Collapse
|
19
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
20
|
Stuckey R, Bilbao-Sieyro C, Segura-Díaz A, Gómez-Casares MT. Molecular Studies for the Early Detection of Philadelphia-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:12700. [PMID: 37628880 PMCID: PMC10454334 DOI: 10.3390/ijms241612700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
JAK2 V617F is the predominant driver mutation in patients with Philadelphia-negative myeloproliferative neoplasms (MPN). JAK2 mutations are also frequent in clonal hematopoiesis of indeterminate potential (CHIP) in otherwise "healthy" individuals. However, the period between mutation acquisition and MPN diagnosis (known as latency) varies widely between individuals, with JAK2 mutations detectable several decades before diagnosis and even from birth in some individuals. Here, we will review the current evidence on the biological factors, such as additional mutations and chronic inflammation, which influence clonal expansion and may determine why some JAK2-mutated individuals will progress to an overt neoplasm during their lifetime while others will not. We will also introduce several germline variants that predispose individuals to CHIP (as well as MPN) identified from genome-wide association studies. Finally, we will explore possible mutation screening or interventions that could help to minimize MPN-associated cardiovascular complications or even delay malignant progression.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Morphology Department, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Adrián Segura-Díaz
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
| | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (R.S.); (C.B.-S.); (A.S.-D.)
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
21
|
Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 2023:10.1038/s41375-023-01878-0. [PMID: 37100881 DOI: 10.1038/s41375-023-01878-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.
Collapse
Affiliation(s)
- Christophe Willekens
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Tracy Dagher
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Camelia Benlabiod
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | | | | | | | | | - Valérie Edmond
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Valentine Marchand
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nathalie Droin
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Florence Pasquier
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Marty
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Isabelle Plo
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Villeval
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
22
|
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023; 141:1909-1921. [PMID: 36347013 PMCID: PMC10646774 DOI: 10.1182/blood.2022017578] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
Collapse
Affiliation(s)
- Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
How J, Garcia JS, Mullally A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 2023; 141:1922-1933. [PMID: 36534936 PMCID: PMC10163317 DOI: 10.1182/blood.2022017416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
24
|
Establishment of isogenic induced pluripotent stem cells with or without pathogenic mutation for understanding the pathogenesis of myeloproliferative neoplasms. Exp Hematol 2023; 118:12-20. [PMID: 36511286 DOI: 10.1016/j.exphem.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Identification and functional characterization of disease-associated genetic traits are crucial for understanding the pathogenesis of hematologic malignancies. Various in vitro and in vivo models, including cell lines, primary cells, and animal models, have been established to examine these genetic alterations. However, their nonphysiologic conditions, diverse genetic backgrounds, and species-specific differences often limit data interpretation. To evaluate somatic mutations in myeloproliferative neoplasms (MPNs), we used CRISPR/Cas9 combined with the piggyBac transposon system to establish isogenic induced pluripotent stem (iPS) cell lines with or without JAK2V617F mutation, a driver mutation of MPNs. We induced hematopoietic stem/progenitor cells (HSPCs) from these iPS cells and observed phenotypic differences during hematopoiesis using fluorescence-activated cell sorting analysis. HSPCs with pathogenic mutations exhibited cell-autonomous erythropoiesis and megakaryopoiesis, which are hallmarks in the bone marrow of patients with MPNs. Furthermore, we used these HSPCs as a model to validate therapeutic compounds and showed that interferon alpha selectively inhibited erythropoiesis and megakaryopoiesis in mutant HSPCs. These results demonstrate that genome editing is feasible for establishing isogenic iPS cells, studying genetic elements to understand the pathogenesis of MPNs, and evaluating therapeutic compounds against MPNs.
Collapse
|
25
|
O'Sullivan JM, Mead AJ, Psaila B. Single-cell methods in myeloproliferative neoplasms: old questions, new technologies. Blood 2023; 141:380-390. [PMID: 36322938 DOI: 10.1182/blood.2021014668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal stem cell-derived hematopoietic malignancies driven by aberrant Janus kinase-signal transducer and activator of transcription proteins (JAK/STAT) signaling. Although these are genetically simple diseases, MPNs are phenotypically heterogeneous, reflecting underlying intratumoral heterogeneity driven by the interplay of genetic and nongenetic factors. Their evolution is determined by factors that enable certain cellular subsets to outcompete others. Therefore, techniques that resolve cellular heterogeneity at the single-cell level are ideally placed to provide new insights into MPN biology. With these insights comes the potential to uncover new approaches to predict the clinical course and treat these cancers, ultimately improving outcomes for patients. MPNs present a particularly tractable model of cancer evolution, because most patients present in an early disease phase and only a small proportion progress to aggressive disease. Therefore, it is not surprising that many groundbreaking technological advances in single-cell omics have been pioneered by their application in MPNs. In this review article, we explore how single-cell approaches have provided transformative insights into MPN disease biology, which are broadly applicable across human cancers, and discuss how these studies might be swiftly translated into clinical pathways and may eventually underpin precision medicine.
Collapse
Affiliation(s)
- Jennifer Mary O'Sullivan
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam J Mead
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Bethan Psaila
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
P16 INK4a Regulates ROS-Related Autophagy and CDK4/6-Mediated Proliferation: A New Target of Myocardial Regeneration Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1696190. [PMID: 36852326 PMCID: PMC9966567 DOI: 10.1155/2023/1696190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/20/2023]
Abstract
Neonatal mice achieve complete cardiac repair through endogenous myocardial regeneration after apical resection (AR), but this capacity is rapidly lost 7 days after birth. As an upstream inhibitor of cyclin-dependent kinase 4/6- (CDK4/6-) mediated cell cycle activity, p16INK4a is widely involved in regulating tumor and senescence. Given that p16INK4a had a significant negative regulation on cell proliferation, targeting cardiomyocytes (CMs) to inhibit p16INK4a seems to be a promising attempt at myocardial regeneration therapy. The p16INK4a expression was upregulated during perimyocardial regeneration time. Knockdown of p16INK4a stimulated CM proliferation, while p16INK4a overexpression had the opposite effect. In addition, p16INK4a knockdown prolonged the proliferation time window of newborn myocardium. And p16INK4a overexpression inhibited cell cycle activity and deteriorated myocardial regeneration after AR. The quantitative proteomic analysis showed that p16INK4a knockdown mediated the cell cycle progression and intervened in energy metabolism homeostasis. Mechanistically, overexpression of p16INK4a causes abnormal accumulation of reactive oxygen species (ROS) to induce autophagy, while scavenging ROS with N-acetylcysteine can alleviate autophagy and regulate p16INK4a, CDK4/6, and CyclinD1 in a covering manner. And the effect of inhibiting the proliferation of p16INK4a-activated CMs was significantly blocked by the CDK4/6 inhibitor Palbociclib. In summary, p16INK4a regulated CM proliferation progression through CDK4/6 and ROS-related autophagy to jointly affect myocardial regeneration repair. Our study revealed that p16INK4a might be a potential therapeutic target for myocardial regeneration after injury.
Collapse
|
27
|
Rai S, Grockowiak E, Hansen N, Luque Paz D, Stoll CB, Hao-Shen H, Mild-Schneider G, Dirnhofer S, Farady CJ, Méndez-Ferrer S, Skoda RC. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun 2022; 13:5346. [PMID: 36100613 PMCID: PMC9470591 DOI: 10.1038/s41467-022-32927-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a master regulator of inflammation. Increased activity of IL-1β has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1β serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1β overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1β in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1β in JAK2-V617F mutant mice by anti-IL-1β antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1β with anti-IL-1β antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Damien Luque Paz
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Cedric B Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Gabriele Mild-Schneider
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
28
|
Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Adv 2022; 6:6228-6241. [PMID: 35584393 PMCID: PMC9792704 DOI: 10.1182/bloodadvances.2021006861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
The fetal-to-adult switch in hematopoietic stem cell (HSC) behavior is characterized by alterations in lineage output and entry into deep quiescence. Here we identify the emergence of megakaryocyte (Mk)-biased HSCs as an event coinciding with this developmental switch. Single-cell chromatin accessibility analysis reveals a ubiquitous acquisition of Mk lineage priming signatures in HSCs during the fetal-to-adult transition. These molecular changes functionally coincide with increased amplitude of early Mk differentiation events after acute inflammatory insult. Importantly, we identify LIN28B, known for its role in promoting fetal-like self-renewal, as an insulator against the establishment of an Mk-biased HSC pool. LIN28B protein is developmentally silenced in the third week of life, and its prolonged expression delays emergency platelet output in young adult mice. We propose that developmental regulation of Mk priming may represent a switch for HSCs to toggle between prioritizing self-renewal in the fetus and increased host protection in postnatal life.
Collapse
|
29
|
Lee S, Wong H, Castiglione M, Murphy M, Kaushansky K, Zhan H. JAK2V617F Mutant Megakaryocytes Contribute to Hematopoietic Aging in a Murine Model of Myeloproliferative Neoplasm. Stem Cells 2022; 40:359-370. [PMID: 35260895 PMCID: PMC9199841 DOI: 10.1093/stmcls/sxac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Megakaryocytes (MKs) is an important component of the hematopoietic niche. Abnormal MK hyperplasia is a hallmark feature of myeloproliferative neoplasms (MPNs). The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs. Using a murine model of MPN in which the human JAK2V617F gene is expressed in the MK lineage, we show that the JAK2V617F-bearing MKs promote hematopoietic stem cell (HSC) aging, manifesting as myeloid-skewed hematopoiesis with an expansion of CD41+ HSCs, a reduced engraftment and self-renewal capacity, and a reduced differentiation capacity. HSCs from 2-year-old mice with JAK2V617F-bearing MKs were more proliferative and less quiescent than HSCs from age-matched control mice. Examination of the marrow hematopoietic niche reveals that the JAK2V617F-bearing MKs not only have decreased direct interactions with hematopoietic stem/progenitor cells during aging but also suppress the vascular niche function during aging. Unbiased RNA expression profiling reveals that HSC aging has a profound effect on MK transcriptomic profiles, while targeted cytokine array shows that the JAK2V617F-bearing MKs can alter the hematopoietic niche through increased levels of pro-inflammatory and anti-angiogenic factors. Therefore, as a hematopoietic niche cell, MKs represent an important connection between the extrinsic and intrinsic mechanisms for HSC aging.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Helen Wong
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY, USA
| | | | | | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
- Medical Service, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
30
|
Schmidt S, Wolf D. [What's new in myeloproliferative neoplasia?]. Dtsch Med Wochenschr 2022; 147:306-311. [PMID: 35291035 DOI: 10.1055/a-1643-4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Treatment of myeloproliferative neoplasia (MPN) is based on patients' individual risk-stratification and includes cytoreductive agents for high-risk essential thrombocythemia (ET), polycythemia vera (PV) and Myelofibrosis (MF). Classical cytoreductive drugs largely fail to modify the basic clonal composition of the disease. In contrast, in PV for example treatment with Ropeg-Interferon not only results in higher hematological response rates compared to hydroxyurea but in addition significantly reduces JAK2 allele-burden in high-risk PV patients as well as it depletes concurrent cytogenetic and molecular abnormalities. Treatment with Ropeg-Interferon so far is only approved for high-risk PV. A very recent trial however also demonstrated this disease-modifying effect also in low-risk PV patients in addition to an increased rate of transfusion independence. Thus, Ropeg-Interferon is the current standard for first line treatment of high-risk PV and we assume that the data in low-risk PV will lead also to a broader clinical use of Ropeg-Interferon this particular patient group, as it may decrease transformation to MF or even MPN-blast crisis.Myelofibrosis management has been extended by novel JAKi. Fedratinib is the first second generation JAK-inhibitor approved for Ruxolitinib-intolerant or refractory patients. Fedratinib reduces both spleen volume as well as symptom burden. Two other second generation JAK-inhibitors are in clinical development for MPN treatment. Pacritinib has demonstrated efficacy in reducing both spleen volume and symptom score in MF including a cohort of Ruxolitinib-pretreated patients and Momelotinib is the only JAK-inhibitor which has been shown to alleviate anemia in addition to its effect on improving spleen volume and symptom. So far, neither Pacritinib nor Momelotinib are currently EMA-approved for MPN treatment.Finally, it has recently been acknowledged that inflammation is a key driver of MPN pathogenesis. Both, mutated as well as non-clonal inflammatory and other stromal cells produce significant amounts of local cytokines. Also the initiation of the neoplastic process itself seems to depend on inflammatory cytokines. Recent scRNASeq data revealed components of the alarmin complex (S100A8 und S100A9) drive this local sterile inflammation process, which also represents a potential therapeutic target, as the S100A8 and A9 inhibitor Tasquinimod reduced fibrosis in a pre-clinical animal model.
Collapse
Affiliation(s)
- Stefan Schmidt
- Universitätsklinik für Innere Medizin V, Hämatologie und Internistische Onkologie, Comprehensive Cancer Center Innsbruck (CCCI), Medizinische Universität Innsbruck (MUI), Innsbruck, Österreich
| | - Dominik Wolf
- Universitätsklinik für Innere Medizin V, Hämatologie und Internistische Onkologie, Comprehensive Cancer Center Innsbruck (CCCI), Medizinische Universität Innsbruck (MUI), Innsbruck, Österreich
| |
Collapse
|
31
|
Treatment and Clinical Endpoints in Polycythemia Vera: Seeking the Best Obtainable Version of the Truth. Blood 2022; 139:2871-2881. [PMID: 35271702 DOI: 10.1182/blood.2022015680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/26/2022] [Indexed: 11/20/2022] Open
Abstract
Polycythemia vera (PV) is a Philadelphia chromosome-negative myeloproliferative neoplasm driven by the JAK2 V617F (or rarely exon 12) mutation. Its natural history can extend over a few decades, and therefore treatment planning is predicated on continual re-assessment of traditional risk features (age, prior thrombosis) to evaluate the need for cytoreduction besides foundational therapy with low-dose aspirin and stringent phlebotomy. Shorter- and longer-term patient goals should be considered in light of several variables such as co-morbid conditions (especially cardiovascular risk factors), disease symptoms, and the risk-benefit profile of available drugs. While hydroxyurea has been the pro forma choice of cytoreduction for many practitioners over the last half-century, the more recent regulatory approvals of ruxolitinib and ropeginterferon-alfa-2b, based on phase 3 randomized trials, highlight an expanding portfolio of active drugs. Obtaining high-level evidence for short-term clinical trial endpoints such as hematocrit control, symptom burden/quality of life, splenomegaly, and JAK2 V617F allele burden lies within the timeline of most studies. However, in many cases, it may not be possible to adequately power trials to capture significant differences in the typically low event rates of thrombosis, as well as longer-horizon endpoints such as evolution to myelofibrosis and acute myeloid leukemia, and survival. This Perspective highlights the challenges of addressing these data gaps and outstanding questions in the emerging treatment landscape of PV.
Collapse
|
32
|
Umemoto T, Johansson A, Ahmad SAI, Hashimoto M, Kubota S, Kikuchi K, Odaka H, Era T, Kurotaki D, Sashida G, Suda T. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J 2022; 41:e109463. [PMID: 35229328 PMCID: PMC9016348 DOI: 10.15252/embj.2021109463] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.
Collapse
Affiliation(s)
- Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Alban Johansson
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Shah Adil Ishtiyaq Ahmad
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michihiro Hashimoto
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Odaka
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Takumi Era
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan,Cancer Science Institute of SingaporeNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
33
|
Strickland M, Quek L, Psaila B. The immune landscape in BCR-ABL negative myeloproliferative neoplasms: inflammation, infections and opportunities for immunotherapy. Br J Haematol 2022; 196:1149-1158. [PMID: 34618358 PMCID: PMC9135025 DOI: 10.1111/bjh.17850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023]
Abstract
Breakpoint cluster region-Abelson (BCR-ABL) negative myeloproliferative neoplasms (MPNs) are chronic myeloid neoplasms initiated by the acquisition of gene mutation(s) in a haematopoietic stem cell, leading to clonal expansion and over-production of blood cells and their progenitors. MPNs encompass a spectrum of disorders with overlapping but distinct molecular, laboratory and clinical features. This includes polycythaemia vera, essential thrombocythaemia and myelofibrosis. Dysregulation of the immune system is key to the pathology of MPNs, supporting clonal evolution, mediating symptoms and resulting in varying degrees of immunocompromise. Targeting immune dysfunction is an important treatment strategy. In the present review, we focus on the immune landscape in patients with MPNs - the role of inflammation in disease pathogenesis, susceptibility to infection and emerging strategies for therapeutic immune modulation. Further detailed work is required to delineate immune perturbation more precisely in MPNs to determine how and why vulnerability to infection differs between clinical subtypes and to better understand how inflammation results in a competitive advantage for the MPN clone. These studies may help shed light on new designs for disease-modifying therapies.
Collapse
Affiliation(s)
- Marie Strickland
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxford
- National Institutes for Health Research Biomedical Research CentreUniversity of OxfordOxford
| | - Lynn Quek
- Department of Haematological MedicineKing's College Hospital NHS Foundation TrustLondon
- Department of Haematology, School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| | - Bethan Psaila
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxford
- National Institutes for Health Research Biomedical Research CentreUniversity of OxfordOxford
| |
Collapse
|
34
|
Mosca M, Hermange G, Tisserand A, Noble R, Marzac C, Marty C, Le Sueur C, Campario H, Vertenoeil G, El-Khoury M, Catelain C, Rameau P, Gella C, Lenglet J, Casadevall N, Favier R, Solary E, Cassinat B, Kiladjian JJ, Constantinescu SN, Pasquier F, Hochberg ME, Raslova H, Villeval JL, Girodon F, Vainchenker W, Cournède PH, Plo I. Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms. Blood 2021; 138:2231-2243. [PMID: 34407546 PMCID: PMC8641097 DOI: 10.1182/blood.2021010986] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.
Collapse
Affiliation(s)
- Matthieu Mosca
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Gurvan Hermange
- Université Paris-Saclay, CentraleSupélec, Laboratory MICS (Laboratory of Applied Mathematics and Computer Science), Gif-sur-Yvette, France
| | - Amandine Tisserand
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Université de Paris, Paris, France
| | - Robert Noble
- Department of Biosciences and Engineering, ETH Zurich, Basel, Switzerland
- Institut des Sciences de l'Evolution, University of Montpellier, Montpellier, France
- Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
- University of London, London, United Kingdom
| | - Christophe Marzac
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cécile Le Sueur
- Department of Biosciences and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Gaëlle Vertenoeil
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Mira El-Khoury
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cyril Catelain
- UMS AMMICa-Plateforme Imagerie et Cytométries, Gustave Roussy, Villejuif, France
| | - Philippe Rameau
- UMS AMMICa-Plateforme Imagerie et Cytométries, Gustave Roussy, Villejuif, France
| | - Cyril Gella
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | | | - Nicole Casadevall
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Assistance Publique des Hôpitaux de Paris, Laboratoire d'Hématologie, Hôpital Saint-Antoine, Paris, France
| | - Rémi Favier
- Assistance Publique des Hôpitaux de Paris, Service d'Hématologie Biologique, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Eric Solary
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Bruno Cassinat
- Université de Paris, INSERM UMR-S 1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
- Assistance Publique des Hôpitaux de Paris, Laboratoire de Biologie Cellulaire
| | - Jean-Jacques Kiladjian
- Université de Paris, INSERM UMR-S 1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
- Assistance Publique des Hôpitaux de Paris, Centre d'Investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Florence Pasquier
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, University of Montpellier, Montpellier, France
- Santa Fe Institute, Santa Fe, NM
| | - Hana Raslova
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Villeval
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 866, Centre de Recherche, Dijon, France; and
| | - William Vainchenker
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Assistance Publique des Hôpitaux de Paris, Service d'Immunopathologie Clinique, Polyclinique d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Paul-Henry Cournède
- Université Paris-Saclay, CentraleSupélec, Laboratory MICS (Laboratory of Applied Mathematics and Computer Science), Gif-sur-Yvette, France
| | - Isabelle Plo
- INSERM, Unité Mixte de Recherche (UMR) 1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
35
|
Greenfield G, McMullin MF, Mills K. Molecular pathogenesis of the myeloproliferative neoplasms. J Hematol Oncol 2021; 14:103. [PMID: 34193229 PMCID: PMC8246678 DOI: 10.1186/s13045-021-01116-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia negative myeloproliferative neoplasms (MPN) compromise a heterogeneous group of clonal myeloid stem cell disorders comprising polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Despite distinct clinical entities, these disorders are linked by morphological similarities and propensity to thrombotic complications and leukaemic transformation. Current therapeutic options are limited in disease-modifying activity with a focus on the prevention of thrombus formation. Constitutive activation of the JAK/STAT signalling pathway is a hallmark of pathogenesis across the disease spectrum with driving mutations in JAK2, CALR and MPL identified in the majority of patients. Co-occurring somatic mutations in genes associated with epigenetic regulation, transcriptional control and splicing of RNA are variably but recurrently identified across the MPN disease spectrum, whilst epigenetic contributors to disease are increasingly recognised. The prognostic implications of one MPN diagnosis may significantly limit life expectancy, whilst another may have limited impact depending on the disease phenotype, genotype and other external factors. The genetic and clinical similarities and differences in these disorders have provided a unique opportunity to understand the relative contributions to MPN, myeloid and cancer biology generally from specific genetic and epigenetic changes. This review provides a comprehensive overview of the molecular pathophysiology of MPN exploring the role of driver mutations, co-occurring mutations, dysregulation of intrinsic cell signalling, epigenetic regulation and genetic predisposing factors highlighting important areas for future consideration.
Collapse
Affiliation(s)
- Graeme Greenfield
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | | | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
36
|
Caiado F, Pietras EM, Manz MG. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J Exp Med 2021; 218:212381. [PMID: 34129016 PMCID: PMC8210622 DOI: 10.1084/jem.20201541] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an evolutionarily selected defense response to infection or tissue damage that involves activation and consumption of immune cells in order to reestablish and maintain organismal integrity. In this process, hematopoietic stem cells (HSCs) are themselves exposed to inflammatory cues and via proliferation and differentiation, replace mature immune cells in a demand-adapted fashion. Here, we review how major sources of systemic inflammation act on and subsequently shape HSC fate and function. We highlight how lifelong inflammatory exposure contributes to HSC inflamm-aging and selection of premalignant HSC clones. Finally, we explore emerging areas of interest and open questions remaining in the field.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.,University of Zürich, Comprehensive Cancer Center Zürich, Zürich, Switzerland
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland.,University of Zürich, Comprehensive Cancer Center Zürich, Zürich, Switzerland
| |
Collapse
|
37
|
Guo C, Gao YY, Ju QQ, Wang M, Zhang CX, Gong M, Li ZL. MAPK14 over-expression is a transcriptomic feature of polycythemia vera and correlates with adverse clinical outcomes. J Transl Med 2021; 19:233. [PMID: 34059095 PMCID: PMC8166116 DOI: 10.1186/s12967-021-02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
Background The transcriptomic signature has not been fully elucidated in PV, as well as mRNA markers for clinical variables (thrombosis, leukemic transformation, survival, etc.). We attempted to reveal and validate crucial co-expression modules and marker mRNAs correlating with polycythemia vera (PV) by weighted gene co-expression network analysis (WGCNA). Material and methods The GSE57793/26014/61629 datasets were downloaded from Gene Expression Omnibus (GEO) database and integrated into one fused dataset. By R software and ‘WGCNA’ package, the PV-specific co-expression module was identified, the pathway enrichment profile of which was obtained by over-representation analysis (ORA). Protein–protein interaction (PPI) network and hub gene analysis identified MAPK14 as our target gene. Then the distribution of MAPK14 expression in different disease/mutation types, were depicted based on external independent datasets. Genome-scale correlation analysis revealed the association of MAPK14 and JAK/STAT family genes. Then gene set enrichment analysis (GSEA) was performed to detect the activated and suppressed pathways associating with MAPK14 expression. Moreover, GSE47018 dataset was utilized to compare clinical variables (thrombosis, leukemic transformation, survival, etc.) between MAPK14-high and MAPK14-low groups. Results An integrated dataset including 177 samples (83 PV, 35 ET, 17 PMF and 42 normal donors) were inputted into WGCNA. The ‘tan’ module was identified as the PV-specific module (R2 = 0.56, p = 8e−16), the genes of which were dominantly enriched in pro-inflammatory pathways (Toll-like receptor (TLR)/TNF signaling, etc.). MAPK14 is identified as the top hub gene in PV-related PPI network with the highest betweenness. External datasets validated that the MAPK14 expression was significantly higher in PV than that of essential thrombocytosis (ET)/primary myelofibrosis (PMF) patients and normal donors. JAK2 homozygous mutation carriers have higher level of MAPK14 than that of other mutation types. The expression of JAK/STAT family genes significantly correlated with MAPK14, which also contributed to the activation of oxidated phosphorylation, interferon-alpha (IFNα) response and PI3K-Akt-mTOR signaling, etc. Moreover, MAPK14-high group have more adverse clinical outcomes (splenectomy, thrombosis, disease aggressiveness) and inferior survival than MAPK14-low group. Conclusion MAPK14 over-expression was identified as a transcriptomic feature of PV, which was also related to inferior clinical outcomes. The results provided novel insights for biomarkers and therapeutic targets for PV. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02913-3.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Min Wang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|
38
|
"Interferon" with MPN hematopoietic stem cells. Blood 2021; 137:2129-2130. [PMID: 33885710 DOI: 10.1182/blood.2021011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|