1
|
Xiong S, Zhang S, Yue N, Cao J, Wu C. CAR-T cell therapy in the treatment of relapsed or refractory primary central nervous system lymphoma: recent advances and challenges. Leuk Lymphoma 2025; 66:1045-1057. [PMID: 39898872 DOI: 10.1080/10428194.2025.2458214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma that is isolated in the central nervous system (CNS) or vitreoretinal space. High-dose methotrexate (HD-MTX)-based immunochemotherapy is the frontline for its treatment, with a high early response rate. However, relapsed or refractory (R/R) patients present numerous difficulties and challenges in clinical treatment. Chimeric antigen receptor (CAR)-T cells offer a promising option for the treatment of hematologic malignancies, especially in the R/R B-cell lymphoma and multiple myeloma. Despite the exclusion of most PCNSL cases from pivotal CAR-T cell trials due to their specific tumor microenvironment (TME), available preclinical and clinical studies with small cohorts suggest an overall acceptable safety profile and remarkable anti-tumor effects. In this review, we will provide the development process of CAR-T cells and summarize the research progress, limitations, and future perspectives of CAR-T cell therapy in patients with R/R PCNSL.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Central Nervous System Neoplasms/therapy
- Central Nervous System Neoplasms/pathology
- Central Nervous System Neoplasms/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Tumor Microenvironment/immunology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/immunology
- Drug Resistance, Neoplasm
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
- Lymphoma/therapy
- Lymphoma/pathology
- Lymphoma/immunology
- Animals
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell
Collapse
Affiliation(s)
- Shuzhen Xiong
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | | | | | | | | |
Collapse
|
2
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic landscapes drive CAR-T cell kinetics and fate decisions: Bridging persistence and resistance. Crit Rev Oncol Hematol 2025; 211:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
3
|
Du B, Qin J, Lin B, Zhang J, Li D, Liu M. CAR-T therapy in solid tumors. Cancer Cell 2025; 43:665-679. [PMID: 40233718 DOI: 10.1016/j.ccell.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
While chimeric antigen receptor (CAR) T cell therapy has shown great success in hematologic malignancies, the effectiveness in solid tumors has been limited by several factors, including antigenic heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). In this review, we discuss the advancements made in clinical studies and challenges faced by CAR-T therapy for solid tumors. To enhance CAR-T cell efficacy in solid tumors, we explore strategies such as enhancing T cell persistence and cytotoxicity, targeting multiple antigens, and utilizing innovative allogeneic CAR-T cell manufacturing. Additionally, we highlight the potential benefits of combining CAR-T therapies with immune checkpoint inhibitors and other treatment modalities to overcome TME limitations. We remain optimistic about the future of CAR-T cell therapy in solid tumors, emphasizing the need for continued research to refine therapeutic approaches and address the clinical needs of patients with cancer.
Collapse
Affiliation(s)
- Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Boxu Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Tian G, Barragan GA, Yu H, Martinez-Amador C, Adaikkalavan A, Rios X, Guo L, Drabek JM, Pardias O, Xu X, Montalbano A, Zhang C, Li Y, Courtney AN, Di Pierro EJ, Metelitsa LS. PRDM1 Is a Key Regulator of the NKT-cell Central Memory Program and Effector Function. Cancer Immunol Res 2025; 13:577-590. [PMID: 39820712 PMCID: PMC11962401 DOI: 10.1158/2326-6066.cir-24-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in the regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that uses a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.CAR) were transduced with the gRNA library and exposed to CD1d+ leukemia or CD1d-GD2+ neuroblastoma cells, respectively, over six challenge cycles in vitro. Quantification of gRNA abundance revealed enrichment of PRDM1-specific gRNAs in both NKTs and GD2.CAR NKTs, a result that was validated through targeted PRDM1 knockout. Transcriptional, phenotypic, and functional analyses demonstrated that CAR NKTs with PRDM1 knockout underwent central memory-like differentiation and resisted exhaustion. However, these cells downregulated the cytotoxic mediator granzyme B and showed reduced in vitro cytotoxicity and only moderate in vivo antitumor activity in a xenogeneic neuroblastoma model. In contrast, short hairpin RNA-mediated PRDM1 knockdown preserved effector function while promoting central memory differentiation, resulting in GD2.CAR NKTs with potent in vivo antitumor activity. Thus, we have identified PRDM1 as a regulator of NKT memory differentiation and effector function that can be exploited to improve the efficacy of NKT-based cancer immunotherapies.
Collapse
Affiliation(s)
- Gengwen Tian
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Gabriel A. Barragan
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Hangjin Yu
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Claudia Martinez-Amador
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Akshaya Adaikkalavan
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Xavier Rios
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Linjie Guo
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Janice M. Drabek
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Osmay Pardias
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Xin Xu
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Antonino Montalbano
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Chunchao Zhang
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Yanchuan Li
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Amy N. Courtney
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Erica J. Di Pierro
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
| | - Leonid S. Metelitsa
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Texas Children’s Cancer and Hematology Center, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
6
|
Ismail AH, Khormi MA, Mawkili W, Albaqami A, Areshi S, Aborasain AM, Hegazy MM, Amin AH, Abo-Zaid MA. Harnessing the potential of gene-editing technology to overcome the current bottlenecks of CAR-T cell therapy in T-cell malignancies. Exp Hematol 2025; 146:104762. [PMID: 40122371 DOI: 10.1016/j.exphem.2025.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
T-cell malignancies (TCMs) include a diverse spectrum of hematologic cancers marked by complex biology and aggressive nature. Treating TCMs remains a critical unmet need in oncology with poor response to standard therapies. Chimeric antigen receptor (CAR)-T cell therapy is one of the most successful types of immunotherapy that has revolutionized cancer treatment, as evidenced by various approved products for CD19 B-cell malignancies and multiple myeloma. Nonetheless, due to some unique hurdles, such as the risk of CAR-T cell fratricide, product contamination with malignant cells, and severe T-cell aplasia, the translation of this treatment approach to TCMs has not been particularly successful. Moreover, irrespective of the type of treated cancer, CAR-T cell therapy can also present some complexities and potential side effects, such as cumbersome and costly manufacturing processes, impaired in vivo function, cytokine release syndrome (CRS), neurotoxicity, and leukemic transformation of CAR-T cells. Recent groundbreaking advances in gene-editing technology and the evolution of precise gene-editing tools such as the CRISPR/Cas9 system and its derivatives have opened a new way to overcoming the mentioned bottlenecks and paving the way for CAR-T cell therapy in TCMs. This review sheds light on how gene editing is being incorporated into CAR-T cell therapy to address current hurdles, enhance therapeutic efficacy, and improve the safety profile of CAR-T cell therapy in TCMs. Ongoing/conducted clinical trials are also discussed to provide a comprehensive view of the evolving landscape of genome-edited CAR-T cell therapy for TCMs.
Collapse
Affiliation(s)
- Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Mohsen A Khormi
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, 21944, Saudi Arabia
| | - Sultan Areshi
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ali M Aborasain
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Maysa M Hegazy
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Wu Z, Lepcha TT, Zhou D, He Z, Fiches GN, Park Y, He J, Chen J, Shanaka K, Oghumu S, Zhao W, Ma A, Ma Q, Zhu J, Santoso NG. Analysis of Head and Neck Cancer scRNA-seq Data Identified PRDM6 Promotes Tumor Progression by Modulating Immune Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641548. [PMID: 40093183 PMCID: PMC11908237 DOI: 10.1101/2025.03.04.641548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a biologically aggressive and heterogeneous group of cancers with limited treatment options for patients who do not respond to standard therapies. While HPV-related HNSCCs tend to show better therapeutic outcomes, we still had limited understanding of the immune mechanisms underlying these cancers. Immune-responsive genes (IRGs) have emerged as critical factors in regulating both tumor progression and immune response. Recent advances in single-cell RNA sequencing (scRNA-seq) and the development of cell-type specific regulon inference tools, such as IRIS3, have provided new insights into the tumor immune microenvironment. In this study, we leveraged the IRIS3 platform to analyze scRNA-seq data from HNSCC patient samples, identifying novel transcription factor (TF)-IRG networks that contribute to tumor proliferation and immune escape. Specifically, we identified PRDM6, a histone methyltransferase, possesses the previously unknown role in promoting tumor cell proliferation by inducing IRG expression. We further demonstrated that HPV viral oncoproteins (E6/E7) oncoproteins up-regulate the PRDM6 expression, which associates PRDM6 with HPV-positive HNSCC.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thurbu Tshering Lepcha
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhixian He
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Guillaume N. Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jinshan He
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jianwen Chen
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - K.A.S.N Shanaka
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steve Oghumu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Weiqiang Zhao
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Netty G. Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Kuroda H, Kijima N, Tachi T, Ikeda S, Murakami K, Nakagawa T, Yaga M, Nakagawa K, Utsugi R, Hirayama R, Okita Y, Kagawa N, Hosen N, Kishima H. Prostaglandin F2 receptor negative regulator as a potential target for chimeric antigen receptor-T cell therapy for glioblastoma. Cancer Immunol Immunother 2025; 74:136. [PMID: 40047938 PMCID: PMC11885767 DOI: 10.1007/s00262-025-03979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy targeting novel glioblastoma (GBM)-specific cell surface antigens is a promising approach. However, transcriptome analyses have revealed few GBM-specific target antigens. METHODS A library of monoclonal antibodies (mAbs) against tumor cell lines derived from patients with GBM was generated. mAbs reacting with tumor cells in resected tissues from patients with GBM but not with nonmalignant human brain cells were detected. The antigens that were recognized were identified through expression cloning. CAR-T cells derived from a candidate mAb were generated, and their functionality was tested in vitro and in vivo. RESULTS Approximately 3,200 clones were established. Among them, 5E17 reacted with tumor cells in six of seven patients with GBM, but not with nonmalignant human brain cells. Prostaglandin F2 receptor negative regulator (PTGFRN) was identified as an antigen recognized by 5E17. CAR-T cells derived from 5E17 produced cytokines and exerted cytotoxicity upon co-culture with tumor cells from patients with GBM. Furthermore, intracranial injection of 5E17-CAR-T cells demonstrated antitumor effects in an orthotopic xenograft murine model with patient-derived GBM cells. CONCLUSIONS Cell surface PTGFRN is a candidate target for intracranial CAR-T cell therapy for GBM. On-target off-tumor toxicity in alternative normal tissues needs to be carefully tested.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Shunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine, Osaka General Hospital, Osaka, Osaka, Japan
| | - Kanji Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Hosen
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| |
Collapse
|
9
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
10
|
de Oliveira Canedo G, Roddie C, Amrolia PJ. Dual-targeting CAR T cells for B-cell acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma. Blood Adv 2025; 9:704-721. [PMID: 39631066 PMCID: PMC11869864 DOI: 10.1182/bloodadvances.2024013586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT Relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy remains a major challenge in B-cell acute lymphoblastic leukemia (ALL) and B-cell non-Hodgkin lymphoma (B-NHL). One of the main strategies to avoid CD19-negative relapse has been the development of dual CAR T cells targeting CD19 and an additional target, such as CD22 or CD20. Different methods have been used to achieve this, including coadministration of 2 products targeting 1 single antigen, cotransduction of autologous T cells, use of a bicistronic vector, or the development of bivalent CARs. Phase 1 and 2 trials across all manufacturing strategies have shown this to be a safe approach with equivalent remission rates and initial product expansion. CAR T-cell persistence remains a significant issue, with the majority of relapses being antigen-positive after CAR T-cell infusion. Further, despite adding a second antigen, antigen-negative relapses have not yet been eliminated. This review summarizes the state of the art with dual-targeting CAR T cells for B-cell ALL and B-NHL, the challenges encountered, and possible next steps to overcome them.
Collapse
Affiliation(s)
- Gustavo de Oliveira Canedo
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| | - Claire Roddie
- Department of Haematology, University College London Hospitals, London, United Kingdom
| | - Persis J. Amrolia
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
11
|
Caraballo G LD, Cevher Zeytin I, Rathi P, Li CH, Tsao AN, Salvador L YJ, Ranjan M, Traynor BM, Heczey AA. DRIMS: A Synthetic Biology Platform that Enables Deletion, Replacement, Insertion, Mutagenesis, and Synthesis of DNA. ACS Synth Biol 2025; 14:485-496. [PMID: 39902634 DOI: 10.1021/acssynbio.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA modification and synthesis are fundamental to genetic engineering, and systems that enable time- and cost-effective execution of these processes are crucial. Iteration of genetic construct variants takes significant time, cost and effort to develop new therapeutic strategies to treat diseases including cancer. Thus, decreasing cost and enhancing simplicity while accelerating the speed of advancement is critical. We have developed a PCR-based platform that allows for deletion, replacement, insertion, mutagenesis, and synthesis of DNA (DRIMS). These modifications rely on the recA-independent recombination pathway and are carried out in a single amplification step followed by DpnI digestion and transformation into competent cells. DNA synthesis is accomplished through sequential PCR amplification reactions without the need for a DNA template. Here, we provide proof-of-concept for the DRIMS platform by performing four deletions within DNA fragments of various sizes, sixty-four replacements of DNA binding sequences that incorporate repeat sequences, four replacements of chimeric antigen receptor components, fifty-one insertions of artificial microRNAs that form complex tertiary structures, five varieties of point mutations, and synthesis of eight DNA sequences including two with high GC content. Compared to other advanced cloning methods including Gibson and "in vivo assembly", we demonstrate the significant advantages of the DRIMS platform. In summary, DRIMS allows for efficient modification and synthesis of DNA in a simple, rapid and cost-effective manner to accelerate the synthetic biology field and development of therapeutics.
Collapse
Affiliation(s)
- Leidy D Caraballo G
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Inci Cevher Zeytin
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Purva Rathi
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Che-Hsing Li
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
- Program in Immunology & Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ai-Ni Tsao
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yaery J Salvador L
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Manish Ranjan
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Brendan Magee Traynor
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Andras A Heczey
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Adabi E, Charitidis FT, Thalheimer FB, Guaza-Lasheras M, Clarke C, Buchholz CJ. Enhanced conversion of T cells into CAR T cells by modulation of the MAPK/ERK pathway. Cell Rep Med 2025; 6:101970. [PMID: 39938523 PMCID: PMC11866553 DOI: 10.1016/j.xcrm.2025.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
Delivery of chimeric antigen receptors (CARs) to T cells is usually mediated by lentiviral vectors (LVs), which can have broad tropism or be T cell targeted. To better understand the molecular events during CAR T cell generation, T cell transduction with four different LVs is followed by single-cell multi-omics analysis, distinguishing between transduced T cells and T cells with vector signal but no CAR. We find that only a fraction of the T cells that encounter vectors convert into CAR T cells. Single-cell transcriptome data reveal that interferon-stimulated genes are upregulated in non-transduced cells, whereas extracellular signal-regulated kinase (ERK)2 phosphatases are upregulated in CAR T cells. This expression pattern is evident in CAR T cells from healthy donors and patients. The role of the mitogen-activated protein kinase (MAPK)/ERK pathway in CAR T cell generation is confirmed by chemical inhibitors. These data provide molecular insights into T cell transduction with implications for improving CAR T cell generation.
Collapse
Affiliation(s)
- Elham Adabi
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany
| | - Filippos T Charitidis
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany
| | - Frederic B Thalheimer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany; Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany; Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Mar Guaza-Lasheras
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, A94 X099 Blackrock, Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Belfield, Dublin, Ireland
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Hessen, Germany; Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany; Deutsches Krebsforschungszentrum and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Cho O. Plasma exosomal miR-150-3p, NMT2, and PRDM1 as predictive biomarkers of acute tumor response in patients with cervical cancer undergoing chemoradiotherapy. Am J Cancer Res 2025; 15:546-558. [PMID: 40084359 PMCID: PMC11897638 DOI: 10.62347/spqy5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Locally advanced cervical cancer (LACC) is primarily treated with weekly cisplatin-based concurrent chemoradiotherapy (CCRT); however, predicting acute tumor response remains challenging. This study aimed to identify plasma exosomal microRNAs (miRNAs) and messenger RNAs (mRNAs) that could predict rapid tumor regression in patients with LACC undergoing CCRT. Overall, 41 patients with stage IB-IVB cervical cancer were included. All patients received CCRT, and plasma exosomal RNA samples were collected before treatment and 2 weeks after radiation therapy (RT). Acute tumor response (AR) was defined as the regression rate of tumor volume (TV) (cm3) measured at the fourth week of treatment compared with the initial TV (iTV). The log2 fold change of miRNA and mRNA was calculated by comparing RNA read counts before and after the second week of CCRT for each patient. A correlation matrix identified RNAs associated with AR. The selected RNAs were validated through linear regression and Wilcoxon rank-sum tests. Leave-one-out cross-validation was performed in subgroups based on iTV. miR-150-3p, NMT2, and PRDM1 were identified as key predictors of AR, demonstrating significant associations with immune-mediated tumor responses. A decrease in post-RT levels of these RNAs was significantly associated with poor AR, particularly in patients with large iTVs. The predictive model combining miR-150-3p, NMT2, and PRDM1 showed strong correlation with AR (R2 = 0.831, P < 0.0001) in the test dataset and was validated in an independent cohort (R2 = 0.496, P = 0.006). Cross-validation indicated the robustness of these biomarkers in predicting AR across varying TVs. These findings highlight the potential of plasma exosomal miR-150-3p, NMT2, and PRDM1 are promising biomarkers for predicting AR in patients with LACC undergoing CCRT. These findings could facilitate personalized RT strategies and improve patient outcomes. Further multicenter studies are warranted to validate these biomarkers in larger, diverse cohorts.
Collapse
Affiliation(s)
- Oyeon Cho
- Gynecologic Cancer Center, Department of Radiation Oncology, Ajou University School of Medicine 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
14
|
Battram AM, Mañé-Pujol J, Moreno DF, Oliver-Caldés A, Carpio J, Cardus O, Rodríguez-Lobato LG, Urbano-Ispizua Á, Fernández de Larrea C. Genetic disruption of Blimp-1 drastically augments the antitumor efficacy of BCMA-targeting CAR T cells. Blood Adv 2025; 9:627-641. [PMID: 39642314 PMCID: PMC11847098 DOI: 10.1182/bloodadvances.2024013209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T cells directed against B-cell maturation antigen (BCMA) are an effective treatment for multiple myeloma (MM), but short persistence and frequent relapses are challenges for this immunotherapy. This lack of durability has been attributed to the premature terminal differentiation of CAR T cells, which prevents the formation of long-lived memory cells that maintain antitumor responses. To improve long-term efficacy, we used CRISPR/CRISPR-associated protein 9-mediated gene editing to ablate the expression of the transcription factor Blimp-1. Blimp-1 knockout (KO) CAR T cells displayed a memory-like phenotype compared with control (Mock) CAR T cells, but had reduced effector function, with a striking loss of granzyme B. However, in a murine model of advanced MM, Blimp-1 KO CAR T cells effectively slowed or even prevented disease progression, significantly outperforming Mock CAR T cells in improving survival (P = .006). To understand this enhanced in vivo effectiveness, Blimp-1 KO CAR T cells were characterized after being repeatedly challenged with tumor cells in vitro. In this setting, Blimp-1 KO CAR T cells maintained a highly active state with high expression of memory markers, but, crucially, demonstrated enhanced effector function and increased energetic capacity. RNA-sequencing analysis of tumor-exposed Blimp-1 KO CAR T cells confirmed the presence of a memory-like transcriptomic signature and, additionally, revealed enhanced ribosome biogenesis and repressed CAR T-cell dysfunction as mechanisms that could contribute to improved antitumor activity. Put together, our findings show that dampening Blimp-1 expression altered the phenotype and function of anti-BCMA CAR T cells, leading to augmented therapeutic efficacy in MM.
Collapse
Affiliation(s)
- Anthony M. Battram
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joan Mañé-Pujol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain
| | - David F. Moreno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Judit Carpio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oriol Cardus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Hematology, University of Barcelona, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- Department of Hematology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
16
|
Albarrán-Fernández V, Angelats L, Delgado J, Gros A, Urbano-Ispizua Á, Guedan S, Prat A. Unlocking the potential of engineered immune cell therapy for solid tumors. Nat Commun 2025; 16:1144. [PMID: 39880825 PMCID: PMC11779857 DOI: 10.1038/s41467-025-56527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
- Víctor Albarrán-Fernández
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain.
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Laura Angelats
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Julio Delgado
- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Oncoimmunotherapy Unit, Department of Hematology, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Cellular Immunotherapies for Cancer, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Aleix Prat
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Reveal Genomics, Barcelona, Spain
- Chair on Innovation in Precision Oncology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Ito Y, Kasuya H, Kataoka M, Nakamura N, Yoshikawa T, Nakashima T, Zhang H, Li Y, Matsukawa T, Inoue S, Oneyama C, Ohta S, Kagoya Y. Plasma membrane-coated nanoparticles and membrane vesicles to orchestrate multimodal antitumor immunity. J Immunother Cancer 2025; 13:e010005. [PMID: 39864848 PMCID: PMC11784344 DOI: 10.1136/jitc-2024-010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit. Currently available BsAbs provide only anti-CD3 antibody-mediated T-cell stimulation, but not the costimulation or cytokine signaling essential for full T-cell activation. Here, we hypothesized that the simultaneous input of more comprehensive signals would elicit more robust and durable effector T-cell functions. METHODS We genetically engineered the leukemia cell line K562 to express BsAbs, costimulatory ligands, cytokines, and blocking antibodies against immune checkpoint molecules on the cell surface, from which we obtained plasma membrane fractions by mechanical homogenization and subsequent isolation steps. Plasma membranes were reconstituted on the poly (lactic-co-glycolic acid) surface to generate membrane-coated nanoparticles (NPs). Alternatively, nano-sized membrane vesicles (MVs) were generated by ultrasonic dispersion of the isolated membranes. The antitumor function of NPs and MVs loaded with various immunomodulatory factors was evaluated in vitro and in vivo. RESULTS Both membrane-coated NPs and MVs induced BsAb-mediated antigen-specific cytotoxic activity in non-specific T cells, with MVs inducing a slightly better response in vivo. Importantly, T-cell activation was elicited only in the presence of target tumor cells, providing a safety advantage for clinical use. NPs and MVs expressing costimulatory molecules (CD80/4-1BBL) and cytokines (interleukin (IL)-7/IL-15) further enhanced effector T-cell function and induced therapeutic efficacy in vivo. In addition, MVs expressing immune checkpoint antibodies and inflammatory cytokines IL-12 and IL-18 induced objective antitumor responses in solid tumor models partly by converting immunosuppressive macrophages to proinflammatory phenotypes and inducing cytotoxic T-cell infiltration into the tumor. Finally, we showed that MVs were also engineered to activate natural killer (NK) cells by loading multiple ligands. MVs loaded with BsAbs, 4-1BBL, IL-15, and IL-21 induced NK-cell cytotoxic activity in an antigen-specific manner. CONCLUSIONS We developed antitumor NPs and MVs that efficiently induced antitumor immune responses in vivo by simultaneously delivering multiple immunostimulatory signals to endogenous T cells. This platform enables the delivery of desired combinations of antitumor immune signals into T cells and NK cells.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hitomi Kasuya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mirei Kataoka
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Noriko Nakamura
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
18
|
Sun DY, Hu YJ, Li X, Peng J, Dai ZJ, Wang S. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies. Int Immunopharmacol 2025; 144:113392. [PMID: 39608170 DOI: 10.1016/j.intimp.2024.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
In recent years, immune cell therapy, particularly adoptive cell therapy (ACT), has shown superior therapeutic effects on hematologic malignancies. However, a challenge lies in ensuring that genetically engineered specific T cells maintain lasting anti-tumor effects within the host. The enduring success of ACT therapy hinges on the persistence of memory T (TM) cells, a diverse cell subset crucial for tumor immune response and immune memory upkeep. Notably, TM cell subsets at varying differentiation stages exhibit distinct biological traits and anti-tumor capabilities. Poorly differentiated TM cells are pivotal for favorable clinical outcomes in ACT. The differentiation of TM cells is influenced by multiple factors, including metabolism and cytokines. Consequently, current research focuses on investigating the differentiation patterns of TM cells and enhancing the production of poorly differentiated TM cells with potent anti-tumor properties in vitro, which is a prominent area of interest globally. This review delves into the differentiation features of TM cells, outlining their distribution in patients and their impact on ACT treatment. It comprehensively explores cutting-edge strategies to boost ACT efficacy through TM cell differentiation induction, aiming to unlock the full potential of TM cells in treating hematologic malignancies and offering novel insights for tumor immune cell therapy.
Collapse
Affiliation(s)
- Ding-Ya Sun
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China
| | - Yi-Jie Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xin Li
- International Medicine Institute, Changsha Medical University, Changsha, China
| | - Jun Peng
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China.
| | - Zhi-Jie Dai
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
19
|
Zhang X, Sun L. Activated PRDM1-CREBBP contributes to preeclampsia by regulating apoptosis and invasion of the human trophoblast cells. iScience 2024; 27:111484. [PMID: 39759022 PMCID: PMC11699622 DOI: 10.1016/j.isci.2024.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Preeclampsia (PE) is a multifactorial disorder of pregnancy, characterized by new-onset gestational hypertension. High-throughput mRNA sequencing (RNA-seq) was performed to analyze the gene expression patterns in placentas from patients with early-onset PE (EOPE). PR domain zinc-finger protein 1 (PRDM1) expression increased in the chorionic villi and placental basal plate from patients with PE and nitro-l-arginine methyl ester (L-NAME)-treated rats. Inhibition of PRDM1 enhanced trophoblast/extravillous trophoblast (EVT) cell invasion/migration and reduced apoptosis under hypoxia/reoxygenation (H/R) conditions. RNA-seq data indicated that the expression of CREB-binding protein (CREBBP), a transcriptional coactivator, was upregulated in preeclamptic placentas and showed a positive correlation with that of PRDM1. Genetic and pharmacological inhibition of CREBBP exhibited anti-apoptotic and pro-invasive roles. H/R stimulation upregulated CREBBP expression and augmented the binding of PRDM1 to CREBBP's promoter. CREBBP was further validated as a direct downstream target of PRDM1. Collectively, our work reveals an involvement of the activated PRDM1-CREBBP axis in PE-associated trophoblast dysfunction.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
20
|
Nguyen T, Yoshikawa T, Ito Y, Kasuya H, Nakashima T, Okamoto S, Amaishi Y, Zhang H, Li Y, Matsukawa T, Inoue S, Kagoya Y. Protocol to measure human IL-6 secretion from CAR T cell-primed macrophage and monocyte lineage cells in vitro and in vivo using humanized mice. STAR Protoc 2024; 5:103423. [PMID: 39488831 PMCID: PMC11567045 DOI: 10.1016/j.xpro.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy often causes serious toxicities, such as cytokine release syndrome (CRS), mainly due to interleukin-6 (IL-6) secreted by monocyte lineage cells. Here, we describe a protocol to generate anti-CD19 CAR T cells and quantify human monocyte-derived IL-6 cocultured with CAR T cells and target tumor cells in vitro. We further describe a protocol to generate a humanized mouse model and evaluate CAR T cell-associated plasma IL-6 levels in vivo. For complete details on the use and execution of this protocol, please refer to Yoshikawa et al.1.
Collapse
Affiliation(s)
- Thao Nguyen
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hitomi Kasuya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya 467-8601, Japan
| | | | | | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan.
| |
Collapse
|
21
|
Adachi Y, Terakura S, Osaki M, Okuno Y, Sato Y, Sagou K, Takeuchi Y, Yokota H, Imai K, Steinberger P, Leitner J, Hanajiri R, Murata M, Kiyoi H. Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway. Nat Commun 2024; 15:10376. [PMID: 39658572 PMCID: PMC11631977 DOI: 10.1038/s41467-024-54794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a promising therapy for cancer, but factors that enhance the efficacy of CAR T cell remain elusive. Here we perform a genome-wide CRISPR screening to probe genes that regulate the proliferation and survival of CAR T cells following repetitive antigen stimulations. We find that genetic ablation of CUL5, encoding a core element of the multi-protein E3 ubiquitin-protein ligase complex, cullin-RING ligase 5, enhances human CD19 CAR T cell expansion potential and effector functions, potentially via the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In this regard, CUL5 knockout CD19 CAR T cells show sustained STAT3 and STAT5 phosphorylation, as well as delayed phosphorylation and degradation of JAK1 and JAK3. In vivo, shRNA-mediated knockdown of CUL5 enhances CD19 CAR T treatment outcomes in tumor-bearing mice. Our findings thus imply that targeting CUL5 in the ubiquitin system may enhance CAR T cell effector functions to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Sagou
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Yokota
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Hu W, Bian Y, Ji H. TIL Therapy in Lung Cancer: Current Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409356. [PMID: 39422665 PMCID: PMC11633538 DOI: 10.1002/advs.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Lung cancer remains the most prevalent malignant tumor worldwide and is the leading cause of cancer-related mortality. Although immune checkpoint blockade has revolutionized the treatment of advanced lung cancer, many patients still do not respond well, often due to the lack of functional T cell infiltration. Adoptive cell therapy (ACT) using expanded immune cells has emerged as an important therapeutic modality. Tumor-infiltrating lymphocytes (TIL) therapy is one form of ACT involving the administration of expanded and activated autologous T cells derived from surgically resected cancer tissues and reinfusion into patients and holds great therapeutic potential for lung cancer. In this review, TIL therapy is introduced and its suitability for lung cancer is discussed. Then its historical and clinical developments are summarized, and the methods developed up-to-date to identify tumor-recognizing TILs and optimize TIL composition. Some perspectives toward future TIL therapy for lung cancer are also provided.
Collapse
Affiliation(s)
- Weilei Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yifei Bian
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai200120China
| |
Collapse
|
23
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
24
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
25
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Graham J, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. ACS Synth Biol 2024; 13:3413-3429. [PMID: 39375864 PMCID: PMC11494708 DOI: 10.1021/acssynbio.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Joshua
P. Graham
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yu Zhang
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lifang He
- Department
of Computer Science and Engineering, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| | | |
Collapse
|
27
|
Tachi T, Kijima N, Kuroda H, Ikeda S, Murakami K, Nakagawa T, Yaga M, Nakagawa K, Utsugi R, Hirayama R, Okita Y, Kagawa N, Kishima H, Imai C, Hosen N. Antitumor effects of intracranial injection of B7-H3-targeted Car-T and Car-Nk cells in a patient-derived glioblastoma xenograft model. Cancer Immunol Immunother 2024; 73:256. [PMID: 39367952 PMCID: PMC11456075 DOI: 10.1007/s00262-024-03808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/12/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most lethal primary brain tumor for which novel therapies are needed. Recently, chimeric antigen receptor (CAR) T cell therapy has been shown to be effective against GBM, but it is a personalized medicine and requires high cost and long time for the cell production. CAR-transduced natural killer (NK) cells can be used for "off-the-shelf" cellular immunotherapy because they do not induce graft-versus-host disease. Therefore, we aimed to analyze the anti-GBM effect of CAR-T or NK cells targeting B7-H3, which is known to be highly expressed in GBM. METHODS CAR-T cells targeting B7-H3 were generated using previously reported anti-B7-H3 scFv sequences. Cord blood (CB)-derived NK cells transduced with the B7-H3 CAR were also generated. Their anti-GBM effect was analyzed in vitro. The antitumor effect of intracranial injection of the B7-H3 CAR-T or NK cells was investigated in an in vivo xenograft model with patient-derived GBM cells. RESULTS Both B7-H3 CAR-T cells and CAR-NK cells exhibited marked cytotoxicity against patient-derived GBM cells in vitro. Furthermore, intracranial injection of CAR-T cells and CAR-NK cells targeting B7-H3 resulted in a significant antitumor effect against patient-derived GBM xenografts. CONCLUSION Not only CAR-T cells but also CB-derived CAR-NK cells targeting B7-H3 may have the potential to eliminate GBM cells.
Collapse
Affiliation(s)
- Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Syunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine, Osaka General Hospital, Osaka, Japan
| | - Kanji Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Chihaya Imai
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Naoki Hosen
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| |
Collapse
|
28
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
29
|
Ali A, DiPersio JF. ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights. Front Immunol 2024; 15:1432799. [PMID: 39301026 PMCID: PMC11410633 DOI: 10.3389/fimmu.2024.1432799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, offering remarkable remission rates in otherwise refractory conditions. However, its expansion into broader oncological applications faces significant hurdles, including limited efficacy in solid tumors, safety concerns related to toxicity, and logistical challenges in manufacturing and scalability. This review critically examines the latest advancements aimed at overcoming these obstacles, highlighting innovations in CAR T-cell engineering, novel antigen targeting strategies, and improvements in delivery and persistence within the tumor microenvironment. We also discuss the development of allogeneic CAR T cells as off-the-shelf therapies, strategies to mitigate adverse effects, and the integration of CAR T cells with other therapeutic modalities. This comprehensive analysis underscores the synergistic potential of these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell therapies, providing a forward-looking perspective on their evolutionary trajectory in cancer treatment.
Collapse
Affiliation(s)
- Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - John F DiPersio
- Center for Gene and Cellular Immunotherapy, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
30
|
Nakagawara K, Ando M, Srirat T, Mise-Omata S, Hayakawa T, Ito M, Fukunaga K, Yoshimura A. NR4A ablation improves mitochondrial fitness for long persistence in human CAR-T cells against solid tumors. J Immunother Cancer 2024; 12:e008665. [PMID: 39151930 PMCID: PMC11331892 DOI: 10.1136/jitc-2023-008665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Antitumor effect of chimeric antigen receptor (CAR)-T cells against solid tumors is limited due to various factors, such as low infiltration rate, poor expansion capacity, and exhaustion of T cells within the tumor. NR4A transcription factors have been shown to play important roles in T-cell exhaustion in mice. However, the precise contribution of each NR4a factor to human T-cell differentiation remains to be clarified. METHODS In this study, we deleted NR4A family factors, NR4A1, NR4A2, and NR4A3, in human CAR-T cells recognizing human epidermal growth factor receptor type 2 (HER2) by using the CRISPR/Cas9 system. We induced T-cell exhaustion in these cells in vitro through repeated co-culturing of CAR-T cells with Her2+A549 lung adenocarcinoma cells and evaluated cell surface markers such as memory and exhaustion phenotypes, proliferative capacity, cytokine production and metabolic activity. We validated the antitumor toxicity of NR4A1/2/3 triple knockout (TKO) CAR-T cells in vivo by transferring CAR-T cells into A549 tumor-bearing immunodeficient mice. RESULTS Human NR4A-TKO CAR-T cells were resistant against exhaustion induced by repeated antigen stimulation in vitro, and maintained higher tumor-killing activity both in vitro and in vivo compared with control CAR-T cells. A comparison of the effectiveness of NR4A single, double, and TKOs demonstrated that triple KO was the most effective in avoiding exhaustion. Furthermore, a strong enhancement of antitumor effects by NR4A TKO was also observed in T cells from various donors including aged persons. Mechanistically, NR4A TKO CAR-T cells showed enhanced mitochondrial oxidative phosphorylation, therefore could persist for longer periods within the tumors. CONCLUSIONS NR4A factors regulate CAR-T cell persistence and stemness through mitochondrial gene expression, therefore NR4A is a highly promising target for the generation of superior CAR-T cells against solid tumors.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- Mitochondria/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Receptors, Thyroid Hormone/metabolism
- Receptors, Thyroid Hormone/genetics
- Neoplasms/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Female
- DNA-Binding Proteins
- Receptors, Steroid
Collapse
Affiliation(s)
- Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Taeko Hayakawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
31
|
Nunoya JI, Imuta N, Masuda M. Chimeric Antigen Receptor T Cell Bearing Herpes Virus Entry Mediator Co-Stimulatory Signal Domain Exhibits Exhaustion-Resistant Properties. Int J Mol Sci 2024; 25:8662. [PMID: 39201348 PMCID: PMC11354286 DOI: 10.3390/ijms25168662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Improving chimeric antigen receptor (CAR)-T cell therapeutic outcomes and expanding its applicability to solid tumors requires further refinement of CAR-T cells. We previously reported that CAR-T cells bearing a herpes virus entry mediator (HVEM)-derived co-stimulatory signal domain (CSSD) (HVEM-CAR-T cells) exhibit superior functions and characteristics. Here, we conducted comparative analyses to evaluate the impact of different CSSDs on CAR-T cell exhaustion. The results indicated that HVEM-CAR-T cells had significantly lower frequencies of exhausted cells and exhibited the highest proliferation rates upon antigenic stimulation. Furthermore, proliferation inhibition by programmed cell death ligand 1 was stronger in CAR-T cells bearing CD28-derived CSSD (CD28-CAR-T cells) whereas it was weaker in HVEM-CAR-T. Additionally, HVEM-CAR-T cells maintained a low exhaustion level even after antigen-dependent proliferation and exhibited potent killing activities, suggesting that HVEM-CAR-T cells might be less prone to early exhaustion. Analysis of CAR localization on the cell surface revealed that CAR formed clusters in CD28-CAR-T cells whereas uniformly distributed in HVEM-CAR-T cells. Analysis of CD3ζ phosphorylation indicated that CAR-dependent tonic signals were strongly sustained in CD28-CAR-T cells whereas they were significantly weaker in HVEM-CAR-T cells. Collectively, these results suggest that the HVEM-derived CSSD is useful for generating CAR-T cells with exhaustion-resistant properties, which could be effective against solid tumors.
Collapse
Affiliation(s)
- Jun-ichi Nunoya
- Department of Microbiology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan (M.M.)
| | | | | |
Collapse
|
32
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
33
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
34
|
Graham JP, Zhang Y, He L, Gonzalez-Fernandez T. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601587. [PMID: 39005295 PMCID: PMC11244939 DOI: 10.1101/2024.07.01.601587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, achieving reliable therapeutic effects with improved safety and efficacy requires informed target gene selection. This depends on a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) that regulate cell phenotype and function. Machine learning models have been previously used for GRN reconstruction using RNA-seq data, but current techniques are limited to single cell types and focus mainly on transcription factors. This restriction overlooks many potential CRISPR target genes, such as those encoding extracellular matrix components, growth factors, and signaling molecules, thus limiting the applicability of these models for CRISPR strategies. To address these limitations, we have developed CRISPR-GEM, a multi-layer perceptron (MLP)-based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts towards a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.
Collapse
Affiliation(s)
- Josh P Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Lifang He
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
35
|
Nakashima T, Kagoya Y. Current progress of CAR-T-cell therapy for patients with multiple myeloma. Int J Hematol 2024; 120:15-22. [PMID: 38777913 DOI: 10.1007/s12185-024-03794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Currently available chimeric antigen receptor (CAR)-engineered T-cell therapies targeting B-cell maturation antigen (BCMA), namely, idecabtagene vicleucel and ciltacabtagene autoleucel, have shown marked efficacy against relapsed and refractory multiple myeloma. However, further improvement in CAR-T-cell function is warranted as most patients treated with these products eventually relapse due to various mechanisms such as antigen loss and T-cell dysfunction or disappearance. Strategies for improving CAR-T-cell function include targeting of dual antigens, enhancing cell longevity through genetic modification, and eliminating the immunosuppressive tumor microenvironment. Serious side effects can also occur after CAR-T-cell infusions. Although understanding of the molecular pathogenesis of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome is growing, the unique movement disorder caused by BCMA-targeted therapy is less understood, and its molecular mechanisms must be further elucidated to establish better management strategies. In this article, we will review the current status of BCMA-targeting CAR-T-cell therapy. We will also highlight progress in the development of CAR-T cells targeting other antigens, as well as universal allogeneic CAR-T cells and bispecific antibodies.
Collapse
Affiliation(s)
- Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
36
|
Qin S, Xie B, Wang Q, Yang R, Sun J, Hu C, Liu S, Tao Y, Xiao D. New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (Beijing) 2024; 5:e551. [PMID: 38783893 PMCID: PMC11112485 DOI: 10.1002/mco2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sha Qin
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Bin Xie
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qingyi Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Rui Yang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jingyue Sun
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Chaotao Hu
- Regenerative Medicine, Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha, Hunan, China. UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South universityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
37
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
38
|
Yoshikawa T, Ito Y, Wu Z, Kasuya H, Nakashima T, Okamoto S, Amaishi Y, Zhang H, Li Y, Matsukawa T, Inoue S, Kagoya Y. Development of a chimeric cytokine receptor that captures IL-6 and enhances the antitumor response of CAR-T cells. Cell Rep Med 2024; 5:101526. [PMID: 38670095 PMCID: PMC11148643 DOI: 10.1016/j.xcrm.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/06/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
The efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy is suboptimal in most cancers, necessitating further improvement in their therapeutic actions. However, enhancing antitumor T cell response inevitably confers an increased risk of cytokine release syndrome associated with monocyte-derived interleukin-6 (IL-6). Thus, an approach to simultaneously enhance therapeutic efficacy and safety is warranted. Here, we develop a chimeric cytokine receptor composed of the extracellular domains of GP130 and IL6RA linked to the transmembrane and cytoplasmic domain of IL-7R mutant that constitutively activates the JAK-STAT pathway (G6/7R or G6/7R-M452L). CAR-T cells with G6/7R efficiently absorb and degrade monocyte-derived IL-6 in vitro. The G6/7R-expressing CAR-T cells show superior expansion and persistence in vivo, resulting in durable antitumor response in both liquid and solid tumor mouse models. Our strategy can be widely applicable to CAR-T cell therapy to enhance its efficacy and safety, irrespective of the target antigen.
Collapse
Affiliation(s)
- Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Zhiwen Wu
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya 467-8601, Japan
| | | | | | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
39
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
40
|
Zhu M, Han Y, Gu T, Wang R, Si X, Kong D, Zhao P, Wang X, Li J, Zhai X, Yu Z, Lu H, Li J, Huang H, Qian P. Class I HDAC inhibitors enhance antitumor efficacy and persistence of CAR-T cells by activation of the Wnt pathway. Cell Rep 2024; 43:114065. [PMID: 38578828 DOI: 10.1016/j.celrep.2024.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/β-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.
Collapse
Affiliation(s)
- Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Tianning Gu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xiaohui Si
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Delin Kong
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Zhao
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xiujian Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xingyuan Zhai
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jingyi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - He Huang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| |
Collapse
|
41
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
42
|
Srirat T, Hayakawa T, Mise-Omata S, Nakagawara K, Ando M, Shichino S, Ito M, Yoshimura A. NR4a1/2 deletion promotes accumulation of TCF1 + stem-like precursors of exhausted CD8 + T cells in the tumor microenvironment. Cell Rep 2024; 43:113898. [PMID: 38451819 DOI: 10.1016/j.celrep.2024.113898] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
T cell exhaustion impairs tumor immunity and contributes to resistance against immune checkpoint inhibitors. The nuclear receptor subfamily 4 group A (NR4a) family of nuclear receptors plays a crucial role in driving T cell exhaustion. In this study, we observe that NR4a1 and NR4a2 deficiency in CD8+ tumor-infiltrating lymphocytes (TILs) results in potent tumor eradication and exhibits not only reduced exhaustion characteristics but also an increase in the precursors/progenitors of exhausted T (Pre-Tex) cell fraction. Serial transfers of NR4a1-/-NR4a2-/-CD8+ TILs into tumor-bearing mice result in the expansion of TCF1+ (Tcf7+) stem-like Pre-Tex cells, whereas wild-type TILs are depleted upon secondary transfer. NR4a1/2-deficient CD8+ T cells express higher levels of stemness/memory-related genes and illustrate potent mitochondrial oxidative phosphorylation. Collectively, these findings suggest that inhibiting NR4a in tumors represents a potent immuno-oncotherapy strategy by increasing stem-like Pre-Tex cells and reducing exhaustion of CD8+ T cells.
Collapse
Affiliation(s)
- Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Taeko Hayakawa
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Setsuko Mise-Omata
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensuke Nakagawara
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
43
|
Ito Y, Inoue S, Kagoya Y. Gene editing technology to improve antitumor T-cell functions in adoptive immunotherapy. Inflamm Regen 2024; 44:13. [PMID: 38468282 PMCID: PMC10926667 DOI: 10.1186/s41232-024-00324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Adoptive immunotherapy, in which tumor-reactive T cells are prepared in vitro for adoptive transfer to the patient, can induce an objective clinical response in specific types of cancer. In particular, chimeric antigen receptor (CAR)-redirected T-cell therapy has shown robust responses in hematologic malignancies. However, its efficacy against most of the other tumors is still insufficient, which remains an unmet medical need. Accumulating evidence suggests that modifying specific genes can enhance antitumor T-cell properties. Epigenetic factors have been particularly implicated in the remodeling of T-cell functions, including changes to dysfunctional states such as terminal differentiation and exhaustion. Genetic ablation of key epigenetic molecules prevents the dysfunctional reprogramming of T cells and preserves their functional properties.Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based gene editing is a valuable tool to enable efficient and specific gene editing in cultured T cells. A number of studies have already identified promising targets to improve the therapeutic efficacy of CAR-T cells using genome-wide or focused CRISPR screening. In this review, we will present recent representative findings on molecular insights into T-cell dysfunction and how genetic modification contributes to overcoming it. We will also discuss several technical advances to achieve efficient gene modification using the CRISPR and other novel platforms.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
44
|
Davies D, Kamdar S, Woolf R, Zlatareva I, Iannitto ML, Morton C, Haque Y, Martin H, Biswas D, Ndagire S, Munonyara M, Gillett C, O'Neill O, Nussbaumer O, Hayday A, Wu Y. PD-1 defines a distinct, functional, tissue-adapted state in Vδ1 + T cells with implications for cancer immunotherapy. NATURE CANCER 2024; 5:420-432. [PMID: 38172341 PMCID: PMC10965442 DOI: 10.1038/s43018-023-00690-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Checkpoint inhibition (CPI), particularly that targeting the inhibitory coreceptor programmed cell death protein 1 (PD-1), has transformed oncology. Although CPI can derepress cancer (neo)antigen-specific αβ T cells that ordinarily show PD-1-dependent exhaustion, it can also be efficacious against cancers evading αβ T cell recognition. In such settings, γδ T cells have been implicated, but the functional relevance of PD-1 expression by these cells is unclear. Here we demonstrate that intratumoral TRDV1 transcripts (encoding the TCRδ chain of Vδ1+ γδ T cells) predict anti-PD-1 CPI response in patients with melanoma, particularly those harboring below average neoantigens. Moreover, using a protocol yielding substantial numbers of tissue-derived Vδ1+ cells, we show that PD-1+Vδ1+ cells display a transcriptomic program similar to, but distinct from, the canonical exhaustion program of colocated PD-1+CD8+ αβ T cells. In particular, PD-1+Vδ1+ cells retained effector responses to TCR signaling that were inhibitable by PD-1 engagement and derepressed by CPI.
Collapse
Affiliation(s)
- Daniel Davies
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Richard Woolf
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- St. John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | | | - Cienne Morton
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Department of Medical Oncology, Guy's Hospital, London, UK
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Hannah Martin
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK
| | - Dhruva Biswas
- Academic Foundation Programme, King's College Hospital, London, UK
| | - Susan Ndagire
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | | | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | - Olga O'Neill
- Advanced Sequencing Facility, Francis Crick Institute, London, UK
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK.
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Department of Medical Oncology, Guy's Hospital, London, UK.
| |
Collapse
|
45
|
Tao R, Han X, Bai X, Yu J, Ma Y, Chen W, Zhang D, Li Z. Revolutionizing cancer treatment: enhancing CAR-T cell therapy with CRISPR/Cas9 gene editing technology. Front Immunol 2024; 15:1354825. [PMID: 38449862 PMCID: PMC10914996 DOI: 10.3389/fimmu.2024.1354825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
CAR-T cell therapy, a novel immunotherapy, has made significant breakthroughs in clinical practice, particularly in treating B-cell-associated leukemia and lymphoma. However, it still faces challenges such as poor persistence, limited proliferation capacity, high manufacturing costs, and suboptimal efficacy. CRISPR/Cas system, an efficient and simple method for precise gene editing, offers new possibilities for optimizing CAR-T cells. It can increase the function of CAR-T cells and reduce manufacturing costs. The combination of CRISPR/Cas9 technology and CAR-T cell therapy may promote the development of this therapy and provide more effective and personalized treatment for cancer patients. Meanwhile, the safety issues surrounding the application of this technology in CAR-T cells require further research and evaluation. Future research should focus on improving the accuracy and safety of CRISPR/Cas9 technology to facilitate the better development and application of CAR-T cell therapy. This review focuses on the application of CRISPR/Cas9 technology in CAR-T cell therapy, including eliminating the inhibitory effect of immune checkpoints, enhancing the ability of CAR-T cells to resist exhaustion, assisting in the construction of universal CAR-T cells, reducing the manufacturing costs of CAR-T cells, and the security problems faced. The objective is to show the revolutionary role of CRISPR/Cas9 technology in CAR-T cell therapy for researchers.
Collapse
Affiliation(s)
- Ruiyu Tao
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xiaopeng Han
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xue Bai
- Department of Urology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Jianping Yu
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Youwei Ma
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Weikai Chen
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Dawei Zhang
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Zhengkai Li
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|
46
|
López-Cobo S, Fuentealba JR, Gueguen P, Bonté PE, Tsalkitzi K, Chacón I, Glauzy S, Bohineust A, Biquand A, Silva L, Gouveia Z, Goudot C, Perez F, Saitakis M, Amigorena S. SUV39H1 Ablation Enhances Long-term CAR T Function in Solid Tumors. Cancer Discov 2024; 14:120-141. [PMID: 37934001 DOI: 10.1158/2159-8290.cd-22-1350] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Failure of adoptive T-cell therapies in patients with cancer is linked to limited T-cell expansion and persistence, even in memory-prone 41BB-(BBz)-based chimeric antigen receptor (CAR) T cells. We show here that BBz-CAR T-cell stem/memory differentiation and persistence can be enhanced through epigenetic manipulation of the histone 3 lysine 9 trimethylation (H3K9me3) pathway. Inactivation of the H3K9 trimethyltransferase SUV39H1 enhances BBz-CAR T cell long-term persistence, protecting mice against tumor relapses and rechallenges in lung and disseminated solid tumor models up to several months after CAR T-cell infusion. Single-cell transcriptomic (single-cell RNA sequencing) and chromatin opening (single-cell assay for transposase accessible chromatin) analyses of tumor-infiltrating CAR T cells show early reprogramming into self-renewing, stemlike populations with decreased expression of dysfunction genes in all T-cell subpopulations. Therefore, epigenetic manipulation of H3K9 methylation by SUV39H1 optimizes the long-term functional persistence of BBz-CAR T cells, limiting relapses, and providing protection against tumor rechallenges. SIGNIFICANCE Limited CAR T-cell expansion and persistence hinders therapeutic responses in solid cancer patients. We show that targeting SUV39H1 histone methyltransferase enhances 41BB-based CAR T-cell long-term protection against tumor relapses and rechallenges by increasing stemness/memory differentiation. This opens a safe path to enhancing adoptive cell therapies for solid tumors. See related article by Jain et al., p. 142. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Jaime R Fuentealba
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Paul Gueguen
- Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Kyriaki Tsalkitzi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Irena Chacón
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Salomé Glauzy
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | | | - Lisseth Silva
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Michael Saitakis
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Mnemo Therapeutics, Paris, France
| |
Collapse
|
47
|
Ito Y, Inoue S, Nakashima T, Zhang H, Li Y, Kasuya H, Matsukawa T, Wu Z, Yoshikawa T, Kataoka M, Ishikawa T, Kagoya Y. Epigenetic profiles guide improved CRISPR/Cas9-mediated gene knockout in human T cells. Nucleic Acids Res 2024; 52:141-153. [PMID: 37985205 PMCID: PMC10783505 DOI: 10.1093/nar/gkad1076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Genetic modification of specific genes is emerging as a useful tool to enhance the functions of antitumor T cells in adoptive immunotherapy. Current advances in CRISPR/Cas9 technology enable gene knockout during in vitro preparation of infused T-cell products through transient transfection of a Cas9-guide RNA (gRNA) ribonucleoprotein complex. However, selecting optimal gRNAs remains a major challenge for efficient gene ablation. Although multiple in silico tools to predict the targeting efficiency have been developed, their performance has not been validated in cultured human T cells. Here, we explored a strategy to select optimal gRNAs using our pooled data on CRISPR/Cas9-mediated gene knockout in human T cells. The currently available prediction tools alone were insufficient to accurately predict the indel percentage in T cells. We used data on the epigenetic profiles of cultured T cells obtained from transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Combining the epigenetic information with sequence-based prediction tools significantly improved the gene-editing efficiency. We further demonstrate that epigenetically closed regions can be targeted by designing two gRNAs in adjacent regions. Finally, we demonstrate that the gene-editing efficiency of unstimulated T cells can be enhanced through pretreatment with IL-7. These findings enable more efficient gene editing in human T cells.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitomi Kasuya
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zhiwen Wu
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mirei Kataoka
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuo Ishikawa
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Japan
- Collective Intelligence Research Laboratory, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
48
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
49
|
Zhou X, Renauer PA, Zhou L, Fang SY, Chen S. Applications of CRISPR technology in cellular immunotherapy. Immunol Rev 2023; 320:199-216. [PMID: 37449673 PMCID: PMC10787818 DOI: 10.1111/imr.13241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
CRISPR technology has transformed multiple fields, including cancer and immunology. CRISPR-based gene editing and screening empowers direct genomic manipulation of immune cells, opening doors to unbiased functional genetic screens. These screens aid in the discovery of novel factors that regulate and reprogram immune responses, offering novel drug targets. The engineering of immune cells using CRISPR has sparked a transformation in the cellular immunotherapy field, resulting in a multitude of ongoing clinical trials. In this review, we discuss the development and applications of CRISPR and related gene editing technologies in immune cells, focusing on functional genomics screening, gene editing-based cell therapies, as well as future directions in this rapidly advancing field.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Shao-Yu Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
50
|
Chakraborty P, Mills S, Mehrotra S. Fatty Acids Invigorate Tumor-Resident Memory T Cells. Cancer Res 2023; 83:3321-3323. [PMID: 37828860 DOI: 10.1158/0008-5472.can-23-2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
Tissue-resident memory T cells (Trm) represent a diverse cell type with tissue-specific gene signatures that can operate as both effector and memory T cells. Trm cells play a crucial role in immune defense against infections and cancer. Recently, Trm cells have become appreciated as a critical responder to checkpoint immunotherapy and as a biomarker of favorable outcomes in cancer. Hence, it is of great clinical and therapeutic importance to investigate how Trm cells can be manipulated transcriptionally, epigenetically, or metabolically to improve their longevity and function. In this issue of Cancer Research, Feng and colleagues demonstrate that the transcription factor SCML4 is essential for the development and polyfunctionality of Trm cells. Fatty acids mediated the upregulation of SCML4 via the mTOR-IRF4-PRDM1 signaling pathway, which significantly enhanced tumor control in multiple aggressive murine tumor models and was associated with a favorable prognosis for patients with cancer. The findings also suggest that SCML4-mediated engagement of the HBO1-BRPF2-ING4 complex epigenetically reprogramed Trm cells by increasing the expression of several survival- and effector-associated molecules while blocking the expression of checkpoint inhibitors. Overall, Feng and colleagues highlight a critical activation target for tumor immunotherapy and provide a molecular perspective on recruiting antitumor Trm cells to the tumor niche by regulating fatty acids. See related article by Feng et al., p. 3368.
Collapse
Affiliation(s)
- Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|