1
|
Schwarz E, Savardekar H, Zelinskas S, Mouse A, Lapurga G, Lyberger J, Rivaldi A, Ringwalt EM, Miller KE, Yu L, Behbehani GK, Cripe TP, Carson WE. Trabectedin Enhances the Antitumor Effects of IL-12 in Triple-Negative Breast Cancer. Cancer Immunol Res 2025; 13:560-576. [PMID: 39777457 PMCID: PMC11962391 DOI: 10.1158/2326-6066.cir-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
IL-12 is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL-12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T-box transcription factor (Tbx21), the cytotoxic ligands TNF-related apoptosis-inducing ligand (TNFSF10), Fas ligand (FASLG), and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1). The combination of IL-12 and trabectedin increased NK-cell cytotoxicity and activation and production of IFN-γ, TNF-α, and granzyme B in the presence of human TNBC cells. Treatment of 4T1 and EMT6 tumor-bearing mice with IL-12 and trabectedin led to a significant reduction in tumor burden compared with single-agent controls and the highest levels of plasma IFN-γ, intratumoral CD8+ T cells, and conventional type 1 DC. MDSC and M2-like macrophages were significantly decreased with combination therapy. NK-cell depletion abrogated the effects of combination therapy, as did the elimination of CD8+ T cells. NK-cell depletion led to lower levels of the NK cell-derived chemokine CCL5 and the DC-derived chemokine CXCL10, higher tumor burden, and decreased intratumoral CD8+ T cells. IL-12 and trabectedin also significantly enhanced the response of TNBC to anti-PD-L1 therapy. These data suggest that MDSC depletion augments the ability of IL-12-activated NK cells to drive the infiltration of DC and CD8+ T cells into TNBC for an antitumor effect.
Collapse
Affiliation(s)
- Emily Schwarz
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Himanshu Savardekar
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sara Zelinskas
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Abigail Mouse
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Justin Lyberger
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Adithe Rivaldi
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Emily M. Ringwalt
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio
- Division of Hematology, Oncology & Blood and Marrow Transplant, Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio
| | - Katherine E. Miller
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Gregory K. Behbehani
- Division of Hematology, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Timothy P. Cripe
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Oncology & Blood and Marrow Transplant, Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Xu Y, Miller CP, Tykodi SS, Akilesh S, Warren EH. Signaling crosstalk between tumor endothelial cells and immune cells in the microenvironment of solid tumors. Front Cell Dev Biol 2024; 12:1387198. [PMID: 38726320 PMCID: PMC11079179 DOI: 10.3389/fcell.2024.1387198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Scott S. Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Zhu Z, Peng Q, Duan X, Li J. Interleukin-12: Structure, Function, and Its Impact in Colorectal Cancer. J Interferon Cytokine Res 2024; 44:158-169. [PMID: 38498032 DOI: 10.1089/jir.2023.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Interleukin 12 (IL-12) is a heterodimer consisting of 2 subunits, p35 and p40, with unique associations and interacting functions with its family members. IL-12 is one of the most important cytokines regulating the immune system response and is integral to adaptive immunity. IL-12 has shown marked therapeutic potential in a variety of tumor types. This review therefore summarizes the characteristics of IL-12 and its application in tumor treatment, focusing on its antitumor effects in colorectal cancer (CRC) and potential radiosensitization mechanisms. We aim to provide a current reference for IL-12 and other potential CRC treatment strategies.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Qian Peng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, People's Republic of. China
| | - Jie Li
- School of Medicine, Southwest Medical University of China, Luzhou, People's Republic of China
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
5
|
Wang L, Wei X, Wang Y. Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts. Ann Biomed Eng 2023; 51:660-678. [PMID: 36774426 DOI: 10.1007/s10439-023-03158-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 02/13/2023]
Abstract
Implantable tissue-engineered vascular grafts (TEVGs) usually trigger the host reaction which is inextricably linked with the immune system, including blood-material interaction, protein absorption, inflammation, foreign body reaction, and so on. With remarkable progress, the immune response is no longer considered to be entirely harmful to TEVGs, but its therapeutic and impaired effects on angiogenesis and tissue regeneration are parallel. Although the implicated immune mechanisms remain elusive, it is certainly worthwhile to gain detailed knowledge about the function of the individual immune components during angiogenesis and vascular remodeling. This review provides a general overview of immune cells with an emphasis on macrophages in light of the current literature. To the extent possible, we summarize state-of-the-art approaches to immune cell regulation of the vasculature and suggest that future studies are needed to better define the timing of the activity of each cell subpopulation and to further reveal key regulatory switches.
Collapse
Affiliation(s)
- Li Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqing Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
6
|
Korenevsky AV, Gert TN, Berezkina ME, Sinyavin SA, Mikhailova VA, Markova KL, Simbirtsev AS, Selkov SA, Sokolov DI. Protein Fractions of Natural Killer Cell Lysates Affect the Phenotype, Proliferation and Migration of Endothelial Cells in vitro. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Bedar M, Saffari TM, Johnson AJ, Shin AY. The effect of mesenchymal stem cells and surgical angiogenesis on immune response and revascularization of acellular nerve allografts in a rat sciatic defect model. J Plast Reconstr Aesthet Surg 2022; 75:2809-2820. [PMID: 35383001 DOI: 10.1016/j.bjps.2022.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increasing evidence demonstrates an interplay between neoangiogenesis and immune cells. We investigated the immune response and revascularization of acellular nerve allografts (ANA) after combined stem cell delivery and surgical angiogenesis in a rat model. METHODS Unilateral sciatic nerve defects in 60 Lewis rats were repaired with (I) autografts, (II) ANAs, and (III) ANAs wrapped within a pedicled superficial inferior epigastric artery fascial flap to induce surgical angiogenesis, combined with seeding of either (IV) undifferentiated mesenchymal stem cells (uMSCs) or (V) MSCs differentiated into Schwann cell-like cells. Immune cell phenotyping was performed on days 7 and 14. The vascular volume of nerves was measured by microcomputed tomography at 12 and 16 weeks. RESULTS On day 7, helper T cells (CD4+) were significantly increased in groups IV and V compared to group I. Regulatory T cells (CD4+CD25+) were significantly higher in groups III-IV, and cytotoxic T cells (CD8+) were significantly reduced in groups IV and V compared to group II, respectively. Group II demonstrated the highest levels of natural killer cells (CD161+) compared to groups III-V. On day 14, group IV demonstrated the highest CD4/CD8 ratio. Vascular volume was significantly higher in groups III-V compared to group II at 12 weeks and groups IV and V compared to group II at 16 weeks. The CD4/CD8 ratio demonstrated a positive correlation to vascular volumes at 12 weeks. CONCLUSION Early favorable immune responses were observed in ANAs treated with surgical angiogenesis with or without stem cell delivery and demonstrated improved vascularity at longer follow-up.
Collapse
Affiliation(s)
- Meiwand Bedar
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA; Department of Plastic Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherland
| | - Tiam M Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA; Department of Plastic Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherland
| | | | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
9
|
Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines (Basel) 2021; 9:vaccines9121488. [PMID: 34960234 PMCID: PMC8709224 DOI: 10.3390/vaccines9121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.
Collapse
|
10
|
Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M, Drzyzga A, Matuszczak S, Szala S, Smolarczyk R. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 2021; 11:18335. [PMID: 34526531 PMCID: PMC8443548 DOI: 10.1038/s41598-021-97435-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.
Collapse
Affiliation(s)
- Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
11
|
Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2020; 40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the most important innate immune component cancers invader, natural killer (NK) cells have a magnificent role in antitumor immunity without any prior sensitization. Different subsets of NK cells have distinct responses during tumor cell exposure, according to their phenotypes and environments. Their function is induced mainly by the activity of both inhibitory and activating receptors against cancerous cells. Since the immunosuppression in the tumor microenvironment of breast cancer patients has directly deteriorated the phenotype and disturbed the function of NK cells, recruiting compensatory mechanisms indicate promising outcomes for immunotherapeutic approaches. These evidences accentuate the importance of NK cell distinct features in protection against breast tumors. In this review, we discuss the several mechanisms involved in NK cells suppression which consequently promote tumor progression and disease recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sanaz Shahgordi
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Harmsen MJ, Wong CFC, Mijatovic V, Griffioen AW, Groenman F, Hehenkamp WJK, Huirne JAF. Role of angiogenesis in adenomyosis-associated abnormal uterine bleeding and subfertility: a systematic review. Hum Reprod Update 2020; 25:647-671. [PMID: 31504506 PMCID: PMC6737562 DOI: 10.1093/humupd/dmz024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adenomyosis commonly occurs with abnormal uterine bleeding (AUB) and is associated with subfertility and a higher miscarriage rate. Recent evidence showed abnormal vascularization in the endometrium in patients with adenomyosis, suggesting a role of angiogenesis in the pathophysiology of AUB and subfertility in adenomyosis and providing a possible treatment target. OBJECTIVE AND RATIONALE We hypothesized that the level of abnormal vascularization and expression of angiogenic markers is increased in the ectopic and eutopic endometrium of adenomyosis patients in comparison with the endometrium of control patients. This was investigated through a search of the literature. SEARCH METHODS A systematic search was performed in PubMed and Embase until February 2019. Combinations of terms for angiogenesis and adenomyosis were applied as well as AUB, subfertility or anti-angiogenic therapy. The main search was limited to clinical studies carried out on premenopausal women. Original research articles focusing on markers of angiogenesis in the endometrium of patients with adenomyosis were included. Studies in which no comparison was made to control patients or which were not published in a peer-reviewed journal were excluded. A second search was performed to explore the therapeutic potential of targeting angiogenesis in adenomyosis. This search also included preclinical studies. OUTCOMES A total of 20 articles out of 1669 hits met our selection criteria. The mean vascular density (MVD) was studied by quantification of CD31, CD34, von Willebrand Factor (vWF) or factor-VIII-antibody-stained microvessels in seven studies. All these studies reported a significantly increased MVD in ectopic endometrium, and out of the six articles that took it into account, four studies reported a significantly increased MVD in eutopic endometrium compared with control endometrium. Five articles showed a significantly higher vascular endothelial growth factor expression in ectopic endometrium and three articles in eutopic endometrium compared with control endometrium. The vascular and pro-angiogenic markers α-smooth muscle actin, endoglin, S100A13, vimentin, matrix metalloproteinases (MMPs), nuclear factor (NF)-kB, tissue factor (TF), DJ-1, phosphorylated mammalian target of rapamycin, activin A, folli- and myostatin, CD41, SLIT, roundabout 1 (ROBO1), cyclooxygenase-2, lysophosphatidic acid (LPA) 1,4-5, phospho signal transducer and activator of transcription 3 (pSTAT3), interleukin (IL)-6, IL-22 and transforming growth factor-β1 were increased in ectopic endometrium, and the markers S100A13, MMP-2 and -9, TF, follistatin, myostatin, ROBO1, LPA1 and 4-5, pSTAT3, IL-6 and IL-22 were increased in eutopic endometrium, compared with control endometrium. The anti-angiogenic markers E-cadherin, eukaryotic translation initiation factor 3 subunit and gene associated with retinoic-interferon-induced mortality 19 were decreased in ectopic endometrium and IL-10 in eutopic endometrium, compared with control endometrium. The staining level of vWF and two pro-angiogenic markers (NF-κB nuclear p65 and TF) correlated with AUB in patients with adenomyosis. We found no studies that investigated the possible relationship between markers of angiogenesis and subfertility in adenomyosis patients. Nine articles reported on direct or indirect targeting of angiogenesis in adenomyosis-either by testing hormonal therapy or herbal compounds in clinical studies or by testing angiogenesis inhibitors in preclinical studies. However, there are no clinical studies on the effectiveness of such therapy for adenomyosis-related AUB or subfertility. WIDER IMPLICATIONS The results are in agreement with our hypothesis that increased angiogenesis is present in the endometrium of patients with adenomyosis compared with the endometrium of control patients. It is likely that increased angiogenesis leads to fragile and more permeable vessels resulting in adenomyosis-related AUB and possibly subfertility. While this association has not sufficiently been studied yet, our results encourage future studies to investigate the exact role of angiogenesis in the etiology of adenomyosis and related AUB or subfertility in women with adenomyosis in order to design curative or preventive therapeutic strategies.
Collapse
Affiliation(s)
- Marissa J Harmsen
- Department of Obstetrics and Gynecology, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands.,Angiogenesis Laboratory, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Caroline F C Wong
- Department of Obstetrics and Gynecology, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands.,Angiogenesis Laboratory, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Velja Mijatovic
- Department of Obstetrics and Gynecology, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Wouter J K Hehenkamp
- Department of Obstetrics and Gynecology, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Obstetrics and Gynecology, Amsterdam UMC, location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Ribatti D. Interleukins as modulators of angiogenesis and anti-angiogenesis in tumors. Cytokine 2019; 118:3-7. [DOI: 10.1016/j.cyto.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022]
|
14
|
Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B, Arashkia A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol 2018; 234:8636-8646. [PMID: 30515798 DOI: 10.1002/jcp.27850] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Sánchez-Alonso S, Alcaraz-Serna A, Sánchez-Madrid F, Alfranca A. Extracellular Vesicle-Mediated Immune Regulation of Tissue Remodeling and Angiogenesis After Myocardial Infarction. Front Immunol 2018; 9:2799. [PMID: 30555478 PMCID: PMC6281951 DOI: 10.3389/fimmu.2018.02799] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia-related disorders constitute a major health problem, being a leading cause of death in the world. Upon ischemia, tissue remodeling processes come into play, comprising a series of inter-dependent stages, including inflammation, cell proliferation and repair. Neovessel formation during late phases of remodeling provides oxygen supply, together with cellular and soluble components necessary for an efficient myocardial reconstruction. Immune system plays a central role in processes aimed at repairing ischemic myocardium, mainly in inflammatory and angiogenesis phases. In addition to cellular components and soluble mediators as chemokines and cytokines, the immune system acts in a paracrine fashion through small extracellular vesicles (EVs) release. These vesicular structures participate in multiple biological processes, and transmit information through bioactive cargoes from one cell to another. Cell therapy has been employed in an attempt to improve the outcome of these patients, through the promotion of tissue regeneration and angiogenesis. However, clinical trials have shown variable results, which put into question the actual applicability of cell-based therapies. Paracrine factors secreted by engrafted cells partially mediate tissue repair, and this knowledge has led to the hypothesis that small EVs may become a useful tool for cell-free myocardial infarction therapy. Current small EVs engineering strategies allow delivery of specific content to selected cell types, thus revealing the singular properties of these vesicles for myocardial ischemia treatment.
Collapse
Affiliation(s)
- Santiago Sánchez-Alonso
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Alcaraz-Serna
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
16
|
Ribatti D, Tamma R, Crivellato E. Cross talk between natural killer cells and mast cells in tumor angiogenesis. Inflamm Res 2018; 68:19-23. [PMID: 30132016 DOI: 10.1007/s00011-018-1181-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. Under pathological conditions and during inflammation, NK cells extravasate into the lymph nodes and accumulate at inflammatory or tumor sites. The activation of NK cells depends on an intricate balance between activating and inhibitory signals that determines if a target will be susceptible to NK-mediated lysis. Many experimental evidences indicate that NK cells are also involved in several immunoregulatory processes and have the ability to modulate the adaptive immune responses. Many other important aspects about NK cell biology are emerging in these last years. The aim of this review is to elucidate the role of NK cells in tumor angiogenesis and their interaction with mast cells. In fact, it has been observed that NK cells produce pro-angiogenic factors and participate alone or in cooperation with mast cells to the regulation of angiogenesis in both physiological and pathological conditions including tumors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico, Piazza G. Cesare, 11, 70124, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun 2017; 8:1597. [PMID: 29150606 PMCID: PMC5694012 DOI: 10.1038/s41467-017-01599-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Productive angiogenesis, a prerequisite for tumour growth, depends on the balanced release of angiogenic and angiostatic factors by different cell types within hypoxic tumours. Natural killer (NK) cells kill cancer cells and infiltrate hypoxic tumour areas. Cellular adaptation to low oxygen is mediated by Hypoxia-inducible factors (HIFs). We found that deletion of HIF-1α in NK cells inhibited tumour growth despite impaired tumour cell killing. Tumours developing in these conditions were characterised by a high-density network of immature vessels, severe haemorrhage, increased hypoxia, and facilitated metastasis due to non-productive angiogenesis. Loss of HIF-1α in NK cells increased the bioavailability of the major angiogenic cytokine vascular endothelial growth factor (VEGF) by decreasing the infiltration of NK cells that express angiostatic soluble VEGFR-1. In summary, this identifies the hypoxic response in NK cells as an inhibitor of VEGF-driven angiogenesis, yet, this promotes tumour growth by allowing the formation of functionally improved vessels. Tumour hypoxia influences both the immune responses and angiogenesis. Here, the authors show that HIF-1α deletion in NK cells impairs NK cytotoxic activity but inhibit tumour growth by decreasing the infiltration of NK cells that express angiostatic soluble VEGFR-1, thus resulting in non-functional angiogenesis.
Collapse
|
18
|
Liu X, Gao X, Zheng S, Wang B, Li Y, Zhao C, Muftuoglu Y, Chen S, Li Y, Yao H, Sun H, Mao Q, You C, Guo G, Wei Y. Modified nanoparticle mediated IL-12 immunogene therapy for colon cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1993-2004. [DOI: 10.1016/j.nano.2017.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
|
19
|
History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis 2017; 20:463-478. [DOI: 10.1007/s10456-017-9569-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
20
|
An integrative approach for the identification of prognostic and predictive biomarkers in rectal cancer. Oncotarget 2016; 6:32561-74. [PMID: 26359356 PMCID: PMC4741712 DOI: 10.18632/oncotarget.4935] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction Colorectal cancer is the third most common cancer in the world, a small fraction of which is represented by locally advanced rectal cancer (LARC). If not medically contraindicated, preoperative chemoradiotherapy, represent the standard of care for LARC patients. Unfortunately, patients shows a wide range of response rates in which approximately 20% has a complete pathological response, whereas in 20 to 40% the response is poor or absent. Results The following specific gene signature, able to discriminate responders' patients from non-responders, were founded: AKR1C3, CXCL11, CXCL10, IDO1, CXCL9, MMP12 and HLA-DRA. These genes are mainly involved in immune system pathways and interact with drugs traditionally used in the adjuvant treatment of rectal cancer. Discussion The present study suggests that new ideas for therapy could be found not only limited to studying genes differentially expressed between the two groups of patients but deepening the mechanisms, associated to response, in which they are involved. Methods Gene expression studies performed by: Agostini et al., Rimkus et al. and Kim et al. have been merged through a meta-analysis of the raw data. Gene expression data-sets have been processed using A-MADMAN. Common differentially expressed gene (DEG) were identified through SAM analysis. To further characterize the identified DEG we deeply investigated its biological role using an integrative computational biology approach.
Collapse
|
21
|
Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy. Sci Rep 2016; 6:28140. [PMID: 27312090 PMCID: PMC4911585 DOI: 10.1038/srep28140] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-induced retinal neovascularization is a major pathological condition in many vision-threatening diseases. In the present study, we determined whether interleukin (IL)-12, a cytokine that regulates angiogenesis, plays a role in the neovascularization in a mouse model of oxygen-induced retinopathy (OIR). We found that the expressions of the mRNAs of both IL-12p35 and IL-12p40 were significantly reduced in the OIR retinas compared to that of the room air-raised control. The sizes of the avascular areas and neovascular tufts were larger in IL-12p40 knock-out (KO) mice than that in wild type (WT) mice. In addition, an intravitreal injection of recombinant IL-12 reduced both avascular areas and neovascular tufts. IL-12 injection enhanced the expressions of interferon-gamma (IFN-γ) and other downstream chemokines. In an in vitro system, IL-12 had no significant effect on tube formation of human retinal microvascular endothelial cells (HRECs). Moreover, a blockade of IFN-γ suppressed the inhibitory effect of IL-12 on pathological neovascularization. These results suggest that IL-12 plays important roles in inhibiting pathological retinal neovascularization.
Collapse
|
22
|
Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, Heller G, Bago-Horvath Z, Witalisz-Siepracka A, Cumaraswamy AA, Gunning PT, Strobl B, Müller M, Moriggl R, Stockmann C, Sexl V. STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discov 2016; 6:414-29. [PMID: 26873347 DOI: 10.1158/2159-8290.cd-15-0732] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Natural killer (NK) cells are tightly regulated by the JAK-STAT signaling pathway and cannot survive in the absence of STAT5. We now report that STAT5-deficient NK cells can be rescued by overexpression of BCL2. Our experiments define STAT5 as a master regulator of NK-cell proliferation and lytic functions. Although NK cells are generally responsible for killing tumor cells, the rescued STAT5-deficient NK cells promote tumor formation by producing enhanced levels of the angiogenic factor VEGFA. The importance of VEGFA produced by NK cells was verified by experiments with a conditional knockout of VEGFA in NK cells. We show that STAT5 normally represses the transcription of VEGFA in NK cells, in both mice and humans. These findings reveal that STAT5-directed therapies may have negative effects: In addition to impairing NK-cell-mediated tumor surveillance, they may even promote tumor growth by enhancing angiogenesis. SIGNIFICANCE The importance of the immune system in effective cancer treatment is widely recognized. We show that the new signal interceptors targeting the JAK-STAT5 pathway may have dangerous side effects that must be taken into account in clinical trials: inhibiting JAK-STAT5 has the potential to promote tumor growth by enhancing NK-cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva M Putz
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Grundschober
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Straka
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kudweis
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria. Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Agnieszka Witalisz-Siepracka
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Birgit Strobl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mathias Müller
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria. Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Christian Stockmann
- PARCC Paris - Centre de recherche Cardiovasculaire à l'HEGP Inserm - UMR 970, Paris, France
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Ma Y, Gong J, Liu Y, Guo W, Jin B, Wang X, Chen L. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci 2016; 151:174-181. [PMID: 26968781 DOI: 10.1016/j.lfs.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/28/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
AIMS Natural killer (NK) cells play critical roles in antitumor immunity. Our previous study showed that over-expression of miR-30c-1* enhanced NKL cell cytotoxicity through up-regulation of tumor necrosis factor-α via directly targeting transcription factor homeobox containing 1. MiR-30c, the complimentary microRNA of miR-30c-1*, has been found to exert regulatory effect on T cell function. However, the effect of miR-30c on NK cells is unknown. Therefore, this study aimed to investigate whether miR-30c could play a role to enhance NK cell activation and cytotoxicity. MAIN METHODS Chemosynthesis exogenous miR-30c mimics and miR-30c inhibitor were transfected into NKL cells and isolated human peripheral blood NK cells, respectively. The expression levels of NK group 2, member D (NKG2D), CD107a and FasL on cell surface and cytotoxic ability of miRNAs transfected NKL cells against SMMC-7721 cells were evaluated. KEY FINDINGS MiR-30c could increase the expression of NKG2D and CD107a on NKL cells, and enhance cytotoxic ability of NKL cells to kill SMMC-7721 cells. Moreover, miR-30c could up-regulate the expression of FasL on both NKL cells and human peripheral blood NK cells. However, the peripheral blood NK cells from only four in ten healthy donors appeared high expression levels of NKG2D and CD107a after miR-30c transfection. SIGNIFICANCE MiR-30c could promote the cytotoxicity of NKL cells in vitro by up-regulating the expression levels of NKG2D, CD107a and FasL. However, the effect of miR-30c on ex vivo NK cells from different human individuals is diverse, indicating that miR-30c may play complicate and fine adjustment in immune system.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jiuyu Gong
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Hospital of Hubei Armed Police Corps, Wuhan, Hubei 430000, China
| | - Yuan Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Wenwei Guo
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China; Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, China.
| | - Lihua Chen
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
24
|
Tarhini AA, Lin Y, Zahoor H, Shuai Y, Butterfield LH, Ringquist S, Gogas H, Sander C, Lee S, Agarwala SS, Kirwood JM. Pro-Inflammatory Cytokines Predict Relapse-Free Survival after One Month of Interferon-α but Not Observation in Intermediate Risk Melanoma Patients. PLoS One 2015; 10:e0132745. [PMID: 26192408 PMCID: PMC4508028 DOI: 10.1371/journal.pone.0132745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/17/2015] [Indexed: 01/14/2023] Open
Abstract
Background E1697 was a phase III trial of adjuvant interferon (IFN)-α2b for one month (Arm B) versus observation (Arm A) in patients with resected melanoma at intermediate risk. We evaluated the levels of candidate serum cytokines, the HLA genotype, polymorphisms of CTLA4 and FOXP3 genes and the development of autoantibodies for their association with relapse free survival (RFS) in Arm A and Arm B among 268 patients with banked biospecimens. Methods ELISA was used to test 5 autoantibodies. Luminex/One Lambda LABTypeRSSO was used for HLA Genotyping. Selected CTLA4 and FOXP3 Single nucleotide polymorphisms (SNPs) and microsatellites were tested for by polymerase chain reaction (PCR). Sixteen serum cytokines were tested at baseline and one month by Luminex xMAP multiplex technology. Cox Proportional Hazards model was applied and the Wald test was used to test the marginal association of each individual marker and RFS. We used the Lasso approach to select the markers to be included in a multi-marker Cox Proportional Hazards model. The ability of the resulting models to predict one year RFS was evaluated by the time-dependent ROC curve. The leave-one-out method of cross validation (LOOCV) was used to avoid over-fitting of the data. Results In the multi-marker modeling analysis conducted in Arm B, one month serum IL2Rα, IL-12p40 and IFNα levels predicted one year RFS with LOOCV AUC = 82%. Among the three markers selected, IL2Rα and IFNα were the most stable (selected in all the cross validation cycles). The risk score (linear combination of the 3 markers) separated the RFS curves of low and high risk groups well (p = 0.05). This model did not hold for Arm A, indicating a differential marker profile in Arm B linked to the intervention (adjuvant therapy). Conclusions Early on-treatment proinflammatory serum markers (IL2Rα, IL-12p40, IFNα) significantly predict RFS in our cohort of patients treated with adjuvant IFN-α2b and warrant further study.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yan Lin
- University of Pittsburgh Cancer Institute Biostatistics Facility, Pittsburgh, Pennsylvania, United States of America
| | - Haris Zahoor
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yongli Shuai
- University of Pittsburgh Cancer Institute Biostatistics Facility, Pittsburgh, Pennsylvania, United States of America
| | - Lisa H Butterfield
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven Ringquist
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Helen Gogas
- Hellenic Cooperative Oncology Group, Athens, Greece
| | - Cindy Sander
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sandra Lee
- Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sanjiv S Agarwala
- St. Luke's Cancer Center, Bethlehem, Pennsylvania, United States of America; Temple University, Philadelphia, Pennsylvania, United States of America
| | - John M Kirwood
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
25
|
Casey SC, Vaccari M, Al-Mulla F, Al-Temaimi R, Amedei A, Barcellos-Hoff MH, Brown DG, Chapellier M, Christopher J, Curran CS, Forte S, Hamid RA, Heneberg P, Koch DC, Krishnakumar PK, Laconi E, Maguer-Satta V, Marongiu F, Memeo L, Mondello C, Raju J, Roman J, Roy R, Ryan EP, Ryeom S, Salem HK, Scovassi AI, Singh N, Soucek L, Vermeulen L, Whitfield JR, Woodrick J, Colacci A, Bisson WH, Felsher DW. The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis 2015; 36 Suppl 1:S160-S183. [PMID: 26106136 PMCID: PMC4565612 DOI: 10.1093/carcin/bgv035] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/11/2022] Open
Abstract
Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Pathology, Kuwait University, 13110 Safat, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016, USA, Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France, Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia, Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy, Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, University of Pennsylvania School of Medicine
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, 13110 Safat, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | | | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Marion Chapellier
- Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France
| | - Joseph Christopher
- Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK
| | - Colleen S Curran
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic
| | - Daniel C Koch
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, Department of Pathology, Kuwait University, 13110 Safat, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Radiation Oncology, NYU School of Medicine, New York, NY 10016, USA, Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France, Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE Cambridge, UK, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia, Charles University in Prague, Third Faculty of Medicine, 100 00 Prague 10, Czech Republic, Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy, Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Department of Medicine, University of Louisville, Louisville, KY 40202, USA, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, University of Pennsylvania School of Medicine
| | - P K Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ezio Laconi
- Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy
| | - Veronique Maguer-Satta
- Centre De Recherche En Cancerologie De Lyon, U1052-UMR5286, Université de Lyon, 69007 Lyon, France
| | - Fabio Marongiu
- Department of Science and Biomedical Technology, University of Cagliari, 09124 Cagliari, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Sandra Ryeom
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO) and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, and
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Dong N, Xu B, Chu L, Tang X. Study of 27 Aqueous Humor Cytokines in Type 2 Diabetic Patients with or without Macular Edema. PLoS One 2015; 10:e0125329. [PMID: 25923230 PMCID: PMC4414516 DOI: 10.1371/journal.pone.0125329] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to compare the changes in the levels of 27 aqueous humor cytokines between diabetic patients with macular edema (ME) and diabetic patients without ME. Undiluted aqueous humor samples were obtained from 68 consecutive type 2 diabetic patients without ME and 56 consecutive type 2 diabetic patients with ME. The concentrations of 27 cytokines in the aqueous humor samples were measured using a multiplex bead immunoassay. Compared with diabetic patients without ME, diabetic patients with ME had significantly higher concentrations of IL-1β, IL-6, IL-8, IP-10, MCP-1, and VEGF in the aqueous humor. However, the concentrations of IL-10 and IL-12 were significantly lower in the diabetic patients with ME. The aqueous humor levels of IL-1β, IL-6, IL-8, MCP-1, IP-10, and VEGF were closely correlated with retinal macular thickness, retinal macular volume and the severity of ME. In addition, the aqueous humor levels of IL-10 and IL-12 decreased with increasing the severity of ME. A variety of cytokines associated with inflammation and angiogenesis may contribute to the pathogenesis of diabetic macular edema, and both anti-inflammatory and antiangiogenic agents should be included in the treatment of ME simultaneously.
Collapse
Affiliation(s)
- Ning Dong
- Department of Ophthalmology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bing Xu
- Department of Ophthalmology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Liqun Chu
- Department of Ophthalmology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Tang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Hospital, Tianjin, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 Suppl:S185-S198. [PMID: 25818339 DOI: 10.1016/j.semcancer.2015.03.004] [Citation(s) in RCA: 1069] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Collapse
|
28
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
29
|
The relationship between the antitumor effect of the IL-12 gene therapy and the expression of Th1 cytokines in an HPV16-positive murine tumor model. Mediators Inflamm 2014; 2014:510846. [PMID: 24808638 PMCID: PMC3997981 DOI: 10.1155/2014/510846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 01/26/2023] Open
Abstract
Objective. The goal of the present study was to investigate the effect of IL-12 expressed in plasmid on the Th1 cytokine profile in an experimental HPV16-positive murine tumor model and the association with the IL-12's antitumor effect. Methods. Mice were injected with BMK-16/myc cells to establish HPV16-positive tumor and then pNGVL3-mIL-12 plasmid; pcDNA3 plasmid or PBS was injected directly into tumor site. The antitumor effect of the treatment was evaluated and the cytokines expression profile in each tumor tissue was analyzed. Results. Treatment with pNGVL3-mIL-12 plasmid had a significant antitumor effect, and a Th2-Th3-type cytokines prolife was detected in the murine tumor model with expression of the cytokines IL-10, IL-4, and TGF-β1. However, after the tumor was treated with three intratumoral injections of plasmid containing IL-12 cDNA, it showed a cytokine profile associated with Th1 with expression of IL-2, IL-12, and IFN-γ cytokines and reduced expression of IL-10, IL-4, and TGF-β1. Conclusions. The treatment with the IL-12 gene in the experimental HPV16-positive tumor model promoted the activation of the cellular immune response via expression of a Th1-type cytokine profile and was associated with the inhibition of tumor growth. Thus, IL-12 treatment represents a novel approach for gene therapy against cervical cancer.
Collapse
|
30
|
Osisami M, Keller ET. Mechanisms of Metastatic Tumor Dormancy. J Clin Med 2013; 2:136-50. [PMID: 26237067 PMCID: PMC4470233 DOI: 10.3390/jcm2030136] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/20/2013] [Accepted: 09/10/2013] [Indexed: 12/29/2022] Open
Abstract
Tumor metastasis can occur years after an apparent cure due to a phenomenon known as metastatic tumor dormancy; in which tumor masses or individual tumor cells are growth restricted for extended periods of time. This period of dormancy is induced and maintained by several mechanisms, including: (1) Tumor microenvironment factors such as cytokine expression, immunosurveillance and angiogenesis; (2) Metastasis suppressor gene activity; and (3) Cancer therapeutics. Disseminated tumor cells (DTC) are the key cells that result in dormant tumors. However, many challenges exist towards isolating DTCs for mechanistic studies. The main DTC that may represent the dormant cell is the cancer stem cells (CSC) as they have a slow proliferation rate. In addition to limited knowledge regarding induction of tumor dormancy, there are large gaps in knowledge regarding how tumors escape from dormancy. Emerging research into cancer stem cells, immunotherapy, and metastasis suppressor genes, may lead to new approaches for targeted anti-metastatic therapy to prevent dormancy escape. Overall, an enhanced understanding of tumor dormancy is critical for better targeting and treatment of patients to prevent cancer recurrence.
Collapse
Affiliation(s)
- Mary Osisami
- Department of Urology, University of Michigan Medical School, 5111 CCGC1500 E. Medical Center, Ann Arbor, MI 48109-0940, USA.
| | - Evan T Keller
- Department of Urology, University of Michigan Medical School, 5111 CCGC1500 E. Medical Center, Ann Arbor, MI 48109-0940, USA.
| |
Collapse
|
31
|
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10:230-52. [PMID: 23604045 DOI: 10.1038/cmi.2013.10] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play critical roles in host immunity against cancer. In response, cancers develop mechanisms to escape NK cell attack or induce defective NK cells. Current NK cell-based cancer immunotherapy aims to overcome NK cell paralysis using several approaches. One approach uses expanded allogeneic NK cells, which are not inhibited by self histocompatibility antigens like autologous NK cells, for adoptive cellular immunotherapy. Another adoptive transfer approach uses stable allogeneic NK cell lines, which is more practical for quality control and large-scale production. A third approach is genetic modification of fresh NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from various sources, including peripheral or cord blood cells, stem cells or even induced pluripotent stem cells (iPSCs), and a variety of stimulators can be used for large-scale production in laboratories or good manufacturing practice (GMP) facilities, including soluble growth factors, immobilized molecules or antibodies, and other cellular activators. A list of NK cell therapies to treat several types of cancer in clinical trials is reviewed here. Several different approaches to NK-based immunotherapy, such as tissue-specific NK cells, killer receptor-oriented NK cells and chemically treated NK cells, are discussed. A few new techniques or strategies to monitor NK cell therapy by non-invasive imaging, predetermine the efficiency of NK cell therapy by in vivo experiments and evaluate NK cell therapy approaches in clinical trials are also introduced.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
32
|
Zhang T, Sentman CL. Mouse Tumor Vasculature Expresses NKG2D Ligands and Can Be Targeted by Chimeric NKG2D-Modified T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2455-63. [DOI: 10.4049/jimmunol.1201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Passer BJ, Cheema T, Wu S, Wu CL, Rabkin SD, Martuza RL. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther 2012; 20:17-24. [PMID: 23138870 PMCID: PMC3810211 DOI: 10.1038/cgt.2012.75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oncolytic herpes simplex virus (oHSV)-1-based vectors selectively replicate in tumor cells causing direct killing, that is, oncolysis, while sparing normal cells. The oHSVs are promising anticancer agents, but their efficacy, when used as single agents, leaves room for improvement. We hypothesized that combining the direct oncolytic and antiangiogenic activities of the interleukin (IL)-12-secreting NV1042 oHSV with microtubule disrupting agents (MDAs) would be an effective means to enhance antitumor efficacy. Vinblastine (VB) was identified among several MDAs screened, which displayed consistent and potent cytotoxic killing of both prostate cancer and endothelial cell lines. In matrigel tube-forming assays, VB was found to be highly effective at inhibiting tube formation of human umbilical vein endothelial cells. The combination of VB with NV1023 (the parental virus lacking IL-12) or NV1042 showed additive or synergistic activity against prostate cancer cell lines, and was not due to increased oHSV replication by VB. In athymic mice bearing CWR22 prostate tumors, VB in combination with NV1042 was superior to the combination of VB plus NV1023 in reducing tumor burden, appeared to be nontoxic and resulted in a statistically significant diminution in the number of CD31(+) cells as compared with other treatment groups. In human organotypic cultures using surgical samples from radical prostatectomies, both NV1023 and NV1042 were localized specifically to the epithelial cells of prostatic glands but not to the surrounding stroma. These data highlight the therapeutic advantage of combining the dual-acting antitumor and antiangiogenic activities of oHSVs and MDAs.
Collapse
Affiliation(s)
- B J Passer
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Angiogenic activity of classical hematopoietic cytokines. Leuk Res 2012; 36:537-43. [PMID: 22386730 DOI: 10.1016/j.leukres.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/24/2012] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Hematopoiesis is regulated by several cytokines with pleiotropic activity. Several evidences have clearly demonstrated that these molecules, formerly regarded as specific for the hematopoietic system, also affect certain endothelial cell functions and that hematopoietic factors clearly influence angiogenesis. This review article summarizes the most important literature data concerning this inconvertible relationship.
Collapse
|
35
|
Alfaro C, Perez-Gracia JL, Suarez N, Rodriguez J, Fernandez de Sanmamed M, Sangro B, Martin-Algarra S, Calvo A, Redrado M, Agliano A, Gonzalez A, Rodriguez I, Bolaños E, Hervás-Stubbs S, Perez-Calvo J, Benito A, Peñuelas I, Vigil C, Richter J, Martinez-Forero I, Melero I. Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients. THE JOURNAL OF IMMUNOLOGY 2011; 187:6130-42. [PMID: 22048768 DOI: 10.4049/jimmunol.1102209] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Twenty-four patients with metastatic cancer received two cycles of four daily immunizations with monocyte-derived dendritic cells (DC). DC were incubated with preheated autologous tumor lysate and subsequently with IFN-α, TNF-α, and polyinosinic:polycytidylic acid to attain type 1 maturation. One DC dose was delivered intranodally, under ultrasound control, and the rest intradermally in the opposite thigh. Cyclophosphamide (day -7), GM-CSF (days 1-4), and pegIFN alpha-2a (days 1 and 8) completed each treatment cycle. Pretreatment with cyclophosphamide decreased regulatory T cells to levels observed in healthy subjects both in terms of percentage and in absolute counts in peripheral blood. Treatment induced sustained elevations of IL-12 in serum that correlated with the output of IL-12p70 from cultured DC from each individual. NK activity in peripheral blood was increased and also correlated with the serum concentration of IL-12p70 in each patient. Circulating endothelial cells decreased in 17 of 18 patients, and circulating tumor cells markedly dropped in 6 of 19 cases. IFN-γ-ELISPOT responses to DC plus tumor lysate were observed in 4 of 11 evaluated cases. Tracing DC migration with [(111)In] scintigraphy showed that intranodal injections reached deeper lymphatic chains in 61% of patients, whereas with intradermal injections a small fraction of injected DC was almost constantly shown to reach draining inguinal lymph nodes. Five patients experienced disease stabilization, but no objective responses were documented. This combinatorial immunotherapy strategy is safe and feasible, and its immunobiological effects suggest potential activity in patients with minimal residual disease. A randomized trial exploring this hypothesis is currently ongoing.
Collapse
Affiliation(s)
- Carlos Alfaro
- Gene Therapy and Hepatology Unit, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim W, Seong J, Oh HJ, Koom WS, Choi KJ, Yun CO. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. JOURNAL OF RADIATION RESEARCH 2011; 52:646-654. [PMID: 21952320 DOI: 10.1269/jrr.10185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, a novel combination treatment of armed oncolytic adenovirus expressing interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) with radiation was investigated for antitumor and antimetastatic effect in a murine hepatic cancer (HCa-I) model. Tumor bearing syngeneic mice were treated with radiation, armed oncolytic virus Ad-ΔE1Bmt7 (dB7) expressing both IL-12 and GM-CSF (armed dB7), or a combination of both. The adenovirus was administered by intratumoral injection 1 × 10(8) PFU per tumor in 50 µl of PBS four times every other day. Tumor response to treatment was determined by a tumor growth delay assay. Metastatic potential was evaluated by a lung metastasis model. To understand the underlying mechanism, the level of apoptosis was examined as well as the change in microvessel density and expression of immunological markers: CD4+, CD8+ and Cd11c. The combination of armed dB7 and radiation resulted in significant growth delay of murine hepatic cancer, HCa-1, with an enhancement factor of 4.3. The combination treatment also resulted in significant suppression of lung metastasis. Increase of apoptosis level as well as decrease of microvessel density was shown in the combination treatment, suggesting an underlying mechanism for the enhancement of antitumor effect. Expression of immunological markers: CD4+, CD8+ and Cd11c also increased in the combination treatment. This study showed that a novel combination treatment of radiotherapy with armed oncolytic adenovirus expressing IL-12 and GM-CSF was effective in suppressing primary tumor growth.
Collapse
Affiliation(s)
- Wonwoo Kim
- Department of Radiation Oncology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Tian L, Chen X, Sun Y, Liu M, Zhu D, Ren J. Growth suppression of human laryngeal squamous cell carcinoma by adenoviral-mediated interleukin-12. J Int Med Res 2010; 38:994-1004. [PMID: 20819436 DOI: 10.1177/147323001003800326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study explored the inhibitory role of the adenoviral-mediated-interleukin (IL)-12 (Ad.mIL-12) gene in the growth of laryngeal squamous cell carcinoma (LSCC). Human epithelial type 2 (Hep-2) cells were transfected with Ad.mIL-12, and IL-12 gene expression of the cells was evaluated. The proliferation and apoptosis of Hep-2 cells in vitro were detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry. Experimental tumours in mice were injected intratumourally with the same recombinant adenoviruses and inhibition of tumour growth observed. Apoptosis in Hep-2 xenotransplants was detected using TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labelling) assay and transmission electron microscopy. The expression of IL-12 in Ad.mIL-12 transfected Hep-2 cells was significantly increased. In vitro, Ad.mIL-12 decreased the viability of and increased apoptosis in Hep-2 cells. Increased apoptosis was also seen in vivo. The mean weight and volume of tumours in Ad.mIL-12 treated mice were significantly lower than in the control group. It is concluded that Ad.mIL-12 can suppress LSCC growth and induce apoptosis.
Collapse
Affiliation(s)
- L Tian
- Department of Otorhinolaryngology/Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Initially described as effectors of natural cytotoxicity and critical players for the control of viral infections and tumor growth, recent investigations unraveled more widespread functions for the natural killer (NK) cells. Through the establishment of a crosstalk with dendritic cells, NK cells promote T helper-1- and cytotoxic T lymphocyte-mediated immunity, whereas through the establishment of a crosstalk with macrophages, NK cells contribute to the activation of their microbicidal functions. Recent evidence has shown that NK cells also display memory, a characteristic thought to be privative of T and B cells, and that NK cells acquire their mature phenotype during a complex ontogeny program which tunes their activation threshold. Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance, and memory. Cytokines such as interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and type I interferons constitute pivotal factors involved in the maturation, activation, and survival of NK cells. In addition, the discovery of novel cytokines is increasing the spectrum of soluble mediators that regulate NK cell immunobiology. In this review, we summarize and integrate novel concepts about the role of different cytokines in the regulation of NK cell function. We believe that a full understanding of how NK cells become activated and develop their effector functions in response to cytokines and other stimuli may lead to the development of novel immunotherapeutic strategies for the treatment of different types of cancer, viral infections, and chronic autoimmune diseases.
Collapse
|
39
|
Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction 2010; 140:11-22. [PMID: 20457595 DOI: 10.1530/rep-09-0438] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human uterus mainly consists of the endometrium and the outer smooth muscle layer termed the myometrium. The uterus harbours the exceptional and remarkable regenerative ability responsible for cyclical regeneration and remodelling throughout the reproductive life. The uterus must swiftly and cooperatively enlarge to hold the growing foetus during pregnancy. Furthermore, the endometrium, in particular the functionalis layer, must also regenerate, differentiate and regress with each menstrual cycle under hormonal control. Endometrial regeneration from the basal layer is thought to contribute to replacement of the functionalis layer followed by its slough off during menses and parturition. These morphological and functional features of human endometrium can be reproduced in murine models in which severely immunodeficient mice are xenotransplanted with dispersed human endometrial cells under the kidney capsule. The uterine myometrium possesses the similar plasticity of the endometrium. This is demonstrated by multiple cycles of pregnancy-induced enlargement and regression after parturition. It is likely that regeneration and remodelling in the female reproductive tract are achieved presumably through endometrial and myometrial stem cell systems. Recent evidence now supports the existence of these stem cell systems in humans. Here, we will review our current understanding of uterine stem/progenitor cells. We also propose a novel hypothetical model in which stem cell activities explain the physiological remodelling and regeneration of the human uterus and the pathogenesis of gynaecological diseases such as endometriosis.
Collapse
Affiliation(s)
- Tetsuo Maruyama
- Department of Obstetrics and Gynaecology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
40
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
41
|
Maruyama T. Stem/progenitor cells and the regeneration potentials in the human uterus. Reprod Med Biol 2010; 9:9-16. [PMID: 29699326 PMCID: PMC5904672 DOI: 10.1007/s12522-009-0032-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 08/04/2009] [Indexed: 11/27/2022] Open
Abstract
The human uterus is unique in that it possesses the tremendous regenerative capacity required for cyclical regeneration and remodeling throughout a woman's reproductive life. Not only must the uterus rapidly enlarge to accommodate the developing fetus, the endometrium must also regenerate with each menstrual cycle. This plasticity of the reproductive system has recently been highlighted. My research group and collaborators showed that functional endometrial tissue could be regenerated from only a small number of singly dispersed human endometrial cells, transplanted beneath the kidney capsule of severely immunodeficient mice. This artificially generated endometrium resembles the natural endometrium, and contains human blood vessels that invade the mouse kidney parenchyma. Additionally, it mimics normal hormone-dependent changes including proliferation, differentiation, and tissue breakdown (menstruation). The regenerative capacity of endometrial cells makes them ideal candidates for tissue reconstitution, angiogenesis, and human-mouse chimeric vessel formation. The smooth muscle cells of the uterus (myometrium) share the plasticity of the endometrium. This is evidenced by their capacity for dramatic, repeatable, pregnancy-induced enlargement. Regeneration and remodeling in the female reproductive tract allude to the existence of endometrial and myometrial stem cell systems. We have recently isolated candidate populations of adult stem cells from both the human endometrium and myometrium. Characterization of these endometrial and myometrial cells, along with the study of the mechanisms controlling their regeneration, will improve the understanding of the physiology and pathophysiology of the female reproductive tract. Furthermore, myometrial and endometrial stem-like cells might also represent a novel source of biological material that could be used for the reconstruction of not only the human uterus but other organs as well.
Collapse
Affiliation(s)
- Tetsuo Maruyama
- Department of Obstetrics and GynecologyKeio University School of Medicine35, Shinanomachi, Shinjuku‐ku160‐8582TokyoJapan
| |
Collapse
|
42
|
de Oliveira MVM, Fraga CADC, Gomez RS, Paula AMBD. Immunohistochemical expression of interleukin-4, -6, -8, and -12 in inflammatory cells in surrounding invasive front of oral squamous cell carcinoma. Head Neck 2010; 31:1439-46. [PMID: 19424975 DOI: 10.1002/hed.21121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cytokines play important roles in the diverse interactions between tumor microenvironment and malignant cells. This study evaluated the association of interleukin (IL)-4, -6, -8, and -12 expressions and clinicopathologic parameters of 35 primary oral squamous cell carcinomas (OSCCs). METHODS Patients were staged according to the TNM clinical staging. Malignancy grading of invasive front was evaluated in hematoxylin-eosin (H&E)-stained slides. Immunohistochemical technique was performed on frozen tissue sections. Association between clinicopathologic parameters and IL expression were analyzed using nonparametric Kruskal-Wallis (alpha = 0.05) and Mann-Whitney U tests, with Bonferroni correction. Correlations between interleukins were analyzed by the Spearman coefficient. RESULTS Expression of ILs was verified in all samples; however, this finding was not related to clinicopathologic parameters. It was not the observed correlation between ILs. CONCLUSIONS Expression of IL-4, -6, -8, and -12 in the invasive front of OSCC is not involved with the clinicopathologic parameters of the disease.
Collapse
|
43
|
Nakai N, Kishida T, Hartmann G, Katoh N, Imanishi J, Kishimoto S, Mazda O. Mitf silencing cooperates with IL-12 gene transfer to inhibit melanoma in mice. Int Immunopharmacol 2010; 10:540-5. [PMID: 20074674 DOI: 10.1016/j.intimp.2009.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/15/2009] [Accepted: 12/28/2009] [Indexed: 11/15/2022]
Abstract
Malignant melanoma is a malignant neoplasm originating from the melanocyte lineage. Microphthalmia-associated transcription factor (Mitf) is crucially involved in the melanin synthesis as well as proliferation and survival of melanocyte and melanoma. We previously showed that short interfering RNA (siRNA) that is specific for the Mitf gene (Mitf-siRNA) significantly inhibited growth of B16 melanoma after electro-transfected in vivo into preestablished tumor in mice. Here we assessed efficacy of electroporation-mediated co-transfection of Mitf-siRNA and IL-12 gene in the treatment of murine melanoma. As results, the tumor growth was more strongly inhibited by intratumor co-transfection with Mitf-siRNA and IL-12-encoding plasmid DNA than by transfection with either of the molecules alone. The co-transfection induced intratumor infiltration of CD4+ and CD8+ T cells, and hampered neoangiogenesis in the tumor. The findings suggest that the RNAi/cytokine gene combination therapy by means of electroporation may become a novel and efficacious therapeutic modality to treat neoplasms including melanoma.
Collapse
Affiliation(s)
- Noriaki Nakai
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Qian S, Fan J, Qiu SJ, Xiao YS, Lu L. Natural killer cells in the liver. NATURAL KILLER CELLS 2010:345-357. [DOI: 10.1016/b978-0-12-370454-2.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Gao P, Ding Q, Wu Z, Jiang H, Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 2009; 290:157-66. [PMID: 19786319 DOI: 10.1016/j.canlet.2009.08.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/01/2009] [Accepted: 08/31/2009] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a new tool for delivery of therapeutic agents to cancer. The cytokine interleukin-12 (IL-12) has demonstrated a potent anti-tumor activity in a variety of mouse tumor models. In this study, human MSCs were isolated from human bone marrow and identified by phenotype analysis and differentiation assays. The anti-tumor activity of human MSCs stably transduced with a recombinant adenoviral vector expressing the murine IL-12 (MSC/IL-12) were evaluated in a mouse xenograft model of renal cell carcinoma (RCC). Expression and bioactivity of the transgenic protein IL-12 from adenoviral vector were confirmed prior to in vivo studies. A nude mouse model of RCC was developed by subcutaneously injection of 786-0 cells into nude mice. MSC/IL-12 was injected into the lateral tail vein with single dose. Results indicated that systemic administration of MSC/IL-12 reduced the growth of 786-0 RCC and significantly prolonged mouse survival. These transfected cells could home to tumors after intravenous injection and largely produce local IL-12 protein. In contrast, systemic level of IL-12 was modestly elevated. Further studies showed that the anti-tumor activity of the MSC/IL-12 was dependent on the presence of natural killer (NK) cells and IFN-gamma in this experimental setting. These data demonstrate the potential of adult MSC constitutively producing IL-12 to reduce the growth of RCC and enhance the tumor-bearing mouse survival.
Collapse
Affiliation(s)
- Peng Gao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
46
|
Siddiqui F, Li CY, Zhang X, Larue SM, Dewhirst MW, Ullrich RL, Avery PR. Characterization of a recombinant adenovirus vector encoding heat-inducible feline interleukin-12 for use in hyperthermia-induced gene-therapy. Int J Hyperthermia 2009; 22:117-34. [PMID: 16754596 DOI: 10.1080/02656730500462309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Interleukin-12 (IL-12) is a pro-inflammatory cytokine that has shown great promise as a therapeutic agent in experimental models of infectious disease and cancer. However, it is also a highly toxic molecule and for that reason has not been accepted readily into the clinic. A replication-deficient adenoviral vector was designed to deliver the feline interleukin-12 gene into tumour cells. The interleukin-12 gene has been placed under control of a heat inducible promoter, human heat shock promoter 70b, with the intent of spatially and temporally controlling the expression of IL-12, thus limiting its toxicity. In vitro, the transfection efficiency of the adenoviral vector, the effect of multiplicity of infection and the production of biologically active feline IL-12 were studied in the infected cells in response to a range of temperatures. This adenoviral vector will be a useful tool to examine the effects of intra-tumoural IL-12 delivery in a spontaneously occurring feline soft tissue sarcoma model.
Collapse
Affiliation(s)
- Farzan Siddiqui
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Siddiqui F, Ehrhart EJ, Charles B, Chubb L, Li CY, Zhang X, Larue SM, Avery PR, Dewhirst MW, Ullrich RL. Anti-angiogenic effects of interleukin-12 delivered by a novel hyperthermia induced gene construct. Int J Hyperthermia 2009; 22:587-606. [PMID: 17079216 DOI: 10.1080/02656730600983063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Interleukin-12 (IL-12) is a pro-inflammatory cytokine possessing anti-cancer and anti-angiogenic properties. This study quantitatively assessed the anti-angiogenic effect of IL-12 delivered using an adenoviral vector with murine IL-12 placed under control of a heat shock promoter. This approach limits systemic toxicity by restricting IL-12 delivery locally to the tumour. The kinetics of the downstream cytokines interferon-gamma (IFN-gamma) and interferon inducible protein-10 (IP-10) and other molecules affecting angiogenesis, vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1) were also studied. MATERIALS AND METHODS 4T1 tumours were grown in Balb/C mice and the AdhspmIL-12 construct was injected intra-tumourally. The tumours were heated after 24 h using a water bath. At various time points post-heating the tumours were collected and quantitatively assessed for cytokine production and vascularity. RESULTS A significant reduction was seen in the tumour vasculature of the treated group vs. the control group mice. Systemic effects of IL-12 were limited to generalized immunostimulation. No hepatoxicity was noted. CONCLUSIONS This study suggests that IL-12 can be effectively delivered using a gene-based approach with a heat shock promoter. This results in quantitatively measurable anti-angiogenesis and general immunostimulation. The complex inter-play of other pro- and anti-angiogenic factors (IFN-gamma, IP-10, VEGF and PAI-1) was also studied.
Collapse
Affiliation(s)
- Farzan Siddiqui
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, through the production and release of a large spectrum of pro-angiogenic mediators. These may create the specific microenvironment that favours an increased rate of tissue vascularization. In this review, we will focus on the immune cell component of the angiogenic process in inflammation and tumour growth. As angiogenesis is the result of a net balance between the activities exerted by positive and negative regulators, we will also provide information on some antiangiogenic properties of immune cells that may be utilized for a potential pharmacological use as antiangiogenic agents in inflammation as well as in cancer.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | |
Collapse
|
49
|
Bien E, Balcerska A, Adamkiewicz-Drozynska E, Rapala M, Krawczyk M, Stepinski J. Pre-treatment serum levels of interleukin-10, interleukin-12 and their ratio predict response to therapy and probability of event-free and overall survival in childhood soft tissue sarcomas, Hodgkin's lymphomas and acute lymphoblastic leukemias. Clin Biochem 2009; 42:1144-57. [PMID: 19376105 DOI: 10.1016/j.clinbiochem.2009.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/19/2009] [Accepted: 04/02/2009] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Deregulated serum IL-10, IL-12 and their reciprocal balance have been stated in malignancies of adults. In children with cancer the issue has not been investigated so far. DESIGN AND METHODS To determine the diagnostic and prognostic roles of pre-treatment serum levels of IL-10 (Th2 cytokine), IL-12 (Th1) and their ratios (measured by the IL-10 and IL-12p70 ELISA kits; Endogen) in 91 children with soft tissue sarcomas (STS), Hodgkin's lymphomas (HL) and acute lymphoblastic leukemias (ALL). RESULTS Median IL-10 and IL-12 levels were significantly higher in cancer patients than in healthy controls. Increased IL-10 indicated presence of general symptoms in HL and high risk group in ALL. Elevated IL-10 and IL-10/IL-12 ratios and decreased IL-12 correlated with poor-risk histology in STS, poor response to therapy, relapse and death from cancer. Multivariate analysis identified IL-10/IL-12 ratio>0.14 and IL-12<40 pg/mL as significant predictors for shorter EFS and OS, respectively. CONCLUSION Pre-treatment serum levels of IL-10, IL-12 and IL-10/IL-12 balance in children with STS, HL and ALL may be of value as additional prognostic tools to predict the response to therapy and probability of EFS and OS.
Collapse
Affiliation(s)
- Ewa Bien
- Department of Pediatrics, Hematology, Oncology and Endocrinology, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland.
| | | | | | | | | | | |
Collapse
|
50
|
Gao JQ, Tsuda Y, Han M, Xu DH, Kanagawa N, Hatanaka Y, Tani Y, Mizuguchi H, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S. NK cells are migrated and indispensable in the anti-tumor activity induced by CCL27 gene therapy. Cancer Immunol Immunother 2009; 58:291-9. [PMID: 18629495 PMCID: PMC11030262 DOI: 10.1007/s00262-008-0554-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Natural killer (NK) cells have been demonstrated could play an important role in the treatment of a number of tumors in mice. In the present study, chemokine CCL27, which be considered only selectively chemoattracts cutaneous lymphocyte antigen positive memory T cells and Langerhans cells, firstly demonstrated that it could induce the accumulation of NK cells into tumor by the intratumoral injection of CCL27-encoding fiber-mutant vector, AdRGD-CCL27. Experiments using spleen cell fractionation and RT-PCR showed CCL27 receptor, mCCR10, was strongly expressed in NK cells, suggesting the accumulation of NK cells in tumor was attributed to chemoattractant activity of CCL27 itself. Moreover, the combination of AdRGD-CCL27 and AdRGD-IL-12 induced the synergistic anti-tumor activity via NK-dependent manner and induced more NK cells infiltration into tumor nodule than that induced by AdRGD-CCL27 alone or AdRGD-IL-12 alone.
Collapse
Affiliation(s)
- Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058 China
| | - Yasuhiro Tsuda
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058 China
| | - Dong-Hang Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou, Zhejiang 310058 China
| | - Naoko Kanagawa
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yutaka Hatanaka
- Department of Biomedical Science, Dako Japan Co., Ltd, Nishinotouin-higashiiru, Shijo-dori, Shimogyo-ku, Kyoto, Japan
| | - Yoichi Tani
- Department of Biomedical Science, Dako Japan Co., Ltd, Nishinotouin-higashiiru, Shijo-dori, Shimogyo-ku, Kyoto, Japan
| | - Hiroyuki Mizuguchi
- National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | - Yasuo Tsutsumi
- National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | | | - Naoki Okada
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Shinsaku Nakagawa
- Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|