1
|
Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal 2019; 13:451-462. [PMID: 30607767 DOI: 10.1007/s12079-018-00500-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022] Open
Abstract
Diabetic retinopathy (DR) is considered as a diabetes-related complication that can render severe visual impairments and is also a risk factor for acquired blindness in both developed as well as developing countries. Through fibrovascular epiretinal membranes (ERMs), this condition can similarly lead to tractional retinal detachment. Laboratory efforts evaluating the DR pathogenesis can be provided by ocular vitreous fluid and ERMs resulting from vitrectomy. The clinical stages of DR are significantly associated with expression levels of certain chemokines, including monocyte chemotactic protein-1 (MCP-1) in the intraocular fluid. The MCP-1 is also a known potent chemotactic factor for monocytes and macrophages that can stimulate them to produce superoxide and other mediators. Following hyperglycemia, retinal pigmented epithelial (RPE) cells, endothelial cells, and Müller's glial cells are of utmost importance for MCP-1 production, and vitreous MCP-1 levels rise in patients with DR. Increased expression of the MCP-1 in the eyes can also play a significant role in the pathogenesis of DR. In this review, current clinical and laboratory progress achieved on the MCP-1 and the DR concerning neovascularization and inflammatory responses in vitreous and/or aqueous humor of DR patients was summarized. It was suggested that further exploration of the MCP-1/CCR2 axis association between clinical stages of DR and expression levels of inflammatory and angiogenic cytokines and chemokines, principally the MCP-1 might lead to potential therapies aiming at neutralizing antibodies and viral vectors.
Collapse
Affiliation(s)
- Yousof Taghavi
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Ophthalmology and Otorhinolaryngology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nicholas G Kounis
- Department of Cardiology, University of Patras Medical School, Patras, Achaia, Greece
| | - Ioanna Koniari
- Department of Cardiology, Queen Elizabeth Hospital, Birmingham, England
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. .,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
3
|
Mildner M, Bauer R, Mlitz V, Ballaun C, Tschachler E. Matriptase-1 expression is lost in psoriatic skin lesions and is downregulated by TNFα in vitro. J Dtsch Dermatol Ges 2016; 13:1165-74. [PMID: 26513078 DOI: 10.1111/ddg.12812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Matriptase-1 participates in terminal keratinocyte (KC) differentiation. Knockdown of matriptase-1 in skin equivalent cultures leads to impaired KC differentiation and retention of nuclei in the stratum corneum. Here, we investigated the expression and regulation of matriptase-1 in psoriatic skin and in KC in vitro. PATIENTS AND METHODS Matriptase-1 expression in healthy and psoriatic skin and its regulation in skin equivalents were analyzed by Western blotting, immunofluorescence staining, qRT-PCR, and activity assays. Involvement of the nuclear factor kappa B (NFκB) signaling pathway was investigated by adenoviral overexpression of a dominant-negative form of IKK2. RESULTS Matriptase-1 expression was detected in the stratum granulosum of healthy human skin and in skin equivalent cultures. Its expression and activity was strongly reduced in lesional skin of patients with psoriasis. Addition of TNFα to skin equivalent cultures resulted in complete loss of matriptase-1 expression accompanied by disturbed KC differentiation. Mechanistically, we were able to show that TNFα-induced downregulation of matriptase-1 was inhibited by blocking the IKK2/NFκB signaling pathway. CONCLUSIONS Given that matriptase-1 participates in terminal KC differentiation, its absence in psoriatic skin lesions indicates that this contributes to the barrier disturbances in this disease. Our data suggests that blocking the IKK2/NFκB-pathway represents a potential target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claudia Ballaun
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Montanari E, Stojkovic S, Kaun C, Lemberger CE, de Martin R, Rauscher S, Gröger M, Maurer G, Neumayer C, Huk I, Huber K, Demyanets S, Wojta J. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells. Thromb Haemost 2016; 116:317-27. [PMID: 27173404 DOI: 10.1160/th15-12-0917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/24/2016] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in various inflammatory conditions targeting amongst other cells the endothelium. Besides regulating the maturation and functions of myeloid cells, granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) have been shown to play a role in such pathologies too. It was the aim of our study to investigate a possible influence of IL-33 on GM-CSF and M-CSF production by human endothelial cells. IL-33, but not IL-18 or IL-37, stimulated GM-CSF and M-CSF mRNA expression and protein production by human umbilical vein endothelial cells (HUVECs) and human coronary artery ECs (HCAECs) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in an IL-1-independent way. This effect was inhibited by the soluble form of ST2 (sST2), which is known to act as a decoy receptor for IL-33. The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin could also be shown to moderately reduce the IL-33-mediated effect on M-CSF, but not on GM-CSF expression. In addition, IL-33, IL-1β, GM-CSF and M-CSF were detected in endothelial cells of human carotid atherosclerotic plaques using immunofluorescence. Upregulation of GM-CSF and M-CSF production by human endothelial cells, an effect that appears to be mediated by NF-κB and to be independent of IL-1, may be an additional mechanism through which IL-33 contributes to inflammatory activation of the vessel wall.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Svitlana Demyanets
- Svitlana Demyanets, MD, PhD, Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria, Tel.: +43 1 40400 73516, Fax: +43 1 40400 73587, E-mail:
| | | |
Collapse
|
5
|
Herrington FD, Carmody RJ, Goodyear CS. Modulation of NF-κB Signaling as a Therapeutic Target in Autoimmunity. ACTA ACUST UNITED AC 2015; 21:223-42. [PMID: 26597958 DOI: 10.1177/1087057115617456] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023]
Abstract
Autoimmune diseases arise from the loss of tolerance to endogenous self-antigens, resulting in a heterogeneous range of chronic conditions that cause considerable morbidity and mortality worldwide. In Western countries, over 5% of the population is affected by some form of autoimmune disease, with enhanced or inappropriate activation of nuclear factor (NF)-κB implicated in a number of these conditions. Although treatment strategies for autoimmunity have improved significantly in recent years, current therapeutics are still not capable of achieving satisfactory disease management in all patients, and as such, the therapeutic modulation of NF-κB is an attractive target in autoimmunity. To date, no NF-κB inhibitors have progressed to the clinic for the treatment of autoimmunity, but a variety of promising approaches targeting multiple stages of the NF-κB pathway are currently being explored. This review focuses on the current strategies being investigated for the inhibition of the NF-κB pathway in autoimmune diseases and considers potential future strategies for the therapeutic targeting of this crucial transcription factor.
Collapse
Affiliation(s)
- Felicity D Herrington
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Ruaidhrí J Carmody
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| | - Carl S Goodyear
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK GLAZgo Discovery Centre, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, UK
| |
Collapse
|
6
|
Mildner M, Bauer R, Mlitz V, Ballaun C, Tschachler E. Matriptase-1-Expression ist in psoriatischen Hautläsionen reduziert und wird in vitro durch TNFα herabreguliert. J Dtsch Dermatol Ges 2015. [DOI: 10.1111/ddg.80_12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Mildner
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Reinhard Bauer
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Veronika Mlitz
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Claudia Ballaun
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| | - Erwin Tschachler
- Universitätsklinik für Dermatologie; Medizinische Universität Wien; Wien Österreich
| |
Collapse
|
7
|
Caporali A, Meloni M, Nailor A, Mitić T, Shantikumar S, Riu F, Sala-Newby GB, Rose L, Besnier M, Katare R, Voellenkle C, Verkade P, Martelli F, Madeddu P, Emanueli C. p75(NTR)-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015; 6:8024. [PMID: 26268439 PMCID: PMC4538859 DOI: 10.1038/ncomms9024] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022] Open
Abstract
The communication between vascular endothelial cells (ECs) and pericytes in the microvasculature is fundamental for vascular growth and homeostasis; however, these processes are disrupted by diabetes. Here we show that modulation of p75(NTR) expression in ECs exposed to high glucose activates transcription of miR-503, which negatively affects pericyte function. p75(NTR) activates NF-κB to bind the miR-503 promoter and upregulate miR-503 expression in ECs. NF-κB further induces activation of Rho kinase and shedding of endothelial microparticles carrying miR-503, which transfer miR-503 from ECs to vascular pericytes. The integrin-mediated uptake of miR-503 in the recipient pericytes reduces expression of EFNB2 and VEGFA, resulting in impaired migration and proliferation. We confirm operation of the above mechanisms in mouse models of diabetes, in which EC-derived miR-503 reduces pericyte coverage of capillaries, increased permeability and impaired post-ischaemic angiogenesis in limb muscles. Collectively, our data demonstrate that miR-503 regulates pericyte-endothelial crosstalk in microvascular diabetic complications.
Collapse
Affiliation(s)
- Andrea Caporali
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marco Meloni
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Audrey Nailor
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Tijana Mitić
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Saran Shantikumar
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Federica Riu
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | | | - Lorraine Rose
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marie Besnier
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Rajesh Katare
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan 20097, Italy
| | - Paul Verkade
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS2 8HW, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan 20097, Italy
| | - Paolo Madeddu
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
| | - Costanza Emanueli
- School of Clinical Sciences, Bristol Heart Institute, Bristol BS2 8HW, UK
- National Institute of Heart and Lung, Imperial College of London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Traditional Chinese medication Tongxinluo inhibits inflammatory angiogenesis via Bmx/NF- B/MAPK pathways. Eur Heart J Suppl 2015. [DOI: 10.1093/eurheartj/suv020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Elevated levels of plasma TNF-α are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-κB and p38 mitogen-activated protein kinase in endothelial cells. Shock 2014; 41:275-81. [PMID: 24430552 DOI: 10.1097/shk.0000000000000116] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inflammatory responses can induce microvascular and endothelial dysfunction, which is associated with the development of sepsis. This study is aimed at examining the concentrations of plasma tissue factor (TF), von Willebrand factor (vWF), and tumor necrosis factor-α (TNF-α) in patients with sepsis and at determining how septic plasma (SP) regulates TF and vWF expression and p38 mitogen activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB) pathways in human endothelial cells. The concentrations of plasma TF, vWF, and TNF-α in 22 septic patients and eight healthy controls (HCs) were examined by enzyme-linked immunosorbent assay, and their potential association with disease severity was analyzed. Human umbilical vein endothelial cells (HUVECs) were treated with SP from patients or normal plasma (NP) from the HCs, and the levels of TF and vWF were measured. The SP-induced ERK, p38 MAPK, and NF-κB activation was characterized by Western blot and immunofluorescent assays. The SP-induced HUVEC apoptosis was detected by flow cytometry. The concentrations of plasma TF, vWF, and TNF-α in the patients were significantly higher than that in the HCs and were positively correlated with the Acute Physiology and Chronic Health Evaluation II scores in the patients. Furthermore, treatment with SP, but not NP, induced TF and vWF production in HUVECs in a dose- and time-dependent manner, which was associated with sequential activation of the p38 MAPK and NF-κB pathways. Septic plasma induced HUVEC apoptosis, which was inhibited by activating the NF-κB pathway. The sepsis-related inflammatory factors promoted endothelial cell activation, dysfunction, and apoptosis through activation of the p38 MAPK pathway that was regulated by NF-κB signaling.
Collapse
|
10
|
Byrne WL, Murphy CT, Cronin M, Wirth T, Tangney M. Bacterial-mediated DNA delivery to tumour associated phagocytic cells. J Control Release 2014; 196:384-93. [PMID: 25466954 DOI: 10.1016/j.jconrel.2014.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 12/29/2022]
Abstract
Phagocytic cells including macrophages, dendritic cells and neutrophils are now recognised as playing a negative role in many disease settings including cancer. In particular, macrophages are known to play a pathophysiological role in multiple diseases and present a valid and ubiquitous therapeutic target. The technology to target these phagocytic cells in situ, both selectively and efficiently, is required in order to translate novel therapeutic modalities into clinical reality. We present a novel delivery strategy using non-pathogenic bacteria to effect gene delivery specifically to tumour-associated phagocytic cells. Non-invasive bacteria lack the ability to actively enter host cells, except for phagocytic cells. We exploit this natural property to effect 'passive transfection' of tumour-associated phagocytic cells following direct administration of transgene-loaded bacteria to tumour regions. Using an in vitro-differentiated human monocyte cell line and two in vivo mouse models (an ovarian cancer ascites and a solid colon tumour model) proof of delivery is demonstrated with bacteria carrying reporter constructs. The results confirm that the delivery strategy is specific for phagocytic cells and that the bacterial vector itself recruits more phagocytic cells to the tumour. While proof of delivery to phagocytic cells is demonstrated in vivo for solid and ascites tumour models, this strategy may be applied to other settings, including non-cancer related disease.
Collapse
Affiliation(s)
- W L Byrne
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - C T Murphy
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - M Cronin
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - T Wirth
- Aurealis Pharma, Microkatu 1, FI-70211 Kuopio, Finland
| | - M Tangney
- Cork Cancer Research Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Bassères DS, Ebbs A, Cogswell PC, Baldwin AS. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity. Genes Cancer 2014; 5:41-55. [PMID: 24955217 PMCID: PMC4063255 DOI: 10.18632/genesandcancer.5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 04/21/2014] [Indexed: 12/11/2022] Open
Abstract
Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-KrasG12D) combined with loss of p53 (LSL-KrasG12D/p53fl/fl). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.
Collapse
Affiliation(s)
- Daniela S Bassères
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Aaron Ebbs
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Patricia C Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; ; Department of Biology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
12
|
Demyanets S, Konya V, Kastl SP, Kaun C, Rauscher S, Niessner A, Pentz R, Pfaffenberger S, Rychli K, Lemberger CE, de Martin R, Heinemann A, Huk I, Gröger M, Maurer G, Huber K, Wojta J. Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2011; 31:2080-9. [PMID: 21737781 DOI: 10.1161/atvbaha.111.231431] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Interleukin (IL)-33 is the most recently described member of the IL-1 family of cytokines and it is a ligand of the ST2 receptor. While the effects of IL-33 on the immune system have been extensively studied, the properties of this cytokine in the cardiovascular system are much less investigated. Methods/Results- We show here that IL-33 promoted the adhesion of human leukocytes to monolayers of human endothelial cells and robustly increased vascular cell adhesion molecule-1, intercellular adhesion molecule-1, endothelial selectin, and monocyte chemoattractant protein-1 protein production and mRNA expression in human coronary artery and human umbilical vein endothelial cells in vitro as well as in human explanted atherosclerotic plaques ex vivo. ST2-fusion protein, but not IL-1 receptor antagonist, abolished these effects. IL-33 induced translocation of nuclear factor-κB p50 and p65 subunits to the nucleus in human coronary artery endothelial cells and human umbilical vein endothelial cells and overexpression of dominant negative form of IκB kinase 2 or IκBα in human umbilical vein endothelial cells abolished IL-33-induced adhesion molecules and monocyte chemoattractant protein-1 mRNA expression. We detected IL-33 and ST2 on both protein and mRNA level in human carotid atherosclerotic plaques. CONCLUSIONS We hypothesize that IL-33 may contribute to early events in endothelial activation characteristic for the development of atherosclerotic lesions in the vessel wall, by promoting adhesion molecules and proinflammatory cytokine expression in the endothelium.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bot I, Jukema JW, Lankhuizen IM, van Berkel TJ, Biessen EA. Atorvastatin inhibits plaque development and adventitial neovascularization in ApoE deficient mice independent of plasma cholesterol levels. Atherosclerosis 2011; 214:295-300. [DOI: 10.1016/j.atherosclerosis.2010.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/15/2010] [Accepted: 11/07/2010] [Indexed: 01/13/2023]
|
14
|
Gugliesi F, De Andrea M, Mondini M, Cappello P, Giovarelli M, Shoenfeld Y, Meroni P, Gariglio M, Landolfo S. The proapoptotic activity of the Interferon-inducible gene IFI16 provides new insights into its etiopathogenetic role in autoimmunity. J Autoimmun 2010; 35:114-23. [DOI: 10.1016/j.jaut.2010.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 12/22/2022]
|
15
|
Chen Y, Rabson AB, Gorski DH. MEOX2 regulates nuclear factor-kappaB activity in vascular endothelial cells through interactions with p65 and IkappaBbeta. Cardiovasc Res 2010; 87:723-31. [PMID: 20421348 DOI: 10.1093/cvr/cvq117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Tumours secrete proangiogenic factors to induce the ingrowth of blood vessels, the end targets of which are vascular endothelial cells (ECs). The MEOX2 homeoprotein inhibits nuclear factor-kappaB (NF-kappaB) signalling and EC activation in response to serum and proangiogenic factors. We hypothesize that MEOX2 interacts with components of this pathway in vascular ECs to modulate NF-kappaB activity and EC activation and that these interactions depend upon specific domains within the MEOX2 protein. METHODS AND RESULTS To test our hypothesis, we transduced ECs with MEOX2 expression constructs. MEOX2 protein localized to the nuclear fraction, as did IkappaBbeta and p65. By co-immunoprecipitation, MEOX2 bound to both p65 and IkappaBbeta. Immunofluorescence demonstrated that MEOX2 colocalizes in the nucleus with both p65 and IkappaBbeta and that this colocalization requires the MEOX2 homeodomain and N-terminal domain. Finally, promoter assays revealed that MEOX2 expression has a biphasic effect on NF-kappaB-dependent promoters. At low levels, MEOX2 stimulates NF-kappaB activity, whereas at high levels, it represses, effects that also depend upon the homeodomain and the N-terminal domain. CONCLUSION Our results represent the first report of an interaction between a homeobox protein and IkappaBbeta and suggest that MEOX2 modulates the activity of the RelA complex through direct interaction with its components. These observations implicate MEOX2 as a potentially important regulatory gene inhibiting not only the angiogenic response of ECs to proangiogenic factors, but also their response to chronic inflammatory stimulation that normally activates NF-kappaB, suggesting MEOX2 as a possible molecular target for the therapy of angiogenesis-dependent diseases such as cancer.
Collapse
Affiliation(s)
- Yun Chen
- Division of Surgical Oncology, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | |
Collapse
|
16
|
Zhang W, Xing SS, Sun XL, Xing QC. Overexpression of activated nuclear factor-kappa B in aorta of patients with coronary atherosclerosis. Clin Cardiol 2010; 32:E42-7. [PMID: 20014193 DOI: 10.1002/clc.20482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Inflammation is an established risk factor for atherosclerosis. In an inflammatory state, nuclear factor-kappa B (NF-kappaB) is frequently activated as a key transcription activator for the downstream responses. HYPOTHESIS The aim of this study was to investigate the changes of NF-kappaB in the aorta of patients with coronary atherosclerosis and its association with atherosclerotic risk factors. METHODS From 2004 to 2005, we collected a small piece of ascending aorta in the bypass procedure from patients (n = 31) undergoing coronary artery bypass graft (CABG) surgery. The expression of NF-kappaB was determined by immunohistochemistry, and its transcriptional activity was evaluated by electrophoretic mobility shift assay. Celiac aortic tissues from 4 subjects without known atherosclerosis through the kidney donation program were taken as control. RESULTS NF-kappaB was detectable in aortas from CABG patients with the transcriptional activities significantly increased. The relative level of aortic NF-kappaB expression was elevated in patients who were smokers or with hypertension. Spearman correlation revealed that aortic NF-kappaB expression had significant correlation with coronary severity scores (Gensini score, r = 0.608, P < .05). The NF-kappaB expression was positively correlated with the levels of blood glucose, low-density lipoprotein cholesterol, lipoprotein(a), total cholesterol, and non-high-density lipoprotein cholesterol (P < .05); but negatively correlated with high-density lipoprotein cholesterol (P < .05). CONCLUSIONS Our study demonstrates a highly activated NF-kappaB in aortas from patients with coronary atherosclerosis, which may reflect overall arterial overinflammatory status. The findings of hyperactive NF-kappaB in aortas may provide a diagnostic parameter for the inflammation that is associated with and may cause atherosclerosis.
Collapse
Affiliation(s)
- Wei Zhang
- Shandong University School of Medicine, Jinan, PR China
| | | | | | | |
Collapse
|
17
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Orel L, Neumeier H, Hochrainer K, Binder BR, Schmid JA. Crosstalk between the NF-kappaB activating IKK-complex and the CSN signalosome. J Cell Mol Med 2009; 14:1555-68. [PMID: 19656241 PMCID: PMC3829021 DOI: 10.1111/j.1582-4934.2009.00866.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A great variety of signalling pathways regulating inflammation, cell development and cell survival require NF-κB transcription factors, which are normally inactive due to binding to inhibitors, such as IκBα. The canonical activation pathway of NF-κB is initiated by phosphorylation of the inhibitor by an IκB kinase (IKK) complex triggering ubiquitination of IκB molecules by SCF-type E3-ligase complexes and rapid degradation by 26S-proteasomes. The ubiquitination machinery is regulated by the COP9 signalosome (CSN). We show that IκB kinases interact with the CSN-complex, as well as the SCF-ubiquitination machinery, providing an explanation for the rapid signalling-induced ubiquitination and degradation of IκBα. Furthermore, we reveal that IKK’s phosphorylate not only IκBα, but also the CSN-subunit Csn5/JAB1 (c-Jun activation domain binding protein-1) and that IKK2 influences ubiquitination of Csn5/JAB1. Our observations imply that the CSN complex acts as an inhibitor of constitutive NF-κB activity in non-activated cells. Knock-down of Csn5/JAB1 clearly enhanced basal NF-κB activity and improved cell survival under stress. The inhibitory effect of Csn5/JAB1 requires a functional MPN+ metalloprotease domain, which is responsible for cleaving ubiquitin-like Nedd8-modifications. Upon activation of cells with tumour necrosis factor-α, the CSN complex dissociates from IKK’s allowing full and rapid activation of the NF-κB pathway by the concerted action of interacting protein complexes.
Collapse
Affiliation(s)
- Lukas Orel
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical Univ. of Vienna, Austria
| | | | | | | | | |
Collapse
|
19
|
Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 2009; 114:844-59. [PMID: 19454749 PMCID: PMC2882173 DOI: 10.1182/blood-2008-12-195941] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemia exists in many diseased tissues, including arthritic joints, atherosclerotic plaques, and malignant tumors. Macrophages accumulate in these sites and up-regulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18 hours. For example, they were seen to up-regulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, vascular endothelial growth factor A, interleukin (IL)-1beta and IL-8, adrenomedullin, CXCR4, and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the nuclear factor-kappaB (NF-kappaB) signaling pathway. We then used both genetic and pharmacologic methods to manipulate the levels of HIFs-1alpha and 2alpha or NF-kappaB in primary macrophages to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIF-1 and -2, but not NF-kappaB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues, such as malignant tumors.
Collapse
|
20
|
Chavey C, Mühlbauer M, Bossard C, Freund A, Durand S, Jorgensen C, Jobin C, Lazennec G. Interleukin-8 expression is regulated by histone deacetylases through the nuclear factor-kappaB pathway in breast cancer. Mol Pharmacol 2008; 74:1359-66. [PMID: 18669446 DOI: 10.1124/mol.108.047332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have reported recently that the chemokine interleukin 8 (IL-8)/CXCL8 was overexpressed in invasive estrogen receptor (ERalpha)-negative breast cancer cells compared with ERalpha-positive breast cancer cells. We now demonstrate that histone deacetylases (HDACs) play an essential role in the regulation of IL-8 gene expression in ERalpha-positive MCF-7 breast cancer cells. Treatment of MCF-7 cells with the HDAC inhibitor trichostatin A (TSA) led to a strong up-regulation of IL-8 protein and RNA levels in MCF-7 cells. The up-regulation of IL-8 in MCF-7 cells was time- and concentration-dependent. Moreover, run-on and transfection experiments demonstrated that IL-8 induction by HDAC inhibitors was transcriptional and involved mainly the nuclear factor-kappaB (NF-kappaB) site of the IL-8 promoter. These observations are corroborated by an up-regulation of NF-kappaB activity in MCF-7 cells in the presence of TSA. In addition, blocking NF-kappaB pathway by adenoviral delivery of a dominant-negative IkappaBorIkappaB kinase complex 2 (IKK2) mutant abolished IL-8 gene induction by histone deacetylase inhibitors. HDAC inhibitors triggered IKK phosphorylation and up-regulated p65 nuclear translocation, although they decreased the protein levels of IkappaBalpha, which accounts for NF-kappaB activation. TSA increased binding of acetylated histone 3 to the IL-8 gene promoter. In summary, our results demonstrate that NF-kappaB pathway repression by HDAC is responsible for the low expression of IL-8 in ERalpha-positive breast cancer cells.
Collapse
Affiliation(s)
- Carine Chavey
- Institut National de la Santé et de la Recherche Mé dicale, U844, University of Montpellier I, 34091 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
G-protein-dependent and -independent pathways regulate proteinase-activated receptor-2 mediated p65 NFκB serine 536 phosphorylation in human keratinocytes. Cell Signal 2008; 20:1267-74. [DOI: 10.1016/j.cellsig.2008.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 02/22/2008] [Indexed: 01/15/2023]
|
22
|
Stuhlmeier KM. Hyaluronan production in synoviocytes as a consequence of viral infections: HAS1 activation by Epstein-Barr virus and synthetic double- and single-stranded viral RNA analogs. J Biol Chem 2008; 283:16781-9. [PMID: 18400745 DOI: 10.1074/jbc.m801669200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One of the hallmarks of arthritis is swollen joints containing unusually high quantities of hyaluronan. Intact hyaluronan molecules facilitate cell migration by acting as ligands for CD44. Hyaluronan degradation products, readily formed at sites of inflammation, also fuel inflammatory processes. Irrespective of whether viruses could be a cause of rheumatoid arthritis, there is clear evidence that links viral infections to this debilitating disease. For this study, live Epstein-Barr virus and a number of double- and single-stranded synthetic viral analogs were tested for their effectiveness as activators of hyaluronan (HA) synthesis. As shown herein, Epstein-Barr virus-treated fibroblast-like synoviocytes significantly increase HA production and release. Real time reverse transcription-PCR data show that HAS1 mRNA levels are significantly elevated in virus-treated cells, whereas mRNA levels for the genes HAS2 and HAS3 remain unchanged. As to the mechanism of virus-induced HAS1 transcription, data are presented that imply that among the double- and single-stranded polynucleotides tested, homopolymeric polycytidylic structures are the most potent inducers of HAS1 transcription and HA release, whereas homopolymeric polyinosinic acid is without effect. Analyses of virus-induced signal cascades, utilizing chemical inhibitors of MAPK and overexpressing mutated IKK and IkappaB, revealed that the MAPK p38 as well as the transcription factor NF-kappaB are essential for virus-induced activation of HAS1. The presented data implicate HAS1 as the culprit in unfettered HA release and point out targets in virus-induced signaling pathways that might allow for specific interventions in cases of unwanted and uncontrolled HA synthesis.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Kurbadstrasse 10, 1100 Vienna, Austria.
| |
Collapse
|
23
|
Williams LM, Lali F, Willetts K, Balague C, Godessart N, Brennan F, Feldmann M, Foxwell BMJ. Rac mediates TNF-induced cytokine production via modulation of NF-kappaB. Mol Immunol 2008; 45:2446-54. [PMID: 18258304 DOI: 10.1016/j.molimm.2007.12.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 01/24/2023]
Abstract
TNF is a key factor in a variety of inflammatory diseases. Here we report that TNF induced pro-inflammatory cytokine synthesis of IL-6 and IL-8 is mediated by the Rho GTPase Rac. TNF induces p42/p44, p54 and p38 MAPK kinase; these kinases have been implicated in control of cytokine synthesis. However, over-expression of a dominant negative form of Rac strongly inhibited TNF-induced p42/44 MAPK kinase activation, but had little effect upon JNK and no effect upon p38 MAPK activity. Another key signalling pathway controlling cytokine expression is NF-kappaB. When analyzing TNF-induced NF-kappaB activity via luciferase-reporter assays or via EMSA, we were able to show that the dominant negative version of Rac could completely abrogate TNF-induced NF-kappaB activity. In addition, we also observed that inhibition of the ERK pathway led to a reduction in TNF-induced NF-kappaB transcriptional activity; this was accompanied by an ablation of TNF-induced p65 phosphorylation at serine 276. This would suggest that TNF-induced activation of Rac, lies upstream of NF-kappaB activation, and that the inhibition of this pathway results in inhibition of cytokine production.
Collapse
Affiliation(s)
- Lynn M Williams
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London W6 8LH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ljubuncic PS, Bar-Shai M, Reznick AZ. The Role of Reactive Nitrogen Species (RNS) in the Activation of Nuclear Factor Kappa B (NFkB) and Its Implications for Biological Systems: The Question of Balance. OXIDANTS IN BIOLOGY 2008:67-109. [DOI: 10.1007/978-1-4020-8399-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Chapoval SP, Al-Garawi A, Lora JM, Strickland I, Ma B, Lee PJ, Homer RJ, Ghosh S, Coyle AJ, Elias JA. Inhibition of NF-kappaB activation reduces the tissue effects of transgenic IL-13. THE JOURNAL OF IMMUNOLOGY 2007; 179:7030-41. [PMID: 17982094 DOI: 10.4049/jimmunol.179.10.7030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-13 is a major Th2 cytokine that is capable of inducing inflammation, excessive mucus production, airway hyperresponsiveness, alveolar remodeling, and fibrosis in the murine lung. Although IL-13 through its binding to IL-4Ralpha/IL-13Ralpha1 uses the canonical STAT6-signaling pathway to mediate these tissue responses, recent studies have demonstrated that other signaling pathways may also be involved. Previous studies from our laboratory demonstrated that IL-13 mediates its tissue effects by inducing a wide variety of downstream genes many of which are known to be regulated by NF-kappaB. As a result, we hypothesized that NF-kappaB activation plays a critical role in the pathogenesis of IL-13-induced tissue alterations. To test this hypothesis, we compared the effects of transgenic IL-13 in mice with normal and diminished levels of NF-kappaB activity. Three pharmacologic approaches were used to inhibit NF-kappaB including 1) PS1145, a small molecule inhibitor of IkappaBalpha kinase (IKK2), 2) antennapedia-linked NF-kappaB essential modulator-binding domain (NBD) peptide (wild-type NBD), and 3) an adenoviral construct expressing a dominant-negative version of IKK2. We also crossed IL-13-transgenic mice with mice with null mutations of p50 to generate mice that overproduced IL-13 in the presence and absence of this NF-kappaB component. These studies demonstrate that all these interventions reduced IL-13-induced tissue inflammation, fibrosis and alveolar remodeling. In addition, we show that both PS1145 and wild-type NBD inhibit lung inflammatory and structural cell apoptosis. PS1145 inhibits caspase activation and up-regulates inhibitor of apoptosis protein cellular-inhibitor of apoptosis protein 1 (c-IAP-1). Therefore, NF-kappaB is an attractive target for immunotherapy of IL-13-mediated diseases.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hohensinner PJ, Kaun C, Rychli K, Niessner A, Pfaffenberger S, Rega G, de Martin R, Maurer G, Ullrich R, Huber K, Wojta J. Macrophage colony stimulating factor expression in human cardiac cells is upregulated by tumor necrosis factor-alpha via an NF-kappaB dependent mechanism. J Thromb Haemost 2007; 5:2520-8. [PMID: 17922812 DOI: 10.1111/j.1538-7836.2007.02784.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Macrophage colony stimulating factor (M-CSF) is a key factor for monocyte and macrophage survival and proliferation. M-CSF has been implicated in cardiac healing and repair after myocardial infarction. METHODS AND RESULTS We show by immunohistochemistry and Western blotting analysis that M-CSF protein is present in human heart tissue. Cultured human adult cardiac myocytes (HACM) and human adult cardiac fibroblasts (HACF) isolated from human myocardial tissue constitutively express M-CSF. When HACM and HACF were treated with tumor necrosis factor-alpha (TNF-alpha) M-CSF protein production and M-CSF mRNA expression, determined by ELISA or by using RT-PCR, respectively, was significantly increased. To determine a possible role of nuclear factor kappaB (NF-kappaB) and activating protein 1 (AP-1) in M-CSF regulation, blockers to both pathways and an adenovirus overexpressing a dominant negative (dn) form of IkappaB kinase 2 (IKK2) were used. Only the NF-kappaB blocker dimethylfumarate and the dn IKK2, but not januskinase inhibitor-1 (JNK-I), were able to block the TNF-alpha-induced increase in M-CSF production in these cells, suggesting that the induction of M-CSF through TNF-alpha is mainly dependent on the activation of the NF-kappaB pathway. The monocyte activation marker CD11b was significantly increased after incubating U937 cells with conditioned medium from HACM or HACF as determined by FACS analysis. CONCLUSIONS Our in vitro data taken together with our immunohistochemistry data suggest that human cardiac cells constitutively express M-CSF. This expression of M-CSF in the human heart and its upregulation by TNF-alpha might contribute to monocyte and macrophage survival and differentiation.
Collapse
Affiliation(s)
- P J Hohensinner
- Department of Internal Medicine II, Medical University of Vienna, Waehringerguertel 18-20, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
PPAR gamma agonists can be expected to potentiate the efficacy of metronomic chemotherapy through CD36 up-regulation. Med Hypotheses 2007; 70:419-23. [PMID: 17548167 DOI: 10.1016/j.mehy.2006.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/04/2023]
Abstract
The ability of metronomic chemotherapy to induce endothelial apoptosis has been traced to increased endothelial expression of thrombospondin-1, which activates endothelial CD36 receptors, triggering the extrinsic apoptotic pathway. Endothelial expression of CD36 is variable. Recent studies show that PPAR gamma agonists - previously shown to have angiostatic activity - can markedly boost endothelial expression of CD36, thereby potentiating the apoptotic response of endothelial cells to thrombospondin-1-mimetic peptides. Thus, concurrent administration of PPAR gamma agonists would be expected to enhance the efficacy of metronomic chemotherapy. These considerations may help to rationalize recent reports that a regimen consisting of low-dose trofosfamide, pioglitazone, and a cox-2 inhibitor achieves tumor regression or prolonged tumor stasis in a meaningful proportion of cancer patients. The angiostatic efficacy of metronomic chemotherapy complemented by PPAR gamma agonist administration would likely be potentiated by ancillary measures that block the survival signals evoked by endothelial growth factors such as VEGF or angiopoietin-1.
Collapse
|
28
|
Caposio P, Luganini A, Hahn G, Landolfo S, Gribaudo G. Activation of the virus-induced IKK/NF-kappaB signalling axis is critical for the replication of human cytomegalovirus in quiescent cells. Cell Microbiol 2007; 9:2040-54. [PMID: 17419715 DOI: 10.1111/j.1462-5822.2007.00936.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of the IKK/NF-kappaB signalling pathway is a hallmark of human cytomegalovirus (HCMV) infection. However, its role in regulating major immediate-early promoter (MIEP)-dependent transcription and HCMV replication remains controversial. This study uses a combination of genetic approaches to investigate the effects of cell culture conditions on the importance of virus-induced NF-kappaB activation during the infection of endothelial cells or fibroblasts. Adenoviral-mediated expression of a dominant-negative mutant of IKK2 kinase (dnIKK2) in human umbilical vein endothelial cells resulted in a strong reduction of IkappaBalpha degradation and NF-kappaB activation following infection with an HCMV clinical isolate. Viral replication was impaired in dnIKK2-expressing cells that were growth-arrested before infection, but not in replicating cells. The inhibitory effect of dnIKK2 was independent from the virus strain and the cell type used, because replication of the laboratory AD169 strain was impaired as well in dnIKK2-expressing quiescent fibroblasts. Moreover, progressive disruption of NF-kappaB response elements within the MIEP in recombinant HCMV viruses derived from the clinical isolate prevented their replication in quiescent cells but not in actively growing cells. These results demonstrate an essential role of virus-induced IKK/NF-kappaB activity to trigger both viral IE gene expression and productive replication in quiescent cells.
Collapse
Affiliation(s)
- Patrizia Caposio
- Department of Public Health and Microbiology, University of Torino, Via Santena, 9-10126 Torino, Italy
| | | | | | | | | |
Collapse
|
29
|
Ritchie E, Saka M, MacKenzie C, Drummond R, Wheeler-Jones C, Kanke T, Plevin R. Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br J Pharmacol 2007; 150:1044-54. [PMID: 17339845 PMCID: PMC2013917 DOI: 10.1038/sj.bjp.0707150] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/07/2006] [Accepted: 11/20/2006] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of proteinase-activated receptor-2 (PAR2) is a factor in a number of disease states and we have therefore examined the signalling pathways involved in the expression of the receptor. EXPERIMENTAL APPROACH We investigated the effects of tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), trypsin and the PAR2 activating peptide, 2-furoyl(2f)-LIGKV-OH on both mRNA and functional expression of PAR2 in human umbilical vein endothelial cells (HUVECs). The effect of specific chemical inhibitors and dominant negative adenovirus constructs of the mitogen-activated protein kinase (MAPK) cascade and the nuclear factor kappa B (NF-kappaB) signalling pathway was assessed. Methods included semi-quantitative and quantitative RT-PCR, [(3)H]inositol phosphate (IP) accumulation and Ca(2+)-dependent fluorescence. KEY RESULTS The above agonists induced both mRNA and functional expression of PAR2; PAR4 mRNA, but not that for PAR1 or PAR-3, also increased following TNFalpha treatment. Inhibition of p38 MAP kinase reduced PAR2 and PAR4 expression, whilst inhibition of MEK1/ERK/JNK was without effect. A similar dependency upon p38 MAP kinase was observed for the expression of PAR4. TNFalpha -induced enhancement of PAR2 stimulated [(3)H]-inositol phosphate accumulation (IP) and Ca(2+) signalling was abolished following SB203580 pre-treatment. Infection with adenovirus encoding dominant-negative IKKbeta (Ad.IKKbeta(+/-)) and to a lesser extent dominant-negative IKKalpha (Ad.IKKalpha(+/-)), substantially reduced both control and IL-1beta- induced expression of both PAR2 and PAR4 mRNA and enhancement of PAR2-stimulated IP accumulation and Ca(2+) mobilisation. CONCLUSIONS AND IMPLICATIONS These data reveal for the first time the signalling events involved in the upregulation of both PAR2 and PAR4 during pro-inflammatory challenge.
Collapse
Affiliation(s)
- E Ritchie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - M Saka
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - C MacKenzie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - R Drummond
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - C Wheeler-Jones
- Department of Veterinary Basic Sciences, Royal Veterinary College London, UK
| | - T Kanke
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - R Plevin
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| |
Collapse
|
30
|
Sacre SM, Andreakos E, Kiriakidis S, Amjadi P, Lundberg A, Giddins G, Feldmann M, Brennan F, Foxwell BM. The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:518-25. [PMID: 17255320 PMCID: PMC1851858 DOI: 10.2353/ajpath.2007.060657] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The widespread distribution of Toll-like receptors (TLRs) and their ligands raises the question whether they contribute to the production of inflammatory and tissue destructive molecules in rheumatoid arthritis (RA). We examined the expression and function of TLR2 and TLR4 and their downstream signaling adaptors MyD88 and Mal/TIRAP in synovial membrane cultures from RA tissue. Both TLR2 and TLR4 were detected by flow cytometry, and stimulation with TLR2 and TLR4 ligands augmented the spontaneous production of tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, indicating that TLR2 and TLR4 are functional in these cultures. In addition, overexpression of dominant-negative forms of MyD88 and Mal/TIRAP significantly down-regulated the spontaneous production of cytokines tumor necrosis factor-alpha, IL-6, and vascular endothelial growth factor, and enzymes MMP-1, MMP-2, MMP-3, and MMP-13 in RA synovial membrane cell cultures. Because TLR2 and TLR4 require both MyD88 and Mal/TIRAP for signaling, this study suggests that TLR function may regulate the expression of these factors in the RA synovium. Conditioned media from synovial membrane cell cultures stimulated human macrophages in a MyD88- and Mal-dependent manner, suggesting the release of a TLR ligand(s) from these cells. Thus, TLRs not only protect against infection but may also promote the inflammatory and destructive process in RA.
Collapse
Affiliation(s)
- Sandra M Sacre
- Kennedy Institute of Rheumatology, Imperial College London, and the Department of Orthopedics, Royal United Hospital, Bath, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Morigi M, Buelli S, Zanchi C, Longaretti L, Macconi D, Benigni A, Moioli D, Remuzzi G, Zoja C. Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinally mediates actin remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:1965-75. [PMID: 17148661 PMCID: PMC1762486 DOI: 10.2353/ajpath.2006.051331] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Shigatoxin (Stx) is the offending agent of post-diarrheal hemolytic uremic syndrome, characterized by glomerular ischemic changes preceding microvascular thrombosis. Because podocytes are highly sensitive to Stx cytotoxicity and represent a source of vasoactive molecules, we studied whether Stx-2 modulated the production of endothelin-1 (ET-1), taken as candidate mediator of podocyte dysfunction. Stx-2 enhanced ET-1 mRNA and protein expression via activation of nuclear factor kappaB (NF-kappaB) and activator protein-1 (Ap-1) to the extent that transfection with the dominant-negative mutant of IkappaB-kinase 2 or with Ap-1 decoy oligodeoxynucleotides reduced ET-1 mRNA levels. We propose a role for p38 and p42/44 mitogen-activated protein kinases (MAPKs) in mediating NF-kappaB-dependent gene transcription induced by Stx-2, based on data that Stx-2 phosphorylated p38 and p42/44 MAPKs and that MAPK inhibitors reduced transcription of NF-kappaB promoter/luciferase reporter gene construct induced by Stx-2. Stx-2 caused F-actin redistribution and intercellular gaps via production of ET-1 acting on ETA receptor, because cytoskeleton changes were prevented by ETA receptor blockade. Exogenous ET-1 induced cytoskeleton rearrangement and intercellular gaps via phosphatidylinositol-3 kinase and Rho-kinase pathway and increased protein permeability across the podocyte monolayer. These data suggest that the podocyte is a target of Stx, a novel stimulus for the synthesis of ET-1, which may control cytoskeleton remodeling and glomerular permeability in an autocrine fashion.
Collapse
Affiliation(s)
- Marina Morigi
- Mario Negri Institute for Pharmacological Research, Unit of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Harada C, Okumura A, Namekata K, Nakamura K, Mitamura Y, Ohguro H, Harada T. Role of monocyte chemotactic protein-1 and nuclear factor kappa B in the pathogenesis of proliferative diabetic retinopathy. Diabetes Res Clin Pract 2006; 74:249-56. [PMID: 16730843 DOI: 10.1016/j.diabres.2006.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/24/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Intraocular concentrations of monocyte chemotactic protein-1 (MCP-1) are increased in proliferative diabetic retinopathy (PDR). Nuclear factor kappa B (NF-kappaB) is a transcription factor, and NF-kappaB binding site is located in gene promoter of MCP-1. This study was conducted to investigate the potential role of MCP-1 and NF-kappaB in the pathogenesis of PDR. Epiretinal membrane (ERM) samples were obtained during vitrectomy from 19 eyes with PDR and 16 eyes with idiopathic ERM. They were processed for RT-PCR analysis. Four PDR ERMs were processed for immunohistochemical analysis. In addition, cultured Müller glial cells were stimulated with glycated albumin or high glucose. After the stimulation, we examined nuclear localization of NF-kappaB p50, MCP-1 promoter activity, and MCP-1 concentration in culture media. MCP-1 mRNA expression was significantly higher in PDR (74%) than in idiopathic ERMs (38%) (P < 0.05). Immunohistochemical analysis revealed that MCP-1 protein is colocalized with active form of NF-kappaB p50. In vitro studies demonstrated that glycated albumin or high glucose induces NF-kappaB activation followed by up-regulation of MCP-1 promoter activity and protein production in glial cells. These results suggest that MCP-1, under the regulation of NF-kappaB, is involved in the pathogenesis of PDR.
Collapse
Affiliation(s)
- Chikako Harada
- Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Rice J, Courter DL, Giachelli CM, Scatena M. Molecular mediators of alphavbeta3-induced endothelial cell survival. J Vasc Res 2006; 43:422-36. [PMID: 16888388 DOI: 10.1159/000094884] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 05/18/2006] [Indexed: 12/19/2022] Open
Abstract
The alphavbeta3 integrin interaction with the extracellular matrix (ECM) plays an essential role in inhibiting apoptosis in endothelial cells. We have recently shown that alphavbeta3 ligation on rat aortic endothelial cells (RAECs) specifically activates the transcription factor nuclear factor kappaB (NF-kappaB) and promotes cell survival. Inhibiting NF-kappaB nuclear translocation abolished the protective effect of alphavbeta3 ligands. Here, we report that ligation of alphavbeta3 by its ligand, osteopontin (OPN), induces the phosphorylation and activation of inhibitory kappa B kinase beta IKKbeta and promotes the specific degradation of inhibitory kappa Balpha (IkappaBalpha) in RAECs. Overexpression of a dominant negative (DN) IKKbeta protein prevents IkappaBalpha phosphorylation, NF-kappaB activation, and inhibits the protective effects of OPN. The NF-kappaB-inducing kinase (NIK) has been shown to be one of the upstream kinases involved in IKK activation. OPN-mediated NF-kappaB activity is increased upon NIK wild-type (WT) overexpression and blocked following NIK DN overexpression. In addition, NIK-/-mouse embryonic fibroblasts (MEFs) plated on OPN display reduced NF-kappaB activity and decreased IkappaBalpha phosphorylation compared to NIK+/+MEFs. Finally, functional inhibition of integrin beta3-dependent NF-kappaB signaling decreases OPN-induced IkappaBalpha, IKKbeta and NIK phosphorylation. These studies for the first time show that the alphavbeta3-NF-kappaB-dependent endothelial survival pathway is dependent on IkappaBalpha, IKKbeta, and NIK.
Collapse
Affiliation(s)
- Julie Rice
- Department of Pathology, University of Washington, Seattle 98195-1720, USA
| | | | | | | |
Collapse
|
34
|
MacKenzie CJ, Ritchie E, Paul A, Plevin R. IKKalpha and IKKbeta function in TNFalpha-stimulated adhesion molecule expression in human aortic smooth muscle cells. Cell Signal 2006; 19:75-80. [PMID: 16872805 DOI: 10.1016/j.cellsig.2006.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/25/2006] [Accepted: 06/02/2006] [Indexed: 11/30/2022]
Abstract
The role of NFkappaB and it's upstream kinases in regulating adhesion molecule expression in the smooth muscle of the vasculature remains controversial. We therefore examined the effect of blocking the NFkappaB pathway on TNFalpha-stimulated ICAM-1 and VCAM-1 expression in primary cultures of human aortic smooth muscle cells using an adenoviral wild-type IkappaB alpha construct (Ad.IkappaB alpha) and dominant-negative IKKalpha (Ad.IKKalpha+/-) and IKKbeta (Ad.IKKbeta+/-) constructs. Ad.IkappaB alpha treatment was found to block NFkappaB DNA-binding, and thereby completely prevent TNFalpha-stimulated ICAM-1 and VCAM-1 expression without influencing IKK activity. Ad.IKKbeta+/- treatment completely inhibited TNFalpha-stimulated IKK kinase activity, IkappaB alpha degradation and NFkappaB DNA-binding in addition to completely blocking TNFalpha-stimulated ICAM-1 and VCAM-1 expression. Ad.IKKalpha+/- treatment however had no detectable effect on NFkappaB DNA-binding or ICAM-1 and VCAM-1 expression. Our results demonstrate that TNFalpha-stimulated ICAM-1 and VCAM-1 expression in human aortic smooth muscle cells is NFkappaB-dependent, that IKKbeta is a suitable target for drug therapy and Ad.IKKbeta+/- an effective inhibitor of TNFalpha-stimulated ICAM-1 and VCAM-1 expression.
Collapse
Affiliation(s)
- Christopher J MacKenzie
- Department of Physiology and Pharmacology, University of Strathclyde, John Arbuthnott Building, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow, G4 0NR, Scotland, UK.
| | | | | | | |
Collapse
|
35
|
Abstract
Multifocal angiostatic therapy (MAT) is a strategy that seeks to impede cancer-induced angiogenesis by addressing multiple targets that regulate the angiogenic capacity of a cancer and/or the angiogenic responsiveness of endothelial cells, using measures that are preferentially, but not exclusively, nutraceutical. A prototype of such a regimen has been proposed previously, composed of green tea polyphenols, fish oil, selenium, and high-dose glycine, complementing a low-fat vegan diet, exercise training, and the copper-sequestering drug tetrathiomolybdate (TM). A review of more recent evidence suggests additional agents that could appropriately be included in this regimen and clarifies to some extent the mechanisms of action of its constituents. Diindolylmethane, a widely available crucifera-derived nutraceutical, has inhibited cancer growth in several mouse xenograft models; this effect may be largely attributable to an angiostatic action, as concentrations as low as 5 to 10 muM inhibit proliferation, migration, and tube-forming capacity of human endothelial cells in vitro, and a parenteral dose of 5 mg/kg markedly impairs matrigel angiogenesis in mice. Silymarin/silbinin, which has slowed the growth of human xenografts in a number of studies, suppresses the proliferation, migration, and tube-forming capacity of endothelial cells and inhibits vascular endothelial growth factor (VEGF) secretion by a range of human cancer cell lines, in concentrations that should be clinically feasible. The angiostatic activity of orally administered green tea now appears likely to reflect inhibition of the kinase activity of VEGFR-2. Glycine's angiostatic activity may be attributable to a hyperpolarizing effect on endothelial cells that decreases the activity of NADPH oxidase, now known to promote tyrosine kinase signaling in endothelial cells. The ability of TM to suppress cancer cell production of a range of angiogenic factors results at least in part from a down regulation of NF-kappaB activation. Dual-purpose molecular targets, whose inhibition could be expected to decrease the aggressiveness and chemoresistance of cancer cells while simultaneously impeding angiogenesis, include NF-kappaB, cox-2, c-Src, Stat3, and hsp90; drugs that can address these targets are now in development, and salicylates are notable for the fact that they can simultaneously inhibit NF-kappaB and cox-2. The potential complementary of the components of MAT should be assessed in nude mouse xenograft models.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, Illinois 60201, USA.
| | | |
Collapse
|
36
|
Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: Involvement of signal transduction in glial cells. Prog Retin Eye Res 2006; 25:149-64. [PMID: 16377232 DOI: 10.1016/j.preteyeres.2005.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Idiopathic epiretinal membranes (ERMs) in the macular region can cause a reduction in vision and sometimes recurs after surgical removal, but its pathogenic mechanisms are still unknown. On the other hand, the presence of secondary ERMs has been associated with various clinical conditions including proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). Recent studies have shown a significant association between clinical grades of PDR or PVR, and the expression levels of specific cytokines and/or growth factors in the vitreous fluid. Expression of these factors and their receptors are also observed in secondary ERMs. ERMs are composed of many cell types such as retinal pigment epithelial cells and vascular endothelial cells, however the role of glial cells is yet unclear. Interestingly, glial cells in ERMs express some trophic factor receptors and transcription factors, such as NF-kappaB, suggesting an involvement of glial signal transduction in the pathogenesis of ERMs. In this review, we summarize recent progress regarding the clinical and laboratory findings of ERMs.
Collapse
Affiliation(s)
- Chikako Harada
- Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | | | |
Collapse
|
37
|
Ogawara KI, Kułdo JM, Oosterhuis K, Kroesen BJ, Rots MG, Trautwein C, Kimura T, Haisma HJ, Molema G. Functional inhibition of NF-kappaB signal transduction in alphavbeta3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant IkappaB gene. Arthritis Res Ther 2006; 8:R32. [PMID: 16803639 PMCID: PMC1526577 DOI: 10.1186/ar1885] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/09/2005] [Accepted: 12/14/2005] [Indexed: 02/06/2023] Open
Abstract
In order to selectively block nuclear factor κB (NF-κB)-dependent signal transduction in angiogenic endothelial cells, we constructed an αvβ3 integrin specific adenovirus encoding dominant negative IκB (dnIκB) as a therapeutic gene. By virtue of RGD modification of the PEGylated virus, the specificity of the cell entry pathway of adenovirus shifted from coxsacki-adenovirus receptor dependent to αvβ3 integrin dependent entry. The therapeutic outcome of delivery of the transgene into endothelial cells was determined by analysis of cellular responsiveness to tumor necrosis factor (TNF)-α. Using real time reverse transcription PCR, mRNA levels of the cell adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1, the cytokines/growth factors IL-6, IL-8 and vascular endothelial growth factor (VEGF)-A, and the receptor tyrosine kinase Tie-2 were assessed. Furthermore, levels of ICAM-1 protein were determined by flow cytometric analysis. RGD-targeted adenovirus delivered the dnIκB via αvβ3 to become functionally expressed, leading to complete abolishment of TNF-α-induced up-regulation of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, VEGF-A and Tie-2. The approach of targeted delivery of dnIκB into endothelial cells presented here can be employed for diseases such as rheumatoid arthritis and inflammatory bowel disease where activation of NF-κB activity should be locally restored to basal levels in the endothelium.
Collapse
Affiliation(s)
- Ken-ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Joanna M Kułdo
- University of Groningen, Department of Pathology and Laboratory Medicine, Medical Biology Section, The Netherlands
| | - Koen Oosterhuis
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- University of Groningen, Department of Pathology and Laboratory Medicine, Medical Biology Section, The Netherlands
| | - Marianne G Rots
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | | | - Toshikiro Kimura
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidde J Haisma
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | - Grietje Molema
- University of Groningen, Department of Pathology and Laboratory Medicine, Medical Biology Section, The Netherlands
| |
Collapse
|
38
|
Grosjean J, Kiriakidis S, Reilly K, Feldmann M, Paleolog E. Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB. Biochem Biophys Res Commun 2005; 340:984-94. [PMID: 16410078 DOI: 10.1016/j.bbrc.2005.12.095] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
Angiogenesis is the development of blood capillaries from pre-existing vessels. Vascular endothelial growth factor (VEGF) is a key regulator of vessel growth and regression, and acts as an endothelial survival factor by protecting endothelial cells from apoptosis. Many genes involved in cell proliferation and apoptosis are regulated by the nuclear factor kappa B (NFkappaB) transcription factor family. This study aimed to address the hypothesis that VEGF-mediated survival effects on endothelium involve NFkappaB. Using an NFkappaB-luciferase reporter adenovirus, we observed activation of NFkappaB following VEGF treatment of human umbilical vein endothelial cells. This was confirmed using electrophoretic mobility shift assay and found to involve nuclear translocation of NFkappaB sub-unit p65. However, NFkappaB activation occurred without degradation of inhibitory IkappaB proteins (IkappaBalpha, IkappaBbeta, and IkappaBepsilon). Instead, tyrosine phosphorylation of IkappaBalpha was observed following VEGF treatment, suggesting NFkappaB activation was mediated by degradation-independent dissociation of IkappaBalpha from NFkappaB. Adenovirus-mediated over-expression of either native IkappaBalpha, or of IkappaBalpha in which tyrosine residue 42 was mutated to phenylalanine, inhibited induction of NFkappaB-dependent luciferase activity in response to VEGF. Furthermore, VEGF-induced upregulation of mRNA for the anti-apoptotic protein Bcl-2 and cell survival following serum withdrawal was reduced following IkappaBalpha over-expression. This study highlights that different molecular mechanisms of NFkappaB activation may be involved downstream of stimuli which activate the endothelial lining of blood vessels.
Collapse
Affiliation(s)
- Jennifer Grosjean
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK.
| | | | | | | | | |
Collapse
|
39
|
Gomez AB, MacKenzie C, Paul A, Plevin R. Selective inhibition of inhibitory kappa B kinase-beta abrogates induction of nitric oxide synthase in lipopolysaccharide-stimulated rat aortic smooth muscle cells. Br J Pharmacol 2005; 146:217-25. [PMID: 15997236 PMCID: PMC1576261 DOI: 10.1038/sj.bjp.0706308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, we utilised a number of adenoviral constructs in order to examine the role of intermediates of the NF-kappaB pathway in the regulation of inducible nitric oxide synthase (iNOS) induction in rat aortic smooth muscle cells (RASMCs). Lipopolysaccharide (LPS) stimulated a significant increase in iNOS induction and NF-kappaB DNA binding. These parameters were substantially reduced by overexpression of a wild-type Ikappa-Balpha adenoviral construct (Ad.Ikappa-Balpha), confirming a role for NF-kappaB in iNOS induction. Infection with a dominant-negative IKKalpha adenoviral construct (Ad.IKKalpha+/-) did not significantly affect iNOS induction, NF-kappaB DNA binding or Ikappa-Balpha loss. Infection of RASMCs with adenovirus encoding a dominant-negative IKKbeta (Ad.IKKbeta+/-) essentially abolished iNOS induction and activation of the NF-kappaB pathway. Pretreatment of RASMCs with a novel specific inhibitor of IKKbeta, SC-514, significantly reduced iNOS induction, NF-kappaB DNA binding and I-kappaBalpha loss in a concentration-dependent manner. In both RASMCs and human umbilical vein endothelial cells (HUVECs), infection with Ad.IKKbeta+/- also inhibited COX-2 expression in response to LPS. However, Ad.IKKalpha+/- was again without effect. These data suggest that IKKbeta plays a predominant, selective role in the regulation of NF-kappaB-dependent induction of iNOS in RASMCs.
Collapse
Affiliation(s)
- Almudena Bermejo Gomez
- Department of Physiology & Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Christopher MacKenzie
- Department of Physiology & Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Andrew Paul
- Department of Physiology & Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Robin Plevin
- Department of Physiology & Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, Scotland
- Author for correspondence:
| |
Collapse
|
40
|
Stuhlmeier KM, Pollaschek C. Adenovirus-mediated gene transfer of mutated IkappaB kinase and IkappaBalpha reveal NF-kappaB-dependent as well as NF-kappaB-independent pathways of HAS1 activation. J Biol Chem 2005; 280:42766-73. [PMID: 16258173 DOI: 10.1074/jbc.m503374200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has become increasingly clear that hyaluronan is more than the simple matrix molecule it was once thought to be but instead takes part in a multitude of biological functions. Three genes encode for hyaluronan synthases (HAS). We demonstrated earlier that HAS2 and HAS3 are constitutively activated in type-B synoviocytes (fibroblast-like synoviocytes) and, furthermore, that the only gene that readily responds to stimulation with a series of proinflammatory cytokines is HAS1. Here we probe the involvement of the transcription factor NF-kappaB in induced and noninduced HAS activation. Transforming growth factor (TGF) beta1 as well as interleukin (IL)-1beta are both strong inducers of HAS1 transcription. Stimulation of fibroblast-like synoviocytes with IL-1beta resulted in rapid degradation of IkappaBalpha, an event that was preceded by IkappaBalpha phosphorylation. Interestingly, TGFbeta1 neither affected IkappaBalpha levels, nor did it cause phosphorylation of IkappaBalpha. In addition, TGFbeta1 had no effect on IkappaBbeta and IkappaBepsilon levels. Electrophorectic mobility shift assays demonstrate that IL-1beta is a potent inducer of NF-kappaB translocation; however, TGFbeta1 treatment did not result in shifting bands. Two adenovirus constructs were used to further clarify differences in TGFbeta1- and IL-1beta-induced HAS1 activation. Overexpressing IkappaBalpha completely abolished the IL-1beta effect on HAS1 but did not interfere with TGFbeta1-induced HAS1 mRNA accumulation. Identical results were obtained when a dominant negative IKK was overexpressed. Interestingly, neither overexpression of IkappaBalpha nor of IKK had any effect on HAS2 and HAS3 mRNA levels. Taken together, HAS1 can be activated by distinct pathways; IL-1beta utilizes NF-kappaB, and TGFbeta1 does not. Furthermore, HAS2 and HAS3 are activated without the involvement of NF-kappaB.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, 1100 Vienna, Austria.
| | | |
Collapse
|
41
|
Bu DX, Erl W, de Martin R, Hansson GK, Yan ZQ. IKKbeta-dependent NF-kappaB pathway controls vascular inflammation and intimal hyperplasia. FASEB J 2005; 19:1293-5. [PMID: 15939736 DOI: 10.1096/fj.04-2645fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB)-mediated vascular inflammation is a prominent characteristic of atherogenesis and restenosis. We noted that angioplastic injury to carotid artery elicited two phases of NF-kappaB activation characterized by an early activation in the arterial media and a late activation coupled with high levels of inhibitor of IkappaB kinase (IKK) activity in intima. These findings prompted us to elucidate the role for the different phases of NF-kappaB activation and IKK in the progress of vascular repair. Our results show that blockade of the early NF-kappaB activation by perivascular administration of pyrrolidine dithiocarbamate transiently attenuates the expression of proinflammatory genes in the injured vessels but does not affect intimal formation. Interruption of IKKbeta by overexpressing a dominant-negative IKKbeta in the injured artery effectively inhibited the late phase of NF-kappaB activation, resulting in down-regulation of inducible nitric oxide synthase, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 expression in conjunction with a 36% reduction in intima size, albeit with a lack of inhibitory effect on the early NF-kappaB activation. Collectively, these findings show that the IKKbeta-mediated late-phase NF-kappaB activation contributes to intimal hyperplasia and the accompanied vascular inflammatory responses.
Collapse
Affiliation(s)
- De-xiu Bu
- Cardiovascular Research Unit L8:03, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Yu YY, Li Q, Zhu ZG. NF-κB as a molecular target in adjuvant therapy of gastrointestinal carcinomas. Eur J Surg Oncol 2005; 31:386-92. [PMID: 15837045 DOI: 10.1016/j.ejso.2004.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/11/2004] [Accepted: 10/21/2004] [Indexed: 12/13/2022] Open
Abstract
AIM To describe the role of nuclear factor-kappa B (NF-kappaB) in cancer treatment. METHODS We searched the Pubmed database (until Oct, 2004) with the keywords of gastrointestinal carcinoma, NF-kappaB, inhibitor, cancer treatment molecular target and chemoresistance. We reviewed the literature in the role of NF-kappaB activation in chemoresistance, tumour growth suppression and enhancement of apoptosis in gastrointestinal carcinomas. CONCLUSIONS Several possible strategies for inhibiting NF-kappaB activation are identified. The importance of targeting NF-kappaB as a potential therapeutic approach in clinical medicine was discussed.
Collapse
Affiliation(s)
- Y Y Yu
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China.
| | | | | |
Collapse
|
43
|
Patel S, Leal AD, Gorski DH. The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-kappaB-dependent endothelial cell gene expression. Cancer Res 2005; 65:1414-24. [PMID: 15735029 DOI: 10.1158/0008-5472.can-04-3431] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth and metastasis of tumors are heavily dependent on angiogenesis, but much of the transcriptional regulation of vascular endothelial cell gene expression responsible for angiogenesis remains to be elucidated. The homeobox gene Gax is expressed in vascular endothelial cells and inhibits proliferation and tube formation in vitro. We hypothesized that Gax is a negative transcriptional regulator of the endothelial cell angiogenic phenotype and studied its regulation and activity in vascular endothelial cells. Several proangiogenic factors caused a rapid down-regulation of Gax mRNA in human vascular endothelial cells, as did conditioned media from breast cancer cell lines. In addition, Gax expression using a replication-deficient adenoviral vector inhibited human umbilical vein endothelial cell migration toward proangiogenic factors in vitro and inhibited angiogenesis in vivo in Matrigel plugs. To identify putative downstream targets of Gax, we examined changes in global gene expression in endothelial cells due to Gax activity. Gax expression resulted in changes in global gene expression consistent with a quiescent, nonangiogenic phenotype, with increased expression of cyclin kinase inhibitors and decreased expression of genes implicated in endothelial cell activation and angiogenesis. Further analysis revealed that Gax down-regulated numerous nuclear factor-kappaB (NF-kappaB) target genes and decreased the binding of NF-kappaB to its target sequence in electrophoretic mobility shift assays. To our knowledge, Gax is the first homeobox gene described that inhibits NF-kappaB activity in vascular endothelial cells. Because NF-kappaB has been implicated in endothelial cell activation and angiogenesis, the down-regulation of NF-kappaB-dependent genes by Gax suggests one potential mechanism by which Gax inhibits the angiogenic phenotype.
Collapse
Affiliation(s)
- Sejal Patel
- Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | | |
Collapse
|
44
|
Yu G, Rux AH, Ma P, Bdeir K, Sachais BS. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood 2004; 105:3545-51. [PMID: 15591119 PMCID: PMC1895024 DOI: 10.1182/blood-2004-07-2617] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The involvement of platelets in the pathogenesis of atherosclerosis has recently gained much attention. Platelet factor 4 (PF4), a platelet-specific chemokine released on platelet activation, has been localized to atherosclerotic lesions, including macrophages and endothelium. In this report, we demonstrate that E-selectin, an adhesion molecule involved in atherogenesis, is up-regulated in human umbilical vein endothelial cells exposed to PF4. Induction of E-selectin RNA is time and dose dependent. Surface expression of E-selectin, as measured by flow cytometry, is also increased by PF4. PF4 induces E-selectin expression by activation of transcriptional activity. Activation of nuclear factor-kappaB is critical for PF4-induced E-selectin expression, as demonstrated by promoter activation studies and electrophoretic mobility shift assays. Further, we have identified the low-density lipoprotein receptor-related protein as the cell surface receptor mediating this effect. These results demonstrate that PF4 is able to increase expression of E-selectin by endothelial cells and represents another potential mechanism by which platelets may participate in atherosclerotic lesion progression.
Collapse
Affiliation(s)
- Guangyao Yu
- University of Pennsylvania, 207 John Morgan, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
45
|
Sands WA, Martin AF, Strong EW, Palmer TM. Specific inhibition of nuclear factor-kappaB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol Pharmacol 2004; 66:1147-59. [PMID: 15286208 DOI: 10.1124/mol.104.001107] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is a potent inhibitor of inflammatory processes, and the A(2A) adenosine receptor (A(2A)AR) plays a key nonredundant role as a suppresser of inflammatory responses in vivo. In this study, we demonstrate that increasing A(2A)AR gene expression suppressed multiple inflammatory responses in both human umbilical vein endothelial cells (HUVECs) and rat C6 glioma cells in vitro. In particular, the induction of the adhesion molecule E-selectin by either tumor necrosis factor alpha (TNFalpha) or Escherichia coli lipopolysaccharide (LPS) was reduced by more than 70% in HUVECs, whereas inducible nitric-oxide synthase (iNOS) induction was abolished in C6 cells after exposure to interferon-gamma in combination with LPS and TNFalpha, suggesting that the receptor inhibited a common step in the induction of each of these pro-inflammatory genes. Consistent with this hypothesis, A(2A)AR expression inhibited the activation of NF-kappaB, a key transcription factor whose proper function was essential for optimal iNOS and E-selectin induction. However, although NF-kappaB binding to target DNA was severely compromised in both cell types, the mechanisms by which this occurred were distinct. In C6 cells, A(2A)AR expression blocked IkappaBalpha degradation by inhibiting stimulus-induced phosphorylation, whereas in HUVECs, A(2A)AR expression inhibited NF-kappaB translocation to the nucleus independently of any effect on IkappaBalpha degradation. Together, these observations suggest that A(2A)AR-mediated inhibition NF-kappaB activation is a critical aspect of its anti-inflammatory signaling properties and that the molecular basis of this inhibition varies in a cell type-specific manner.
Collapse
Affiliation(s)
- William A Sands
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
46
|
Donadelli R, Zanchi C, Morigi M, Buelli S, Batani C, Tomasoni S, Corna D, Rottoli D, Benigni A, Abbate M, Remuzzi G, Zoja C. Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways. J Am Soc Nephrol 2004; 14:2436-46. [PMID: 14514721 DOI: 10.1097/01.asn.0000089564.55411.7f] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Investigated was the effect of high albumin concentrations on proximal tubular cell expression of fractalkine. Human proximal tubular cells (HK-2) were incubated with human serum albumin (HSA), which induced a dose-dependent increase in fractalkine mRNA associated with increased levels of both membrane-bound and soluble forms of the protein. To evaluate the role of nuclear factor kappaB (NF-kappaB) activation in HSA-induced fractalkine mRNA, HK-2 cells were infected with a recombinant adenovirus encoding the natural inhibitor of NF-kappaB, IkBalpha; a 43% reduction of fractalkine mRNA levels resulted. Similarly, when cells were infected with the recombinant adenovirus expressing dominant negative mutant of the IkB kinase 2, a 55% inhibition of fractalkine mRNA was achieved. p38 mitogen-activated protein kinase was activated by HSA and was involved in NF-kappaB-dependent transcription of fractalkine. In kidneys of mice with bovine serum albumin overload proteinuria, fractalkine mRNA levels were 2.3-fold greater than those of controls. Fractalkine expression was also induced in tubular epithelial cells in this model. Anti-CXCR1 antibody treatment limited interstitial accumulation of mononuclear cells. Protein overload is a promoter of fractalkine gene induction mediated by NF-kappaB and p38 activation in proximal tubular cells. Fractalkine might contribute to direct mononuclear cells into peritubular interstitium and enhance their adhesion property, which in turn would favor inflammation and disease progression.
Collapse
Affiliation(s)
- Roberta Donadelli
- Mario Negri Institute for Pharmacological Research and Unit of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Caposio P, Dreano M, Garotta G, Gribaudo G, Landolfo S. Human cytomegalovirus stimulates cellular IKK2 activity and requires the enzyme for productive replication. J Virol 2004; 78:3190-5. [PMID: 14990741 PMCID: PMC353729 DOI: 10.1128/jvi.78.6.3190-3195.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) exploits the host transcription factor NF-kappaB to enhance its own replication, dissemination, and reactivation from latency. Here we report that HCMV infection activates the upstream IkappaB kinase (IKK) complex and that its catalytic IKK2 subunit is required for HCMV-induced NF-kappaB activation, as well as the replication of different HCMV strains. These results indicate that IKK2 is essential for HCMV replication and emphasize the feasibility of blocking NF-kappaB activation as a way of inhibiting infection.
Collapse
Affiliation(s)
- Patrizia Caposio
- Department of Public Health and Microbiology, University of Torino, Turin, Italy
| | | | | | | | | |
Collapse
|
48
|
Andreakos E, Sacre SM, Smith C, Lundberg A, Kiriakidis S, Stonehouse T, Monaco C, Feldmann M, Foxwell BM. Distinct pathways of LPS-induced NF-κB activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Blood 2004; 103:2229-37. [PMID: 14630816 DOI: 10.1182/blood-2003-04-1356] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHow lipopolysaccharide (LPS) signals through toll-like receptors (TLRs) to induce nuclear factor (NF)–κB and inflammatory cytokines in sepsis remains unclear. Major candidates for that process are myeloid differentiation protein 88 (MyD88) and MyD88 adaptor-like/TIR domain-containing adaptor protein (Mal/TIRAP) but their role needs to be further defined. Here, we have examined the role of MyD88 and Mal/TIRAP in primary human cells of nonmyeloid and myeloid origin as physiologically relevant systems. We found that MyD88 and Mal/TIRAP are essential for LPS-induced IκBα phosphorylation, NF-κB activation, and interleukin 6 (IL-6) or IL-8 production in fibroblasts and endothelial cells in a pathway that also requires IKK2. In contrast, in macrophages neither MyD88, Mal/TIRAP, nor IκB kinase 2 (IKK2) are required for NF-κB activation or tumor necrosis factor α (TNFα), IL-6, or IL-8 production, although Mal/TIRAP is still involved in the production of interferon β (IFNβ). Differential usage of TLRs may account for that, as in macrophages but not fibroblasts or endothelial cells, TLR4 is expressed in high levels at the cell surface, and neutralization of TLR4 but not TLR2 blocks LPS signaling. These observations demonstrate for the first time the existence of 2 distinct pathways of LPS-induced NF-κB activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of TLR4, MyD88, Mal/TIRAP, and IKK2, and reveal a layer of complexity not previously expected.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenoviridae/genetics
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cells, Cultured
- Cytokines/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fibroblasts/cytology
- Gene Expression
- Humans
- I-kappa B Kinase
- Interleukin-1/metabolism
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-1/chemistry
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Signal Transduction/physiology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Evangelos Andreakos
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Andreakos E, Smith C, Kiriakidis S, Monaco C, de Martin R, Brennan FM, Paleolog E, Feldmann M, Foxwell BM. Heterogeneous requirement of IkappaB kinase 2 for inflammatory cytokine and matrix metalloproteinase production in rheumatoid arthritis: implications for therapy. ARTHRITIS AND RHEUMATISM 2003; 48:1901-12. [PMID: 12847684 DOI: 10.1002/art.11044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate the potential role of IkappaB kinase 1 (IKK-1) and IKK-2 in the regulation of nuclear factor kappaB (NF-kappaB) activation and the expression of tumor necrosis factor alpha (TNFalpha), as well as interleukin-1beta (IL-1beta), IL-6, IL-8, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), in rheumatoid arthritis (RA). METHODS Recombinant adenoviruses expressing beta-galactosidase, dominant-negative IKK-1 and IKK-2, or IkappaBalpha were used to infect ex vivo RA synovial membrane cultures and synovial fibroblasts obtained from patients with RA undergoing joint replacement surgery, or human dermal fibroblasts, human umbilical vein endothelial cells (HUVECs), and monocyte-derived macrophages from healthy volunteers. Then, their effect on the spontaneous or stimulus-induced release of inflammatory cytokines, VEGF, and MMPs from RA synovial membrane cells was examined. RESULTS IKK-2 was not required for lipopolysaccharide (LPS)-induced NF-kappaB activation or TNFalpha, IL-6, or IL-8 production in macrophages, but was essential for this process in response to CD40 ligand, TNFalpha, and IL-1. In synovial fibroblasts, dermal fibroblasts, and HUVECs, IKK-2 was also required for LPS-induced NF-kappaB activation and IL-6 or IL-8 production. In RA synovial membrane cells, IKK-2 inhibition had no effect on spontaneous TNFalpha production but significantly reduced IL-1beta, IL-6, IL-8, VEGF, and MMPs 1, 2, 3, and 13. CONCLUSION Our study demonstrates that IKK-2 is not essential for TNFalpha production in RA. However, because IKK-2 regulates the expression of other inflammatory cytokines (IL-1beta, IL-6, and IL-8), VEGF, and MMPs 1, 2, 3, and 13, which are involved in the inflammatory, angiogenic, and destructive processes in the RA joint, it may still be a good therapeutic target.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Kennedy Institute of Rheumatology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
MacKenzie CJ, Paul A, Wilson S, de Martin R, Baker AH, Plevin R. Enhancement of lipopolysaccharide-stimulated JNK activity in rat aortic smooth muscle cells by pharmacological and adenovirus-mediated inhibition of inhibitory kappa B kinase signalling. Br J Pharmacol 2003; 139:1041-9. [PMID: 12839879 PMCID: PMC1573924 DOI: 10.1038/sj.bjp.0705330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 04/06/2003] [Indexed: 12/13/2022] Open
Abstract
1. In rat aortic smooth muscle cells (RASMCs), the putative nuclear factor kappa B (NFkappaB) inhibitor Pyrrolidine dithiocarbamate (PDTC) was found to inhibit lipopolysaccharide (LPS)-stimulated NFkappaB DNA-binding. However, further investigation identified the site of inhibition as being at, or upstream of, the inhibitory kappa B kinases (IKKs) as their kinase activity was substantially reduced. 2. In addition, PDTC potentiated LPS-stimulated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAP kinase) and MAP kinase-activated protein kinase-2 activity (the downstream target of p38 MAP kinase). 3. Another inhibitor of NFkappaB signalling, the serine protease inhibitor Nalphap-tosyl-L-lysine chloro-methylketone (TLCK), also inhibited LPS-stimulated IKK activity and potentiated JNK activity in response to LPS, suggesting that cross-talk may occur between the NFkappaB and stress-activated protein kinase pathways at the level of IKK or at a common point upstream. 4. Infection of RASMCs with an adenovirus encoding either inhibitory kappa Balpha or a dominant-negative IKKbeta potentiated LPS-stimulated JNK activity. 5. These studies therefore suggest that the loss of NFkappaB DNA-binding and resultant transcriptional activity, rather than the loss of IKK activity, is sufficient to cause an increase in JNK activity. This shows that either pharmacological or molecular inhibition of NFkappaB DNA-binding enhances JNK activation in vascular smooth muscle cells, an effect that may contribute to the pathophysiological effects of LPS.
Collapse
MESH Headings
- Adenoviridae/physiology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Cells, Cultured
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- JNK Mitogen-Activated Protein Kinases
- Lipopolysaccharides/pharmacology
- MAP Kinase Kinase 4
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/physiology
- Rats
- Rats, Sprague-Dawley
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Christopher J MacKenzie
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, 27 Taylor Street, Glasgow G4 0NR, Scotland.
| | | | | | | | | | | |
Collapse
|