1
|
Meyers CA, Xu J, Zhang L, Chang L, Wang Y, Asatrian G, Ding C, Yan N, Zou E, Broderick K, Lee M, Peault B, James AW. Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Eng Part A 2019; 25:1658-1666. [PMID: 31020920 DOI: 10.1089/ten.tea.2019.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human perivascular stem/stromal cells (PSC) are a multipotent mesenchymal progenitor cell population defined by their perivascular residence. PSC are increasingly studied for their application in skeletal regenerative medicine. PSC from subcutaneous white adipose tissue are most commonly isolated via fluorescence-activated cell sorting (FACS), and defined as a bipartite population of CD146+CD34-CD31-CD45- pericytes and CD34+CD146-CD31-CD45- adventitial cells. FACS poses several challenges for clinical translation, including requirements for facilities, equipment, and personnel. The purpose of this study is to identify if magnetic-activated cell sorting (MACS) is a feasible method to derive PSC, and to determine if MACS-derived PSC are comparable to our previous experience with FACS-derived PSC. In brief, CD146+ pericytes and CD34+ adventitial cells were enriched from human lipoaspirate using a multistep column approach. Next, cell identity and purity were analyzed by flow cytometry. In vitro multilineage differentiation studies were performed with MACS-defined PSC subsets. Finally, in vivo application was performed in nonhealing calvarial bone defects in Scid mice. Results showed that human CD146+ pericytes and CD34+ adventitial cells may be enriched by MACS, with defined purity, anticipated cell surface marker expression, and capacity for multilineage differentiation. In vivo, MACS-derived PSC induce ossification of bone defects. These data document the feasibility of a MACS approach for the enrichment and application of PSC in the field of tissue engineering and regenerative medicine. Impact Statement Our findings suggest that perivascular stem/stromal cells, and in particular adventitial cells, may be isolated by magnetic-activated cell sorting and applied as an uncultured autologous stem cell therapy in a same-day setting for bone defect repair.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Leititia Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Greg Asatrian
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, California
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
2
|
Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14055. [PMID: 26052523 PMCID: PMC4448740 DOI: 10.1038/mtm.2014.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/19/2014] [Indexed: 12/24/2022]
Abstract
Safely achieving long-term engraftment of genetically modified hematopoietic stem cells (HSCs) that maintain therapeutic transgene expression is the benchmark for successful application of gene therapy for hemoglobinopathies. We used the pigtailed macaque HSC transplantation model to ascertain the long-term safety and stability of a γ-globin lentivirus vector. We observed stable gene-modified cells and fetal hemoglobin expression for 3 years. Retrovirus integration site (RIS) analysis spanning 6 months to 3.1 years revealed vastly disparate integration profiles, and dynamic fluctuation of hematopoietic contribution from different gene-modified HSC clones without evidence for clonal dominance. There were no perturbations of the global gene-expression profile or expression of genes within a 300 kb region of RIS, including genes surrounding the most abundantly marked clones. Overall, a 3-year long follow-up revealed no evidence of genotoxicity of the γ-globin lentivirus vector with multilineage polyclonal hematopoiesis, and HSC clonal fluctuations that were not associated with transcriptome dysregulation.
Collapse
|
3
|
Lung dendritic cell developmental programming, environmental stimuli, and asthma in early periods of life. J Allergy (Cairo) 2012; 2012:176468. [PMID: 23209481 PMCID: PMC3503332 DOI: 10.1155/2012/176468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are important cells of our innate immune system. Their role is critical in inducing adaptive immunity, tolerance, or allergic response in peripheral organs—lung and skin. The lung DCs are not developed prenatally before birth. The DCs develop after birth presumably during the first year of life; exposures to any foreign antigen or infectious organisms during this period can significantly affect DC developmental programming and generation of distinct DC phenotypes and functions. These changes can have both short-term and long-term health effects which may be very relevant in childhood asthma and predisposition for a persistent response in adulthood. An understanding of DC development at molecular and cellular levels can help in protecting neonates and infants against problematic environmental exposures and developmental immunotoxicity. This knowledge can eventually help in designing novel pharmacological modulators to skew the DC characteristics and immune responses to benefit the host across a lifetime.
Collapse
|
4
|
Brinkworth JF, Pechenkina EA, Silver J, Goyert SM. Innate immune responses to TLR2 and TLR4 agonists differ between baboons, chimpanzees and humans. J Med Primatol 2012; 41:388-93. [PMID: 22978822 DOI: 10.1111/jmp.12002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND African catarrhine primates differ in bacterial disease susceptibility. METHODS Human, chimpanzee, and baboon blood were stimulated with TLR-detected bacterial agonists and cytokine/chemokine induction assessed by real-time PCR. RESULTS Humans and chimpanzees shared similar cytokine/chemokine responses, while baboon cytokine/chemokine induction differed. Generally, responses were agonist independent. CONCLUSIONS These primates tend to generate species rather than agonist-specific responses to bacterial agonists.
Collapse
Affiliation(s)
- J F Brinkworth
- Department of Anthropology, Graduate Center, City University of New York, New York, NY, USA.
| | | | | | | |
Collapse
|
5
|
Gurkan UA, Golden R, Kishore V, Riley CP, Adamec J, Akkus O. Immune and inflammatory pathways are involved in inherent bone marrow ossification. Clin Orthop Relat Res 2012; 470:2528-40. [PMID: 22798134 PMCID: PMC3830098 DOI: 10.1007/s11999-012-2459-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow plays a key role in bone formation and healing. Although a subset of marrow explants ossifies in vitro without excipient osteoinductive factors, some explants do not undergo ossification. The disparity of outcome suggests a significant heterogeneity in marrow tissue in terms of its capacity to undergo osteogenesis. QUESTIONS/PURPOSES We sought to identify: (1) proteins and signaling pathways associated with osteogenesis by contrasting the proteomes of ossified and poorly ossified marrow explants; and (2) temporal changes in proteome and signaling pathways of marrow ossification in the early and late phases of bone formation. METHODS Explants of marrow were cultured. Media conditioned by ossified (n = 4) and poorly ossified (n = 4) subsets were collected and proteins unique to each group were identified by proteomic analysis. Proteomic data were processed to assess proteins specific to the early phase (Days 1-14) and late phase (Days 15-28) of the culture period. Pathways involved in bone marrow ossification were identified through bioinformatics. RESULTS Twenty-eight proteins were unique to ossified samples and eight were unique to poorly ossified ones. Twelve proteins were expressed during the early phase and 15 proteins were specific to the late phase. Several identified pathways corroborated those reported for bone formation in the literature. Immune and inflammatory pathways were specific to ossified samples. CONCLUSIONS The marrow explant model indicates the inflammatory and immune pathways to be an integral part of the osteogenesis process.
Collapse
Affiliation(s)
- Umut Atakan Gurkan
- />Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, PRB 252, Cambridge, MA 02139 USA
| | - Ryan Golden
- />Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Vipuil Kishore
- />Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Catherine P. Riley
- />Department of Research and Development Pathology Associates, Medical Laboratories, Spokane, WA 99204 USA
| | - Jiri Adamec
- />Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Ozan Akkus
- />Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Orthopaedics, University Hospitals of Cleveland, Cleveland, OH USA
| |
Collapse
|
6
|
D'Alessandro A, Liumbruno G, Grazzini G, Pupella S, Lombardini L, Zolla L. Umbilical cord blood stem cells: Towards a proteomic approach. J Proteomics 2010; 73:468-82. [DOI: 10.1016/j.jprot.2009.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/04/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023]
|
7
|
Mérida I, Avila-Flores A, García J, Merino E, Almena M, Torres-Ayuso P. Diacylglycerol kinase alpha, from negative modulation of T cell activation to control of cancer progression. ACTA ACUST UNITED AC 2009; 49:174-88. [PMID: 19534031 DOI: 10.1016/j.advenzreg.2009.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus de Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Induction of apoptosis in leukemic cell lines treated with captopril, trandolapril and losartan: A new role in the treatment of leukaemia for these agents. Leuk Res 2009; 33:810-6. [DOI: 10.1016/j.leukres.2008.09.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 11/23/2022]
|
9
|
Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ. Human C/EBP-epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 2009; 113:317-27. [PMID: 18832658 PMCID: PMC2615649 DOI: 10.1182/blood-2008-02-139741] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022] Open
Abstract
CCAAT enhancer-binding protein-epsilon (C/EBP-epsilon) is required for the terminal differentiation of neutrophils and eosinophils. Human C/EBP-epsilon is expressed as 4 isoforms (32, 30, 27, and 14 kDa) through differential RNA splicing, and alternative promoters and translational start sites. The C/EBP-epsilon(32/30) isoforms are transcriptional activators, whereas C/EBP-epsilon(27) interacts with and represses GATA-1 transactivation of eosinophil promoters. C/EBP-epsilon(14) contains only DNA-binding and -dimerization domains and may function as a dominant-negative regulator. To define functional activities for these C/EBP-epsilon isoforms in myelopoiesis, human CD34(+) progenitors were transduced with internal ribosomal entry site-enhanced green fluorescent protein retroviral vectors encoding the 32/30, 27, and 14-kDa isoforms, purified by fluorescence-activated cell sorter, and analyzed in colony-forming assays and suspension cultures. Progenitors transduced with C/EBP-epsilon(32/30) default exclusively to eosinophil differentiation and gene expression, independent of interleukin-5, and regardless of inclusion of cytokines to induce other lineages. In contrast, the putative repressor C/EBP-epsilon(27) isoform strongly inhibits eosinophil differentiation and gene expression, including GATA-1, promoting granulocyte (neutrophil)-macrophage differen-tiation. The C/EBP-epsilon(14) repressor isoform strongly inhibits eosinophil development and gene expression, promoting erythroid differentiation, an effect enhanced by erythropoietin. Thus, C/EBP-epsilon isoforms can reprogram myeloid lineage commitment and differentiation consistent with their predicted activities based on activator and repressor domains and in vitro functional activities.
Collapse
Affiliation(s)
- Richa Bedi
- Department of Biochemistry and Molecular Genetics, Section of Hematology-Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
10
|
Temporal dynamics of gene expression in the lung in a baboon model of E. coli sepsis. BMC Genomics 2007; 8:58. [PMID: 17324256 PMCID: PMC1819384 DOI: 10.1186/1471-2164-8-58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 02/26/2007] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial invasion during sepsis induces disregulated systemic responses that could lead to fatal lung failure. The purpose of this study was to relate the temporal dynamics of gene expression to the pathophysiological changes in the lung during the first and second stages of E. coli sepsis in baboons. Results Using human oligonucleotide microarrays, we have explored the temporal changes of gene expression in the lung of baboons challenged with sublethal doses of E. coli. Temporal expression pattern and biological significance of the differentially expressed genes were explored using clustering and pathway analysis software. Expression of selected genes was validated by real-time PCR. Cytokine levels in tissue and plasma were assayed by multiplex ELISA. Changes in lung ultrastructure were visualized by electron microscopy. We found that genes involved in primary inflammation, innate immune response, and apoptosis peaked at 2 hrs. Inflammatory and immune response genes that function in the stimulation of monocytes, natural killer and T-cells, and in the modulation of cell adhesion peaked at 8 hrs, while genes involved in wound healing and functional recovery were upregulated at 24 hrs. Conclusion The analysis of gene expression modulation in response to sepsis provides the baseline information that is crucial for the understanding of the pathophysiology of systemic inflammation and may facilitate the development of future approaches for sepsis therapy.
Collapse
|
11
|
Ong CHP, He Z, Kriazhev L, Shan X, Palfree RGE, Bateman A. Regulation of progranulin expression in myeloid cells. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1602-12. [PMID: 16873554 DOI: 10.1152/ajpregu.00616.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progranulin (pgrn; granulin-epithelin precursor, PC-cell-derived growth factor, or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis, development, inflammation, and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All-trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34(+) progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO, and, in U-937 only, phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation, suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937, ATRA and chemical differentiation agents greatly increased pgrn mRNA stability, whereas, in HL-60, ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-kappaB (NF-kappaB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937, whereas in U-937 it blocked PMA-induced pgrn mRNA expression, suggestive of cell-specific roles for NF-kappaB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-kappaB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.
Collapse
Affiliation(s)
- Colin H P Ong
- Endocrine Research Laboratories, Department of Medicine, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Liu F, Lu J, Fan HH, Wang ZQ, Cui SJ, Zhang GA, Chi M, Zhang X, Yang PY, Chen Z, Han ZG. Insights into human CD34+ hematopoietic stem/progenitor cells through a systematically proteomic survey coupled with transcriptome. Proteomics 2006; 6:2673-92. [PMID: 16596711 DOI: 10.1002/pmic.200500032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hematopoietic stem cells are capable of self-renewal and differentiation into different hematopoietic lineages. To gain a comprehensive understanding of hematopoietic stem/progenitor cells, a systematic proteomic survey of human CD34+ cells collected from human umbilical cord blood was performed, in which the proteins were separated by 1- and 2-DE, as well as by nano-LC, and subsequently identified by MS. A total of 370 distinct proteins identified from those cells provided new insights into the potential of the stem/progenitor cells because the nerve, gonad, and eye-associated proteins were reliably identified. Interestingly, the transcripts of 133 (35.9%) identified proteins were not found by the prevalent transcriptome approaches, although several selected transcripts could be detected by RT-PCR. Moreover, the heterogeneity of 33 proteins identified from 2-DE was attributable primarily to post-translational processes rather than to alternative splicing at transcriptional level. Furthermore, the biosyntheses of 15 proteins identified in this study appears not to be completely interrupted in spite of the fact that corresponding antisense RNAs were found in the existing transcriptome data. The integrated proteomic and transcriptomic analyses employed here provided a unique view of the human stem/progenitor cells.
Collapse
Affiliation(s)
- Feng Liu
- Chinese National Human Genome Center at Shanghai, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Awasthi S, Cropper J. Immunophenotype and functions of fetal baboon bone-marrow derived dendritic cells. Cell Immunol 2006; 240:31-40. [PMID: 16842767 DOI: 10.1016/j.cellimm.2006.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 05/31/2006] [Accepted: 06/02/2006] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are unique antigen-presenting cells that can take up pathogens, pathogens-derived and stress-antigens and stimulate antigen-specific immune response. Here we investigated the immunobiology of fetal DCs and compared their phenotype and activation status against infectious stimuli with those of young and adult baboons. The DCs were obtained from femoral bone-marrow (BMDCs) of fetus (140 and 175 days of gestation), young (4-5 years old) and mature adult (10-35 years old) baboons. The cells were cultured in the presence of GM-CSF and IL-4. To study phagocytic ability of BMDCs, the cells were harvested on 6th day and incubated with fluorescent-labeled Escherichia coli bioparticles. The BMDCs were also treated with E. coli O111:B4 lipopolysaccharide (LPS) for 24h and changes in expression of cell-surface markers and IL-12 were studied using distinct immunoassays. We found that the phenotype and morphology of BMDCs from fetal, young and adult baboons were similar and showed increased expression of HLA-DP, DQ, DR and T cell co-stimulatory molecules upon LPS treatment. However, significant differences were observed in phagocytic activity and IL-12 secretion among BMDCs from these sources. The ability of fetal baboon BMDCs to phagocytose E. coli bioparticles was significantly lower and they secreted lower level of LPS-stimulated IL-12 as compared to the BMDCs from adult baboon. These results suggest that compared to adult BMDCs, fetal baboon BMDCs are less efficient in mounting immune response against Gram-negative bacterial stimuli.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|
14
|
Mahmud N, Rose D, Pang W, Walker R, Patil V, Weich N, Hoffman R. Characterization of primitive marrow CD34+ cells that persist after a sublethal dose of total body irradiation. Exp Hematol 2006; 33:1388-401. [PMID: 16263423 DOI: 10.1016/j.exphem.2005.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/06/2005] [Accepted: 07/11/2005] [Indexed: 01/23/2023]
Abstract
Knowledge of the molecular events that occur during hematopoietic stem/progenitor cell (HSPC) development is vital to our understanding of blood cell production. To study the functional groups of genes characteristic of HSPCs we isolated a subpopulation of CD34+ bone marrow (BM) cells from nonhuman primates that persisted in vivo after a sublethal dose of total body irradiation (TBI). CD34+ cells isolated during the phase of maximal hematopoietic suppression show a transcriptional profile characteristic of metabolically inactive cells, with strong coordinate downregulation of a large number of genes required for protein production and processing. Consistent with this profile, these CD34+ cells were not able to generate hematopoietic colonies. Transcriptional profiling of these CD34+ cells in conjunction with a pathway analysis method reveals several classes of functionally related genes that are upregulated in comparison to the CD34+ cells obtained prior to TBI. These families included genes known to be associated with self-renewal and maintenance of HSPCs (including bone morphogenetic proteins), resistance to apoptosis (Bcl-2) as well as genes characteristic of a variety of nonhematopoietic tissues (gamma-aminobutyric acid/glycine receptor, complement receptor C1qRp). In contrast, during the period of hematopoietic recovery, the CD34+ cells expressed higher level of genes encoding factors regulating maturation and differentiation of HSPCs. Our data indicate that the primitive BM CD34+ cell population that persists after radiation possesses a transcriptional profile suggestive of pluripotency.
Collapse
Affiliation(s)
- Nadim Mahmud
- University of Illinois College of Medicine, Chicago, IL 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ferrell CM, Dorsam ST, Ohta H, Humphries RK, Derynck MK, Haqq C, Largman C, Lawrence HJ. Activation of Stem-Cell Specific Genes by HOXA9 and HOXA10 Homeodomain Proteins in CD34+Human Cord Blood Cells. Stem Cells 2005; 23:644-55. [PMID: 15849172 DOI: 10.1634/stemcells.2004-0198] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing evidence for a role of HOX homeodomain proteins in normal hematopoiesis. Several HOX genes, including HOXA9 and HOXA10, are expressed in primitive hematopoietic cells, implying a role in early hematopoietic differentiation. To identify potential target genes of these two closely related transcription factors, human CD34+ umbilical cord blood cells were transduced with vectors expressing either HOXA9 or HOXA10 and analyzed with cDNA micro-arrays. Statistical analysis using significance analysis of microarrays revealed a common signature of several hundred genes, demonstrating that the transcriptomes of HOXA9 and HOXA10 largely overlap in this cellular context. Seven genes that were upregulated by both HOX proteins were validated by real-time reverse transcription polymerase chain reaction. HOXA9 and HOXA10 showed positive regulation of genes in the Wnt pathway, including Wnt10B and two Wnt receptors Frizzled 1 and Frizzled 5, an important pathway for hematopoietic stem cell (HSC) self-renewal. Other validated genes included v-ets-related gene (ERG), Iroquois 3 (IRX3), aldehyde dehydrogenase 1 (ALDH1), and very long-chain acyl-CoA synthetase homolog 1 (VLCS-H1). GenMAPP (Gene Micro Array Pathway Profiler) analysis indicated that HOXA10 repressed expression of several genes involved in heme biosynthesis and three globin genes, indicating a general suppression of erythroid differentiation. A number of genes regulated by HOXA9 and HOXA10 are expressed in normal HSC populations.
Collapse
Affiliation(s)
- Christina M Ferrell
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Strawn WB, Richmond RS, Ann Tallant E, Gallagher PE, Ferrario CM. Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br J Haematol 2004; 126:120-6. [PMID: 15198742 DOI: 10.1111/j.1365-2141.2004.04998.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of a bone marrow renin-angiotensin system (RAS) is evidenced by the association of renin, angiotensin converting enzyme (ACE), and angiotensin (Ang) II and its AT(1) and AT(2) receptors with both normal and disturbed haematopoiesis. The expression of RAS components by rat unfractionated bone marrow cells (BMC), haematopoietic-lineage BMC and cultured marrow stromal cells (MSC) was investigated to determine which specific cell types may contribute to a local bone marrow RAS. The mRNAs for angiotensinogen, renin, ACE, and AT(1a) and AT(2) receptors were present in BMC and in cultured MSC; ACE2 mRNA was detected only in BMC. Two-colour flow fluorocytometry analysis showed immunodetectable angiotensinogen, ACE, AT(1) and AT(2) receptors, and Ang II, as well as binding of Ang II to AT(1) and AT(2) receptors, in CD4(+), CD11b/c(+), CD45R(+) and CD90(+) BMC and cultured MSC; renin was found in all cell types with the exception of CD4(+) BMC. Furthermore, Ang II was detected by radioimmunoassay in MSC homogenates as well as conditioned culture medium. The presence of Ang II receptors in both haematopoietic-lineage BMC and MSC, and the de novo synthesis of Ang II by MSC suggest a potential autocrine-paracrine mechanism for local RAS-mediated regulation of haematopoiesis.
Collapse
Affiliation(s)
- William B Strawn
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
17
|
Wagner W, Ansorge A, Wirkner U, Eckstein V, Schwager C, Blake J, Miesala K, Selig J, Saffrich R, Ansorge W, Ho AD. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 2004; 104:675-86. [PMID: 15090461 DOI: 10.1182/blood-2003-10-3423] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms that regulate asymmetric divisions of hematopoietic progenitor cells (HPCs) are not yet understood. The slow-dividing fraction (SDF) of HPCs is associated with primitive function and self-renewal, whereas the fast-dividing fraction (FDF) predominantly proceeds to differentiation. CD34+/CD38- cells of human umbilical cord blood were separated into the SDF and FDF. Genomewide gene expression analysis of these populations was determined using the newly developed Human Transcriptome Microarray containing 51 145 cDNA clones of the Unigene Set-RZPD3. In addition, gene expression profiles of CD34+/CD38- cells were compared with those of CD34+/CD38+ cells. Among the genes showing the highest expression levels in the SDF were the following: CD133, ERG, cyclin G2, MDR1, osteopontin, CLQR1, IFI16, JAK3, FZD6, and HOXA9, a pattern compatible with their primitive function and self-renewal capacity. Furthermore, morphologic differences between the SDF and FDF were determined. Cells in the SDF have more membrane protrusions and CD133 is located on these lamellipodia. The majority of cells in the SDF are rhodamine-123dull. These results provide molecular evidence that the SDF is associated with primitive function and serves as basis for a detailed understanding of asymmetric division of stem cells.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O'Connor KC, Schur PH, Kojima S, Guinan EC, Nadler LM. Autoantibodies frequently detected in patients with aplastic anemia. Blood 2003; 102:4567-75. [PMID: 12947009 DOI: 10.1182/blood-2002-11-3409] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although accumulating evidence strongly suggests that aplastic anemia (AA) is a T cell-mediated autoimmune disease, no target antigens have yet been described for AA. In autoimmune diseases, target autoantigens frequently induce not only cellular T-cell responses but also humoral B-cell responses. We hypothesized that the presence of antigen-specific autoantibodies could be used as a "surrogate marker" for the identification of target T-cell autoantigens in AA patients. We screened a human fetal liver library for serologic reactivity against hematopoietic stem/progenitor cell antigens and isolated 32 genes. In 7 of 18 AA patients, an immunoglobulin G (IgG) antibody response was detected to one of the genes, kinectin, which is expressed in all hematopoietic cell lineages tested including CD34+ cells. No response to kinectin was detected in healthy volunteers, multiply transfused non-AA patients, or patients with other autoimmune diseases. Epitope mapping of IgG autoantibodies against kinectin revealed that the responses to several of the epitopes were shared by different AA patients. Moreover, CD8+ cytotoxic T cells raised against kinectin-derived peptides suppressed the colony formation of granulocyte macrophage colony-forming units (CFU-GMs) in an HLA class I-restricted fashion. These results suggest that kinectin may be a candidate autoantigen that is involved in the pathophysiology of AA.
Collapse
Affiliation(s)
- Naoto Hirano
- Dana-Farber Cancer Institute, Department of Medical Oncology, 44 Binney St, Boston MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dorsam ST, Ferrell CM, Dorsam GP, Derynck MK, Vijapurkar U, Khodabakhsh D, Pau B, Bernstein H, Haqq CM, Largman C, Lawrence HJ. The transcriptome of the leukemogenic homeoprotein HOXA9 in human hematopoietic cells. Blood 2003; 103:1676-84. [PMID: 14604967 DOI: 10.1182/blood-2003-07-2202] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hematopoietic defects in HOXA9(-/-) mice demonstrate a key role for this homeoprotein in blood cell development. Conversely, enforced HOXA9 expression is leukemogenic in mice, and HOXA9 is frequently activated in human acute myeloid leukemia (AML). Although HOXA9 is thought to function as a transcription factor, few downstream targets have been identified. We searched for early HOXA9 target genes by using a transient overexpression strategy in 3 hematopoietic cell lines (2 myeloid, 1 lymphoid). cDNA microarray analyses identified 220 genes whose expression was modulated at least 2-fold. Expression signatures in myeloid and lymphoid cells demonstrated that HOXA9 functions as both an activator and repressor of a variety of genes in cell-specific patterns suggesting that the transcriptional effects of HOXA9 are largely dependent on the cell context. Transient transcription assays and target gene expression patterns in HOXA9(-/-) marrow cells imply that we have identified direct physiologic targets. Many target genes are expressed in CD34+ stem cells or are members of gene families involved in proliferation or myeloid differentiation. Expression of 14 HOXA9 target genes correlated with high-level HOXA9 expression in primary AML. These data suggest that many genes identified in this survey may mediate the biologic effects of HOXA9 in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- Sheri Tinnell Dorsam
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu SJ, Quan C, Li F, Vida L, Honig GR. Hematopoietic progenitor cells derived from embryonic stem cells: analysis of gene expression. Stem Cells 2003; 20:428-37. [PMID: 12351813 DOI: 10.1634/stemcells.20-5-428] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhesus monkey embryonic stem (ES) cells undergo differentiation in vitro to generate hematopoietic progenitor cells. Our previous studies demonstrated a high degree of similarity in the expression of genes associated with hematopoietic differentiation, homing, and engraftment in CD34(+) and CD34(+)CD38(-) cells from rhesus monkey ES cells and from fresh or cultured bone marrow (BM). In the present study, we compared the expression patterns of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDIs) in these cells. The expression of genes for cyclins, CDKs, and CDIs was similar among the hematopoietic progenitor cells of different origins, with only minor differences. Differentially expressed genes were also analyzed in CD34(+) lineage-negative cells derived from mouse ES cells and from BM. No difference or totally divergent results were obtained with the latter system, suggesting that this variation may be species specific. We observed, however, that CD34(+) and CD34(+)CD38(-) cells derived from ES cells expressed embryonic epsilon and zeta as well as alpha, beta, and gamma globin genes, whereas no expression of embryonic globins could be detected in the cell preparations from BM. Moreover, erythroblast-enriched CD34(-) cells derived from 4- or 5-week ES cell differentiation cultures also expressed embryonic, fetal, and adult globin genes, with greater beta gene expression, but otherwise were identical to those of the more primitive CD34(+) cells derived from 2-week ES cultures. These latter observations may reflect the presence of heterogeneous cell populations within the cell fractions that were compared, or they may represent variability among ES-cell-derived hematopoietic stem cells.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
21
|
Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P, Latagliata R, Mariani G, Rossini A, Battistini A, Lo-Coco F, Peschle C. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 2002; 100:2980-8. [PMID: 12351411 DOI: 10.1182/blood-2002-03-0852] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the expression of interleukin-3 receptor alpha (IL-3Ralpha) chain in primary blasts from 79 patients with acute myeloid leukemia (AML), 25 patients with B-acute lymphoid leukemia (B-ALL), and 7 patients with T-acute lymphoid leukemia (T-ALL) to evaluate a linkage between the expression of this receptor chain, blast proliferative status, and disease prognosis. Although IL-3Ralpha chain was scarcely expressed in most patients with T-ALL, it was overexpressed in 40% and 45% of patients with B-ALL and AML, respectively, compared with the levels observed in normal CD34(+) progenitors. The biological and clinical significance of this overexpression pattern was investigated in AML. At the biological level, elevated IL-3Ralpha expression was associated with peculiar properties of leukemic blasts, specifically in 3 areas. First, in all patients the blasts expressing elevated IL-3Ralpha levels exhibited higher cycling activity and increased resistance to apoptosis triggered by growth factor deprivation. Second, spontaneous signal transducer and activator of transcription 5 (Stat5) phosphorylation was observed in 13% of AML patients, all pertaining to the group of patients exhibiting high IL-3Ralpha expression. Third, following IL-3 treatment, Stat5 was activated at higher levels in blasts with elevated IL-3Ralpha expression. At the clinical level, a significant correlation was observed between the level of IL-3Ralpha expression and the number of leukemic blasts at diagnosis, and patients exhibiting elevated IL-3Ralpha levels had a lower complete remission rate and survival duration than those showing normal IL-3Ralpha levels. These findings suggest that in AML, deregulated expression of IL-3Ralpha may contribute to the proliferative advantage of the leukemic blasts and, hence, to a poor prognosis.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Surface/analysis
- Apoptosis
- Blast Crisis
- Cell Cycle
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-3 Receptor alpha Subunit
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Middle Aged
- Predictive Value of Tests
- Prognosis
- Receptors, Interleukin-3/genetics
- Recurrence
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ugo Testa
- Departments of Hematology and Oncology, Virology, and Immunology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gomes I, Sharma TT, Edassery S, Fulton N, Mar BG, Westbrook CA. Novel transcription factors in human CD34 antigen-positive hematopoietic cells. Blood 2002; 100:107-19. [PMID: 12070015 DOI: 10.1182/blood.v100.1.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factors (TFs) and the regulatory proteins that control them play key roles in hematopoiesis, controlling basic processes of cell growth and differentiation; disruption of these processes may lead to leukemogenesis. Here we attempt to identify functionally novel and partially characterized TFs/regulatory proteins that are expressed in undifferentiated hematopoietic tissue. We surveyed our database of 15 970 genes/expressed sequence tags (ESTs) representing the normal human CD34(+) cells transcriptosome (http://westsun.hema.uic.edu/cd34.html), using the UniGene annotation text descriptor, to identify genes with motifs consistent with transcriptional regulators; 285 genes were identified. We also extracted the human homologues of the TFs reported in the murine stem cell database (SCdb; http://stemcell.princeton.edu/), selecting an additional 45 genes/ESTs. An exhaustive literature search of each of these 330 unique genes was performed to determine if any had been previously reported and to obtain additional characterizing information. Of the resulting gene list, 106 were considered to be potential TFs. Overall, the transcriptional regulator dataset consists of 165 novel or poorly characterized genes, including 25 that appeared to be TFs. Among these novel and poorly characterized genes are a cell growth regulatory with ring finger domain protein (CGR19, Hs.59106), an RB-associated CRAB repressor (RBAK, Hs.7222), a death-associated transcription factor 1 (DATF1, Hs.155313), and a p38-interacting protein (P38IP, Hs. 171185). The identification of these novel and partially characterized potential transcriptional regulators adds a wealth of information to understanding the molecular aspects of hematopoiesis and hematopoietic disorders.
Collapse
Affiliation(s)
- Ignatius Gomes
- Department of Medicine, Section of Hematology and Oncology, University of Illinois at Chicago 60607, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lu SJ, Li F, Vida L, Honig GR. Comparative gene expression in hematopoietic progenitor cells derived from embryonic stem cells. Exp Hematol 2002; 30:58-66. [PMID: 11823038 DOI: 10.1016/s0301-472x(01)00767-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The aim of this study was to characterize at the molecular level the hematopoietic progenitor cells derived from rhesus monkey embryonic stem (ES) cell differentiation. MATERIALS AND METHODS We purified CD34(+) and CD34(+)CD38(-) cells from rhesus monkey ES cell cultures and examined the expression of a variety of genes associated with hematopoietic development, by semiquantitative polymerase chain reaction analysis. For comparison, we examined cell preparations from fresh or cultured rhesus monkey bone marrow (BM) and from mouse ES cells and BM. RESULTS We observed a high degree of similarity in the expression patterns of these genes, with only a few exceptions. Most notably, the message of the flt3 gene was undetectable in rhesus monkey ES cell-derived CD34(+) and CD34(+)CD38(-) cells, whereas substantial flt3 expression was observed in the corresponding cells from fresh BM and in CD34(+) cells from cultured BM. The integrin alphaL and interleukin-6 (IL-6) receptor genes also were expressed in CD34(+)CD38(-) cells from BM, but there was little or no expression of these genes in CD34(+)CD38(-) cells derived from ES cells. Parallel analyses, using CD34(+)Lin(-) cells derived from murine ES cell cultures, showed no apparent expression of flt3, integrin alphaL, or IL-6 receptor, whereas corresponding cell preparations isolated from mouse BM expressed high levels of all of these genes. CONCLUSIONS ES cell-derived hematopoietic progenitors, both from the rhesus monkey and from the mouse, exhibited the same alterations in gene expression compared with BM-derived cells from these animals. These observations could reflect the presence of different subpopulations in the cell fractions that were compared, or they may represent altered biologic properties of ES cell-derived hematopoietic stem cells.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|